1#! /usr/bin/env perl
2# Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# ECP_NISTZ256 module for x86/SSE2.
18#
19# October 2014.
20#
21# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
22# http://eprint.iacr.org/2013/816. In the process of adaptation
23# original .c module was made 32-bit savvy in order to make this
24# implementation possible.
25#
26#		with/without -DECP_NISTZ256_ASM
27# Pentium	+66-163%
28# PIII		+72-172%
29# P4		+65-132%
30# Core2		+90-215%
31# Sandy Bridge	+105-265% (contemporary i[57]-* are all close to this)
32# Atom		+65-155%
33# Opteron	+54-110%
34# Bulldozer	+99-240%
35# VIA Nano	+93-290%
36#
37# Ranges denote minimum and maximum improvement coefficients depending
38# on benchmark. Lower coefficients are for ECDSA sign, server-side
39# operation. Keep in mind that +200% means 3x improvement.
40
41$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
42push(@INC,"${dir}","${dir}../../perlasm");
43require "x86asm.pl";
44
45$output=pop;
46open STDOUT,">$output";
47
48&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
49
50$sse2=0;
51for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
52
53&external_label("OPENSSL_ia32cap_P") if ($sse2);
54
55
56########################################################################
57# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
58#
59open TABLE,"<ecp_nistz256_table.c"		or
60open TABLE,"<${dir}../ecp_nistz256_table.c"	or
61die "failed to open ecp_nistz256_table.c:",$!;
62
63use integer;
64
65foreach(<TABLE>) {
66	s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
67}
68close TABLE;
69
70# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
71# 64*16*37-1 is because $#arr returns last valid index or @arr, not
72# amount of elements.
73die "insane number of elements" if ($#arr != 64*16*37-1);
74
75&public_label("ecp_nistz256_precomputed");
76&align(4096);
77&set_label("ecp_nistz256_precomputed");
78
79########################################################################
80# this conversion smashes P256_POINT_AFFINE by individual bytes with
81# 64 byte interval, similar to
82#	1111222233334444
83#	1234123412341234
84for(1..37) {
85	@tbl = splice(@arr,0,64*16);
86	for($i=0;$i<64;$i++) {
87		undef @line;
88		for($j=0;$j<64;$j++) {
89			push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
90		}
91		&data_byte(join(',',map { sprintf "0x%02x",$_} @line));
92	}
93}
94
95########################################################################
96# Keep in mind that constants are stored least to most significant word
97&static_label("RR");
98&set_label("RR",64);
99&data_word(3,0,-1,-5,-2,-1,-3,4);	# 2^512 mod P-256
100
101&static_label("ONE_mont");
102&set_label("ONE_mont");
103&data_word(1,0,0,-1,-1,-1,-2,0);
104
105&static_label("ONE");
106&set_label("ONE");
107&data_word(1,0,0,0,0,0,0,0);
108&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by <appro\@openssl.org>");
109&align(64);
110
111########################################################################
112# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
113&function_begin("ecp_nistz256_mul_by_2");
114	&mov	("esi",&wparam(1));
115	&mov	("edi",&wparam(0));
116	&mov	("ebp","esi");
117########################################################################
118# common pattern for internal functions is that %edi is result pointer,
119# %esi and %ebp are input ones, %ebp being optional. %edi is preserved.
120	&call	("_ecp_nistz256_add");
121&function_end("ecp_nistz256_mul_by_2");
122
123########################################################################
124# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]);
125&function_begin("ecp_nistz256_mul_by_3");
126	&mov	("esi",&wparam(1));
127					# multiplication by 3 is performed
128					# as 2*n+n, but we can't use output
129					# to store 2*n, because if output
130					# pointer equals to input, then
131					# we'll get 2*n+2*n.
132	&stack_push(8);			# therefore we need to allocate
133					# 256-bit intermediate buffer.
134	&mov	("edi","esp");
135	&mov	("ebp","esi");
136	&call	("_ecp_nistz256_add");
137	&lea	("esi",&DWP(0,"edi"));
138	&mov	("ebp",&wparam(1));
139	&mov	("edi",&wparam(0));
140	&call	("_ecp_nistz256_add");
141	&stack_pop(8);
142&function_end("ecp_nistz256_mul_by_3");
143
144########################################################################
145# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
146&function_begin("ecp_nistz256_div_by_2");
147	&mov	("esi",&wparam(1));
148	&mov	("edi",&wparam(0));
149	&call	("_ecp_nistz256_div_by_2");
150&function_end("ecp_nistz256_div_by_2");
151
152&function_begin_B("_ecp_nistz256_div_by_2");
153	# tmp = a is odd ? a+mod : a
154	#
155	# note that because mod has special form, i.e. consists of
156	# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
157	# assigning least significant bit of input to one register,
158	# %ebp, and its negative to another, %edx.
159
160	&mov	("ebp",&DWP(0,"esi"));
161	&xor	("edx","edx");
162	&mov	("ebx",&DWP(4,"esi"));
163	&mov	("eax","ebp");
164	&and	("ebp",1);
165	&mov	("ecx",&DWP(8,"esi"));
166	&sub	("edx","ebp");
167
168	&add	("eax","edx");
169	&adc	("ebx","edx");
170	&mov	(&DWP(0,"edi"),"eax");
171	&adc	("ecx","edx");
172	&mov	(&DWP(4,"edi"),"ebx");
173	&mov	(&DWP(8,"edi"),"ecx");
174
175	&mov	("eax",&DWP(12,"esi"));
176	&mov	("ebx",&DWP(16,"esi"));
177	&adc	("eax",0);
178	&mov	("ecx",&DWP(20,"esi"));
179	&adc	("ebx",0);
180	&mov	(&DWP(12,"edi"),"eax");
181	&adc	("ecx",0);
182	&mov	(&DWP(16,"edi"),"ebx");
183	&mov	(&DWP(20,"edi"),"ecx");
184
185	&mov	("eax",&DWP(24,"esi"));
186	&mov	("ebx",&DWP(28,"esi"));
187	&adc	("eax","ebp");
188	&adc	("ebx","edx");
189	&mov	(&DWP(24,"edi"),"eax");
190	&sbb	("esi","esi");			# broadcast carry bit
191	&mov	(&DWP(28,"edi"),"ebx");
192
193	# ret = tmp >> 1
194
195	&mov	("eax",&DWP(0,"edi"));
196	&mov	("ebx",&DWP(4,"edi"));
197	&mov	("ecx",&DWP(8,"edi"));
198	&mov	("edx",&DWP(12,"edi"));
199
200	&shr	("eax",1);
201	&mov	("ebp","ebx");
202	&shl	("ebx",31);
203	&or	("eax","ebx");
204
205	&shr	("ebp",1);
206	&mov	("ebx","ecx");
207	&shl	("ecx",31);
208	&mov	(&DWP(0,"edi"),"eax");
209	&or	("ebp","ecx");
210	&mov	("eax",&DWP(16,"edi"));
211
212	&shr	("ebx",1);
213	&mov	("ecx","edx");
214	&shl	("edx",31);
215	&mov	(&DWP(4,"edi"),"ebp");
216	&or	("ebx","edx");
217	&mov	("ebp",&DWP(20,"edi"));
218
219	&shr	("ecx",1);
220	&mov	("edx","eax");
221	&shl	("eax",31);
222	&mov	(&DWP(8,"edi"),"ebx");
223	&or	("ecx","eax");
224	&mov	("ebx",&DWP(24,"edi"));
225
226	&shr	("edx",1);
227	&mov	("eax","ebp");
228	&shl	("ebp",31);
229	&mov	(&DWP(12,"edi"),"ecx");
230	&or	("edx","ebp");
231	&mov	("ecx",&DWP(28,"edi"));
232
233	&shr	("eax",1);
234	&mov	("ebp","ebx");
235	&shl	("ebx",31);
236	&mov	(&DWP(16,"edi"),"edx");
237	&or	("eax","ebx");
238
239	&shr	("ebp",1);
240	&mov	("ebx","ecx");
241	&shl	("ecx",31);
242	&mov	(&DWP(20,"edi"),"eax");
243	&or	("ebp","ecx");
244
245	&shr	("ebx",1);
246	&shl	("esi",31);
247	&mov	(&DWP(24,"edi"),"ebp");
248	&or	("ebx","esi");			# handle top-most carry bit
249	&mov	(&DWP(28,"edi"),"ebx");
250
251	&ret	();
252&function_end_B("_ecp_nistz256_div_by_2");
253
254########################################################################
255# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8],
256#					const BN_ULONG ebp[8]);
257&function_begin("ecp_nistz256_add");
258	&mov	("esi",&wparam(1));
259	&mov	("ebp",&wparam(2));
260	&mov	("edi",&wparam(0));
261	&call	("_ecp_nistz256_add");
262&function_end("ecp_nistz256_add");
263
264&function_begin_B("_ecp_nistz256_add");
265	&mov	("eax",&DWP(0,"esi"));
266	&mov	("ebx",&DWP(4,"esi"));
267	&mov	("ecx",&DWP(8,"esi"));
268	&add	("eax",&DWP(0,"ebp"));
269	&mov	("edx",&DWP(12,"esi"));
270	&adc	("ebx",&DWP(4,"ebp"));
271	&mov	(&DWP(0,"edi"),"eax");
272	&adc	("ecx",&DWP(8,"ebp"));
273	&mov	(&DWP(4,"edi"),"ebx");
274	&adc	("edx",&DWP(12,"ebp"));
275	&mov	(&DWP(8,"edi"),"ecx");
276	&mov	(&DWP(12,"edi"),"edx");
277
278	&mov	("eax",&DWP(16,"esi"));
279	&mov	("ebx",&DWP(20,"esi"));
280	&mov	("ecx",&DWP(24,"esi"));
281	&adc	("eax",&DWP(16,"ebp"));
282	&mov	("edx",&DWP(28,"esi"));
283	&adc	("ebx",&DWP(20,"ebp"));
284	&mov	(&DWP(16,"edi"),"eax");
285	&adc	("ecx",&DWP(24,"ebp"));
286	&mov	(&DWP(20,"edi"),"ebx");
287	&mov	("esi",0);
288	&adc	("edx",&DWP(28,"ebp"));
289	&mov	(&DWP(24,"edi"),"ecx");
290	&adc	("esi",0);
291	&mov	(&DWP(28,"edi"),"edx");
292
293	# if a+b >= modulus, subtract modulus.
294	#
295	# But since comparison implies subtraction, we subtract modulus
296	# to see if it borrows, and then subtract it for real if
297	# subtraction didn't borrow.
298
299	&mov	("eax",&DWP(0,"edi"));
300	&mov	("ebx",&DWP(4,"edi"));
301	&mov	("ecx",&DWP(8,"edi"));
302	&sub	("eax",-1);
303	&mov	("edx",&DWP(12,"edi"));
304	&sbb	("ebx",-1);
305	&mov	("eax",&DWP(16,"edi"));
306	&sbb	("ecx",-1);
307	&mov	("ebx",&DWP(20,"edi"));
308	&sbb	("edx",0);
309	&mov	("ecx",&DWP(24,"edi"));
310	&sbb	("eax",0);
311	&mov	("edx",&DWP(28,"edi"));
312	&sbb	("ebx",0);
313	&sbb	("ecx",1);
314	&sbb	("edx",-1);
315	&sbb	("esi",0);
316
317	# Note that because mod has special form, i.e. consists of
318	# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
319	# by using borrow.
320
321	&not	("esi");
322	&mov	("eax",&DWP(0,"edi"));
323	&mov	("ebp","esi");
324	&mov	("ebx",&DWP(4,"edi"));
325	&shr	("ebp",31);
326	&mov	("ecx",&DWP(8,"edi"));
327	&sub	("eax","esi");
328	&mov	("edx",&DWP(12,"edi"));
329	&sbb	("ebx","esi");
330	&mov	(&DWP(0,"edi"),"eax");
331	&sbb	("ecx","esi");
332	&mov	(&DWP(4,"edi"),"ebx");
333	&sbb	("edx",0);
334	&mov	(&DWP(8,"edi"),"ecx");
335	&mov	(&DWP(12,"edi"),"edx");
336
337	&mov	("eax",&DWP(16,"edi"));
338	&mov	("ebx",&DWP(20,"edi"));
339	&mov	("ecx",&DWP(24,"edi"));
340	&sbb	("eax",0);
341	&mov	("edx",&DWP(28,"edi"));
342	&sbb	("ebx",0);
343	&mov	(&DWP(16,"edi"),"eax");
344	&sbb	("ecx","ebp");
345	&mov	(&DWP(20,"edi"),"ebx");
346	&sbb	("edx","esi");
347	&mov	(&DWP(24,"edi"),"ecx");
348	&mov	(&DWP(28,"edi"),"edx");
349
350	&ret	();
351&function_end_B("_ecp_nistz256_add");
352
353########################################################################
354# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8],
355#					const BN_ULONG ebp[8]);
356&function_begin("ecp_nistz256_sub");
357	&mov	("esi",&wparam(1));
358	&mov	("ebp",&wparam(2));
359	&mov	("edi",&wparam(0));
360	&call	("_ecp_nistz256_sub");
361&function_end("ecp_nistz256_sub");
362
363&function_begin_B("_ecp_nistz256_sub");
364	&mov	("eax",&DWP(0,"esi"));
365	&mov	("ebx",&DWP(4,"esi"));
366	&mov	("ecx",&DWP(8,"esi"));
367	&sub	("eax",&DWP(0,"ebp"));
368	&mov	("edx",&DWP(12,"esi"));
369	&sbb	("ebx",&DWP(4,"ebp"));
370	&mov	(&DWP(0,"edi"),"eax");
371	&sbb	("ecx",&DWP(8,"ebp"));
372	&mov	(&DWP(4,"edi"),"ebx");
373	&sbb	("edx",&DWP(12,"ebp"));
374	&mov	(&DWP(8,"edi"),"ecx");
375	&mov	(&DWP(12,"edi"),"edx");
376
377	&mov	("eax",&DWP(16,"esi"));
378	&mov	("ebx",&DWP(20,"esi"));
379	&mov	("ecx",&DWP(24,"esi"));
380	&sbb	("eax",&DWP(16,"ebp"));
381	&mov	("edx",&DWP(28,"esi"));
382	&sbb	("ebx",&DWP(20,"ebp"));
383	&sbb	("ecx",&DWP(24,"ebp"));
384	&mov	(&DWP(16,"edi"),"eax");
385	&sbb	("edx",&DWP(28,"ebp"));
386	&mov	(&DWP(20,"edi"),"ebx");
387	&sbb	("esi","esi");			# broadcast borrow bit
388	&mov	(&DWP(24,"edi"),"ecx");
389	&mov	(&DWP(28,"edi"),"edx");
390
391	# if a-b borrows, add modulus.
392	#
393	# Note that because mod has special form, i.e. consists of
394	# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
395	# assigning borrow bit to one register, %ebp, and its negative
396	# to another, %esi. But we started by calculating %esi...
397
398	&mov	("eax",&DWP(0,"edi"));
399	&mov	("ebp","esi");
400	&mov	("ebx",&DWP(4,"edi"));
401	&shr	("ebp",31);
402	&mov	("ecx",&DWP(8,"edi"));
403	&add	("eax","esi");
404	&mov	("edx",&DWP(12,"edi"));
405	&adc	("ebx","esi");
406	&mov	(&DWP(0,"edi"),"eax");
407	&adc	("ecx","esi");
408	&mov	(&DWP(4,"edi"),"ebx");
409	&adc	("edx",0);
410	&mov	(&DWP(8,"edi"),"ecx");
411	&mov	(&DWP(12,"edi"),"edx");
412
413	&mov	("eax",&DWP(16,"edi"));
414	&mov	("ebx",&DWP(20,"edi"));
415	&mov	("ecx",&DWP(24,"edi"));
416	&adc	("eax",0);
417	&mov	("edx",&DWP(28,"edi"));
418	&adc	("ebx",0);
419	&mov	(&DWP(16,"edi"),"eax");
420	&adc	("ecx","ebp");
421	&mov	(&DWP(20,"edi"),"ebx");
422	&adc	("edx","esi");
423	&mov	(&DWP(24,"edi"),"ecx");
424	&mov	(&DWP(28,"edi"),"edx");
425
426	&ret	();
427&function_end_B("_ecp_nistz256_sub");
428
429########################################################################
430# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]);
431&function_begin("ecp_nistz256_neg");
432	&mov	("ebp",&wparam(1));
433	&mov	("edi",&wparam(0));
434
435	&xor	("eax","eax");
436	&stack_push(8);
437	&mov	(&DWP(0,"esp"),"eax");
438	&mov	("esi","esp");
439	&mov	(&DWP(4,"esp"),"eax");
440	&mov	(&DWP(8,"esp"),"eax");
441	&mov	(&DWP(12,"esp"),"eax");
442	&mov	(&DWP(16,"esp"),"eax");
443	&mov	(&DWP(20,"esp"),"eax");
444	&mov	(&DWP(24,"esp"),"eax");
445	&mov	(&DWP(28,"esp"),"eax");
446
447	&call	("_ecp_nistz256_sub");
448
449	&stack_pop(8);
450&function_end("ecp_nistz256_neg");
451
452&function_begin_B("_picup_eax");
453	&mov	("eax",&DWP(0,"esp"));
454	&ret	();
455&function_end_B("_picup_eax");
456
457########################################################################
458# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
459&function_begin("ecp_nistz256_to_mont");
460	&mov	("esi",&wparam(1));
461	&call	("_picup_eax");
462    &set_label("pic");
463	&lea	("ebp",&DWP(&label("RR")."-".&label("pic"),"eax"));
464						if ($sse2) {
465	&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
466	&mov	("eax",&DWP(0,"eax"));		}
467	&mov	("edi",&wparam(0));
468	&call	("_ecp_nistz256_mul_mont");
469&function_end("ecp_nistz256_to_mont");
470
471########################################################################
472# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
473&function_begin("ecp_nistz256_from_mont");
474	&mov	("esi",&wparam(1));
475	&call	("_picup_eax");
476    &set_label("pic");
477	&lea	("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax"));
478						if ($sse2) {
479	&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
480	&mov	("eax",&DWP(0,"eax"));		}
481	&mov	("edi",&wparam(0));
482	&call	("_ecp_nistz256_mul_mont");
483&function_end("ecp_nistz256_from_mont");
484
485########################################################################
486# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8],
487#					     const BN_ULONG ebp[8]);
488&function_begin("ecp_nistz256_mul_mont");
489	&mov	("esi",&wparam(1));
490	&mov	("ebp",&wparam(2));
491						if ($sse2) {
492	&call	("_picup_eax");
493    &set_label("pic");
494	&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
495	&mov	("eax",&DWP(0,"eax"));		}
496	&mov	("edi",&wparam(0));
497	&call	("_ecp_nistz256_mul_mont");
498&function_end("ecp_nistz256_mul_mont");
499
500########################################################################
501# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
502&function_begin("ecp_nistz256_sqr_mont");
503	&mov	("esi",&wparam(1));
504						if ($sse2) {
505	&call	("_picup_eax");
506    &set_label("pic");
507	&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
508	&mov	("eax",&DWP(0,"eax"));		}
509	&mov	("edi",&wparam(0));
510	&mov	("ebp","esi");
511	&call	("_ecp_nistz256_mul_mont");
512&function_end("ecp_nistz256_sqr_mont");
513
514&function_begin_B("_ecp_nistz256_mul_mont");
515						if ($sse2) {
516	&and	("eax",1<<24|1<<26);
517	&cmp	("eax",1<<24|1<<26);		# see if XMM+SSE2 is on
518	&jne	(&label("mul_mont_ialu"));
519
520	########################################
521	# SSE2 code path featuring 32x16-bit
522	# multiplications is ~2x faster than
523	# IALU counterpart (except on Atom)...
524	########################################
525	# stack layout:
526	# +------------------------------------+< %esp
527	# | 7 16-byte temporary XMM words,     |
528	# | "sliding" toward lower address     |
529	# .                                    .
530	# +------------------------------------+
531	# | unused XMM word                    |
532	# +------------------------------------+< +128,%ebx
533	# | 8 16-byte XMM words holding copies |
534	# | of a[i]<<64|a[i]                   |
535	# .                                    .
536	# .                                    .
537	# +------------------------------------+< +256
538	&mov	("edx","esp");
539	&sub	("esp",0x100);
540
541	&movd	("xmm7",&DWP(0,"ebp"));		# b[0] -> 0000.00xy
542	&lea	("ebp",&DWP(4,"ebp"));
543	&pcmpeqd("xmm6","xmm6");
544	&psrlq	("xmm6",48);			# compose 0xffff<<64|0xffff
545
546	&pshuflw("xmm7","xmm7",0b11011100);	# 0000.00xy -> 0000.0x0y
547	&and	("esp",-64);
548	&pshufd	("xmm7","xmm7",0b11011100);	# 0000.0x0y -> 000x.000y
549	&lea	("ebx",&DWP(0x80,"esp"));
550
551	&movd	("xmm0",&DWP(4*0,"esi"));	# a[0] -> 0000.00xy
552	&pshufd	("xmm0","xmm0",0b11001100);	# 0000.00xy -> 00xy.00xy
553	&movd	("xmm1",&DWP(4*1,"esi"));	# a[1] -> ...
554	&movdqa	(&QWP(0x00,"ebx"),"xmm0");	# offload converted a[0]
555	&pmuludq("xmm0","xmm7");		# a[0]*b[0]
556
557	&movd	("xmm2",&DWP(4*2,"esi"));
558	&pshufd	("xmm1","xmm1",0b11001100);
559	&movdqa	(&QWP(0x10,"ebx"),"xmm1");
560	&pmuludq("xmm1","xmm7");		# a[1]*b[0]
561
562	 &movq	("xmm4","xmm0");		# clear upper 64 bits
563	 &pslldq("xmm4",6);
564	 &paddq	("xmm4","xmm0");
565	 &movdqa("xmm5","xmm4");
566	 &psrldq("xmm4",10);			# upper 32 bits of a[0]*b[0]
567	 &pand	("xmm5","xmm6");		# lower 32 bits of a[0]*b[0]
568
569	# Upper half of a[0]*b[i] is carried into next multiplication
570	# iteration, while lower one "participates" in actual reduction.
571	# Normally latter is done by accumulating result of multiplication
572	# of modulus by "magic" digit, but thanks to special form of modulus
573	# and "magic" digit it can be performed only with additions and
574	# subtractions (see note in IALU section below). Note that we are
575	# not bothered with carry bits, they are accumulated in "flatten"
576	# phase after all multiplications and reductions.
577
578	&movd	("xmm3",&DWP(4*3,"esi"));
579	&pshufd	("xmm2","xmm2",0b11001100);
580	&movdqa	(&QWP(0x20,"ebx"),"xmm2");
581	&pmuludq("xmm2","xmm7");		# a[2]*b[0]
582	 &paddq	("xmm1","xmm4");		# a[1]*b[0]+hw(a[0]*b[0]), carry
583	&movdqa	(&QWP(0x00,"esp"),"xmm1");	# t[0]
584
585	&movd	("xmm0",&DWP(4*4,"esi"));
586	&pshufd	("xmm3","xmm3",0b11001100);
587	&movdqa	(&QWP(0x30,"ebx"),"xmm3");
588	&pmuludq("xmm3","xmm7");		# a[3]*b[0]
589	&movdqa	(&QWP(0x10,"esp"),"xmm2");
590
591	&movd	("xmm1",&DWP(4*5,"esi"));
592	&pshufd	("xmm0","xmm0",0b11001100);
593	&movdqa	(&QWP(0x40,"ebx"),"xmm0");
594	&pmuludq("xmm0","xmm7");		# a[4]*b[0]
595	 &paddq	("xmm3","xmm5");		# a[3]*b[0]+lw(a[0]*b[0]), reduction step
596	&movdqa	(&QWP(0x20,"esp"),"xmm3");
597
598	&movd	("xmm2",&DWP(4*6,"esi"));
599	&pshufd	("xmm1","xmm1",0b11001100);
600	&movdqa	(&QWP(0x50,"ebx"),"xmm1");
601	&pmuludq("xmm1","xmm7");		# a[5]*b[0]
602	&movdqa	(&QWP(0x30,"esp"),"xmm0");
603	 &pshufd("xmm4","xmm5",0b10110001);	# xmm4 = xmm5<<32, reduction step
604
605	&movd	("xmm3",&DWP(4*7,"esi"));
606	&pshufd	("xmm2","xmm2",0b11001100);
607	&movdqa	(&QWP(0x60,"ebx"),"xmm2");
608	&pmuludq("xmm2","xmm7");		# a[6]*b[0]
609	&movdqa	(&QWP(0x40,"esp"),"xmm1");
610	 &psubq	("xmm4","xmm5");		# xmm4 = xmm5*0xffffffff, reduction step
611
612	&movd	("xmm0",&DWP(0,"ebp"));		# b[1] -> 0000.00xy
613	&pshufd	("xmm3","xmm3",0b11001100);
614	&movdqa	(&QWP(0x70,"ebx"),"xmm3");
615	&pmuludq("xmm3","xmm7");		# a[7]*b[0]
616
617	&pshuflw("xmm7","xmm0",0b11011100);	# 0000.00xy -> 0000.0x0y
618	&movdqa	("xmm0",&QWP(0x00,"ebx"));	# pre-load converted a[0]
619	&pshufd	("xmm7","xmm7",0b11011100);	# 0000.0x0y -> 000x.000y
620
621	&mov	("ecx",6);
622	&lea	("ebp",&DWP(4,"ebp"));
623	&jmp	(&label("madd_sse2"));
624
625&set_label("madd_sse2",16);
626	 &paddq	("xmm2","xmm5");		# a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled]
627	 &paddq	("xmm3","xmm4");		# a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled]
628	&movdqa	("xmm1",&QWP(0x10,"ebx"));
629	&pmuludq("xmm0","xmm7");		# a[0]*b[i]
630	 &movdqa(&QWP(0x50,"esp"),"xmm2");
631
632	&movdqa	("xmm2",&QWP(0x20,"ebx"));
633	&pmuludq("xmm1","xmm7");		# a[1]*b[i]
634	 &movdqa(&QWP(0x60,"esp"),"xmm3");
635	&paddq	("xmm0",&QWP(0x00,"esp"));
636
637	&movdqa	("xmm3",&QWP(0x30,"ebx"));
638	&pmuludq("xmm2","xmm7");		# a[2]*b[i]
639	 &movq	("xmm4","xmm0");		# clear upper 64 bits
640	 &pslldq("xmm4",6);
641	&paddq	("xmm1",&QWP(0x10,"esp"));
642	 &paddq	("xmm4","xmm0");
643	 &movdqa("xmm5","xmm4");
644	 &psrldq("xmm4",10);			# upper 33 bits of a[0]*b[i]+t[0]
645
646	&movdqa	("xmm0",&QWP(0x40,"ebx"));
647	&pmuludq("xmm3","xmm7");		# a[3]*b[i]
648	 &paddq	("xmm1","xmm4");		# a[1]*b[i]+hw(a[0]*b[i]), carry
649	&paddq	("xmm2",&QWP(0x20,"esp"));
650	&movdqa	(&QWP(0x00,"esp"),"xmm1");
651
652	&movdqa	("xmm1",&QWP(0x50,"ebx"));
653	&pmuludq("xmm0","xmm7");		# a[4]*b[i]
654	&paddq	("xmm3",&QWP(0x30,"esp"));
655	&movdqa	(&QWP(0x10,"esp"),"xmm2");
656	 &pand	("xmm5","xmm6");		# lower 32 bits of a[0]*b[i]
657
658	&movdqa	("xmm2",&QWP(0x60,"ebx"));
659	&pmuludq("xmm1","xmm7");		# a[5]*b[i]
660	 &paddq	("xmm3","xmm5");		# a[3]*b[i]+lw(a[0]*b[i]), reduction step
661	&paddq	("xmm0",&QWP(0x40,"esp"));
662	&movdqa	(&QWP(0x20,"esp"),"xmm3");
663	 &pshufd("xmm4","xmm5",0b10110001);	# xmm4 = xmm5<<32, reduction step
664
665	&movdqa	("xmm3","xmm7");
666	&pmuludq("xmm2","xmm7");		# a[6]*b[i]
667	 &movd	("xmm7",&DWP(0,"ebp"));		# b[i++] -> 0000.00xy
668	 &lea	("ebp",&DWP(4,"ebp"));
669	&paddq	("xmm1",&QWP(0x50,"esp"));
670	 &psubq	("xmm4","xmm5");		# xmm4 = xmm5*0xffffffff, reduction step
671	&movdqa	(&QWP(0x30,"esp"),"xmm0");
672	 &pshuflw("xmm7","xmm7",0b11011100);	# 0000.00xy -> 0000.0x0y
673
674	&pmuludq("xmm3",&QWP(0x70,"ebx"));	# a[7]*b[i]
675	 &pshufd("xmm7","xmm7",0b11011100);	# 0000.0x0y -> 000x.000y
676	 &movdqa("xmm0",&QWP(0x00,"ebx"));	# pre-load converted a[0]
677	&movdqa	(&QWP(0x40,"esp"),"xmm1");
678	&paddq	("xmm2",&QWP(0x60,"esp"));
679
680	&dec	("ecx");
681	&jnz	(&label("madd_sse2"));
682
683	 &paddq	("xmm2","xmm5");		# a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled]
684	 &paddq	("xmm3","xmm4");		# a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled]
685	&movdqa	("xmm1",&QWP(0x10,"ebx"));
686	&pmuludq("xmm0","xmm7");		# a[0]*b[7]
687	 &movdqa(&QWP(0x50,"esp"),"xmm2");
688
689	&movdqa	("xmm2",&QWP(0x20,"ebx"));
690	&pmuludq("xmm1","xmm7");		# a[1]*b[7]
691	 &movdqa(&QWP(0x60,"esp"),"xmm3");
692	&paddq	("xmm0",&QWP(0x00,"esp"));
693
694	&movdqa	("xmm3",&QWP(0x30,"ebx"));
695	&pmuludq("xmm2","xmm7");		# a[2]*b[7]
696	 &movq	("xmm4","xmm0");		# clear upper 64 bits
697	 &pslldq("xmm4",6);
698	&paddq	("xmm1",&QWP(0x10,"esp"));
699	 &paddq	("xmm4","xmm0");
700	 &movdqa("xmm5","xmm4");
701	 &psrldq("xmm4",10);			# upper 33 bits of a[0]*b[i]+t[0]
702
703	&movdqa	("xmm0",&QWP(0x40,"ebx"));
704	&pmuludq("xmm3","xmm7");		# a[3]*b[7]
705	 &paddq	("xmm1","xmm4");		# a[1]*b[7]+hw(a[0]*b[7]), carry
706	&paddq	("xmm2",&QWP(0x20,"esp"));
707	&movdqa	(&QWP(0x00,"esp"),"xmm1");
708
709	&movdqa	("xmm1",&QWP(0x50,"ebx"));
710	&pmuludq("xmm0","xmm7");		# a[4]*b[7]
711	&paddq	("xmm3",&QWP(0x30,"esp"));
712	&movdqa	(&QWP(0x10,"esp"),"xmm2");
713	 &pand	("xmm5","xmm6");		# lower 32 bits of a[0]*b[i]
714
715	&movdqa	("xmm2",&QWP(0x60,"ebx"));
716	&pmuludq("xmm1","xmm7");		# a[5]*b[7]
717	 &paddq	("xmm3","xmm5");		# reduction step
718	&paddq	("xmm0",&QWP(0x40,"esp"));
719	&movdqa	(&QWP(0x20,"esp"),"xmm3");
720	 &pshufd("xmm4","xmm5",0b10110001);	# xmm4 = xmm5<<32, reduction step
721
722	&movdqa	("xmm3",&QWP(0x70,"ebx"));
723	&pmuludq("xmm2","xmm7");		# a[6]*b[7]
724	&paddq	("xmm1",&QWP(0x50,"esp"));
725	 &psubq	("xmm4","xmm5");		# xmm4 = xmm5*0xffffffff, reduction step
726	&movdqa	(&QWP(0x30,"esp"),"xmm0");
727
728	&pmuludq("xmm3","xmm7");		# a[7]*b[7]
729	&pcmpeqd("xmm7","xmm7");
730	&movdqa	("xmm0",&QWP(0x00,"esp"));
731	&pslldq	("xmm7",8);
732	&movdqa	(&QWP(0x40,"esp"),"xmm1");
733	&paddq	("xmm2",&QWP(0x60,"esp"));
734
735	 &paddq	("xmm2","xmm5");		# a[6]*b[7]+lw(a[0]*b[7]), reduction step
736	 &paddq	("xmm3","xmm4");		# a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step
737	 &movdqa(&QWP(0x50,"esp"),"xmm2");
738	 &movdqa(&QWP(0x60,"esp"),"xmm3");
739
740	&movdqa	("xmm1",&QWP(0x10,"esp"));
741	&movdqa	("xmm2",&QWP(0x20,"esp"));
742	&movdqa	("xmm3",&QWP(0x30,"esp"));
743
744	&movq	("xmm4","xmm0");		# "flatten"
745	&pand	("xmm0","xmm7");
746	&xor	("ebp","ebp");
747	&pslldq	("xmm4",6);
748	 &movq	("xmm5","xmm1");
749	&paddq	("xmm0","xmm4");
750	 &pand	("xmm1","xmm7");
751	&psrldq	("xmm0",6);
752	&movd	("eax","xmm0");
753	&psrldq	("xmm0",4);
754
755	&paddq	("xmm5","xmm0");
756	&movdqa	("xmm0",&QWP(0x40,"esp"));
757	&sub	("eax",-1);			# start subtracting modulus,
758						# this is used to determine
759						# if result is larger/smaller
760						# than modulus (see below)
761	&pslldq	("xmm5",6);
762	 &movq	("xmm4","xmm2");
763	&paddq	("xmm1","xmm5");
764	 &pand	("xmm2","xmm7");
765	&psrldq	("xmm1",6);
766	&mov	(&DWP(4*0,"edi"),"eax");
767	&movd	("eax","xmm1");
768	&psrldq	("xmm1",4);
769
770	&paddq	("xmm4","xmm1");
771	&movdqa	("xmm1",&QWP(0x50,"esp"));
772	&sbb	("eax",-1);
773	&pslldq	("xmm4",6);
774	 &movq	("xmm5","xmm3");
775	&paddq	("xmm2","xmm4");
776	 &pand	("xmm3","xmm7");
777	&psrldq	("xmm2",6);
778	&mov	(&DWP(4*1,"edi"),"eax");
779	&movd	("eax","xmm2");
780	&psrldq	("xmm2",4);
781
782	&paddq	("xmm5","xmm2");
783	&movdqa	("xmm2",&QWP(0x60,"esp"));
784	&sbb	("eax",-1);
785	&pslldq	("xmm5",6);
786	 &movq	("xmm4","xmm0");
787	&paddq	("xmm3","xmm5");
788	 &pand	("xmm0","xmm7");
789	&psrldq	("xmm3",6);
790	&mov	(&DWP(4*2,"edi"),"eax");
791	&movd	("eax","xmm3");
792	&psrldq	("xmm3",4);
793
794	&paddq	("xmm4","xmm3");
795	&sbb	("eax",0);
796	&pslldq	("xmm4",6);
797	 &movq	("xmm5","xmm1");
798	&paddq	("xmm0","xmm4");
799	 &pand	("xmm1","xmm7");
800	&psrldq	("xmm0",6);
801	&mov	(&DWP(4*3,"edi"),"eax");
802	&movd	("eax","xmm0");
803	&psrldq	("xmm0",4);
804
805	&paddq	("xmm5","xmm0");
806	&sbb	("eax",0);
807	&pslldq	("xmm5",6);
808	 &movq	("xmm4","xmm2");
809	&paddq	("xmm1","xmm5");
810	 &pand	("xmm2","xmm7");
811	&psrldq	("xmm1",6);
812	&movd	("ebx","xmm1");
813	&psrldq	("xmm1",4);
814	&mov	("esp","edx");
815
816	&paddq	("xmm4","xmm1");
817	&pslldq	("xmm4",6);
818	&paddq	("xmm2","xmm4");
819	&psrldq	("xmm2",6);
820	&movd	("ecx","xmm2");
821	&psrldq	("xmm2",4);
822	&sbb	("ebx",0);
823	&movd	("edx","xmm2");
824	&pextrw	("esi","xmm2",2);		# top-most overflow bit
825	&sbb	("ecx",1);
826	&sbb	("edx",-1);
827	&sbb	("esi",0);			# borrow from subtraction
828
829	# Final step is "if result > mod, subtract mod", and at this point
830	# we have result - mod written to output buffer, as well as borrow
831	# bit from this subtraction, and if borrow bit is set, we add
832	# modulus back.
833	#
834	# Note that because mod has special form, i.e. consists of
835	# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
836	# assigning borrow bit to one register, %ebp, and its negative
837	# to another, %esi. But we started by calculating %esi...
838
839	&sub	("ebp","esi");
840	&add	(&DWP(4*0,"edi"),"esi");	# add modulus or zero
841	&adc	(&DWP(4*1,"edi"),"esi");
842	&adc	(&DWP(4*2,"edi"),"esi");
843	&adc	(&DWP(4*3,"edi"),0);
844	&adc	("eax",0);
845	&adc	("ebx",0);
846	&mov	(&DWP(4*4,"edi"),"eax");
847	&adc	("ecx","ebp");
848	&mov	(&DWP(4*5,"edi"),"ebx");
849	&adc	("edx","esi");
850	&mov	(&DWP(4*6,"edi"),"ecx");
851	&mov	(&DWP(4*7,"edi"),"edx");
852
853	&ret	();
854
855&set_label("mul_mont_ialu",16);			}
856
857	########################################
858	# IALU code path suitable for all CPUs.
859	########################################
860	# stack layout:
861	# +------------------------------------+< %esp
862	# | 8 32-bit temporary words, accessed |
863	# | as circular buffer                 |
864	# .                                    .
865	# .                                    .
866	# +------------------------------------+< +32
867	# | offloaded destination pointer      |
868	# +------------------------------------+
869	# | unused                             |
870	# +------------------------------------+< +40
871	&sub	("esp",10*4);
872
873	&mov	("eax",&DWP(0*4,"esi"));		# a[0]
874	&mov	("ebx",&DWP(0*4,"ebp"));		# b[0]
875	&mov	(&DWP(8*4,"esp"),"edi");		# off-load dst ptr
876
877	&mul	("ebx");				# a[0]*b[0]
878	&mov	(&DWP(0*4,"esp"),"eax");		# t[0]
879	&mov	("eax",&DWP(1*4,"esi"));
880	&mov	("ecx","edx")
881
882	&mul	("ebx");				# a[1]*b[0]
883	&add	("ecx","eax");
884	&mov	("eax",&DWP(2*4,"esi"));
885	&adc	("edx",0);
886	&mov	(&DWP(1*4,"esp"),"ecx");		# t[1]
887	&mov	("ecx","edx");
888
889	&mul	("ebx");				# a[2]*b[0]
890	&add	("ecx","eax");
891	&mov	("eax",&DWP(3*4,"esi"));
892	&adc	("edx",0);
893	&mov	(&DWP(2*4,"esp"),"ecx");		# t[2]
894	&mov	("ecx","edx");
895
896	&mul	("ebx");				# a[3]*b[0]
897	&add	("ecx","eax");
898	&mov	("eax",&DWP(4*4,"esi"));
899	&adc	("edx",0);
900	&mov	(&DWP(3*4,"esp"),"ecx");		# t[3]
901	&mov	("ecx","edx");
902
903	&mul	("ebx");				# a[4]*b[0]
904	&add	("ecx","eax");
905	&mov	("eax",&DWP(5*4,"esi"));
906	&adc	("edx",0);
907	&mov	(&DWP(4*4,"esp"),"ecx");		# t[4]
908	&mov	("ecx","edx");
909
910	&mul	("ebx");				# a[5]*b[0]
911	&add	("ecx","eax");
912	&mov	("eax",&DWP(6*4,"esi"));
913	&adc	("edx",0);
914	&mov	(&DWP(5*4,"esp"),"ecx");		# t[5]
915	&mov	("ecx","edx");
916
917	&mul	("ebx");				# a[6]*b[0]
918	&add	("ecx","eax");
919	&mov	("eax",&DWP(7*4,"esi"));
920	&adc	("edx",0);
921	&mov	(&DWP(6*4,"esp"),"ecx");		# t[6]
922	&mov	("ecx","edx");
923
924	&xor	("edi","edi");				# initial top-most carry
925	&mul	("ebx");				# a[7]*b[0]
926	&add	("ecx","eax");				# t[7]
927	&mov	("eax",&DWP(0*4,"esp"));		# t[0]
928	&adc	("edx",0);				# t[8]
929
930for ($i=0;$i<7;$i++) {
931	my $j=$i+1;
932
933	# Reduction iteration is normally performed by accumulating
934	# result of multiplication of modulus by "magic" digit [and
935	# omitting least significant word, which is guaranteed to
936	# be 0], but thanks to special form of modulus and "magic"
937	# digit being equal to least significant word, it can be
938	# performed with additions and subtractions alone. Indeed:
939	#
940	#        ffff.0001.0000.0000.0000.ffff.ffff.ffff
941	# *                                         abcd
942	# + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
943	#
944	# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
945	# rewrite above as:
946	#
947	#   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
948	# + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
949	# -      abcd.0000.0000.0000.0000.0000.0000.abcd
950	#
951	# or marking redundant operations:
952	#
953	#   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
954	# + abcd.0000.abcd.0000.0000.abcd.----.----.----
955	# -      abcd.----.----.----.----.----.----.----
956
957	&add	(&DWP((($i+3)%8)*4,"esp"),"eax");	# t[3]+=t[0]
958	&adc	(&DWP((($i+4)%8)*4,"esp"),0);		# t[4]+=0
959	&adc	(&DWP((($i+5)%8)*4,"esp"),0);		# t[5]+=0
960	&adc	(&DWP((($i+6)%8)*4,"esp"),"eax");	# t[6]+=t[0]
961	&adc	("ecx",0);				# t[7]+=0
962	&adc	("edx","eax");				# t[8]+=t[0]
963	&adc	("edi",0);				# top-most carry
964	 &mov	("ebx",&DWP($j*4,"ebp"));		# b[i]
965	&sub	("ecx","eax");				# t[7]-=t[0]
966	 &mov	("eax",&DWP(0*4,"esi"));		# a[0]
967	&sbb	("edx",0);				# t[8]-=0
968	&mov	(&DWP((($i+7)%8)*4,"esp"),"ecx");
969	&sbb	("edi",0);				# top-most carry,
970							# keep in mind that
971							# netto result is
972							# *addition* of value
973							# with (abcd<<32)-abcd
974							# on top, so that
975							# underflow is
976							# impossible, because
977							# (abcd<<32)-abcd
978							# doesn't underflow
979	&mov	(&DWP((($i+8)%8)*4,"esp"),"edx");
980
981	&mul	("ebx");				# a[0]*b[i]
982	&add	("eax",&DWP((($j+0)%8)*4,"esp"));
983	&adc	("edx",0);
984	&mov	(&DWP((($j+0)%8)*4,"esp"),"eax");
985	&mov	("eax",&DWP(1*4,"esi"));
986	&mov	("ecx","edx")
987
988	&mul	("ebx");				# a[1]*b[i]
989	&add	("ecx",&DWP((($j+1)%8)*4,"esp"));
990	&adc	("edx",0);
991	&add	("ecx","eax");
992	&adc	("edx",0);
993	&mov	("eax",&DWP(2*4,"esi"));
994	&mov	(&DWP((($j+1)%8)*4,"esp"),"ecx");
995	&mov	("ecx","edx");
996
997	&mul	("ebx");				# a[2]*b[i]
998	&add	("ecx",&DWP((($j+2)%8)*4,"esp"));
999	&adc	("edx",0);
1000	&add	("ecx","eax");
1001	&adc	("edx",0);
1002	&mov	("eax",&DWP(3*4,"esi"));
1003	&mov	(&DWP((($j+2)%8)*4,"esp"),"ecx");
1004	&mov	("ecx","edx");
1005
1006	&mul	("ebx");				# a[3]*b[i]
1007	&add	("ecx",&DWP((($j+3)%8)*4,"esp"));
1008	&adc	("edx",0);
1009	&add	("ecx","eax");
1010	&adc	("edx",0);
1011	&mov	("eax",&DWP(4*4,"esi"));
1012	&mov	(&DWP((($j+3)%8)*4,"esp"),"ecx");
1013	&mov	("ecx","edx");
1014
1015	&mul	("ebx");				# a[4]*b[i]
1016	&add	("ecx",&DWP((($j+4)%8)*4,"esp"));
1017	&adc	("edx",0);
1018	&add	("ecx","eax");
1019	&adc	("edx",0);
1020	&mov	("eax",&DWP(5*4,"esi"));
1021	&mov	(&DWP((($j+4)%8)*4,"esp"),"ecx");
1022	&mov	("ecx","edx");
1023
1024	&mul	("ebx");				# a[5]*b[i]
1025	&add	("ecx",&DWP((($j+5)%8)*4,"esp"));
1026	&adc	("edx",0);
1027	&add	("ecx","eax");
1028	&adc	("edx",0);
1029	&mov	("eax",&DWP(6*4,"esi"));
1030	&mov	(&DWP((($j+5)%8)*4,"esp"),"ecx");
1031	&mov	("ecx","edx");
1032
1033	&mul	("ebx");				# a[6]*b[i]
1034	&add	("ecx",&DWP((($j+6)%8)*4,"esp"));
1035	&adc	("edx",0);
1036	&add	("ecx","eax");
1037	&adc	("edx",0);
1038	&mov	("eax",&DWP(7*4,"esi"));
1039	&mov	(&DWP((($j+6)%8)*4,"esp"),"ecx");
1040	&mov	("ecx","edx");
1041
1042	&mul	("ebx");				# a[7]*b[i]
1043	&add	("ecx",&DWP((($j+7)%8)*4,"esp"));
1044	&adc	("edx",0);
1045	&add	("ecx","eax");				# t[7]
1046	&mov	("eax",&DWP((($j+0)%8)*4,"esp"));	# t[0]
1047	&adc	("edx","edi");				# t[8]
1048	&mov	("edi",0);
1049	&adc	("edi",0);				# top-most carry
1050}
1051	&mov	("ebp",&DWP(8*4,"esp"));		# restore dst ptr
1052	&xor	("esi","esi");
1053	my $j=$i+1;
1054
1055	# last multiplication-less reduction
1056	&add	(&DWP((($i+3)%8)*4,"esp"),"eax");	# t[3]+=t[0]
1057	&adc	(&DWP((($i+4)%8)*4,"esp"),0);		# t[4]+=0
1058	&adc	(&DWP((($i+5)%8)*4,"esp"),0);		# t[5]+=0
1059	&adc	(&DWP((($i+6)%8)*4,"esp"),"eax");	# t[6]+=t[0]
1060	&adc	("ecx",0);				# t[7]+=0
1061	&adc	("edx","eax");				# t[8]+=t[0]
1062	&adc	("edi",0);				# top-most carry
1063	 &mov	("ebx",&DWP((($j+1)%8)*4,"esp"));
1064	&sub	("ecx","eax");				# t[7]-=t[0]
1065	 &mov	("eax",&DWP((($j+0)%8)*4,"esp"));
1066	&sbb	("edx",0);				# t[8]-=0
1067	&mov	(&DWP((($i+7)%8)*4,"esp"),"ecx");
1068	&sbb	("edi",0);				# top-most carry
1069	&mov	(&DWP((($i+8)%8)*4,"esp"),"edx");
1070
1071	# Final step is "if result > mod, subtract mod", but we do it
1072	# "other way around", namely write result - mod to output buffer
1073	# and if subtraction borrowed, add modulus back.
1074
1075	&mov	("ecx",&DWP((($j+2)%8)*4,"esp"));
1076	&sub	("eax",-1);
1077	&mov	("edx",&DWP((($j+3)%8)*4,"esp"));
1078	&sbb	("ebx",-1);
1079	&mov	(&DWP(0*4,"ebp"),"eax");
1080	&sbb	("ecx",-1);
1081	&mov	(&DWP(1*4,"ebp"),"ebx");
1082	&sbb	("edx",0);
1083	&mov	(&DWP(2*4,"ebp"),"ecx");
1084	&mov	(&DWP(3*4,"ebp"),"edx");
1085
1086	&mov	("eax",&DWP((($j+4)%8)*4,"esp"));
1087	&mov	("ebx",&DWP((($j+5)%8)*4,"esp"));
1088	&mov	("ecx",&DWP((($j+6)%8)*4,"esp"));
1089	&sbb	("eax",0);
1090	&mov	("edx",&DWP((($j+7)%8)*4,"esp"));
1091	&sbb	("ebx",0);
1092	&sbb	("ecx",1);
1093	&sbb	("edx",-1);
1094	&sbb	("edi",0);
1095
1096	# Note that because mod has special form, i.e. consists of
1097	# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
1098	# assigning borrow bit to one register, %ebp, and its negative
1099	# to another, %esi. But we started by calculating %esi...
1100
1101	&sub	("esi","edi");
1102	&add	(&DWP(0*4,"ebp"),"edi");		# add modulus or zero
1103	&adc	(&DWP(1*4,"ebp"),"edi");
1104	&adc	(&DWP(2*4,"ebp"),"edi");
1105	&adc	(&DWP(3*4,"ebp"),0);
1106	&adc	("eax",0);
1107	&adc	("ebx",0);
1108	&mov	(&DWP(4*4,"ebp"),"eax");
1109	&adc	("ecx","esi");
1110	&mov	(&DWP(5*4,"ebp"),"ebx");
1111	&adc	("edx","edi");
1112	&mov	(&DWP(6*4,"ebp"),"ecx");
1113	&mov	("edi","ebp");				# fulfill contract
1114	&mov	(&DWP(7*4,"ebp"),"edx");
1115
1116	&add	("esp",10*4);
1117	&ret	();
1118&function_end_B("_ecp_nistz256_mul_mont");
1119
1120########################################################################
1121# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi,
1122#					 int ebp);
1123&function_begin("ecp_nistz256_scatter_w5");
1124	&mov	("edi",&wparam(0));
1125	&mov	("esi",&wparam(1));
1126	&mov	("ebp",&wparam(2));
1127
1128	&lea	("edi",&DWP(128-4,"edi","ebp",4));
1129	&mov	("ebp",96/16);
1130&set_label("scatter_w5_loop");
1131	&mov	("eax",&DWP(0,"esi"));
1132	&mov	("ebx",&DWP(4,"esi"));
1133	&mov	("ecx",&DWP(8,"esi"));
1134	&mov	("edx",&DWP(12,"esi"));
1135	&lea	("esi",&DWP(16,"esi"));
1136	&mov	(&DWP(64*0-128,"edi"),"eax");
1137	&mov	(&DWP(64*1-128,"edi"),"ebx");
1138	&mov	(&DWP(64*2-128,"edi"),"ecx");
1139	&mov	(&DWP(64*3-128,"edi"),"edx");
1140	&lea	("edi",&DWP(64*4,"edi"));
1141	&dec	("ebp");
1142	&jnz	(&label("scatter_w5_loop"));
1143&function_end("ecp_nistz256_scatter_w5");
1144
1145########################################################################
1146# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi,
1147#					      int ebp);
1148&function_begin("ecp_nistz256_gather_w5");
1149	&mov	("esi",&wparam(1));
1150	&mov	("ebp",&wparam(2));
1151
1152	&lea	("esi",&DWP(0,"esi","ebp",4));
1153	&neg	("ebp");
1154	&sar	("ebp",31);
1155	&mov	("edi",&wparam(0));
1156	&lea	("esi",&DWP(0,"esi","ebp",4));
1157
1158    for($i=0;$i<24;$i+=4) {
1159	&mov	("eax",&DWP(64*($i+0),"esi"));
1160	&mov	("ebx",&DWP(64*($i+1),"esi"));
1161	&mov	("ecx",&DWP(64*($i+2),"esi"));
1162	&mov	("edx",&DWP(64*($i+3),"esi"));
1163	&and	("eax","ebp");
1164	&and	("ebx","ebp");
1165	&and	("ecx","ebp");
1166	&and	("edx","ebp");
1167	&mov	(&DWP(4*($i+0),"edi"),"eax");
1168	&mov	(&DWP(4*($i+1),"edi"),"ebx");
1169	&mov	(&DWP(4*($i+2),"edi"),"ecx");
1170	&mov	(&DWP(4*($i+3),"edi"),"edx");
1171    }
1172&function_end("ecp_nistz256_gather_w5");
1173
1174########################################################################
1175# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi,
1176#					 int ebp);
1177&function_begin("ecp_nistz256_scatter_w7");
1178	&mov	("edi",&wparam(0));
1179	&mov	("esi",&wparam(1));
1180	&mov	("ebp",&wparam(2));
1181
1182	&lea	("edi",&DWP(0,"edi","ebp"));
1183	&mov	("ebp",64/4);
1184&set_label("scatter_w7_loop");
1185	&mov	("eax",&DWP(0,"esi"));
1186	&lea	("esi",&DWP(4,"esi"));
1187	&mov	(&BP(64*0,"edi"),"al");
1188	&mov	(&BP(64*1,"edi"),"ah");
1189	&shr	("eax",16);
1190	&mov	(&BP(64*2,"edi"),"al");
1191	&mov	(&BP(64*3,"edi"),"ah");
1192	&lea	("edi",&DWP(64*4,"edi"));
1193	&dec	("ebp");
1194	&jnz	(&label("scatter_w7_loop"));
1195&function_end("ecp_nistz256_scatter_w7");
1196
1197########################################################################
1198# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi,
1199#						     int ebp);
1200&function_begin("ecp_nistz256_gather_w7");
1201	&mov	("esi",&wparam(1));
1202	&mov	("ebp",&wparam(2));
1203
1204	&add	("esi","ebp");
1205	&neg	("ebp"),
1206	&sar	("ebp",31);
1207	&mov	("edi",&wparam(0));
1208	&lea	("esi",&DWP(0,"esi","ebp"));
1209
1210    for($i=0;$i<64;$i+=4) {
1211	&movz	("eax",&BP(64*($i+0),"esi"));
1212	&movz	("ebx",&BP(64*($i+1),"esi"));
1213	&movz	("ecx",&BP(64*($i+2),"esi"));
1214	&and	("eax","ebp");
1215	&movz	("edx",&BP(64*($i+3),"esi"));
1216	&and	("ebx","ebp");
1217	&mov	(&BP($i+0,"edi"),"al");
1218	&and	("ecx","ebp");
1219	&mov	(&BP($i+1,"edi"),"bl");
1220	&and	("edx","ebp");
1221	&mov	(&BP($i+2,"edi"),"cl");
1222	&mov	(&BP($i+3,"edi"),"dl");
1223    }
1224&function_end("ecp_nistz256_gather_w7");
1225
1226########################################################################
1227# following subroutines are "literal" implementation of those found in
1228# ecp_nistz256.c
1229#
1230########################################################################
1231# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
1232#
1233&static_label("point_double_shortcut");
1234&function_begin("ecp_nistz256_point_double");
1235{   my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
1236
1237	&mov	("esi",&wparam(1));
1238
1239	# above map() describes stack layout with 5 temporary
1240	# 256-bit vectors on top, then we take extra word for
1241	# OPENSSL_ia32cap_P copy.
1242	&stack_push(8*5+1);
1243						if ($sse2) {
1244	&call	("_picup_eax");
1245    &set_label("pic");
1246	&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1247	&mov	("ebp",&DWP(0,"edx"));		}
1248
1249&set_label("point_double_shortcut");
1250	&mov	("eax",&DWP(0,"esi"));		# copy in_x
1251	&mov	("ebx",&DWP(4,"esi"));
1252	&mov	("ecx",&DWP(8,"esi"));
1253	&mov	("edx",&DWP(12,"esi"));
1254	&mov	(&DWP($in_x+0,"esp"),"eax");
1255	&mov	(&DWP($in_x+4,"esp"),"ebx");
1256	&mov	(&DWP($in_x+8,"esp"),"ecx");
1257	&mov	(&DWP($in_x+12,"esp"),"edx");
1258	&mov	("eax",&DWP(16,"esi"));
1259	&mov	("ebx",&DWP(20,"esi"));
1260	&mov	("ecx",&DWP(24,"esi"));
1261	&mov	("edx",&DWP(28,"esi"));
1262	&mov	(&DWP($in_x+16,"esp"),"eax");
1263	&mov	(&DWP($in_x+20,"esp"),"ebx");
1264	&mov	(&DWP($in_x+24,"esp"),"ecx");
1265	&mov	(&DWP($in_x+28,"esp"),"edx");
1266	&mov	(&DWP(32*5,"esp"),"ebp");	# OPENSSL_ia32cap_P copy
1267
1268	&lea	("ebp",&DWP(32,"esi"));
1269	&lea	("esi",&DWP(32,"esi"));
1270	&lea	("edi",&DWP($S,"esp"));
1271	&call	("_ecp_nistz256_add");		# p256_mul_by_2(S, in_y);
1272
1273	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1274	&mov	("esi",64);
1275	&add	("esi",&wparam(1));
1276	&lea	("edi",&DWP($Zsqr,"esp"));
1277	&mov	("ebp","esi");
1278	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Zsqr, in_z);
1279
1280	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1281	&lea	("esi",&DWP($S,"esp"));
1282	&lea	("ebp",&DWP($S,"esp"));
1283	&lea	("edi",&DWP($S,"esp"));
1284	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(S, S);
1285
1286	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1287	&mov	("ebp",&wparam(1));
1288	&lea	("esi",&DWP(32,"ebp"));
1289	&lea	("ebp",&DWP(64,"ebp"));
1290	&lea	("edi",&DWP($tmp0,"esp"));
1291	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(tmp0, in_z, in_y);
1292
1293	&lea	("esi",&DWP($in_x,"esp"));
1294	&lea	("ebp",&DWP($Zsqr,"esp"));
1295	&lea	("edi",&DWP($M,"esp"));
1296	&call	("_ecp_nistz256_add");		# p256_add(M, in_x, Zsqr);
1297
1298	&mov	("edi",64);
1299	&lea	("esi",&DWP($tmp0,"esp"));
1300	&lea	("ebp",&DWP($tmp0,"esp"));
1301	&add	("edi",&wparam(0));
1302	&call	("_ecp_nistz256_add");		# p256_mul_by_2(res_z, tmp0);
1303
1304	&lea	("esi",&DWP($in_x,"esp"));
1305	&lea	("ebp",&DWP($Zsqr,"esp"));
1306	&lea	("edi",&DWP($Zsqr,"esp"));
1307	&call	("_ecp_nistz256_sub");		# p256_sub(Zsqr, in_x, Zsqr);
1308
1309	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1310	&lea	("esi",&DWP($S,"esp"));
1311	&lea	("ebp",&DWP($S,"esp"));
1312	&lea	("edi",&DWP($tmp0,"esp"));
1313	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(tmp0, S);
1314
1315	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1316	&lea	("esi",&DWP($M,"esp"));
1317	&lea	("ebp",&DWP($Zsqr,"esp"));
1318	&lea	("edi",&DWP($M,"esp"));
1319	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(M, M, Zsqr);
1320
1321	&mov	("edi",32);
1322	&lea	("esi",&DWP($tmp0,"esp"));
1323	&add	("edi",&wparam(0));
1324	&call	("_ecp_nistz256_div_by_2");	# p256_div_by_2(res_y, tmp0);
1325
1326	&lea	("esi",&DWP($M,"esp"));
1327	&lea	("ebp",&DWP($M,"esp"));
1328	&lea	("edi",&DWP($tmp0,"esp"));
1329	&call	("_ecp_nistz256_add");		# 1/2 p256_mul_by_3(M, M);
1330
1331	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1332	&lea	("esi",&DWP($in_x,"esp"));
1333	&lea	("ebp",&DWP($S,"esp"));
1334	&lea	("edi",&DWP($S,"esp"));
1335	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S, S, in_x);
1336
1337	&lea	("esi",&DWP($tmp0,"esp"));
1338	&lea	("ebp",&DWP($M,"esp"));
1339	&lea	("edi",&DWP($M,"esp"));
1340	&call	("_ecp_nistz256_add");		# 2/2 p256_mul_by_3(M, M);
1341
1342	&lea	("esi",&DWP($S,"esp"));
1343	&lea	("ebp",&DWP($S,"esp"));
1344	&lea	("edi",&DWP($tmp0,"esp"));
1345	&call	("_ecp_nistz256_add");		# p256_mul_by_2(tmp0, S);
1346
1347	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1348	&lea	("esi",&DWP($M,"esp"));
1349	&lea	("ebp",&DWP($M,"esp"));
1350	&mov	("edi",&wparam(0));
1351	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(res_x, M);
1352
1353	&mov	("esi","edi");			# %edi is still res_x here
1354	&lea	("ebp",&DWP($tmp0,"esp"));
1355	&call	("_ecp_nistz256_sub");		# p256_sub(res_x, res_x, tmp0);
1356
1357	&lea	("esi",&DWP($S,"esp"));
1358	&mov	("ebp","edi");			# %edi is still res_x
1359	&lea	("edi",&DWP($S,"esp"));
1360	&call	("_ecp_nistz256_sub");		# p256_sub(S, S, res_x);
1361
1362	&mov	("eax",&DWP(32*5,"esp"));	# OPENSSL_ia32cap_P copy
1363	&mov	("esi","edi");			# %edi is still &S
1364	&lea	("ebp",&DWP($M,"esp"));
1365	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S, S, M);
1366
1367	&mov	("ebp",32);
1368	&lea	("esi",&DWP($S,"esp"));
1369	&add	("ebp",&wparam(0));
1370	&mov	("edi","ebp");
1371	&call	("_ecp_nistz256_sub");		# p256_sub(res_y, S, res_y);
1372
1373	&stack_pop(8*5+1);
1374} &function_end("ecp_nistz256_point_double");
1375
1376########################################################################
1377# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
1378#					      const P256_POINT *in2);
1379&function_begin("ecp_nistz256_point_add");
1380{   my ($res_x,$res_y,$res_z,
1381	$in1_x,$in1_y,$in1_z,
1382	$in2_x,$in2_y,$in2_z,
1383	$H,$Hsqr,$R,$Rsqr,$Hcub,
1384	$U1,$U2,$S1,$S2)=map(32*$_,(0..17));
1385    my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
1386
1387	&mov	("esi",&wparam(2));
1388
1389	# above map() describes stack layout with 18 temporary
1390	# 256-bit vectors on top, then we take extra words for
1391	# ~in1infty, ~in2infty, result of check for zero and
1392	# OPENSSL_ia32cap_P copy. [one unused word for padding]
1393	&stack_push(8*18+5);
1394						if ($sse2) {
1395	&call	("_picup_eax");
1396    &set_label("pic");
1397	&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1398	&mov	("ebp",&DWP(0,"edx"));		}
1399
1400	&lea	("edi",&DWP($in2_x,"esp"));
1401    for($i=0;$i<96;$i+=16) {
1402	&mov	("eax",&DWP($i+0,"esi"));	# copy in2
1403	&mov	("ebx",&DWP($i+4,"esi"));
1404	&mov	("ecx",&DWP($i+8,"esi"));
1405	&mov	("edx",&DWP($i+12,"esi"));
1406	&mov	(&DWP($i+0,"edi"),"eax");
1407	&mov	(&DWP(32*18+12,"esp"),"ebp")	if ($i==0);
1408	&mov	("ebp","eax")			if ($i==64);
1409	&or	("ebp","eax")			if ($i>64);
1410	&mov	(&DWP($i+4,"edi"),"ebx");
1411	&or	("ebp","ebx")			if ($i>=64);
1412	&mov	(&DWP($i+8,"edi"),"ecx");
1413	&or	("ebp","ecx")			if ($i>=64);
1414	&mov	(&DWP($i+12,"edi"),"edx");
1415	&or	("ebp","edx")			if ($i>=64);
1416    }
1417	&xor	("eax","eax");
1418	&mov	("esi",&wparam(1));
1419	&sub	("eax","ebp");
1420	&or	("ebp","eax");
1421	&sar	("ebp",31);
1422	&mov	(&DWP(32*18+4,"esp"),"ebp");	# ~in2infty
1423
1424	&lea	("edi",&DWP($in1_x,"esp"));
1425    for($i=0;$i<96;$i+=16) {
1426	&mov	("eax",&DWP($i+0,"esi"));	# copy in1
1427	&mov	("ebx",&DWP($i+4,"esi"));
1428	&mov	("ecx",&DWP($i+8,"esi"));
1429	&mov	("edx",&DWP($i+12,"esi"));
1430	&mov	(&DWP($i+0,"edi"),"eax");
1431	&mov	("ebp","eax")			if ($i==64);
1432	&or	("ebp","eax")			if ($i>64);
1433	&mov	(&DWP($i+4,"edi"),"ebx");
1434	&or	("ebp","ebx")			if ($i>=64);
1435	&mov	(&DWP($i+8,"edi"),"ecx");
1436	&or	("ebp","ecx")			if ($i>=64);
1437	&mov	(&DWP($i+12,"edi"),"edx");
1438	&or	("ebp","edx")			if ($i>=64);
1439    }
1440	&xor	("eax","eax");
1441	&sub	("eax","ebp");
1442	&or	("ebp","eax");
1443	&sar	("ebp",31);
1444	&mov	(&DWP(32*18+0,"esp"),"ebp");	# ~in1infty
1445
1446	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1447	&lea	("esi",&DWP($in2_z,"esp"));
1448	&lea	("ebp",&DWP($in2_z,"esp"));
1449	&lea	("edi",&DWP($Z2sqr,"esp"));
1450	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Z2sqr, in2_z);
1451
1452	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1453	&lea	("esi",&DWP($in1_z,"esp"));
1454	&lea	("ebp",&DWP($in1_z,"esp"));
1455	&lea	("edi",&DWP($Z1sqr,"esp"));
1456	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Z1sqr, in1_z);
1457
1458	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1459	&lea	("esi",&DWP($Z2sqr,"esp"));
1460	&lea	("ebp",&DWP($in2_z,"esp"));
1461	&lea	("edi",&DWP($S1,"esp"));
1462	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S1, Z2sqr, in2_z);
1463
1464	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1465	&lea	("esi",&DWP($Z1sqr,"esp"));
1466	&lea	("ebp",&DWP($in1_z,"esp"));
1467	&lea	("edi",&DWP($S2,"esp"));
1468	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, Z1sqr, in1_z);
1469
1470	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1471	&lea	("esi",&DWP($in1_y,"esp"));
1472	&lea	("ebp",&DWP($S1,"esp"));
1473	&lea	("edi",&DWP($S1,"esp"));
1474	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S1, S1, in1_y);
1475
1476	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1477	&lea	("esi",&DWP($in2_y,"esp"));
1478	&lea	("ebp",&DWP($S2,"esp"));
1479	&lea	("edi",&DWP($S2,"esp"));
1480	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, S2, in2_y);
1481
1482	&lea	("esi",&DWP($S2,"esp"));
1483	&lea	("ebp",&DWP($S1,"esp"));
1484	&lea	("edi",&DWP($R,"esp"));
1485	&call	("_ecp_nistz256_sub");		# p256_sub(R, S2, S1);
1486
1487	&or	("ebx","eax");			# see if result is zero
1488	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1489	&or	("ebx","ecx");
1490	&or	("ebx","edx");
1491	&or	("ebx",&DWP(0,"edi"));
1492	&or	("ebx",&DWP(4,"edi"));
1493	 &lea	("esi",&DWP($in1_x,"esp"));
1494	&or	("ebx",&DWP(8,"edi"));
1495	 &lea	("ebp",&DWP($Z2sqr,"esp"));
1496	&or	("ebx",&DWP(12,"edi"));
1497	 &lea	("edi",&DWP($U1,"esp"));
1498	&mov	(&DWP(32*18+8,"esp"),"ebx");
1499
1500	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(U1, in1_x, Z2sqr);
1501
1502	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1503	&lea	("esi",&DWP($in2_x,"esp"));
1504	&lea	("ebp",&DWP($Z1sqr,"esp"));
1505	&lea	("edi",&DWP($U2,"esp"));
1506	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(U2, in2_x, Z1sqr);
1507
1508	&lea	("esi",&DWP($U2,"esp"));
1509	&lea	("ebp",&DWP($U1,"esp"));
1510	&lea	("edi",&DWP($H,"esp"));
1511	&call	("_ecp_nistz256_sub");		# p256_sub(H, U2, U1);
1512
1513	&or	("eax","ebx");			# see if result is zero
1514	&or	("eax","ecx");
1515	&or	("eax","edx");
1516	&or	("eax",&DWP(0,"edi"));
1517	&or	("eax",&DWP(4,"edi"));
1518	&or	("eax",&DWP(8,"edi"));
1519	&or	("eax",&DWP(12,"edi"));		# ~is_equal(U1,U2)
1520
1521	&mov	("ebx",&DWP(32*18+0,"esp"));	# ~in1infty
1522	&not	("ebx");			# -1/0 -> 0/-1
1523	&or	("eax","ebx");
1524	&mov	("ebx",&DWP(32*18+4,"esp"));	# ~in2infty
1525	&not	("ebx");			# -1/0 -> 0/-1
1526	&or	("eax","ebx");
1527	&or	("eax",&DWP(32*18+8,"esp"));	# ~is_equal(S1,S2)
1528
1529	# if (~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2))
1530	&data_byte(0x3e);			# predict taken
1531	&jnz	(&label("add_proceed"));
1532
1533&set_label("add_double",16);
1534	&mov	("esi",&wparam(1));
1535	&mov	("ebp",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1536	&add	("esp",4*((8*18+5)-(8*5+1)));	# difference in frame sizes
1537	&jmp	(&label("point_double_shortcut"));
1538
1539&set_label("add_proceed",16);
1540	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1541	&lea	("esi",&DWP($R,"esp"));
1542	&lea	("ebp",&DWP($R,"esp"));
1543	&lea	("edi",&DWP($Rsqr,"esp"));
1544	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Rsqr, R);
1545
1546	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1547	&lea	("esi",&DWP($H,"esp"));
1548	&lea	("ebp",&DWP($in1_z,"esp"));
1549	&lea	("edi",&DWP($res_z,"esp"));
1550	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(res_z, H, in1_z);
1551
1552	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1553	&lea	("esi",&DWP($H,"esp"));
1554	&lea	("ebp",&DWP($H,"esp"));
1555	&lea	("edi",&DWP($Hsqr,"esp"));
1556	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Hsqr, H);
1557
1558	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1559	&lea	("esi",&DWP($in2_z,"esp"));
1560	&lea	("ebp",&DWP($res_z,"esp"));
1561	&lea	("edi",&DWP($res_z,"esp"));
1562	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(res_z, res_z, in2_z);
1563
1564	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1565	&lea	("esi",&DWP($Hsqr,"esp"));
1566	&lea	("ebp",&DWP($U1,"esp"));
1567	&lea	("edi",&DWP($U2,"esp"));
1568	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(U2, U1, Hsqr);
1569
1570	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1571	&lea	("esi",&DWP($H,"esp"));
1572	&lea	("ebp",&DWP($Hsqr,"esp"));
1573	&lea	("edi",&DWP($Hcub,"esp"));
1574	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(Hcub, Hsqr, H);
1575
1576	&lea	("esi",&DWP($U2,"esp"));
1577	&lea	("ebp",&DWP($U2,"esp"));
1578	&lea	("edi",&DWP($Hsqr,"esp"));
1579	&call	("_ecp_nistz256_add");		# p256_mul_by_2(Hsqr, U2);
1580
1581	&lea	("esi",&DWP($Rsqr,"esp"));
1582	&lea	("ebp",&DWP($Hsqr,"esp"));
1583	&lea	("edi",&DWP($res_x,"esp"));
1584	&call	("_ecp_nistz256_sub");		# p256_sub(res_x, Rsqr, Hsqr);
1585
1586	&lea	("esi",&DWP($res_x,"esp"));
1587	&lea	("ebp",&DWP($Hcub,"esp"));
1588	&lea	("edi",&DWP($res_x,"esp"));
1589	&call	("_ecp_nistz256_sub");		# p256_sub(res_x, res_x, Hcub);
1590
1591	&lea	("esi",&DWP($U2,"esp"));
1592	&lea	("ebp",&DWP($res_x,"esp"));
1593	&lea	("edi",&DWP($res_y,"esp"));
1594	&call	("_ecp_nistz256_sub");		# p256_sub(res_y, U2, res_x);
1595
1596	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1597	&lea	("esi",&DWP($Hcub,"esp"));
1598	&lea	("ebp",&DWP($S1,"esp"));
1599	&lea	("edi",&DWP($S2,"esp"));
1600	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, S1, Hcub);
1601
1602	&mov	("eax",&DWP(32*18+12,"esp"));	# OPENSSL_ia32cap_P copy
1603	&lea	("esi",&DWP($R,"esp"));
1604	&lea	("ebp",&DWP($res_y,"esp"));
1605	&lea	("edi",&DWP($res_y,"esp"));
1606	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(res_y, R, res_y);
1607
1608	&lea	("esi",&DWP($res_y,"esp"));
1609	&lea	("ebp",&DWP($S2,"esp"));
1610	&lea	("edi",&DWP($res_y,"esp"));
1611	&call	("_ecp_nistz256_sub");		# p256_sub(res_y, res_y, S2);
1612
1613	&mov	("ebp",&DWP(32*18+0,"esp"));	# ~in1infty
1614	&mov	("esi",&DWP(32*18+4,"esp"));	# ~in2infty
1615	&mov	("edi",&wparam(0));
1616	&mov	("edx","ebp");
1617	&not	("ebp");
1618	&and	("edx","esi");			# ~in1infty & ~in2infty
1619	&and	("ebp","esi");			# in1infty & ~in2infty
1620	&not	("esi");			# in2infty
1621
1622	########################################
1623	# conditional moves
1624    for($i=64;$i<96;$i+=4) {
1625	&mov	("eax","edx");			# ~in1infty & ~in2infty
1626	&and	("eax",&DWP($res_x+$i,"esp"));
1627	&mov	("ebx","ebp");			# in1infty & ~in2infty
1628	&and	("ebx",&DWP($in2_x+$i,"esp"));
1629	&mov	("ecx","esi");			# in2infty
1630	&and	("ecx",&DWP($in1_x+$i,"esp"));
1631	&or	("eax","ebx");
1632	&or	("eax","ecx");
1633	&mov	(&DWP($i,"edi"),"eax");
1634    }
1635    for($i=0;$i<64;$i+=4) {
1636	&mov	("eax","edx");			# ~in1infty & ~in2infty
1637	&and	("eax",&DWP($res_x+$i,"esp"));
1638	&mov	("ebx","ebp");			# in1infty & ~in2infty
1639	&and	("ebx",&DWP($in2_x+$i,"esp"));
1640	&mov	("ecx","esi");			# in2infty
1641	&and	("ecx",&DWP($in1_x+$i,"esp"));
1642	&or	("eax","ebx");
1643	&or	("eax","ecx");
1644	&mov	(&DWP($i,"edi"),"eax");
1645    }
1646    &set_label("add_done");
1647	&stack_pop(8*18+5);
1648} &function_end("ecp_nistz256_point_add");
1649
1650########################################################################
1651# void ecp_nistz256_point_add_affine(P256_POINT *out,
1652#				     const P256_POINT *in1,
1653#				     const P256_POINT_AFFINE *in2);
1654&function_begin("ecp_nistz256_point_add_affine");
1655{
1656    my ($res_x,$res_y,$res_z,
1657	$in1_x,$in1_y,$in1_z,
1658	$in2_x,$in2_y,
1659	$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
1660    my $Z1sqr = $S2;
1661    my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);
1662
1663	&mov	("esi",&wparam(1));
1664
1665	# above map() describes stack layout with 15 temporary
1666	# 256-bit vectors on top, then we take extra words for
1667	# ~in1infty, ~in2infty, and OPENSSL_ia32cap_P copy.
1668	&stack_push(8*15+3);
1669						if ($sse2) {
1670	&call	("_picup_eax");
1671    &set_label("pic");
1672	&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1673	&mov	("ebp",&DWP(0,"edx"));		}
1674
1675	&lea	("edi",&DWP($in1_x,"esp"));
1676    for($i=0;$i<96;$i+=16) {
1677	&mov	("eax",&DWP($i+0,"esi"));	# copy in1
1678	&mov	("ebx",&DWP($i+4,"esi"));
1679	&mov	("ecx",&DWP($i+8,"esi"));
1680	&mov	("edx",&DWP($i+12,"esi"));
1681	&mov	(&DWP($i+0,"edi"),"eax");
1682	&mov	(&DWP(32*15+8,"esp"),"ebp")	if ($i==0);
1683	&mov	("ebp","eax")			if ($i==64);
1684	&or	("ebp","eax")			if ($i>64);
1685	&mov	(&DWP($i+4,"edi"),"ebx");
1686	&or	("ebp","ebx")			if ($i>=64);
1687	&mov	(&DWP($i+8,"edi"),"ecx");
1688	&or	("ebp","ecx")			if ($i>=64);
1689	&mov	(&DWP($i+12,"edi"),"edx");
1690	&or	("ebp","edx")			if ($i>=64);
1691    }
1692	&xor	("eax","eax");
1693	&mov	("esi",&wparam(2));
1694	&sub	("eax","ebp");
1695	&or	("ebp","eax");
1696	&sar	("ebp",31);
1697	&mov	(&DWP(32*15+0,"esp"),"ebp");	# ~in1infty
1698
1699	&lea	("edi",&DWP($in2_x,"esp"));
1700    for($i=0;$i<64;$i+=16) {
1701	&mov	("eax",&DWP($i+0,"esi"));	# copy in2
1702	&mov	("ebx",&DWP($i+4,"esi"));
1703	&mov	("ecx",&DWP($i+8,"esi"));
1704	&mov	("edx",&DWP($i+12,"esi"));
1705	&mov	(&DWP($i+0,"edi"),"eax");
1706	&mov	("ebp","eax")			if ($i==0);
1707	&or	("ebp","eax")			if ($i!=0);
1708	&mov	(&DWP($i+4,"edi"),"ebx");
1709	&or	("ebp","ebx");
1710	&mov	(&DWP($i+8,"edi"),"ecx");
1711	&or	("ebp","ecx");
1712	&mov	(&DWP($i+12,"edi"),"edx");
1713	&or	("ebp","edx");
1714    }
1715	&xor	("ebx","ebx");
1716	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1717	&sub	("ebx","ebp");
1718	 &lea	("esi",&DWP($in1_z,"esp"));
1719	&or	("ebx","ebp");
1720	 &lea	("ebp",&DWP($in1_z,"esp"));
1721	&sar	("ebx",31);
1722	 &lea	("edi",&DWP($Z1sqr,"esp"));
1723	&mov	(&DWP(32*15+4,"esp"),"ebx");	# ~in2infty
1724
1725	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Z1sqr, in1_z);
1726
1727	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1728	&lea	("esi",&DWP($in2_x,"esp"));
1729	&mov	("ebp","edi");			# %esi is stull &Z1sqr
1730	&lea	("edi",&DWP($U2,"esp"));
1731	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(U2, Z1sqr, in2_x);
1732
1733	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1734	&lea	("esi",&DWP($in1_z,"esp"));
1735	&lea	("ebp",&DWP($Z1sqr,"esp"));
1736	&lea	("edi",&DWP($S2,"esp"));
1737	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, Z1sqr, in1_z);
1738
1739	&lea	("esi",&DWP($U2,"esp"));
1740	&lea	("ebp",&DWP($in1_x,"esp"));
1741	&lea	("edi",&DWP($H,"esp"));
1742	&call	("_ecp_nistz256_sub");		# p256_sub(H, U2, in1_x);
1743
1744	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1745	&lea	("esi",&DWP($in2_y,"esp"));
1746	&lea	("ebp",&DWP($S2,"esp"));
1747	&lea	("edi",&DWP($S2,"esp"));
1748	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, S2, in2_y);
1749
1750	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1751	&lea	("esi",&DWP($in1_z,"esp"));
1752	&lea	("ebp",&DWP($H,"esp"));
1753	&lea	("edi",&DWP($res_z,"esp"));
1754	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(res_z, H, in1_z);
1755
1756	&lea	("esi",&DWP($S2,"esp"));
1757	&lea	("ebp",&DWP($in1_y,"esp"));
1758	&lea	("edi",&DWP($R,"esp"));
1759	&call	("_ecp_nistz256_sub");		# p256_sub(R, S2, in1_y);
1760
1761	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1762	&lea	("esi",&DWP($H,"esp"));
1763	&lea	("ebp",&DWP($H,"esp"));
1764	&lea	("edi",&DWP($Hsqr,"esp"));
1765	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Hsqr, H);
1766
1767	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1768	&lea	("esi",&DWP($R,"esp"));
1769	&lea	("ebp",&DWP($R,"esp"));
1770	&lea	("edi",&DWP($Rsqr,"esp"));
1771	&call	("_ecp_nistz256_mul_mont");	# p256_sqr_mont(Rsqr, R);
1772
1773	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1774	&lea	("esi",&DWP($in1_x,"esp"));
1775	&lea	("ebp",&DWP($Hsqr,"esp"));
1776	&lea	("edi",&DWP($U2,"esp"));
1777	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(U2, in1_x, Hsqr);
1778
1779	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1780	&lea	("esi",&DWP($H,"esp"));
1781	&lea	("ebp",&DWP($Hsqr,"esp"));
1782	&lea	("edi",&DWP($Hcub,"esp"));
1783	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(Hcub, Hsqr, H);
1784
1785	&lea	("esi",&DWP($U2,"esp"));
1786	&lea	("ebp",&DWP($U2,"esp"));
1787	&lea	("edi",&DWP($Hsqr,"esp"));
1788	&call	("_ecp_nistz256_add");		# p256_mul_by_2(Hsqr, U2);
1789
1790	&lea	("esi",&DWP($Rsqr,"esp"));
1791	&lea	("ebp",&DWP($Hsqr,"esp"));
1792	&lea	("edi",&DWP($res_x,"esp"));
1793	&call	("_ecp_nistz256_sub");		# p256_sub(res_x, Rsqr, Hsqr);
1794
1795	&lea	("esi",&DWP($res_x,"esp"));
1796	&lea	("ebp",&DWP($Hcub,"esp"));
1797	&lea	("edi",&DWP($res_x,"esp"));
1798	&call	("_ecp_nistz256_sub");		# p256_sub(res_x, res_x, Hcub);
1799
1800	&lea	("esi",&DWP($U2,"esp"));
1801	&lea	("ebp",&DWP($res_x,"esp"));
1802	&lea	("edi",&DWP($res_y,"esp"));
1803	&call	("_ecp_nistz256_sub");		# p256_sub(res_y, U2, res_x);
1804
1805	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1806	&lea	("esi",&DWP($Hcub,"esp"));
1807	&lea	("ebp",&DWP($in1_y,"esp"));
1808	&lea	("edi",&DWP($S2,"esp"));
1809	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(S2, Hcub, in1_y);
1810
1811	&mov	("eax",&DWP(32*15+8,"esp"));	# OPENSSL_ia32cap_P copy
1812	&lea	("esi",&DWP($R,"esp"));
1813	&lea	("ebp",&DWP($res_y,"esp"));
1814	&lea	("edi",&DWP($res_y,"esp"));
1815	&call	("_ecp_nistz256_mul_mont");	# p256_mul_mont(res_y, res_y, R);
1816
1817	&lea	("esi",&DWP($res_y,"esp"));
1818	&lea	("ebp",&DWP($S2,"esp"));
1819	&lea	("edi",&DWP($res_y,"esp"));
1820	&call	("_ecp_nistz256_sub");		# p256_sub(res_y, res_y, S2);
1821
1822	&mov	("ebp",&DWP(32*15+0,"esp"));	# ~in1infty
1823	&mov	("esi",&DWP(32*15+4,"esp"));	# ~in2infty
1824	&mov	("edi",&wparam(0));
1825	&mov	("edx","ebp");
1826	&not	("ebp");
1827	&and	("edx","esi");			# ~in1infty & ~in2infty
1828	&and	("ebp","esi");			# in1infty & ~in2infty
1829	&not	("esi");			# in2infty
1830
1831	########################################
1832	# conditional moves
1833    for($i=64;$i<96;$i+=4) {
1834	my $one=@ONE_mont[($i-64)/4];
1835
1836	&mov	("eax","edx");
1837	&and	("eax",&DWP($res_x+$i,"esp"));
1838	&mov	("ebx","ebp")			if ($one && $one!=-1);
1839	&and	("ebx",$one)			if ($one && $one!=-1);
1840	&mov	("ecx","esi");
1841	&and	("ecx",&DWP($in1_x+$i,"esp"));
1842	&or	("eax",$one==-1?"ebp":"ebx")	if ($one);
1843	&or	("eax","ecx");
1844	&mov	(&DWP($i,"edi"),"eax");
1845    }
1846    for($i=0;$i<64;$i+=4) {
1847	&mov	("eax","edx");			# ~in1infty & ~in2infty
1848	&and	("eax",&DWP($res_x+$i,"esp"));
1849	&mov	("ebx","ebp");			# in1infty & ~in2infty
1850	&and	("ebx",&DWP($in2_x+$i,"esp"));
1851	&mov	("ecx","esi");			# in2infty
1852	&and	("ecx",&DWP($in1_x+$i,"esp"));
1853	&or	("eax","ebx");
1854	&or	("eax","ecx");
1855	&mov	(&DWP($i,"edi"),"eax");
1856    }
1857	&stack_pop(8*15+3);
1858} &function_end("ecp_nistz256_point_add_affine");
1859
1860&asm_finish();
1861
1862close STDOUT or die "error closing STDOUT: $!";
1863