xref: /freebsd/crypto/openssl/crypto/ec/ec_mult.c (revision 39beb93c)
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63 
64 #include <string.h>
65 
66 #include <openssl/err.h>
67 
68 #include "ec_lcl.h"
69 
70 
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77 
78 
79 
80 
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83 	const EC_GROUP *group; /* parent EC_GROUP object */
84 	size_t blocksize;      /* block size for wNAF splitting */
85 	size_t numblocks;      /* max. number of blocks for which we have precomputation */
86 	size_t w;              /* window size */
87 	EC_POINT **points;     /* array with pre-calculated multiples of generator:
88 	                        * 'num' pointers to EC_POINT objects followed by a NULL */
89 	size_t num;            /* numblocks * 2^(w-1) */
90 	int references;
91 } EC_PRE_COMP;
92 
93 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94 static void *ec_pre_comp_dup(void *);
95 static void ec_pre_comp_free(void *);
96 static void ec_pre_comp_clear_free(void *);
97 
98 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99 	{
100 	EC_PRE_COMP *ret = NULL;
101 
102 	if (!group)
103 		return NULL;
104 
105 	ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106 	if (!ret)
107 		return ret;
108 	ret->group = group;
109 	ret->blocksize = 8; /* default */
110 	ret->numblocks = 0;
111 	ret->w = 4; /* default */
112 	ret->points = NULL;
113 	ret->num = 0;
114 	ret->references = 1;
115 	return ret;
116 	}
117 
118 static void *ec_pre_comp_dup(void *src_)
119 	{
120 	EC_PRE_COMP *src = src_;
121 
122 	/* no need to actually copy, these objects never change! */
123 
124 	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
125 
126 	return src_;
127 	}
128 
129 static void ec_pre_comp_free(void *pre_)
130 	{
131 	int i;
132 	EC_PRE_COMP *pre = pre_;
133 
134 	if (!pre)
135 		return;
136 
137 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
138 	if (i > 0)
139 		return;
140 
141 	if (pre->points)
142 		{
143 		EC_POINT **p;
144 
145 		for (p = pre->points; *p != NULL; p++)
146 			EC_POINT_free(*p);
147 		OPENSSL_free(pre->points);
148 		}
149 	OPENSSL_free(pre);
150 	}
151 
152 static void ec_pre_comp_clear_free(void *pre_)
153 	{
154 	int i;
155 	EC_PRE_COMP *pre = pre_;
156 
157 	if (!pre)
158 		return;
159 
160 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
161 	if (i > 0)
162 		return;
163 
164 	if (pre->points)
165 		{
166 		EC_POINT **p;
167 
168 		for (p = pre->points; *p != NULL; p++)
169 			EC_POINT_clear_free(*p);
170 		OPENSSL_cleanse(pre->points, sizeof pre->points);
171 		OPENSSL_free(pre->points);
172 		}
173 	OPENSSL_cleanse(pre, sizeof pre);
174 	OPENSSL_free(pre);
175 	}
176 
177 
178 
179 
180 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
181  * This is an array  r[]  of values that are either zero or odd with an
182  * absolute value less than  2^w  satisfying
183  *     scalar = \sum_j r[j]*2^j
184  * where at most one of any  w+1  consecutive digits is non-zero
185  * with the exception that the most significant digit may be only
186  * w-1 zeros away from that next non-zero digit.
187  */
188 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
189 	{
190 	int window_val;
191 	int ok = 0;
192 	signed char *r = NULL;
193 	int sign = 1;
194 	int bit, next_bit, mask;
195 	size_t len = 0, j;
196 
197 	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
198 		{
199 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
200 		goto err;
201 		}
202 	bit = 1 << w; /* at most 128 */
203 	next_bit = bit << 1; /* at most 256 */
204 	mask = next_bit - 1; /* at most 255 */
205 
206 	if (BN_is_negative(scalar))
207 		{
208 		sign = -1;
209 		}
210 
211 	len = BN_num_bits(scalar);
212 	r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
213 	                              * (*ret_len will be set to the actual length, i.e. at most
214 	                              * BN_num_bits(scalar) + 1) */
215 	if (r == NULL) goto err;
216 
217 	if (scalar->d == NULL || scalar->top == 0)
218 		{
219 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
220 		goto err;
221 		}
222 	window_val = scalar->d[0] & mask;
223 	j = 0;
224 	while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
225 		{
226 		int digit = 0;
227 
228 		/* 0 <= window_val <= 2^(w+1) */
229 
230 		if (window_val & 1)
231 			{
232 			/* 0 < window_val < 2^(w+1) */
233 
234 			if (window_val & bit)
235 				{
236 				digit = window_val - next_bit; /* -2^w < digit < 0 */
237 
238 #if 1 /* modified wNAF */
239 				if (j + w + 1 >= len)
240 					{
241 					/* special case for generating modified wNAFs:
242 					 * no new bits will be added into window_val,
243 					 * so using a positive digit here will decrease
244 					 * the total length of the representation */
245 
246 					digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
247 					}
248 #endif
249 				}
250 			else
251 				{
252 				digit = window_val; /* 0 < digit < 2^w */
253 				}
254 
255 			if (digit <= -bit || digit >= bit || !(digit & 1))
256 				{
257 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
258 				goto err;
259 				}
260 
261 			window_val -= digit;
262 
263 			/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
264 			 * for modified window NAFs, it may also be 2^w
265 			 */
266 			if (window_val != 0 && window_val != next_bit && window_val != bit)
267 				{
268 				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
269 				goto err;
270 				}
271 			}
272 
273 		r[j++] = sign * digit;
274 
275 		window_val >>= 1;
276 		window_val += bit * BN_is_bit_set(scalar, j + w);
277 
278 		if (window_val > next_bit)
279 			{
280 			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
281 			goto err;
282 			}
283 		}
284 
285 	if (j > len + 1)
286 		{
287 		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
288 		goto err;
289 		}
290 	len = j;
291 	ok = 1;
292 
293  err:
294 	if (!ok)
295 		{
296 		OPENSSL_free(r);
297 		r = NULL;
298 		}
299 	if (ok)
300 		*ret_len = len;
301 	return r;
302 	}
303 
304 
305 /* TODO: table should be optimised for the wNAF-based implementation,
306  *       sometimes smaller windows will give better performance
307  *       (thus the boundaries should be increased)
308  */
309 #define EC_window_bits_for_scalar_size(b) \
310 		((size_t) \
311 		 ((b) >= 2000 ? 6 : \
312 		  (b) >=  800 ? 5 : \
313 		  (b) >=  300 ? 4 : \
314 		  (b) >=   70 ? 3 : \
315 		  (b) >=   20 ? 2 : \
316 		  1))
317 
318 /* Compute
319  *      \sum scalars[i]*points[i],
320  * also including
321  *      scalar*generator
322  * in the addition if scalar != NULL
323  */
324 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
325 	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
326 	{
327 	BN_CTX *new_ctx = NULL;
328 	const EC_POINT *generator = NULL;
329 	EC_POINT *tmp = NULL;
330 	size_t totalnum;
331 	size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
332 	size_t pre_points_per_block = 0;
333 	size_t i, j;
334 	int k;
335 	int r_is_inverted = 0;
336 	int r_is_at_infinity = 1;
337 	size_t *wsize = NULL; /* individual window sizes */
338 	signed char **wNAF = NULL; /* individual wNAFs */
339 	size_t *wNAF_len = NULL;
340 	size_t max_len = 0;
341 	size_t num_val;
342 	EC_POINT **val = NULL; /* precomputation */
343 	EC_POINT **v;
344 	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
345 	const EC_PRE_COMP *pre_comp = NULL;
346 	int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
347 	                     * i.e. precomputation is not available */
348 	int ret = 0;
349 
350 	if (group->meth != r->meth)
351 		{
352 		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
353 		return 0;
354 		}
355 
356 	if ((scalar == NULL) && (num == 0))
357 		{
358 		return EC_POINT_set_to_infinity(group, r);
359 		}
360 
361 	for (i = 0; i < num; i++)
362 		{
363 		if (group->meth != points[i]->meth)
364 			{
365 			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
366 			return 0;
367 			}
368 		}
369 
370 	if (ctx == NULL)
371 		{
372 		ctx = new_ctx = BN_CTX_new();
373 		if (ctx == NULL)
374 			goto err;
375 		}
376 
377 	if (scalar != NULL)
378 		{
379 		generator = EC_GROUP_get0_generator(group);
380 		if (generator == NULL)
381 			{
382 			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
383 			goto err;
384 			}
385 
386 		/* look if we can use precomputed multiples of generator */
387 
388 		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
389 
390 		if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
391 			{
392 			blocksize = pre_comp->blocksize;
393 
394 			/* determine maximum number of blocks that wNAF splitting may yield
395 			 * (NB: maximum wNAF length is bit length plus one) */
396 			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
397 
398 			/* we cannot use more blocks than we have precomputation for */
399 			if (numblocks > pre_comp->numblocks)
400 				numblocks = pre_comp->numblocks;
401 
402 			pre_points_per_block = 1u << (pre_comp->w - 1);
403 
404 			/* check that pre_comp looks sane */
405 			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
406 				{
407 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
408 				goto err;
409 				}
410 			}
411 		else
412 			{
413 			/* can't use precomputation */
414 			pre_comp = NULL;
415 			numblocks = 1;
416 			num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
417 			}
418 		}
419 
420 	totalnum = num + numblocks;
421 
422 	wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
423 	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
424 	wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
425 	val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
426 
427 	if (!wsize || !wNAF_len || !wNAF || !val_sub)
428 		goto err;
429 
430 	wNAF[0] = NULL;	/* preliminary pivot */
431 
432 	/* num_val will be the total number of temporarily precomputed points */
433 	num_val = 0;
434 
435 	for (i = 0; i < num + num_scalar; i++)
436 		{
437 		size_t bits;
438 
439 		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
440 		wsize[i] = EC_window_bits_for_scalar_size(bits);
441 		num_val += 1u << (wsize[i] - 1);
442 		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
443 		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
444 		if (wNAF[i] == NULL)
445 			goto err;
446 		if (wNAF_len[i] > max_len)
447 			max_len = wNAF_len[i];
448 		}
449 
450 	if (numblocks)
451 		{
452 		/* we go here iff scalar != NULL */
453 
454 		if (pre_comp == NULL)
455 			{
456 			if (num_scalar != 1)
457 				{
458 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
459 				goto err;
460 				}
461 			/* we have already generated a wNAF for 'scalar' */
462 			}
463 		else
464 			{
465 			signed char *tmp_wNAF = NULL;
466 			size_t tmp_len = 0;
467 
468 			if (num_scalar != 0)
469 				{
470 				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
471 				goto err;
472 				}
473 
474 			/* use the window size for which we have precomputation */
475 			wsize[num] = pre_comp->w;
476 			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
477 			if (!tmp_wNAF)
478 				goto err;
479 
480 			if (tmp_len <= max_len)
481 				{
482 				/* One of the other wNAFs is at least as long
483 				 * as the wNAF belonging to the generator,
484 				 * so wNAF splitting will not buy us anything. */
485 
486 				numblocks = 1;
487 				totalnum = num + 1; /* don't use wNAF splitting */
488 				wNAF[num] = tmp_wNAF;
489 				wNAF[num + 1] = NULL;
490 				wNAF_len[num] = tmp_len;
491 				if (tmp_len > max_len)
492 					max_len = tmp_len;
493 				/* pre_comp->points starts with the points that we need here: */
494 				val_sub[num] = pre_comp->points;
495 				}
496 			else
497 				{
498 				/* don't include tmp_wNAF directly into wNAF array
499 				 * - use wNAF splitting and include the blocks */
500 
501 				signed char *pp;
502 				EC_POINT **tmp_points;
503 
504 				if (tmp_len < numblocks * blocksize)
505 					{
506 					/* possibly we can do with fewer blocks than estimated */
507 					numblocks = (tmp_len + blocksize - 1) / blocksize;
508 					if (numblocks > pre_comp->numblocks)
509 						{
510 						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
511 						goto err;
512 						}
513 					totalnum = num + numblocks;
514 					}
515 
516 				/* split wNAF in 'numblocks' parts */
517 				pp = tmp_wNAF;
518 				tmp_points = pre_comp->points;
519 
520 				for (i = num; i < totalnum; i++)
521 					{
522 					if (i < totalnum - 1)
523 						{
524 						wNAF_len[i] = blocksize;
525 						if (tmp_len < blocksize)
526 							{
527 							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
528 							goto err;
529 							}
530 						tmp_len -= blocksize;
531 						}
532 					else
533 						/* last block gets whatever is left
534 						 * (this could be more or less than 'blocksize'!) */
535 						wNAF_len[i] = tmp_len;
536 
537 					wNAF[i + 1] = NULL;
538 					wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
539 					if (wNAF[i] == NULL)
540 						{
541 						OPENSSL_free(tmp_wNAF);
542 						goto err;
543 						}
544 					memcpy(wNAF[i], pp, wNAF_len[i]);
545 					if (wNAF_len[i] > max_len)
546 						max_len = wNAF_len[i];
547 
548 					if (*tmp_points == NULL)
549 						{
550 						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
551 						OPENSSL_free(tmp_wNAF);
552 						goto err;
553 						}
554 					val_sub[i] = tmp_points;
555 					tmp_points += pre_points_per_block;
556 					pp += blocksize;
557 					}
558 				OPENSSL_free(tmp_wNAF);
559 				}
560 			}
561 		}
562 
563 	/* All points we precompute now go into a single array 'val'.
564 	 * 'val_sub[i]' is a pointer to the subarray for the i-th point,
565 	 * or to a subarray of 'pre_comp->points' if we already have precomputation. */
566 	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
567 	if (val == NULL) goto err;
568 	val[num_val] = NULL; /* pivot element */
569 
570 	/* allocate points for precomputation */
571 	v = val;
572 	for (i = 0; i < num + num_scalar; i++)
573 		{
574 		val_sub[i] = v;
575 		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
576 			{
577 			*v = EC_POINT_new(group);
578 			if (*v == NULL) goto err;
579 			v++;
580 			}
581 		}
582 	if (!(v == val + num_val))
583 		{
584 		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
585 		goto err;
586 		}
587 
588 	if (!(tmp = EC_POINT_new(group)))
589 		goto err;
590 
591 	/* prepare precomputed values:
592 	 *    val_sub[i][0] :=     points[i]
593 	 *    val_sub[i][1] := 3 * points[i]
594 	 *    val_sub[i][2] := 5 * points[i]
595 	 *    ...
596 	 */
597 	for (i = 0; i < num + num_scalar; i++)
598 		{
599 		if (i < num)
600 			{
601 			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
602 			}
603 		else
604 			{
605 			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
606 			}
607 
608 		if (wsize[i] > 1)
609 			{
610 			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
611 			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
612 				{
613 				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
614 				}
615 			}
616 		}
617 
618 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
619 	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
620 		goto err;
621 #endif
622 
623 	r_is_at_infinity = 1;
624 
625 	for (k = max_len - 1; k >= 0; k--)
626 		{
627 		if (!r_is_at_infinity)
628 			{
629 			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
630 			}
631 
632 		for (i = 0; i < totalnum; i++)
633 			{
634 			if (wNAF_len[i] > (size_t)k)
635 				{
636 				int digit = wNAF[i][k];
637 				int is_neg;
638 
639 				if (digit)
640 					{
641 					is_neg = digit < 0;
642 
643 					if (is_neg)
644 						digit = -digit;
645 
646 					if (is_neg != r_is_inverted)
647 						{
648 						if (!r_is_at_infinity)
649 							{
650 							if (!EC_POINT_invert(group, r, ctx)) goto err;
651 							}
652 						r_is_inverted = !r_is_inverted;
653 						}
654 
655 					/* digit > 0 */
656 
657 					if (r_is_at_infinity)
658 						{
659 						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
660 						r_is_at_infinity = 0;
661 						}
662 					else
663 						{
664 						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
665 						}
666 					}
667 				}
668 			}
669 		}
670 
671 	if (r_is_at_infinity)
672 		{
673 		if (!EC_POINT_set_to_infinity(group, r)) goto err;
674 		}
675 	else
676 		{
677 		if (r_is_inverted)
678 			if (!EC_POINT_invert(group, r, ctx)) goto err;
679 		}
680 
681 	ret = 1;
682 
683  err:
684 	if (new_ctx != NULL)
685 		BN_CTX_free(new_ctx);
686 	if (tmp != NULL)
687 		EC_POINT_free(tmp);
688 	if (wsize != NULL)
689 		OPENSSL_free(wsize);
690 	if (wNAF_len != NULL)
691 		OPENSSL_free(wNAF_len);
692 	if (wNAF != NULL)
693 		{
694 		signed char **w;
695 
696 		for (w = wNAF; *w != NULL; w++)
697 			OPENSSL_free(*w);
698 
699 		OPENSSL_free(wNAF);
700 		}
701 	if (val != NULL)
702 		{
703 		for (v = val; *v != NULL; v++)
704 			EC_POINT_clear_free(*v);
705 
706 		OPENSSL_free(val);
707 		}
708 	if (val_sub != NULL)
709 		{
710 		OPENSSL_free(val_sub);
711 		}
712 	return ret;
713 	}
714 
715 
716 /* ec_wNAF_precompute_mult()
717  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
718  * for use with wNAF splitting as implemented in ec_wNAF_mul().
719  *
720  * 'pre_comp->points' is an array of multiples of the generator
721  * of the following form:
722  * points[0] =     generator;
723  * points[1] = 3 * generator;
724  * ...
725  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
726  * points[2^(w-1)]   =     2^blocksize * generator;
727  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
728  * ...
729  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
730  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
731  * ...
732  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
733  * points[2^(w-1)*numblocks]       = NULL
734  */
735 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
736 	{
737 	const EC_POINT *generator;
738 	EC_POINT *tmp_point = NULL, *base = NULL, **var;
739 	BN_CTX *new_ctx = NULL;
740 	BIGNUM *order;
741 	size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
742 	EC_POINT **points = NULL;
743 	EC_PRE_COMP *pre_comp;
744 	int ret = 0;
745 
746 	/* if there is an old EC_PRE_COMP object, throw it away */
747 	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
748 
749 	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
750 		return 0;
751 
752 	generator = EC_GROUP_get0_generator(group);
753 	if (generator == NULL)
754 		{
755 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
756 		goto err;
757 		}
758 
759 	if (ctx == NULL)
760 		{
761 		ctx = new_ctx = BN_CTX_new();
762 		if (ctx == NULL)
763 			goto err;
764 		}
765 
766 	BN_CTX_start(ctx);
767 	order = BN_CTX_get(ctx);
768 	if (order == NULL) goto err;
769 
770 	if (!EC_GROUP_get_order(group, order, ctx)) goto err;
771 	if (BN_is_zero(order))
772 		{
773 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
774 		goto err;
775 		}
776 
777 	bits = BN_num_bits(order);
778 	/* The following parameters mean we precompute (approximately)
779 	 * one point per bit.
780 	 *
781 	 * TBD: The combination  8, 4  is perfect for 160 bits; for other
782 	 * bit lengths, other parameter combinations might provide better
783 	 * efficiency.
784 	 */
785 	blocksize = 8;
786 	w = 4;
787 	if (EC_window_bits_for_scalar_size(bits) > w)
788 		{
789 		/* let's not make the window too small ... */
790 		w = EC_window_bits_for_scalar_size(bits);
791 		}
792 
793 	numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
794 
795 	pre_points_per_block = 1u << (w - 1);
796 	num = pre_points_per_block * numblocks; /* number of points to compute and store */
797 
798 	points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
799 	if (!points)
800 		{
801 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
802 		goto err;
803 		}
804 
805 	var = points;
806 	var[num] = NULL; /* pivot */
807 	for (i = 0; i < num; i++)
808 		{
809 		if ((var[i] = EC_POINT_new(group)) == NULL)
810 			{
811 			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
812 			goto err;
813 			}
814 		}
815 
816 	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
817 		{
818 		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
819 		goto err;
820 		}
821 
822 	if (!EC_POINT_copy(base, generator))
823 		goto err;
824 
825 	/* do the precomputation */
826 	for (i = 0; i < numblocks; i++)
827 		{
828 		size_t j;
829 
830 		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
831 			goto err;
832 
833 		if (!EC_POINT_copy(*var++, base))
834 			goto err;
835 
836 		for (j = 1; j < pre_points_per_block; j++, var++)
837 			{
838 			/* calculate odd multiples of the current base point */
839 			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
840 				goto err;
841 			}
842 
843 		if (i < numblocks - 1)
844 			{
845 			/* get the next base (multiply current one by 2^blocksize) */
846 			size_t k;
847 
848 			if (blocksize <= 2)
849 				{
850 				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
851 				goto err;
852 				}
853 
854 			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
855 				goto err;
856 			for (k = 2; k < blocksize; k++)
857 				{
858 				if (!EC_POINT_dbl(group,base,base,ctx))
859 					goto err;
860 				}
861 			}
862  		}
863 
864 	if (!EC_POINTs_make_affine(group, num, points, ctx))
865 		goto err;
866 
867 	pre_comp->group = group;
868 	pre_comp->blocksize = blocksize;
869 	pre_comp->numblocks = numblocks;
870 	pre_comp->w = w;
871 	pre_comp->points = points;
872 	points = NULL;
873 	pre_comp->num = num;
874 
875 	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
876 		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
877 		goto err;
878 	pre_comp = NULL;
879 
880 	ret = 1;
881  err:
882 	if (ctx != NULL)
883 		BN_CTX_end(ctx);
884 	if (new_ctx != NULL)
885 		BN_CTX_free(new_ctx);
886 	if (pre_comp)
887 		ec_pre_comp_free(pre_comp);
888 	if (points)
889 		{
890 		EC_POINT **p;
891 
892 		for (p = points; *p != NULL; p++)
893 			EC_POINT_free(*p);
894 		OPENSSL_free(points);
895 		}
896 	if (tmp_point)
897 		EC_POINT_free(tmp_point);
898 	if (base)
899 		EC_POINT_free(base);
900 	return ret;
901 	}
902 
903 
904 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
905 	{
906 	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
907 		return 1;
908 	else
909 		return 0;
910 	}
911