xref: /freebsd/crypto/openssl/crypto/rsa/rsa_lib.c (revision 783d3ff6)
1 /*
2  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * RSA low level APIs are deprecated for public use, but still ok for
12  * internal use.
13  */
14 #include "internal/deprecated.h"
15 
16 #include <openssl/crypto.h>
17 #include <openssl/core_names.h>
18 #ifndef FIPS_MODULE
19 # include <openssl/engine.h>
20 #endif
21 #include <openssl/evp.h>
22 #include <openssl/param_build.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25 #include "crypto/bn.h"
26 #include "crypto/evp.h"
27 #include "crypto/rsa.h"
28 #include "crypto/security_bits.h"
29 #include "rsa_local.h"
30 
31 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32 
33 #ifndef FIPS_MODULE
34 RSA *RSA_new(void)
35 {
36     return rsa_new_intern(NULL, NULL);
37 }
38 
39 const RSA_METHOD *RSA_get_method(const RSA *rsa)
40 {
41     return rsa->meth;
42 }
43 
44 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45 {
46     /*
47      * NB: The caller is specifically setting a method, so it's not up to us
48      * to deal with which ENGINE it comes from.
49      */
50     const RSA_METHOD *mtmp;
51     mtmp = rsa->meth;
52     if (mtmp->finish)
53         mtmp->finish(rsa);
54 #ifndef OPENSSL_NO_ENGINE
55     ENGINE_finish(rsa->engine);
56     rsa->engine = NULL;
57 #endif
58     rsa->meth = meth;
59     if (meth->init)
60         meth->init(rsa);
61     return 1;
62 }
63 
64 RSA *RSA_new_method(ENGINE *engine)
65 {
66     return rsa_new_intern(engine, NULL);
67 }
68 #endif
69 
70 RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71 {
72     return rsa_new_intern(NULL, libctx);
73 }
74 
75 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76 {
77     RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78 
79     if (ret == NULL) {
80         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
81         return NULL;
82     }
83 
84     ret->references = 1;
85     ret->lock = CRYPTO_THREAD_lock_new();
86     if (ret->lock == NULL) {
87         ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
88         OPENSSL_free(ret);
89         return NULL;
90     }
91 
92     ret->libctx = libctx;
93     ret->meth = RSA_get_default_method();
94 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
95     ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
96     if (engine) {
97         if (!ENGINE_init(engine)) {
98             ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
99             goto err;
100         }
101         ret->engine = engine;
102     } else {
103         ret->engine = ENGINE_get_default_RSA();
104     }
105     if (ret->engine) {
106         ret->meth = ENGINE_get_RSA(ret->engine);
107         if (ret->meth == NULL) {
108             ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
109             goto err;
110         }
111     }
112 #endif
113 
114     ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
115 #ifndef FIPS_MODULE
116     if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
117         goto err;
118     }
119 #endif
120 
121     if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
122         ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
123         goto err;
124     }
125 
126     return ret;
127 
128  err:
129     RSA_free(ret);
130     return NULL;
131 }
132 
133 void RSA_free(RSA *r)
134 {
135     int i;
136 
137     if (r == NULL)
138         return;
139 
140     CRYPTO_DOWN_REF(&r->references, &i, r->lock);
141     REF_PRINT_COUNT("RSA", r);
142     if (i > 0)
143         return;
144     REF_ASSERT_ISNT(i < 0);
145 
146     if (r->meth != NULL && r->meth->finish != NULL)
147         r->meth->finish(r);
148 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
149     ENGINE_finish(r->engine);
150 #endif
151 
152 #ifndef FIPS_MODULE
153     CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
154 #endif
155 
156     CRYPTO_THREAD_lock_free(r->lock);
157 
158     BN_free(r->n);
159     BN_free(r->e);
160     BN_clear_free(r->d);
161     BN_clear_free(r->p);
162     BN_clear_free(r->q);
163     BN_clear_free(r->dmp1);
164     BN_clear_free(r->dmq1);
165     BN_clear_free(r->iqmp);
166 
167 #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
168     ossl_rsa_acvp_test_free(r->acvp_test);
169 #endif
170 
171 #ifndef FIPS_MODULE
172     RSA_PSS_PARAMS_free(r->pss);
173     sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
174 #endif
175     BN_BLINDING_free(r->blinding);
176     BN_BLINDING_free(r->mt_blinding);
177     OPENSSL_free(r);
178 }
179 
180 int RSA_up_ref(RSA *r)
181 {
182     int i;
183 
184     if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
185         return 0;
186 
187     REF_PRINT_COUNT("RSA", r);
188     REF_ASSERT_ISNT(i < 2);
189     return i > 1 ? 1 : 0;
190 }
191 
192 OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
193 {
194     return r->libctx;
195 }
196 
197 void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
198 {
199     r->libctx = libctx;
200 }
201 
202 #ifndef FIPS_MODULE
203 int RSA_set_ex_data(RSA *r, int idx, void *arg)
204 {
205     return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
206 }
207 
208 void *RSA_get_ex_data(const RSA *r, int idx)
209 {
210     return CRYPTO_get_ex_data(&r->ex_data, idx);
211 }
212 #endif
213 
214 /*
215  * Define a scaling constant for our fixed point arithmetic.
216  * This value must be a power of two because the base two logarithm code
217  * makes this assumption.  The exponent must also be a multiple of three so
218  * that the scale factor has an exact cube root.  Finally, the scale factor
219  * should not be so large that a multiplication of two scaled numbers
220  * overflows a 64 bit unsigned integer.
221  */
222 static const unsigned int scale = 1 << 18;
223 static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
224 
225 /* Define some constants, none exceed 32 bits */
226 static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
227 static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
228 static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
229 static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
230 
231 /*
232  * Multiply two scaled integers together and rescale the result.
233  */
234 static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
235 {
236     return a * b / scale;
237 }
238 
239 /*
240  * Calculate the cube root of a 64 bit scaled integer.
241  * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
242  * integer, this is not guaranteed after scaling, so this function has a
243  * 64 bit return.  This uses the shifting nth root algorithm with some
244  * algebraic simplifications.
245  */
246 static uint64_t icbrt64(uint64_t x)
247 {
248     uint64_t r = 0;
249     uint64_t b;
250     int s;
251 
252     for (s = 63; s >= 0; s -= 3) {
253         r <<= 1;
254         b = 3 * r * (r + 1) + 1;
255         if ((x >> s) >= b) {
256             x -= b << s;
257             r++;
258         }
259     }
260     return r * cbrt_scale;
261 }
262 
263 /*
264  * Calculate the natural logarithm of a 64 bit scaled integer.
265  * This is done by calculating a base two logarithm and scaling.
266  * The maximum logarithm (base 2) is 64 and this reduces base e, so
267  * a 32 bit result should not overflow.  The argument passed must be
268  * greater than unity so we don't need to handle negative results.
269  */
270 static uint32_t ilog_e(uint64_t v)
271 {
272     uint32_t i, r = 0;
273 
274     /*
275      * Scale down the value into the range 1 .. 2.
276      *
277      * If fractional numbers need to be processed, another loop needs
278      * to go here that checks v < scale and if so multiplies it by 2 and
279      * reduces r by scale.  This also means making r signed.
280      */
281     while (v >= 2 * scale) {
282         v >>= 1;
283         r += scale;
284     }
285     for (i = scale / 2; i != 0; i /= 2) {
286         v = mul2(v, v);
287         if (v >= 2 * scale) {
288             v >>= 1;
289             r += i;
290         }
291     }
292     r = (r * (uint64_t)scale) / log_e;
293     return r;
294 }
295 
296 /*
297  * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
298  * Modulus Lengths.
299  *
300  * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
301  * for FFC safe prime groups for modp and ffdhe.
302  * After Table 25 and Table 26 it refers to
303  * "The maximum security strength estimates were calculated using the formula in
304  * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
305  * bits".
306  *
307  * The formula is:
308  *
309  * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
310  *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
311  * The two cube roots are merged together here.
312  */
313 uint16_t ossl_ifc_ffc_compute_security_bits(int n)
314 {
315     uint64_t x;
316     uint32_t lx;
317     uint16_t y, cap;
318 
319     /*
320      * Look for common values as listed in standards.
321      * These values are not exactly equal to the results from the formulae in
322      * the standards but are defined to be canonical.
323      */
324     switch (n) {
325     case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
326         return 112;
327     case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
328         return 128;
329     case 4096:      /* SP 800-56B rev 2 Appendix D */
330         return 152;
331     case 6144:      /* SP 800-56B rev 2 Appendix D */
332         return 176;
333     case 7680:      /* FIPS 140-2 IG 7.5 */
334         return 192;
335     case 8192:      /* SP 800-56B rev 2 Appendix D */
336         return 200;
337     case 15360:     /* FIPS 140-2 IG 7.5 */
338         return 256;
339     }
340 
341     /*
342      * The first incorrect result (i.e. not accurate or off by one low) occurs
343      * for n = 699668.  The true value here is 1200.  Instead of using this n
344      * as the check threshold, the smallest n such that the correct result is
345      * 1200 is used instead.
346      */
347     if (n >= 687737)
348         return 1200;
349     if (n < 8)
350         return 0;
351 
352     /*
353      * To ensure that the output is non-decreasing with respect to n,
354      * a cap needs to be applied to the two values where the function over
355      * estimates the strength (according to the above fast path).
356      */
357     if (n <= 7680)
358         cap = 192;
359     else if (n <= 15360)
360         cap = 256;
361     else
362         cap = 1200;
363 
364     x = n * (uint64_t)log_2;
365     lx = ilog_e(x);
366     y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
367                    / log_2);
368     y = (y + 4) & ~7;
369     if (y > cap)
370         y = cap;
371     return y;
372 }
373 
374 
375 
376 int RSA_security_bits(const RSA *rsa)
377 {
378     int bits = BN_num_bits(rsa->n);
379 
380 #ifndef FIPS_MODULE
381     if (rsa->version == RSA_ASN1_VERSION_MULTI) {
382         /* This ought to mean that we have private key at hand. */
383         int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
384 
385         if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
386             return 0;
387     }
388 #endif
389     return ossl_ifc_ffc_compute_security_bits(bits);
390 }
391 
392 int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
393 {
394     /* If the fields n and e in r are NULL, the corresponding input
395      * parameters MUST be non-NULL for n and e.  d may be
396      * left NULL (in case only the public key is used).
397      */
398     if ((r->n == NULL && n == NULL)
399         || (r->e == NULL && e == NULL))
400         return 0;
401 
402     if (n != NULL) {
403         BN_free(r->n);
404         r->n = n;
405     }
406     if (e != NULL) {
407         BN_free(r->e);
408         r->e = e;
409     }
410     if (d != NULL) {
411         BN_clear_free(r->d);
412         r->d = d;
413         BN_set_flags(r->d, BN_FLG_CONSTTIME);
414     }
415     r->dirty_cnt++;
416 
417     return 1;
418 }
419 
420 int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
421 {
422     /* If the fields p and q in r are NULL, the corresponding input
423      * parameters MUST be non-NULL.
424      */
425     if ((r->p == NULL && p == NULL)
426         || (r->q == NULL && q == NULL))
427         return 0;
428 
429     if (p != NULL) {
430         BN_clear_free(r->p);
431         r->p = p;
432         BN_set_flags(r->p, BN_FLG_CONSTTIME);
433     }
434     if (q != NULL) {
435         BN_clear_free(r->q);
436         r->q = q;
437         BN_set_flags(r->q, BN_FLG_CONSTTIME);
438     }
439     r->dirty_cnt++;
440 
441     return 1;
442 }
443 
444 int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
445 {
446     /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
447      * parameters MUST be non-NULL.
448      */
449     if ((r->dmp1 == NULL && dmp1 == NULL)
450         || (r->dmq1 == NULL && dmq1 == NULL)
451         || (r->iqmp == NULL && iqmp == NULL))
452         return 0;
453 
454     if (dmp1 != NULL) {
455         BN_clear_free(r->dmp1);
456         r->dmp1 = dmp1;
457         BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
458     }
459     if (dmq1 != NULL) {
460         BN_clear_free(r->dmq1);
461         r->dmq1 = dmq1;
462         BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
463     }
464     if (iqmp != NULL) {
465         BN_clear_free(r->iqmp);
466         r->iqmp = iqmp;
467         BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
468     }
469     r->dirty_cnt++;
470 
471     return 1;
472 }
473 
474 #ifndef FIPS_MODULE
475 /*
476  * Is it better to export RSA_PRIME_INFO structure
477  * and related functions to let user pass a triplet?
478  */
479 int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
480                                 BIGNUM *coeffs[], int pnum)
481 {
482     STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
483     RSA_PRIME_INFO *pinfo;
484     int i;
485 
486     if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
487         return 0;
488 
489     prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
490     if (prime_infos == NULL)
491         return 0;
492 
493     if (r->prime_infos != NULL)
494         old = r->prime_infos;
495 
496     for (i = 0; i < pnum; i++) {
497         pinfo = ossl_rsa_multip_info_new();
498         if (pinfo == NULL)
499             goto err;
500         if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
501             BN_clear_free(pinfo->r);
502             BN_clear_free(pinfo->d);
503             BN_clear_free(pinfo->t);
504             pinfo->r = primes[i];
505             pinfo->d = exps[i];
506             pinfo->t = coeffs[i];
507             BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
508             BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
509             BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
510         } else {
511             ossl_rsa_multip_info_free(pinfo);
512             goto err;
513         }
514         (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
515     }
516 
517     r->prime_infos = prime_infos;
518 
519     if (!ossl_rsa_multip_calc_product(r)) {
520         r->prime_infos = old;
521         goto err;
522     }
523 
524     if (old != NULL) {
525         /*
526          * This is hard to deal with, since the old infos could
527          * also be set by this function and r, d, t should not
528          * be freed in that case. So currently, stay consistent
529          * with other *set0* functions: just free it...
530          */
531         sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
532     }
533 
534     r->version = RSA_ASN1_VERSION_MULTI;
535     r->dirty_cnt++;
536 
537     return 1;
538  err:
539     /* r, d, t should not be freed */
540     sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
541     return 0;
542 }
543 #endif
544 
545 void RSA_get0_key(const RSA *r,
546                   const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
547 {
548     if (n != NULL)
549         *n = r->n;
550     if (e != NULL)
551         *e = r->e;
552     if (d != NULL)
553         *d = r->d;
554 }
555 
556 void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
557 {
558     if (p != NULL)
559         *p = r->p;
560     if (q != NULL)
561         *q = r->q;
562 }
563 
564 #ifndef FIPS_MODULE
565 int RSA_get_multi_prime_extra_count(const RSA *r)
566 {
567     int pnum;
568 
569     pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
570     if (pnum <= 0)
571         pnum = 0;
572     return pnum;
573 }
574 
575 int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
576 {
577     int pnum, i;
578     RSA_PRIME_INFO *pinfo;
579 
580     if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
581         return 0;
582 
583     /*
584      * return other primes
585      * it's caller's responsibility to allocate oth_primes[pnum]
586      */
587     for (i = 0; i < pnum; i++) {
588         pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
589         primes[i] = pinfo->r;
590     }
591 
592     return 1;
593 }
594 #endif
595 
596 void RSA_get0_crt_params(const RSA *r,
597                          const BIGNUM **dmp1, const BIGNUM **dmq1,
598                          const BIGNUM **iqmp)
599 {
600     if (dmp1 != NULL)
601         *dmp1 = r->dmp1;
602     if (dmq1 != NULL)
603         *dmq1 = r->dmq1;
604     if (iqmp != NULL)
605         *iqmp = r->iqmp;
606 }
607 
608 #ifndef FIPS_MODULE
609 int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
610                                     const BIGNUM *coeffs[])
611 {
612     int pnum;
613 
614     if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
615         return 0;
616 
617     /* return other primes */
618     if (exps != NULL || coeffs != NULL) {
619         RSA_PRIME_INFO *pinfo;
620         int i;
621 
622         /* it's the user's job to guarantee the buffer length */
623         for (i = 0; i < pnum; i++) {
624             pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
625             if (exps != NULL)
626                 exps[i] = pinfo->d;
627             if (coeffs != NULL)
628                 coeffs[i] = pinfo->t;
629         }
630     }
631 
632     return 1;
633 }
634 #endif
635 
636 const BIGNUM *RSA_get0_n(const RSA *r)
637 {
638     return r->n;
639 }
640 
641 const BIGNUM *RSA_get0_e(const RSA *r)
642 {
643     return r->e;
644 }
645 
646 const BIGNUM *RSA_get0_d(const RSA *r)
647 {
648     return r->d;
649 }
650 
651 const BIGNUM *RSA_get0_p(const RSA *r)
652 {
653     return r->p;
654 }
655 
656 const BIGNUM *RSA_get0_q(const RSA *r)
657 {
658     return r->q;
659 }
660 
661 const BIGNUM *RSA_get0_dmp1(const RSA *r)
662 {
663     return r->dmp1;
664 }
665 
666 const BIGNUM *RSA_get0_dmq1(const RSA *r)
667 {
668     return r->dmq1;
669 }
670 
671 const BIGNUM *RSA_get0_iqmp(const RSA *r)
672 {
673     return r->iqmp;
674 }
675 
676 const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
677 {
678 #ifdef FIPS_MODULE
679     return NULL;
680 #else
681     return r->pss;
682 #endif
683 }
684 
685 /* Internal */
686 int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
687 {
688 #ifdef FIPS_MODULE
689     return 0;
690 #else
691     RSA_PSS_PARAMS_free(r->pss);
692     r->pss = pss;
693     return 1;
694 #endif
695 }
696 
697 /* Internal */
698 RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
699 {
700     return &r->pss_params;
701 }
702 
703 void RSA_clear_flags(RSA *r, int flags)
704 {
705     r->flags &= ~flags;
706 }
707 
708 int RSA_test_flags(const RSA *r, int flags)
709 {
710     return r->flags & flags;
711 }
712 
713 void RSA_set_flags(RSA *r, int flags)
714 {
715     r->flags |= flags;
716 }
717 
718 int RSA_get_version(RSA *r)
719 {
720     /* { two-prime(0), multi(1) } */
721     return r->version;
722 }
723 
724 #ifndef FIPS_MODULE
725 ENGINE *RSA_get0_engine(const RSA *r)
726 {
727     return r->engine;
728 }
729 
730 int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
731 {
732     /* If key type not RSA or RSA-PSS return error */
733     if (ctx != NULL && ctx->pmeth != NULL
734         && ctx->pmeth->pkey_id != EVP_PKEY_RSA
735         && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
736         return -1;
737      return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
738 }
739 #endif
740 
741 DEFINE_STACK_OF(BIGNUM)
742 
743 int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes,
744                              const STACK_OF(BIGNUM) *exps,
745                              const STACK_OF(BIGNUM) *coeffs)
746 {
747 #ifndef FIPS_MODULE
748     STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
749 #endif
750     int pnum;
751 
752     if (primes == NULL || exps == NULL || coeffs == NULL)
753         return 0;
754 
755     pnum = sk_BIGNUM_num(primes);
756     if (pnum < 2)
757         return 0;
758 
759     if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
760                           sk_BIGNUM_value(primes, 1)))
761         return 0;
762 
763     if (pnum == sk_BIGNUM_num(exps)
764         && pnum == sk_BIGNUM_num(coeffs) + 1) {
765 
766         if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
767                                  sk_BIGNUM_value(exps, 1),
768                                  sk_BIGNUM_value(coeffs, 0)))
769         return 0;
770     }
771 
772 #ifndef FIPS_MODULE
773     old_infos = r->prime_infos;
774 #endif
775 
776     if (pnum > 2) {
777 #ifndef FIPS_MODULE
778         int i;
779 
780         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
781         if (prime_infos == NULL)
782             return 0;
783 
784         for (i = 2; i < pnum; i++) {
785             BIGNUM *prime = sk_BIGNUM_value(primes, i);
786             BIGNUM *exp = sk_BIGNUM_value(exps, i);
787             BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1);
788             RSA_PRIME_INFO *pinfo = NULL;
789 
790             if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
791                 goto err;
792 
793             /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
794             if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) {
795                 ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
796                 goto err;
797             }
798 
799             pinfo->r = prime;
800             pinfo->d = exp;
801             pinfo->t = coeff;
802             BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
803             BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
804             BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
805             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
806         }
807 
808         r->prime_infos = prime_infos;
809 
810         if (!ossl_rsa_multip_calc_product(r)) {
811             r->prime_infos = old_infos;
812             goto err;
813         }
814 #else
815         return 0;
816 #endif
817     }
818 
819 #ifndef FIPS_MODULE
820     if (old_infos != NULL) {
821         /*
822          * This is hard to deal with, since the old infos could
823          * also be set by this function and r, d, t should not
824          * be freed in that case. So currently, stay consistent
825          * with other *set0* functions: just free it...
826          */
827         sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
828     }
829 #endif
830 
831     r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
832     r->dirty_cnt++;
833 
834     return 1;
835 #ifndef FIPS_MODULE
836  err:
837     /* r, d, t should not be freed */
838     sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
839     return 0;
840 #endif
841 }
842 
843 DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
844 
845 int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
846                              STACK_OF(BIGNUM_const) *exps,
847                              STACK_OF(BIGNUM_const) *coeffs)
848 {
849 #ifndef FIPS_MODULE
850     RSA_PRIME_INFO *pinfo;
851     int i, pnum;
852 #endif
853 
854     if (r == NULL)
855         return 0;
856 
857     /* If |p| is NULL, there are no CRT parameters */
858     if (RSA_get0_p(r) == NULL)
859         return 1;
860 
861     sk_BIGNUM_const_push(primes, RSA_get0_p(r));
862     sk_BIGNUM_const_push(primes, RSA_get0_q(r));
863     sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
864     sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
865     sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
866 
867 #ifndef FIPS_MODULE
868     pnum = RSA_get_multi_prime_extra_count(r);
869     for (i = 0; i < pnum; i++) {
870         pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
871         sk_BIGNUM_const_push(primes, pinfo->r);
872         sk_BIGNUM_const_push(exps, pinfo->d);
873         sk_BIGNUM_const_push(coeffs, pinfo->t);
874     }
875 #endif
876 
877     return 1;
878 }
879 
880 #ifndef FIPS_MODULE
881 /* Helpers to set or get diverse hash algorithm names */
882 static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
883                                /* For checks */
884                                int keytype, int optype,
885                                /* For EVP_PKEY_CTX_set_params() */
886                                const char *mdkey, const char *mdname,
887                                const char *propkey, const char *mdprops)
888 {
889     OSSL_PARAM params[3], *p = params;
890 
891     if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
892         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
893         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
894         return -2;
895     }
896 
897     /* If key type not RSA return error */
898     switch (keytype) {
899     case -1:
900         if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
901             && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
902             return -1;
903         break;
904     default:
905         if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
906             return -1;
907         break;
908     }
909 
910     /* Cast away the const. This is read only so should be safe */
911     *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
912     if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
913         /* Cast away the const. This is read only so should be safe */
914         *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
915     }
916     *p++ = OSSL_PARAM_construct_end();
917 
918     return evp_pkey_ctx_set_params_strict(ctx, params);
919 }
920 
921 /* Helpers to set or get diverse hash algorithm names */
922 static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
923                                /* For checks */
924                                int keytype, int optype,
925                                /* For EVP_PKEY_CTX_get_params() */
926                                const char *mdkey,
927                                char *mdname, size_t mdnamesize)
928 {
929     OSSL_PARAM params[2], *p = params;
930 
931     if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
932         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
933         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
934         return -2;
935     }
936 
937     /* If key type not RSA return error */
938     switch (keytype) {
939     case -1:
940         if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
941             && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
942             return -1;
943         break;
944     default:
945         if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
946             return -1;
947         break;
948     }
949 
950     /* Cast away the const. This is read only so should be safe */
951     *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
952     *p++ = OSSL_PARAM_construct_end();
953 
954     return evp_pkey_ctx_get_params_strict(ctx, params);
955 }
956 
957 /*
958  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
959  * simply because that's easier.
960  */
961 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
962 {
963     return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
964                              pad_mode, NULL);
965 }
966 
967 /*
968  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
969  * simply because that's easier.
970  */
971 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
972 {
973     return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
974                              0, pad_mode);
975 }
976 
977 /*
978  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
979  * simply because that's easier.
980  */
981 int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
982 {
983     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
984                              EVP_PKEY_CTRL_MD, 0, (void *)(md));
985 }
986 
987 int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
988                                             const char *mdname,
989                                             const char *mdprops)
990 {
991     return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
992                                OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
993                                OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
994 }
995 
996 /*
997  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
998  * simply because that's easier.
999  */
1000 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1001 {
1002     /* If key type not RSA return error */
1003     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1004         return -1;
1005 
1006     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1007                              EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1008 }
1009 
1010 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1011                                       const char *mdprops)
1012 {
1013     return
1014         int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1015                             OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1016                             OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1017 }
1018 
1019 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1020                                       size_t namesize)
1021 {
1022     return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1023                                OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1024                                name, namesize);
1025 }
1026 
1027 /*
1028  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1029  * simply because that's easier.
1030  */
1031 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1032 {
1033     /* If key type not RSA return error */
1034     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1035         return -1;
1036 
1037     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1038                              EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1039 }
1040 
1041 /*
1042  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1043  * simply because that's easier.
1044  */
1045 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1046 {
1047     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1048                              EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1049 }
1050 
1051 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1052                                       const char *mdprops)
1053 {
1054     return int_set_rsa_md_name(ctx, -1,
1055                                EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1056                                OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1057                                OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1058 }
1059 
1060 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1061                                       size_t namesize)
1062 {
1063     return int_get_rsa_md_name(ctx, -1,
1064                                EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1065                                OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1066 }
1067 
1068 /*
1069  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1070  * simply because that's easier.
1071  */
1072 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1073 {
1074     return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1075                              EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1076 }
1077 
1078 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1079                                                  const char *mdname)
1080 {
1081     return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1082                                OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1083                                NULL, NULL);
1084 }
1085 
1086 /*
1087  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1088  * simply because that's easier.
1089  */
1090 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1091 {
1092     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1093                              EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1094 }
1095 
1096 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1097 {
1098     OSSL_PARAM rsa_params[2], *p = rsa_params;
1099     const char *empty = "";
1100     /*
1101      * Needed as we swap label with empty if it is NULL, and label is
1102      * freed at the end of this function.
1103      */
1104     void *plabel = label;
1105     int ret;
1106 
1107     if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1108         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1109         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1110         return -2;
1111     }
1112 
1113     /* If key type not RSA return error */
1114     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1115         return -1;
1116 
1117     /* Accept NULL for backward compatibility */
1118     if (label == NULL && llen == 0)
1119         plabel = (void *)empty;
1120 
1121     /* Cast away the const. This is read only so should be safe */
1122     *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1123                                              (void *)plabel, (size_t)llen);
1124     *p++ = OSSL_PARAM_construct_end();
1125 
1126     ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1127     if (ret <= 0)
1128         return ret;
1129 
1130     /* Ownership is supposed to be transfered to the callee. */
1131     OPENSSL_free(label);
1132     return 1;
1133 }
1134 
1135 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1136 {
1137     OSSL_PARAM rsa_params[2], *p = rsa_params;
1138     size_t labellen;
1139 
1140     if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1141         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1142         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1143         return -2;
1144     }
1145 
1146     /* If key type not RSA return error */
1147     if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1148         return -1;
1149 
1150     *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1151                                           (void **)label, 0);
1152     *p++ = OSSL_PARAM_construct_end();
1153 
1154     if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1155         return -1;
1156 
1157     labellen = rsa_params[0].return_size;
1158     if (labellen > INT_MAX)
1159         return -1;
1160 
1161     return (int)labellen;
1162 }
1163 
1164 /*
1165  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1166  * simply because that's easier.
1167  */
1168 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1169 {
1170     /*
1171      * For some reason, the optype was set to this:
1172      *
1173      * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1174      *
1175      * However, we do use RSA-PSS with the whole gamut of diverse signature
1176      * and verification operations, so the optype gets upgraded to this:
1177      *
1178      * EVP_PKEY_OP_TYPE_SIG
1179      */
1180     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1181                              EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1182 }
1183 
1184 /*
1185  * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1186  * simply because that's easier.
1187  */
1188 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1189 {
1190     /*
1191      * Because of circumstances, the optype is updated from:
1192      *
1193      * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1194      *
1195      * to:
1196      *
1197      * EVP_PKEY_OP_TYPE_SIG
1198      */
1199     return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1200                              EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1201 }
1202 
1203 int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1204 {
1205     OSSL_PARAM pad_params[2], *p = pad_params;
1206 
1207     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1208         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1209         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1210         return -2;
1211     }
1212 
1213     if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1214         return -1;
1215 
1216     *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1217                                     &saltlen);
1218     *p++ = OSSL_PARAM_construct_end();
1219 
1220     return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1221 }
1222 
1223 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1224 {
1225     OSSL_PARAM params[2], *p = params;
1226     size_t bits2 = bits;
1227 
1228     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1229         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1230         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1231         return -2;
1232     }
1233 
1234     /* If key type not RSA return error */
1235     if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1236         && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1237         return -1;
1238 
1239     *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1240     *p++ = OSSL_PARAM_construct_end();
1241 
1242     return evp_pkey_ctx_set_params_strict(ctx, params);
1243 }
1244 
1245 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1246 {
1247     int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1248                                 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1249 
1250     /*
1251      * Satisfy memory semantics for pre-3.0 callers of
1252      * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1253      * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1254      */
1255     if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1256         BN_free(ctx->rsa_pubexp);
1257         ctx->rsa_pubexp = pubexp;
1258     }
1259 
1260     return ret;
1261 }
1262 
1263 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1264 {
1265     int ret = 0;
1266 
1267     /*
1268      * When we're dealing with a provider, there's no need to duplicate
1269      * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1270      */
1271     if (evp_pkey_ctx_is_legacy(ctx)) {
1272         pubexp = BN_dup(pubexp);
1273         if (pubexp == NULL)
1274             return 0;
1275     }
1276     ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1277                             EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1278     if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1279         BN_free(pubexp);
1280     return ret;
1281 }
1282 
1283 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1284 {
1285     OSSL_PARAM params[2], *p = params;
1286     size_t primes2 = primes;
1287 
1288     if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1289         ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1290         /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1291         return -2;
1292     }
1293 
1294     /* If key type not RSA return error */
1295     if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1296         && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1297         return -1;
1298 
1299     *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1300     *p++ = OSSL_PARAM_construct_end();
1301 
1302     return evp_pkey_ctx_set_params_strict(ctx, params);
1303 }
1304 #endif
1305