1#! /usr/bin/env perl
2# Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
11#
12# Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
13# format is way easier to parse. Because it's simpler to "gear" from
14# Unix ABI to Windows one [see cross-reference "card" at the end of
15# file]. Because Linux targets were available first...
16#
17# In addition the script also "distills" code suitable for GNU
18# assembler, so that it can be compiled with more rigid assemblers,
19# such as Solaris /usr/ccs/bin/as.
20#
21# This translator is not designed to convert *arbitrary* assembler
22# code from AT&T format to MASM one. It's designed to convert just
23# enough to provide for dual-ABI OpenSSL modules development...
24# There *are* limitations and you might have to modify your assembler
25# code or this script to achieve the desired result...
26#
27# Currently recognized limitations:
28#
29# - can't use multiple ops per line;
30#
31# Dual-ABI styling rules.
32#
33# 1. Adhere to Unix register and stack layout [see cross-reference
34#    ABI "card" at the end for explanation].
35# 2. Forget about "red zone," stick to more traditional blended
36#    stack frame allocation. If volatile storage is actually required
37#    that is. If not, just leave the stack as is.
38# 3. Functions tagged with ".type name,@function" get crafted with
39#    unified Win64 prologue and epilogue automatically. If you want
40#    to take care of ABI differences yourself, tag functions as
41#    ".type name,@abi-omnipotent" instead.
42# 4. To optimize the Win64 prologue you can specify number of input
43#    arguments as ".type name,@function,N." Keep in mind that if N is
44#    larger than 6, then you *have to* write "abi-omnipotent" code,
45#    because >6 cases can't be addressed with unified prologue.
46# 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
47#    (sorry about latter).
48# 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
49#    required to identify the spots, where to inject Win64 epilogue!
50#    But on the pros, it's then prefixed with rep automatically:-)
51# 7. Stick to explicit ip-relative addressing. If you have to use
52#    GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
53#    Both are recognized and translated to proper Win64 addressing
54#    modes.
55#
56# 8. In order to provide for structured exception handling unified
57#    Win64 prologue copies %rsp value to %rax. For further details
58#    see SEH paragraph at the end.
59# 9. .init segment is allowed to contain calls to functions only.
60# a. If function accepts more than 4 arguments *and* >4th argument
61#    is declared as non 64-bit value, do clear its upper part.
62
63
64use strict;
65
66my $flavour = shift;
67my $output  = shift;
68if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
69
70open STDOUT,">$output" || die "can't open $output: $!"
71	if (defined($output));
72
73my $gas=1;	$gas=0 if ($output =~ /\.asm$/);
74my $elf=1;	$elf=0 if (!$gas);
75my $win64=0;
76my $prefix="";
77my $decor=".L";
78
79my $masmref=8 + 50727*2**-32;	# 8.00.50727 shipped with VS2005
80my $masm=0;
81my $PTR=" PTR";
82
83my $nasmref=2.03;
84my $nasm=0;
85
86if    ($flavour eq "mingw64")	{ $gas=1; $elf=0; $win64=1;
87				  $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
88				  $prefix =~ s|\R$||; # Better chomp
89				}
90elsif ($flavour eq "macosx")	{ $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
91elsif ($flavour eq "masm")	{ $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
92elsif ($flavour eq "nasm")	{ $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
93elsif (!$gas)
94{   if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i)
95    {	$nasm = $1 + $2*0.01; $PTR="";  }
96    elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
97    {	$masm = $1 + $2*2**-16 + $4*2**-32;   }
98    die "no assembler found on %PATH%" if (!($nasm || $masm));
99    $win64=1;
100    $elf=0;
101    $decor="\$L\$";
102}
103
104my $current_segment;
105my $current_function;
106my %globals;
107
108{ package opcode;	# pick up opcodes
109    sub re {
110	my	($class, $line) = @_;
111	my	$self = {};
112	my	$ret;
113
114	if ($$line =~ /^([a-z][a-z0-9]*)/i) {
115	    bless $self,$class;
116	    $self->{op} = $1;
117	    $ret = $self;
118	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
119
120	    undef $self->{sz};
121	    if ($self->{op} =~ /^(movz)x?([bw]).*/) {	# movz is pain...
122		$self->{op} = $1;
123		$self->{sz} = $2;
124	    } elsif ($self->{op} =~ /call|jmp/) {
125		$self->{sz} = "";
126	    } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
127		$self->{sz} = "";
128	    } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
129		$self->{sz} = "";
130	    } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
131		$self->{sz} = "";
132	    } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
133		$self->{op} = $1;
134		$self->{sz} = $2;
135	    }
136	}
137	$ret;
138    }
139    sub size {
140	my ($self, $sz) = @_;
141	$self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
142	$self->{sz};
143    }
144    sub out {
145	my $self = shift;
146	if ($gas) {
147	    if ($self->{op} eq "movz") {	# movz is pain...
148		sprintf "%s%s%s",$self->{op},$self->{sz},shift;
149	    } elsif ($self->{op} =~ /^set/) {
150		"$self->{op}";
151	    } elsif ($self->{op} eq "ret") {
152		my $epilogue = "";
153		if ($win64 && $current_function->{abi} eq "svr4") {
154		    $epilogue = "movq	8(%rsp),%rdi\n\t" .
155				"movq	16(%rsp),%rsi\n\t";
156		}
157	    	$epilogue . ".byte	0xf3,0xc3";
158	    } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
159		".p2align\t3\n\t.quad";
160	    } else {
161		"$self->{op}$self->{sz}";
162	    }
163	} else {
164	    $self->{op} =~ s/^movz/movzx/;
165	    if ($self->{op} eq "ret") {
166		$self->{op} = "";
167		if ($win64 && $current_function->{abi} eq "svr4") {
168		    $self->{op} = "mov	rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
169				  "mov	rsi,QWORD$PTR\[16+rsp\]\n\t";
170	    	}
171		$self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
172	    } elsif ($self->{op} =~ /^(pop|push)f/) {
173		$self->{op} .= $self->{sz};
174	    } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
175		$self->{op} = "\tDQ";
176	    }
177	    $self->{op};
178	}
179    }
180    sub mnemonic {
181	my ($self, $op) = @_;
182	$self->{op}=$op if (defined($op));
183	$self->{op};
184    }
185}
186{ package const;	# pick up constants, which start with $
187    sub re {
188	my	($class, $line) = @_;
189	my	$self = {};
190	my	$ret;
191
192	if ($$line =~ /^\$([^,]+)/) {
193	    bless $self, $class;
194	    $self->{value} = $1;
195	    $ret = $self;
196	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
197	}
198	$ret;
199    }
200    sub out {
201    	my $self = shift;
202
203	$self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
204	if ($gas) {
205	    # Solaris /usr/ccs/bin/as can't handle multiplications
206	    # in $self->{value}
207	    my $value = $self->{value};
208	    no warnings;    # oct might complain about overflow, ignore here...
209	    $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
210	    if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
211		$self->{value} = $value;
212	    }
213	    sprintf "\$%s",$self->{value};
214	} else {
215	    my $value = $self->{value};
216	    $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
217	    sprintf "%s",$value;
218	}
219    }
220}
221{ package ea;		# pick up effective addresses: expr(%reg,%reg,scale)
222
223    my %szmap = (	b=>"BYTE$PTR",    w=>"WORD$PTR",
224			l=>"DWORD$PTR",   d=>"DWORD$PTR",
225			q=>"QWORD$PTR",   o=>"OWORD$PTR",
226			x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
227			z=>"ZMMWORD$PTR" ) if (!$gas);
228
229    sub re {
230	my	($class, $line, $opcode) = @_;
231	my	$self = {};
232	my	$ret;
233
234	# optional * ----vvv--- appears in indirect jmp/call
235	if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
236	    bless $self, $class;
237	    $self->{asterisk} = $1;
238	    $self->{label} = $2;
239	    ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
240	    $self->{scale} = 1 if (!defined($self->{scale}));
241	    $self->{opmask} = $4;
242	    $ret = $self;
243	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
244
245	    if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
246		die if ($opcode->mnemonic() ne "mov");
247		$opcode->mnemonic("lea");
248	    }
249	    $self->{base}  =~ s/^%//;
250	    $self->{index} =~ s/^%// if (defined($self->{index}));
251	    $self->{opcode} = $opcode;
252	}
253	$ret;
254    }
255    sub size {}
256    sub out {
257	my ($self, $sz) = @_;
258
259	$self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
260	$self->{label} =~ s/\.L/$decor/g;
261
262	# Silently convert all EAs to 64-bit. This is required for
263	# elder GNU assembler and results in more compact code,
264	# *but* most importantly AES module depends on this feature!
265	$self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
266	$self->{base}  =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
267
268	# Solaris /usr/ccs/bin/as can't handle multiplications
269	# in $self->{label}...
270	use integer;
271	$self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
272	$self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
273
274	# Some assemblers insist on signed presentation of 32-bit
275	# offsets, but sign extension is a tricky business in perl...
276	if ((1<<31)<<1) {
277	    $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
278	} else {
279	    $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
280	}
281
282	# if base register is %rbp or %r13, see if it's possible to
283	# flip base and index registers [for better performance]
284	if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
285	    $self->{base} =~ /(rbp|r13)/) {
286		$self->{base} = $self->{index}; $self->{index} = $1;
287	}
288
289	if ($gas) {
290	    $self->{label} =~ s/^___imp_/__imp__/   if ($flavour eq "mingw64");
291
292	    if (defined($self->{index})) {
293		sprintf "%s%s(%s,%%%s,%d)%s",
294					$self->{asterisk},$self->{label},
295					$self->{base}?"%$self->{base}":"",
296					$self->{index},$self->{scale},
297					$self->{opmask};
298	    } else {
299		sprintf "%s%s(%%%s)%s",	$self->{asterisk},$self->{label},
300					$self->{base},$self->{opmask};
301	    }
302	} else {
303	    $self->{label} =~ s/\./\$/g;
304	    $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
305	    $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
306
307	    my $mnemonic = $self->{opcode}->mnemonic();
308	    ($self->{asterisk})				&& ($sz="q") ||
309	    ($mnemonic =~ /^v?mov([qd])$/)		&& ($sz=$1)  ||
310	    ($mnemonic =~ /^v?pinsr([qdwb])$/)		&& ($sz=$1)  ||
311	    ($mnemonic =~ /^vpbroadcast([qdwb])$/)	&& ($sz=$1)  ||
312	    ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/)	&& ($sz="x");
313
314	    $self->{opmask}  =~ s/%(k[0-7])/$1/;
315
316	    if (defined($self->{index})) {
317		sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
318					$self->{label}?"$self->{label}+":"",
319					$self->{index},$self->{scale},
320					$self->{base}?"+$self->{base}":"",
321					$self->{opmask};
322	    } elsif ($self->{base} eq "rip") {
323		sprintf "%s[%s]",$szmap{$sz},$self->{label};
324	    } else {
325		sprintf "%s[%s%s]%s",	$szmap{$sz},
326					$self->{label}?"$self->{label}+":"",
327					$self->{base},$self->{opmask};
328	    }
329	}
330    }
331}
332{ package register;	# pick up registers, which start with %.
333    sub re {
334	my	($class, $line, $opcode) = @_;
335	my	$self = {};
336	my	$ret;
337
338	# optional * ----vvv--- appears in indirect jmp/call
339	if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
340	    bless $self,$class;
341	    $self->{asterisk} = $1;
342	    $self->{value} = $2;
343	    $self->{opmask} = $3;
344	    $opcode->size($self->size());
345	    $ret = $self;
346	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
347	}
348	$ret;
349    }
350    sub size {
351	my	$self = shift;
352	my	$ret;
353
354	if    ($self->{value} =~ /^r[\d]+b$/i)	{ $ret="b"; }
355	elsif ($self->{value} =~ /^r[\d]+w$/i)	{ $ret="w"; }
356	elsif ($self->{value} =~ /^r[\d]+d$/i)	{ $ret="l"; }
357	elsif ($self->{value} =~ /^r[\w]+$/i)	{ $ret="q"; }
358	elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
359	elsif ($self->{value} =~ /^[\w]{2}l$/i)	{ $ret="b"; }
360	elsif ($self->{value} =~ /^[\w]{2}$/i)	{ $ret="w"; }
361	elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
362
363	$ret;
364    }
365    sub out {
366    	my $self = shift;
367	if ($gas)	{ sprintf "%s%%%s%s",	$self->{asterisk},
368						$self->{value},
369						$self->{opmask}; }
370	else		{ $self->{opmask} =~ s/%(k[0-7])/$1/;
371			  $self->{value}.$self->{opmask}; }
372    }
373}
374{ package label;	# pick up labels, which end with :
375    sub re {
376	my	($class, $line) = @_;
377	my	$self = {};
378	my	$ret;
379
380	if ($$line =~ /(^[\.\w]+)\:/) {
381	    bless $self,$class;
382	    $self->{value} = $1;
383	    $ret = $self;
384	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
385
386	    $self->{value} =~ s/^\.L/$decor/;
387	}
388	$ret;
389    }
390    sub out {
391	my $self = shift;
392
393	if ($gas) {
394	    my $func = ($globals{$self->{value}} or $self->{value}) . ":";
395	    if ($win64	&& $current_function->{name} eq $self->{value}
396			&& $current_function->{abi} eq "svr4") {
397		$func .= "\n";
398		$func .= "	movq	%rdi,8(%rsp)\n";
399		$func .= "	movq	%rsi,16(%rsp)\n";
400		$func .= "	movq	%rsp,%rax\n";
401		$func .= "${decor}SEH_begin_$current_function->{name}:\n";
402		my $narg = $current_function->{narg};
403		$narg=6 if (!defined($narg));
404		$func .= "	movq	%rcx,%rdi\n" if ($narg>0);
405		$func .= "	movq	%rdx,%rsi\n" if ($narg>1);
406		$func .= "	movq	%r8,%rdx\n"  if ($narg>2);
407		$func .= "	movq	%r9,%rcx\n"  if ($narg>3);
408		$func .= "	movq	40(%rsp),%r8\n" if ($narg>4);
409		$func .= "	movq	48(%rsp),%r9\n" if ($narg>5);
410	    }
411	    $func;
412	} elsif ($self->{value} ne "$current_function->{name}") {
413	    # Make all labels in masm global.
414	    $self->{value} .= ":" if ($masm);
415	    $self->{value} . ":";
416	} elsif ($win64 && $current_function->{abi} eq "svr4") {
417	    my $func =	"$current_function->{name}" .
418			($nasm ? ":" : "\tPROC $current_function->{scope}") .
419			"\n";
420	    $func .= "	mov	QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
421	    $func .= "	mov	QWORD$PTR\[16+rsp\],rsi\n";
422	    $func .= "	mov	rax,rsp\n";
423	    $func .= "${decor}SEH_begin_$current_function->{name}:";
424	    $func .= ":" if ($masm);
425	    $func .= "\n";
426	    my $narg = $current_function->{narg};
427	    $narg=6 if (!defined($narg));
428	    $func .= "	mov	rdi,rcx\n" if ($narg>0);
429	    $func .= "	mov	rsi,rdx\n" if ($narg>1);
430	    $func .= "	mov	rdx,r8\n"  if ($narg>2);
431	    $func .= "	mov	rcx,r9\n"  if ($narg>3);
432	    $func .= "	mov	r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
433	    $func .= "	mov	r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
434	    $func .= "\n";
435	} else {
436	   "$current_function->{name}".
437			($nasm ? ":" : "\tPROC $current_function->{scope}");
438	}
439    }
440}
441{ package expr;		# pick up expressions
442    sub re {
443	my	($class, $line, $opcode) = @_;
444	my	$self = {};
445	my	$ret;
446
447	if ($$line =~ /(^[^,]+)/) {
448	    bless $self,$class;
449	    $self->{value} = $1;
450	    $ret = $self;
451	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
452
453	    $self->{value} =~ s/\@PLT// if (!$elf);
454	    $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
455	    $self->{value} =~ s/\.L/$decor/g;
456	    $self->{opcode} = $opcode;
457	}
458	$ret;
459    }
460    sub out {
461	my $self = shift;
462	if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
463	    "NEAR ".$self->{value};
464	} else {
465	    $self->{value};
466	}
467    }
468}
469{ package cfi_directive;
470    # CFI directives annotate instructions that are significant for
471    # stack unwinding procedure compliant with DWARF specification,
472    # see http://dwarfstd.org/. Besides naturally expected for this
473    # script platform-specific filtering function, this module adds
474    # three auxiliary synthetic directives not recognized by [GNU]
475    # assembler:
476    #
477    # - .cfi_push to annotate push instructions in prologue, which
478    #   translates to .cfi_adjust_cfa_offset (if needed) and
479    #   .cfi_offset;
480    # - .cfi_pop to annotate pop instructions in epilogue, which
481    #   translates to .cfi_adjust_cfa_offset (if needed) and
482    #   .cfi_restore;
483    # - [and most notably] .cfi_cfa_expression which encodes
484    #   DW_CFA_def_cfa_expression and passes it to .cfi_escape as
485    #   byte vector;
486    #
487    # CFA expressions were introduced in DWARF specification version
488    # 3 and describe how to deduce CFA, Canonical Frame Address. This
489    # becomes handy if your stack frame is variable and you can't
490    # spare register for [previous] frame pointer. Suggested directive
491    # syntax is made-up mix of DWARF operator suffixes [subset of]
492    # and references to registers with optional bias. Following example
493    # describes offloaded *original* stack pointer at specific offset
494    # from *current* stack pointer:
495    #
496    #   .cfi_cfa_expression     %rsp+40,deref,+8
497    #
498    # Final +8 has everything to do with the fact that CFA is defined
499    # as reference to top of caller's stack, and on x86_64 call to
500    # subroutine pushes 8-byte return address. In other words original
501    # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
502
503    # Below constants are taken from "DWARF Expressions" section of the
504    # DWARF specification, section is numbered 7.7 in versions 3 and 4.
505    my %DW_OP_simple = (	# no-arg operators, mapped directly
506	deref	=> 0x06,	dup	=> 0x12,
507	drop	=> 0x13,	over	=> 0x14,
508	pick	=> 0x15,	swap	=> 0x16,
509	rot	=> 0x17,	xderef	=> 0x18,
510
511	abs	=> 0x19,	and	=> 0x1a,
512	div	=> 0x1b,	minus	=> 0x1c,
513	mod	=> 0x1d,	mul	=> 0x1e,
514	neg	=> 0x1f,	not	=> 0x20,
515	or	=> 0x21,	plus	=> 0x22,
516	shl	=> 0x24,	shr	=> 0x25,
517	shra	=> 0x26,	xor	=> 0x27,
518	);
519
520    my %DW_OP_complex = (	# used in specific subroutines
521	constu		=> 0x10,	# uleb128
522	consts		=> 0x11,	# sleb128
523	plus_uconst	=> 0x23,	# uleb128
524	lit0 		=> 0x30,	# add 0-31 to opcode
525	reg0		=> 0x50,	# add 0-31 to opcode
526	breg0		=> 0x70,	# add 0-31 to opcole, sleb128
527	regx		=> 0x90,	# uleb28
528	fbreg		=> 0x91,	# sleb128
529	bregx		=> 0x92,	# uleb128, sleb128
530	piece		=> 0x93,	# uleb128
531	);
532
533    # Following constants are defined in x86_64 ABI supplement, for
534    # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf,
535    # see section 3.7 "Stack Unwind Algorithm".
536    my %DW_reg_idx = (
537	"%rax"=>0,  "%rdx"=>1,  "%rcx"=>2,  "%rbx"=>3,
538	"%rsi"=>4,  "%rdi"=>5,  "%rbp"=>6,  "%rsp"=>7,
539	"%r8" =>8,  "%r9" =>9,  "%r10"=>10, "%r11"=>11,
540	"%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
541	);
542
543    my ($cfa_reg, $cfa_rsp);
544
545    # [us]leb128 format is variable-length integer representation base
546    # 2^128, with most significant bit of each byte being 0 denoting
547    # *last* most significant digit. See "Variable Length Data" in the
548    # DWARF specification, numbered 7.6 at least in versions 3 and 4.
549    sub sleb128 {
550	use integer;	# get right shift extend sign
551
552	my $val = shift;
553	my $sign = ($val < 0) ? -1 : 0;
554	my @ret = ();
555
556	while(1) {
557	    push @ret, $val&0x7f;
558
559	    # see if remaining bits are same and equal to most
560	    # significant bit of the current digit, if so, it's
561	    # last digit...
562	    last if (($val>>6) == $sign);
563
564	    @ret[-1] |= 0x80;
565	    $val >>= 7;
566	}
567
568	return @ret;
569    }
570    sub uleb128 {
571	my $val = shift;
572	my @ret = ();
573
574	while(1) {
575	    push @ret, $val&0x7f;
576
577	    # see if it's last significant digit...
578	    last if (($val >>= 7) == 0);
579
580	    @ret[-1] |= 0x80;
581	}
582
583	return @ret;
584    }
585    sub const {
586	my $val = shift;
587
588	if ($val >= 0 && $val < 32) {
589            return ($DW_OP_complex{lit0}+$val);
590	}
591	return ($DW_OP_complex{consts}, sleb128($val));
592    }
593    sub reg {
594	my $val = shift;
595
596	return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
597
598	my $reg = $DW_reg_idx{$1};
599	my $off = eval ("0 $2 $3");
600
601	return (($DW_OP_complex{breg0} + $reg), sleb128($off));
602	# Yes, we use DW_OP_bregX+0 to push register value and not
603	# DW_OP_regX, because latter would require even DW_OP_piece,
604	# which would be a waste under the circumstances. If you have
605	# to use DWP_OP_reg, use "regx:N"...
606    }
607    sub cfa_expression {
608	my $line = shift;
609	my @ret;
610
611	foreach my $token (split(/,\s*/,$line)) {
612	    if ($token =~ /^%r/) {
613		push @ret,reg($token);
614	    } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
615		push @ret,reg("$2+$1");
616	    } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
617		my $i = 1*eval($2);
618		push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
619	    } elsif (my $i = 1*eval($token) or $token eq "0") {
620		if ($token =~ /^\+/) {
621		    push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
622		} else {
623		    push @ret,const($i);
624		}
625	    } else {
626		push @ret,$DW_OP_simple{$token};
627	    }
628	}
629
630	# Finally we return DW_CFA_def_cfa_expression, 15, followed by
631	# length of the expression and of course the expression itself.
632	return (15,scalar(@ret),@ret);
633    }
634    sub re {
635	my	($class, $line) = @_;
636	my	$self = {};
637	my	$ret;
638
639	if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
640	    bless $self,$class;
641	    $ret = $self;
642	    undef $self->{value};
643	    my $dir = $1;
644
645	    SWITCH: for ($dir) {
646	    # What is $cfa_rsp? Effectively it's difference between %rsp
647	    # value and current CFA, Canonical Frame Address, which is
648	    # why it starts with -8. Recall that CFA is top of caller's
649	    # stack...
650	    /startproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
651	    /endproc/	&& do {	($cfa_reg, $cfa_rsp) = ("%rsp",  0); last; };
652	    /def_cfa_register/
653			&& do {	$cfa_reg = $$line; last; };
654	    /def_cfa_offset/
655			&& do {	$cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
656				last;
657			      };
658	    /adjust_cfa_offset/
659			&& do {	$cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
660				last;
661			      };
662	    /def_cfa/	&& do {	if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
663				    $cfa_reg = $1;
664				    $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
665				}
666				last;
667			      };
668	    /push/	&& do {	$dir = undef;
669				$cfa_rsp -= 8;
670				if ($cfa_reg eq "%rsp") {
671				    $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
672				}
673				$self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
674				last;
675			      };
676	    /pop/	&& do {	$dir = undef;
677				$cfa_rsp += 8;
678				if ($cfa_reg eq "%rsp") {
679				    $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
680				}
681				$self->{value} .= ".cfi_restore\t$$line";
682				last;
683			      };
684	    /cfa_expression/
685			&& do {	$dir = undef;
686				$self->{value} = ".cfi_escape\t" .
687					join(",", map(sprintf("0x%02x", $_),
688						      cfa_expression($$line)));
689				last;
690			      };
691	    }
692
693	    $self->{value} = ".cfi_$dir\t$$line" if ($dir);
694
695	    $$line = "";
696	}
697
698	return $ret;
699    }
700    sub out {
701	my $self = shift;
702	return ($elf ? $self->{value} : undef);
703    }
704}
705{ package directive;	# pick up directives, which start with .
706    sub re {
707	my	($class, $line) = @_;
708	my	$self = {};
709	my	$ret;
710	my	$dir;
711
712	# chain-call to cfi_directive
713	$ret = cfi_directive->re($line) and return $ret;
714
715	if ($$line =~ /^\s*(\.\w+)/) {
716	    bless $self,$class;
717	    $dir = $1;
718	    $ret = $self;
719	    undef $self->{value};
720	    $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
721
722	    SWITCH: for ($dir) {
723		/\.global|\.globl|\.extern/
724			    && do { $globals{$$line} = $prefix . $$line;
725				    $$line = $globals{$$line} if ($prefix);
726				    last;
727				  };
728		/\.type/    && do { my ($sym,$type,$narg) = split(',',$$line);
729				    if ($type eq "\@function") {
730					undef $current_function;
731					$current_function->{name} = $sym;
732					$current_function->{abi}  = "svr4";
733					$current_function->{narg} = $narg;
734					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
735				    } elsif ($type eq "\@abi-omnipotent") {
736					undef $current_function;
737					$current_function->{name} = $sym;
738					$current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
739				    }
740				    $$line =~ s/\@abi\-omnipotent/\@function/;
741				    $$line =~ s/\@function.*/\@function/;
742				    last;
743				  };
744		/\.asciz/   && do { if ($$line =~ /^"(.*)"$/) {
745					$dir  = ".byte";
746					$$line = join(",",unpack("C*",$1),0);
747				    }
748				    last;
749				  };
750		/\.rva|\.long|\.quad/
751			    && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
752				    $$line =~ s/\.L/$decor/g;
753				    last;
754				  };
755	    }
756
757	    if ($gas) {
758		$self->{value} = $dir . "\t" . $$line;
759
760		if ($dir =~ /\.extern/) {
761		    $self->{value} = ""; # swallow extern
762		} elsif (!$elf && $dir =~ /\.type/) {
763		    $self->{value} = "";
764		    $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
765				(defined($globals{$1})?".scl 2;":".scl 3;") .
766				"\t.type 32;\t.endef"
767				if ($win64 && $$line =~ /([^,]+),\@function/);
768		} elsif (!$elf && $dir =~ /\.size/) {
769		    $self->{value} = "";
770		    if (defined($current_function)) {
771			$self->{value} .= "${decor}SEH_end_$current_function->{name}:"
772				if ($win64 && $current_function->{abi} eq "svr4");
773			undef $current_function;
774		    }
775		} elsif (!$elf && $dir =~ /\.align/) {
776		    $self->{value} = ".p2align\t" . (log($$line)/log(2));
777		} elsif ($dir eq ".section") {
778		    $current_segment=$$line;
779		    if (!$elf && $current_segment eq ".init") {
780			if	($flavour eq "macosx")	{ $self->{value} = ".mod_init_func"; }
781			elsif	($flavour eq "mingw64")	{ $self->{value} = ".section\t.ctors"; }
782		    }
783		} elsif ($dir =~ /\.(text|data)/) {
784		    $current_segment=".$1";
785		} elsif ($dir =~ /\.hidden/) {
786		    if    ($flavour eq "macosx")  { $self->{value} = ".private_extern\t$prefix$$line"; }
787		    elsif ($flavour eq "mingw64") { $self->{value} = ""; }
788		} elsif ($dir =~ /\.comm/) {
789		    $self->{value} = "$dir\t$prefix$$line";
790		    $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
791		}
792		$$line = "";
793		return $self;
794	    }
795
796	    # non-gas case or nasm/masm
797	    SWITCH: for ($dir) {
798		/\.text/    && do { my $v=undef;
799				    if ($nasm) {
800					$v="section	.text code align=64\n";
801				    } else {
802					$v="$current_segment\tENDS\n" if ($current_segment);
803					$current_segment = ".text\$";
804					$v.="$current_segment\tSEGMENT ";
805					$v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
806					$v.=" 'CODE'";
807				    }
808				    $self->{value} = $v;
809				    last;
810				  };
811		/\.data/    && do { my $v=undef;
812				    if ($nasm) {
813					$v="section	.data data align=8\n";
814				    } else {
815					$v="$current_segment\tENDS\n" if ($current_segment);
816					$current_segment = "_DATA";
817					$v.="$current_segment\tSEGMENT";
818				    }
819				    $self->{value} = $v;
820				    last;
821				  };
822		/\.section/ && do { my $v=undef;
823				    $$line =~ s/([^,]*).*/$1/;
824				    $$line = ".CRT\$XCU" if ($$line eq ".init");
825				    if ($nasm) {
826					$v="section	$$line";
827					if ($$line=~/\.([px])data/) {
828					    $v.=" rdata align=";
829					    $v.=$1 eq "p"? 4 : 8;
830					} elsif ($$line=~/\.CRT\$/i) {
831					    $v.=" rdata align=8";
832					}
833				    } else {
834					$v="$current_segment\tENDS\n" if ($current_segment);
835					$v.="$$line\tSEGMENT";
836					if ($$line=~/\.([px])data/) {
837					    $v.=" READONLY";
838					    $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
839					} elsif ($$line=~/\.CRT\$/i) {
840					    $v.=" READONLY ";
841					    $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
842					}
843				    }
844				    $current_segment = $$line;
845				    $self->{value} = $v;
846				    last;
847				  };
848		/\.extern/  && do { $self->{value}  = "EXTERN\t".$$line;
849				    $self->{value} .= ":NEAR" if ($masm);
850				    last;
851				  };
852		/\.globl|.global/
853			    && do { $self->{value}  = $masm?"PUBLIC":"global";
854				    $self->{value} .= "\t".$$line;
855				    last;
856				  };
857		/\.size/    && do { if (defined($current_function)) {
858					undef $self->{value};
859					if ($current_function->{abi} eq "svr4") {
860					    $self->{value}="${decor}SEH_end_$current_function->{name}:";
861					    $self->{value}.=":\n" if($masm);
862					}
863					$self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
864					undef $current_function;
865				    }
866				    last;
867				  };
868		/\.align/   && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
869				    $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
870				    last;
871				  };
872		/\.(value|long|rva|quad)/
873			    && do { my $sz  = substr($1,0,1);
874				    my @arr = split(/,\s*/,$$line);
875				    my $last = pop(@arr);
876				    my $conv = sub  {	my $var=shift;
877							$var=~s/^(0b[0-1]+)/oct($1)/eig;
878							$var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
879							if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
880							{ $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
881							$var;
882						    };
883
884				    $sz =~ tr/bvlrq/BWDDQ/;
885				    $self->{value} = "\tD$sz\t";
886				    for (@arr) { $self->{value} .= &$conv($_).","; }
887				    $self->{value} .= &$conv($last);
888				    last;
889				  };
890		/\.byte/    && do { my @str=split(/,\s*/,$$line);
891				    map(s/(0b[0-1]+)/oct($1)/eig,@str);
892				    map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
893				    while ($#str>15) {
894					$self->{value}.="DB\t"
895						.join(",",@str[0..15])."\n";
896					foreach (0..15) { shift @str; }
897				    }
898				    $self->{value}.="DB\t"
899						.join(",",@str) if (@str);
900				    last;
901				  };
902		/\.comm/    && do { my @str=split(/,\s*/,$$line);
903				    my $v=undef;
904				    if ($nasm) {
905					$v.="common	$prefix@str[0] @str[1]";
906				    } else {
907					$v="$current_segment\tENDS\n" if ($current_segment);
908					$current_segment = "_DATA";
909					$v.="$current_segment\tSEGMENT\n";
910					$v.="COMM	@str[0]:DWORD:".@str[1]/4;
911				    }
912				    $self->{value} = $v;
913				    last;
914				  };
915	    }
916	    $$line = "";
917	}
918
919	$ret;
920    }
921    sub out {
922	my $self = shift;
923	$self->{value};
924    }
925}
926
927# Upon initial x86_64 introduction SSE>2 extensions were not introduced
928# yet. In order not to be bothered by tracing exact assembler versions,
929# but at the same time to provide a bare security minimum of AES-NI, we
930# hard-code some instructions. Extensions past AES-NI on the other hand
931# are traced by examining assembler version in individual perlasm
932# modules...
933
934my %regrm = (	"%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
935		"%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7	);
936
937sub rex {
938 my $opcode=shift;
939 my ($dst,$src,$rex)=@_;
940
941   $rex|=0x04 if($dst>=8);
942   $rex|=0x01 if($src>=8);
943   push @$opcode,($rex|0x40) if ($rex);
944}
945
946my $movq = sub {	# elderly gas can't handle inter-register movq
947  my $arg = shift;
948  my @opcode=(0x66);
949    if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
950	my ($src,$dst)=($1,$2);
951	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
952	rex(\@opcode,$src,$dst,0x8);
953	push @opcode,0x0f,0x7e;
954	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
955	@opcode;
956    } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
957	my ($src,$dst)=($2,$1);
958	if ($dst !~ /[0-9]+/)	{ $dst = $regrm{"%e$dst"}; }
959	rex(\@opcode,$src,$dst,0x8);
960	push @opcode,0x0f,0x6e;
961	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
962	@opcode;
963    } else {
964	();
965    }
966};
967
968my $pextrd = sub {
969    if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
970      my @opcode=(0x66);
971	my $imm=$1;
972	my $src=$2;
973	my $dst=$3;
974	if ($dst =~ /%r([0-9]+)d/)	{ $dst = $1; }
975	elsif ($dst =~ /%e/)		{ $dst = $regrm{$dst}; }
976	rex(\@opcode,$src,$dst);
977	push @opcode,0x0f,0x3a,0x16;
978	push @opcode,0xc0|(($src&7)<<3)|($dst&7);	# ModR/M
979	push @opcode,$imm;
980	@opcode;
981    } else {
982	();
983    }
984};
985
986my $pinsrd = sub {
987    if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
988      my @opcode=(0x66);
989	my $imm=$1;
990	my $src=$2;
991	my $dst=$3;
992	if ($src =~ /%r([0-9]+)/)	{ $src = $1; }
993	elsif ($src =~ /%e/)		{ $src = $regrm{$src}; }
994	rex(\@opcode,$dst,$src);
995	push @opcode,0x0f,0x3a,0x22;
996	push @opcode,0xc0|(($dst&7)<<3)|($src&7);	# ModR/M
997	push @opcode,$imm;
998	@opcode;
999    } else {
1000	();
1001    }
1002};
1003
1004my $pshufb = sub {
1005    if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1006      my @opcode=(0x66);
1007	rex(\@opcode,$2,$1);
1008	push @opcode,0x0f,0x38,0x00;
1009	push @opcode,0xc0|($1&7)|(($2&7)<<3);		# ModR/M
1010	@opcode;
1011    } else {
1012	();
1013    }
1014};
1015
1016my $palignr = sub {
1017    if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1018      my @opcode=(0x66);
1019	rex(\@opcode,$3,$2);
1020	push @opcode,0x0f,0x3a,0x0f;
1021	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
1022	push @opcode,$1;
1023	@opcode;
1024    } else {
1025	();
1026    }
1027};
1028
1029my $pclmulqdq = sub {
1030    if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1031      my @opcode=(0x66);
1032	rex(\@opcode,$3,$2);
1033	push @opcode,0x0f,0x3a,0x44;
1034	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
1035	my $c=$1;
1036	push @opcode,$c=~/^0/?oct($c):$c;
1037	@opcode;
1038    } else {
1039	();
1040    }
1041};
1042
1043my $rdrand = sub {
1044    if (shift =~ /%[er](\w+)/) {
1045      my @opcode=();
1046      my $dst=$1;
1047	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1048	rex(\@opcode,0,$dst,8);
1049	push @opcode,0x0f,0xc7,0xf0|($dst&7);
1050	@opcode;
1051    } else {
1052	();
1053    }
1054};
1055
1056my $rdseed = sub {
1057    if (shift =~ /%[er](\w+)/) {
1058      my @opcode=();
1059      my $dst=$1;
1060	if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1061	rex(\@opcode,0,$dst,8);
1062	push @opcode,0x0f,0xc7,0xf8|($dst&7);
1063	@opcode;
1064    } else {
1065	();
1066    }
1067};
1068
1069# Not all AVX-capable assemblers recognize AMD XOP extension. Since we
1070# are using only two instructions hand-code them in order to be excused
1071# from chasing assembler versions...
1072
1073sub rxb {
1074 my $opcode=shift;
1075 my ($dst,$src1,$src2,$rxb)=@_;
1076
1077   $rxb|=0x7<<5;
1078   $rxb&=~(0x04<<5) if($dst>=8);
1079   $rxb&=~(0x01<<5) if($src1>=8);
1080   $rxb&=~(0x02<<5) if($src2>=8);
1081   push @$opcode,$rxb;
1082}
1083
1084my $vprotd = sub {
1085    if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1086      my @opcode=(0x8f);
1087	rxb(\@opcode,$3,$2,-1,0x08);
1088	push @opcode,0x78,0xc2;
1089	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
1090	my $c=$1;
1091	push @opcode,$c=~/^0/?oct($c):$c;
1092	@opcode;
1093    } else {
1094	();
1095    }
1096};
1097
1098my $vprotq = sub {
1099    if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1100      my @opcode=(0x8f);
1101	rxb(\@opcode,$3,$2,-1,0x08);
1102	push @opcode,0x78,0xc3;
1103	push @opcode,0xc0|($2&7)|(($3&7)<<3);		# ModR/M
1104	my $c=$1;
1105	push @opcode,$c=~/^0/?oct($c):$c;
1106	@opcode;
1107    } else {
1108	();
1109    }
1110};
1111
1112# Intel Control-flow Enforcement Technology extension. All functions and
1113# indirect branch targets will have to start with this instruction...
1114
1115my $endbranch = sub {
1116    (0xf3,0x0f,0x1e,0xfa);
1117};
1118
1119########################################################################
1120
1121if ($nasm) {
1122    print <<___;
1123default	rel
1124%define XMMWORD
1125%define YMMWORD
1126%define ZMMWORD
1127___
1128} elsif ($masm) {
1129    print <<___;
1130OPTION	DOTNAME
1131___
1132}
1133while(defined(my $line=<>)) {
1134
1135    $line =~ s|\R$||;           # Better chomp
1136
1137    $line =~ s|[#!].*$||;	# get rid of asm-style comments...
1138    $line =~ s|/\*.*\*/||;	# ... and C-style comments...
1139    $line =~ s|^\s+||;		# ... and skip white spaces in beginning
1140    $line =~ s|\s+$||;		# ... and at the end
1141
1142    if (my $label=label->re(\$line))	{ print $label->out(); }
1143
1144    if (my $directive=directive->re(\$line)) {
1145	printf "%s",$directive->out();
1146    } elsif (my $opcode=opcode->re(\$line)) {
1147	my $asm = eval("\$".$opcode->mnemonic());
1148
1149	if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
1150	    print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
1151	    next;
1152	}
1153
1154	my @args;
1155	ARGUMENT: while (1) {
1156	    my $arg;
1157
1158	    ($arg=register->re(\$line, $opcode))||
1159	    ($arg=const->re(\$line))		||
1160	    ($arg=ea->re(\$line, $opcode))	||
1161	    ($arg=expr->re(\$line, $opcode))	||
1162	    last ARGUMENT;
1163
1164	    push @args,$arg;
1165
1166	    last ARGUMENT if ($line !~ /^,/);
1167
1168	    $line =~ s/^,\s*//;
1169	} # ARGUMENT:
1170
1171	if ($#args>=0) {
1172	    my $insn;
1173	    my $sz=$opcode->size();
1174
1175	    if ($gas) {
1176		$insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
1177		@args = map($_->out($sz),@args);
1178		printf "\t%s\t%s",$insn,join(",",@args);
1179	    } else {
1180		$insn = $opcode->out();
1181		foreach (@args) {
1182		    my $arg = $_->out();
1183		    # $insn.=$sz compensates for movq, pinsrw, ...
1184		    if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
1185		    if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
1186		    if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
1187		    if ($arg =~ /^mm[0-9]+$/)  { $insn.=$sz; $sz="q" if(!$sz); last; }
1188		}
1189		@args = reverse(@args);
1190		undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
1191		printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
1192	    }
1193	} else {
1194	    printf "\t%s",$opcode->out();
1195	}
1196    }
1197
1198    print $line,"\n";
1199}
1200
1201print "\n$current_segment\tENDS\n"	if ($current_segment && $masm);
1202print "END\n"				if ($masm);
1203
1204close STDOUT;
1205
1206#################################################
1207# Cross-reference x86_64 ABI "card"
1208#
1209# 		Unix		Win64
1210# %rax		*		*
1211# %rbx		-		-
1212# %rcx		#4		#1
1213# %rdx		#3		#2
1214# %rsi		#2		-
1215# %rdi		#1		-
1216# %rbp		-		-
1217# %rsp		-		-
1218# %r8		#5		#3
1219# %r9		#6		#4
1220# %r10		*		*
1221# %r11		*		*
1222# %r12		-		-
1223# %r13		-		-
1224# %r14		-		-
1225# %r15		-		-
1226#
1227# (*)	volatile register
1228# (-)	preserved by callee
1229# (#)	Nth argument, volatile
1230#
1231# In Unix terms top of stack is argument transfer area for arguments
1232# which could not be accommodated in registers. Or in other words 7th
1233# [integer] argument resides at 8(%rsp) upon function entry point.
1234# 128 bytes above %rsp constitute a "red zone" which is not touched
1235# by signal handlers and can be used as temporal storage without
1236# allocating a frame.
1237#
1238# In Win64 terms N*8 bytes on top of stack is argument transfer area,
1239# which belongs to/can be overwritten by callee. N is the number of
1240# arguments passed to callee, *but* not less than 4! This means that
1241# upon function entry point 5th argument resides at 40(%rsp), as well
1242# as that 32 bytes from 8(%rsp) can always be used as temporal
1243# storage [without allocating a frame]. One can actually argue that
1244# one can assume a "red zone" above stack pointer under Win64 as well.
1245# Point is that at apparently no occasion Windows kernel would alter
1246# the area above user stack pointer in true asynchronous manner...
1247#
1248# All the above means that if assembler programmer adheres to Unix
1249# register and stack layout, but disregards the "red zone" existence,
1250# it's possible to use following prologue and epilogue to "gear" from
1251# Unix to Win64 ABI in leaf functions with not more than 6 arguments.
1252#
1253# omnipotent_function:
1254# ifdef WIN64
1255#	movq	%rdi,8(%rsp)
1256#	movq	%rsi,16(%rsp)
1257#	movq	%rcx,%rdi	; if 1st argument is actually present
1258#	movq	%rdx,%rsi	; if 2nd argument is actually ...
1259#	movq	%r8,%rdx	; if 3rd argument is ...
1260#	movq	%r9,%rcx	; if 4th argument ...
1261#	movq	40(%rsp),%r8	; if 5th ...
1262#	movq	48(%rsp),%r9	; if 6th ...
1263# endif
1264#	...
1265# ifdef WIN64
1266#	movq	8(%rsp),%rdi
1267#	movq	16(%rsp),%rsi
1268# endif
1269#	ret
1270#
1271#################################################
1272# Win64 SEH, Structured Exception Handling.
1273#
1274# Unlike on Unix systems(*) lack of Win64 stack unwinding information
1275# has undesired side-effect at run-time: if an exception is raised in
1276# assembler subroutine such as those in question (basically we're
1277# referring to segmentation violations caused by malformed input
1278# parameters), the application is briskly terminated without invoking
1279# any exception handlers, most notably without generating memory dump
1280# or any user notification whatsoever. This poses a problem. It's
1281# possible to address it by registering custom language-specific
1282# handler that would restore processor context to the state at
1283# subroutine entry point and return "exception is not handled, keep
1284# unwinding" code. Writing such handler can be a challenge... But it's
1285# doable, though requires certain coding convention. Consider following
1286# snippet:
1287#
1288# .type	function,@function
1289# function:
1290#	movq	%rsp,%rax	# copy rsp to volatile register
1291#	pushq	%r15		# save non-volatile registers
1292#	pushq	%rbx
1293#	pushq	%rbp
1294#	movq	%rsp,%r11
1295#	subq	%rdi,%r11	# prepare [variable] stack frame
1296#	andq	$-64,%r11
1297#	movq	%rax,0(%r11)	# check for exceptions
1298#	movq	%r11,%rsp	# allocate [variable] stack frame
1299#	movq	%rax,0(%rsp)	# save original rsp value
1300# magic_point:
1301#	...
1302#	movq	0(%rsp),%rcx	# pull original rsp value
1303#	movq	-24(%rcx),%rbp	# restore non-volatile registers
1304#	movq	-16(%rcx),%rbx
1305#	movq	-8(%rcx),%r15
1306#	movq	%rcx,%rsp	# restore original rsp
1307# magic_epilogue:
1308#	ret
1309# .size function,.-function
1310#
1311# The key is that up to magic_point copy of original rsp value remains
1312# in chosen volatile register and no non-volatile register, except for
1313# rsp, is modified. While past magic_point rsp remains constant till
1314# the very end of the function. In this case custom language-specific
1315# exception handler would look like this:
1316#
1317# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1318#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
1319# {	ULONG64 *rsp = (ULONG64 *)context->Rax;
1320#	ULONG64  rip = context->Rip;
1321#
1322#	if (rip >= magic_point)
1323#	{   rsp = (ULONG64 *)context->Rsp;
1324#	    if (rip < magic_epilogue)
1325#	    {	rsp = (ULONG64 *)rsp[0];
1326#		context->Rbp = rsp[-3];
1327#		context->Rbx = rsp[-2];
1328#		context->R15 = rsp[-1];
1329#	    }
1330#	}
1331#	context->Rsp = (ULONG64)rsp;
1332#	context->Rdi = rsp[1];
1333#	context->Rsi = rsp[2];
1334#
1335#	memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
1336#	RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
1337#		dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
1338#		&disp->HandlerData,&disp->EstablisherFrame,NULL);
1339#	return ExceptionContinueSearch;
1340# }
1341#
1342# It's appropriate to implement this handler in assembler, directly in
1343# function's module. In order to do that one has to know members'
1344# offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
1345# values. Here they are:
1346#
1347#	CONTEXT.Rax				120
1348#	CONTEXT.Rcx				128
1349#	CONTEXT.Rdx				136
1350#	CONTEXT.Rbx				144
1351#	CONTEXT.Rsp				152
1352#	CONTEXT.Rbp				160
1353#	CONTEXT.Rsi				168
1354#	CONTEXT.Rdi				176
1355#	CONTEXT.R8				184
1356#	CONTEXT.R9				192
1357#	CONTEXT.R10				200
1358#	CONTEXT.R11				208
1359#	CONTEXT.R12				216
1360#	CONTEXT.R13				224
1361#	CONTEXT.R14				232
1362#	CONTEXT.R15				240
1363#	CONTEXT.Rip				248
1364#	CONTEXT.Xmm6				512
1365#	sizeof(CONTEXT)				1232
1366#	DISPATCHER_CONTEXT.ControlPc		0
1367#	DISPATCHER_CONTEXT.ImageBase		8
1368#	DISPATCHER_CONTEXT.FunctionEntry	16
1369#	DISPATCHER_CONTEXT.EstablisherFrame	24
1370#	DISPATCHER_CONTEXT.TargetIp		32
1371#	DISPATCHER_CONTEXT.ContextRecord	40
1372#	DISPATCHER_CONTEXT.LanguageHandler	48
1373#	DISPATCHER_CONTEXT.HandlerData		56
1374#	UNW_FLAG_NHANDLER			0
1375#	ExceptionContinueSearch			1
1376#
1377# In order to tie the handler to the function one has to compose
1378# couple of structures: one for .xdata segment and one for .pdata.
1379#
1380# UNWIND_INFO structure for .xdata segment would be
1381#
1382# function_unwind_info:
1383#	.byte	9,0,0,0
1384#	.rva	handler
1385#
1386# This structure designates exception handler for a function with
1387# zero-length prologue, no stack frame or frame register.
1388#
1389# To facilitate composing of .pdata structures, auto-generated "gear"
1390# prologue copies rsp value to rax and denotes next instruction with
1391# .LSEH_begin_{function_name} label. This essentially defines the SEH
1392# styling rule mentioned in the beginning. Position of this label is
1393# chosen in such manner that possible exceptions raised in the "gear"
1394# prologue would be accounted to caller and unwound from latter's frame.
1395# End of function is marked with respective .LSEH_end_{function_name}
1396# label. To summarize, .pdata segment would contain
1397#
1398#	.rva	.LSEH_begin_function
1399#	.rva	.LSEH_end_function
1400#	.rva	function_unwind_info
1401#
1402# Reference to function_unwind_info from .xdata segment is the anchor.
1403# In case you wonder why references are 32-bit .rvas and not 64-bit
1404# .quads. References put into these two segments are required to be
1405# *relative* to the base address of the current binary module, a.k.a.
1406# image base. No Win64 module, be it .exe or .dll, can be larger than
1407# 2GB and thus such relative references can be and are accommodated in
1408# 32 bits.
1409#
1410# Having reviewed the example function code, one can argue that "movq
1411# %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1412# rax would contain an undefined value. If this "offends" you, use
1413# another register and refrain from modifying rax till magic_point is
1414# reached, i.e. as if it was a non-volatile register. If more registers
1415# are required prior [variable] frame setup is completed, note that
1416# nobody says that you can have only one "magic point." You can
1417# "liberate" non-volatile registers by denoting last stack off-load
1418# instruction and reflecting it in finer grade unwind logic in handler.
1419# After all, isn't it why it's called *language-specific* handler...
1420#
1421# SE handlers are also involved in unwinding stack when executable is
1422# profiled or debugged. Profiling implies additional limitations that
1423# are too subtle to discuss here. For now it's sufficient to say that
1424# in order to simplify handlers one should either a) offload original
1425# %rsp to stack (like discussed above); or b) if you have a register to
1426# spare for frame pointer, choose volatile one.
1427#
1428# (*)	Note that we're talking about run-time, not debug-time. Lack of
1429#	unwind information makes debugging hard on both Windows and
1430#	Unix. "Unlike" refers to the fact that on Unix signal handler
1431#	will always be invoked, core dumped and appropriate exit code
1432#	returned to parent (for user notification).
1433