1#! /usr/bin/env perl
2# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18# functions were re-implemented to address P4 performance issue [see
19# commentary below], and in 2006 the rest was rewritten in order to
20# gain freedom to liberate licensing terms.
21
22# January, September 2004.
23#
24# It was noted that Intel IA-32 C compiler generates code which
25# performs ~30% *faster* on P4 CPU than original *hand-coded*
26# SHA1 assembler implementation. To address this problem (and
27# prove that humans are still better than machines:-), the
28# original code was overhauled, which resulted in following
29# performance changes:
30#
31#		compared with original	compared with Intel cc
32#		assembler impl.		generated code
33# Pentium	-16%			+48%
34# PIII/AMD	+8%			+16%
35# P4		+85%(!)			+45%
36#
37# As you can see Pentium came out as looser:-( Yet I reckoned that
38# improvement on P4 outweighs the loss and incorporate this
39# re-tuned code to 0.9.7 and later.
40# ----------------------------------------------------------------
41
42# August 2009.
43#
44# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
45# '(c&d) + (b&(c^d))', which allows to accumulate partial results
46# and lighten "pressure" on scratch registers. This resulted in
47# >12% performance improvement on contemporary AMD cores (with no
48# degradation on other CPUs:-). Also, the code was revised to maximize
49# "distance" between instructions producing input to 'lea' instruction
50# and the 'lea' instruction itself, which is essential for Intel Atom
51# core and resulted in ~15% improvement.
52
53# October 2010.
54#
55# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
56# is to offload message schedule denoted by Wt in NIST specification,
57# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
58# and in SSE2 context was first explored by Dean Gaudet in 2004, see
59# http://arctic.org/~dean/crypto/sha1.html. Since then several things
60# have changed that made it interesting again:
61#
62# a) XMM units became faster and wider;
63# b) instruction set became more versatile;
64# c) an important observation was made by Max Locktykhin, which made
65#    it possible to reduce amount of instructions required to perform
66#    the operation in question, for further details see
67#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
68
69# April 2011.
70#
71# Add AVX code path, probably most controversial... The thing is that
72# switch to AVX alone improves performance by as little as 4% in
73# comparison to SSSE3 code path. But below result doesn't look like
74# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
75# pair of µ-ops, and it's the additional µ-ops, two per round, that
76# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
77# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
78# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
79# cycles per processed byte. But 'sh[rl]d' is not something that used
80# to be fast, nor does it appear to be fast in upcoming Bulldozer
81# [according to its optimization manual]. Which is why AVX code path
82# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
83# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
84# makes no sense to keep the AVX code path. If somebody feels that
85# strongly, it's probably more appropriate to discuss possibility of
86# using vector rotate XOP on AMD...
87
88# March 2014.
89#
90# Add support for Intel SHA Extensions.
91
92######################################################################
93# Current performance is summarized in following table. Numbers are
94# CPU clock cycles spent to process single byte (less is better).
95#
96#		x86		SSSE3		AVX
97# Pentium	15.7		-
98# PIII		11.5		-
99# P4		10.6		-
100# AMD K8	7.1		-
101# Core2		7.3		6.0/+22%	-
102# Westmere	7.3		5.5/+33%	-
103# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
104# Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
105# Haswell	6.5		4.3/+51%	4.1(**)/+58%
106# Skylake	6.4		4.1/+55%	4.1(**)/+55%
107# Bulldozer	11.6		6.0/+92%
108# VIA Nano	10.6		7.5/+41%
109# Atom		12.5		9.3(*)/+35%
110# Silvermont	14.5		9.9(*)/+46%
111# Goldmont	8.8		6.7/+30%	1.7(***)/+415%
112#
113# (*)	Loop is 1056 instructions long and expected result is ~8.25.
114#	The discrepancy is because of front-end limitations, so
115#	called MS-ROM penalties, and on Silvermont even rotate's
116#	limited parallelism.
117#
118# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
119#
120# (***)	SHAEXT result
121
122$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
123push(@INC,"${dir}","${dir}../../perlasm");
124require "x86asm.pl";
125
126$output=pop;
127open STDOUT,">$output";
128
129&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
130
131$xmm=$ymm=0;
132for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
133
134$ymm=1 if ($xmm &&
135		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
136			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
137		$1>=2.19);	# first version supporting AVX
138
139$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
140		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
141		$1>=2.03);	# first version supporting AVX
142
143$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
144		`ml 2>&1` =~ /Version ([0-9]+)\./ &&
145		$1>=10);	# first version supporting AVX
146
147$ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|based on LLVM) ([0-9]+\.[0-9]+)/ &&
148		$2>=3.0);	# first version supporting AVX
149
150$shaext=$xmm;	### set to zero if compiling for 1.0.1
151
152&external_label("OPENSSL_ia32cap_P") if ($xmm);
153
154
155$A="eax";
156$B="ebx";
157$C="ecx";
158$D="edx";
159$E="edi";
160$T="esi";
161$tmp1="ebp";
162
163@V=($A,$B,$C,$D,$E,$T);
164
165$alt=0;	# 1 denotes alternative IALU implementation, which performs
166	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
167	# Sandy Bridge...
168
169sub BODY_00_15
170	{
171	local($n,$a,$b,$c,$d,$e,$f)=@_;
172
173	&comment("00_15 $n");
174
175	&mov($f,$c);			# f to hold F_00_19(b,c,d)
176	 if ($n==0)  { &mov($tmp1,$a); }
177	 else        { &mov($a,$tmp1); }
178	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
179	 &xor($f,$d);
180	&add($tmp1,$e);			# tmp1+=e;
181	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
182	 				# with xi, also note that e becomes
183					# f in next round...
184	&and($f,$b);
185	&rotr($b,2);			# b=ROTATE(b,30)
186	 &xor($f,$d);			# f holds F_00_19(b,c,d)
187	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
188
189	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
190		      &add($f,$tmp1); }	# f+=tmp1
191	else        { &add($tmp1,$f); }	# f becomes a in next round
192	&mov($tmp1,$a)			if ($alt && $n==15);
193	}
194
195sub BODY_16_19
196	{
197	local($n,$a,$b,$c,$d,$e,$f)=@_;
198
199	&comment("16_19 $n");
200
201if ($alt) {
202	&xor($c,$d);
203	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
204	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
205	 &xor($f,&swtmp(($n+8)%16));
206	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
207	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
208	&rotl($f,1);			# f=ROTATE(f,1)
209	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
210	&xor($c,$d);			# restore $c
211	 &mov($tmp1,$a);		# b in next round
212	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
213	 &mov(&swtmp($n%16),$f);	# xi=f
214	&rotl($a,5);			# ROTATE(a,5)
215	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
216	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
217	 &add($f,$a);			# f+=ROTATE(a,5)
218} else {
219	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
220	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
221	&xor($tmp1,$d);
222	 &xor($f,&swtmp(($n+8)%16));
223	&and($tmp1,$b);
224	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
225	&rotl($f,1);			# f=ROTATE(f,1)
226	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
227	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
228	 &mov($tmp1,$a);
229	&rotr($b,2);			# b=ROTATE(b,30)
230	 &mov(&swtmp($n%16),$f);	# xi=f
231	&rotl($tmp1,5);			# ROTATE(a,5)
232	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
233	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
234	 &add($f,$tmp1);		# f+=ROTATE(a,5)
235}
236	}
237
238sub BODY_20_39
239	{
240	local($n,$a,$b,$c,$d,$e,$f)=@_;
241	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
242
243	&comment("20_39 $n");
244
245if ($alt) {
246	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
247	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
248	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
249	 &xor($f,&swtmp(($n+8)%16));
250	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
251	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
252	&rotl($f,1);			# f=ROTATE(f,1)
253	 &mov($tmp1,$a);		# b in next round
254	&rotr($b,7);			# b=ROTATE(b,30)
255	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
256	&rotl($a,5);			# ROTATE(a,5)
257	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
258	&and($tmp1,$b)			if($n==39);
259	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
260	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
261	 &add($f,$a);			# f+=ROTATE(a,5)
262	&rotr($a,5)			if ($n==79);
263} else {
264	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
265	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
266	&xor($tmp1,$c);
267	 &xor($f,&swtmp(($n+8)%16));
268	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
269	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
270	&rotl($f,1);			# f=ROTATE(f,1)
271	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
272	&rotr($b,2);			# b=ROTATE(b,30)
273	 &mov($tmp1,$a);
274	&rotl($tmp1,5);			# ROTATE(a,5)
275	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
276	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
277	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
278	&add($f,$tmp1);			# f+=ROTATE(a,5)
279}
280	}
281
282sub BODY_40_59
283	{
284	local($n,$a,$b,$c,$d,$e,$f)=@_;
285
286	&comment("40_59 $n");
287
288if ($alt) {
289	&add($e,$tmp1);			# e+=b&(c^d)
290	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
291	&mov($tmp1,$d);
292	 &xor($f,&swtmp(($n+8)%16));
293	&xor($c,$d);			# restore $c
294	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
295	&rotl($f,1);			# f=ROTATE(f,1)
296	 &and($tmp1,$c);
297	&rotr($b,7);			# b=ROTATE(b,30)
298	 &add($e,$tmp1);		# e+=c&d
299	&mov($tmp1,$a);			# b in next round
300	 &mov(&swtmp($n%16),$f);	# xi=f
301	&rotl($a,5);			# ROTATE(a,5)
302	 &xor($b,$c)			if ($n<59);
303	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
304	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
305	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
306	 &add($f,$a);			# f+=ROTATE(a,5)
307} else {
308	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
309	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
310	&xor($tmp1,$d);
311	 &xor($f,&swtmp(($n+8)%16));
312	&and($tmp1,$b);
313	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
314	&rotl($f,1);			# f=ROTATE(f,1)
315	 &add($tmp1,$e);		# b&(c^d)+=e
316	&rotr($b,2);			# b=ROTATE(b,30)
317	 &mov($e,$a);			# e becomes volatile
318	&rotl($e,5);			# ROTATE(a,5)
319	 &mov(&swtmp($n%16),$f);	# xi=f
320	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
321	 &mov($tmp1,$c);
322	&add($f,$e);			# f+=ROTATE(a,5)
323	 &and($tmp1,$d);
324	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
325	 &add($f,$tmp1);		# f+=c&d
326}
327	}
328
329&function_begin("sha1_block_data_order");
330if ($xmm) {
331  &static_label("shaext_shortcut")	if ($shaext);
332  &static_label("ssse3_shortcut");
333  &static_label("avx_shortcut")		if ($ymm);
334  &static_label("K_XX_XX");
335
336	&call	(&label("pic_point"));	# make it PIC!
337  &set_label("pic_point");
338	&blindpop($tmp1);
339	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
340	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
341
342	&mov	($A,&DWP(0,$T));
343	&mov	($D,&DWP(4,$T));
344	&test	($D,1<<9);		# check SSSE3 bit
345	&jz	(&label("x86"));
346	&mov	($C,&DWP(8,$T));
347	&test	($A,1<<24);		# check FXSR bit
348	&jz	(&label("x86"));
349	if ($shaext) {
350		&test	($C,1<<29);		# check SHA bit
351		&jnz	(&label("shaext_shortcut"));
352	}
353	if ($ymm) {
354		&and	($D,1<<28);		# mask AVX bit
355		&and	($A,1<<30);		# mask "Intel CPU" bit
356		&or	($A,$D);
357		&cmp	($A,1<<28|1<<30);
358		&je	(&label("avx_shortcut"));
359	}
360	&jmp	(&label("ssse3_shortcut"));
361  &set_label("x86",16);
362}
363	&mov($tmp1,&wparam(0));	# SHA_CTX *c
364	&mov($T,&wparam(1));	# const void *input
365	&mov($A,&wparam(2));	# size_t num
366	&stack_push(16+3);	# allocate X[16]
367	&shl($A,6);
368	&add($A,$T);
369	&mov(&wparam(2),$A);	# pointer beyond the end of input
370	&mov($E,&DWP(16,$tmp1));# pre-load E
371	&jmp(&label("loop"));
372
373&set_label("loop",16);
374
375	# copy input chunk to X, but reversing byte order!
376	for ($i=0; $i<16; $i+=4)
377		{
378		&mov($A,&DWP(4*($i+0),$T));
379		&mov($B,&DWP(4*($i+1),$T));
380		&mov($C,&DWP(4*($i+2),$T));
381		&mov($D,&DWP(4*($i+3),$T));
382		&bswap($A);
383		&bswap($B);
384		&bswap($C);
385		&bswap($D);
386		&mov(&swtmp($i+0),$A);
387		&mov(&swtmp($i+1),$B);
388		&mov(&swtmp($i+2),$C);
389		&mov(&swtmp($i+3),$D);
390		}
391	&mov(&wparam(1),$T);	# redundant in 1st spin
392
393	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
394	&mov($B,&DWP(4,$tmp1));
395	&mov($C,&DWP(8,$tmp1));
396	&mov($D,&DWP(12,$tmp1));
397	# E is pre-loaded
398
399	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
400	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
401	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
402	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
403	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
404
405	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
406
407	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
408	&mov($D,&wparam(1));	# D is last "T" and is discarded
409
410	&add($E,&DWP(0,$tmp1));	# E is last "A"...
411	&add($T,&DWP(4,$tmp1));
412	&add($A,&DWP(8,$tmp1));
413	&add($B,&DWP(12,$tmp1));
414	&add($C,&DWP(16,$tmp1));
415
416	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
417	 &add($D,64);		# advance input pointer
418	&mov(&DWP(4,$tmp1),$T);
419	 &cmp($D,&wparam(2));	# have we reached the end yet?
420	&mov(&DWP(8,$tmp1),$A);
421	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
422	&mov(&DWP(12,$tmp1),$B);
423	 &mov($T,$D);		# input pointer
424	&mov(&DWP(16,$tmp1),$C);
425	&jb(&label("loop"));
426
427	&stack_pop(16+3);
428&function_end("sha1_block_data_order");
429
430if ($xmm) {
431if ($shaext) {
432######################################################################
433# Intel SHA Extensions implementation of SHA1 update function.
434#
435my ($ctx,$inp,$num)=("edi","esi","ecx");
436my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
437my @MSG=map("xmm$_",(4..7));
438
439sub sha1rnds4 {
440 my ($dst,$src,$imm)=@_;
441    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
442    {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
443}
444sub sha1op38 {
445 my ($opcodelet,$dst,$src)=@_;
446    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
447    {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
448}
449sub sha1nexte	{ sha1op38(0xc8,@_); }
450sub sha1msg1	{ sha1op38(0xc9,@_); }
451sub sha1msg2	{ sha1op38(0xca,@_); }
452
453&function_begin("_sha1_block_data_order_shaext");
454	&call	(&label("pic_point"));	# make it PIC!
455	&set_label("pic_point");
456	&blindpop($tmp1);
457	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
458&set_label("shaext_shortcut");
459	&mov	($ctx,&wparam(0));
460	&mov	("ebx","esp");
461	&mov	($inp,&wparam(1));
462	&mov	($num,&wparam(2));
463	&sub	("esp",32);
464
465	&movdqu	($ABCD,&QWP(0,$ctx));
466	&movd	($E,&DWP(16,$ctx));
467	&and	("esp",-32);
468	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
469
470	&movdqu	(@MSG[0],&QWP(0,$inp));
471	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
472	&movdqu	(@MSG[1],&QWP(0x10,$inp));
473	&pshufd	($E,$E,0b00011011);		# flip word order
474	&movdqu	(@MSG[2],&QWP(0x20,$inp));
475	&pshufb	(@MSG[0],$BSWAP);
476	&movdqu	(@MSG[3],&QWP(0x30,$inp));
477	&pshufb	(@MSG[1],$BSWAP);
478	&pshufb	(@MSG[2],$BSWAP);
479	&pshufb	(@MSG[3],$BSWAP);
480	&jmp	(&label("loop_shaext"));
481
482&set_label("loop_shaext",16);
483	&dec		($num);
484	&lea		("eax",&DWP(0x40,$inp));
485	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
486	&paddd		($E,@MSG[0]);
487	&cmovne		($inp,"eax");
488	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
489
490for($i=0;$i<20-4;$i+=2) {
491	&sha1msg1	(@MSG[0],@MSG[1]);
492	&movdqa		($E_,$ABCD);
493	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
494	&sha1nexte	($E_,@MSG[1]);
495	&pxor		(@MSG[0],@MSG[2]);
496	&sha1msg1	(@MSG[1],@MSG[2]);
497	&sha1msg2	(@MSG[0],@MSG[3]);
498
499	&movdqa		($E,$ABCD);
500	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
501	&sha1nexte	($E,@MSG[2]);
502	&pxor		(@MSG[1],@MSG[3]);
503	&sha1msg2	(@MSG[1],@MSG[0]);
504
505	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
506}
507	&movdqu		(@MSG[0],&QWP(0,$inp));
508	&movdqa		($E_,$ABCD);
509	&sha1rnds4	($ABCD,$E,3);		# 64-67
510	&sha1nexte	($E_,@MSG[1]);
511	&movdqu		(@MSG[1],&QWP(0x10,$inp));
512	&pshufb		(@MSG[0],$BSWAP);
513
514	&movdqa		($E,$ABCD);
515	&sha1rnds4	($ABCD,$E_,3);		# 68-71
516	&sha1nexte	($E,@MSG[2]);
517	&movdqu		(@MSG[2],&QWP(0x20,$inp));
518	&pshufb		(@MSG[1],$BSWAP);
519
520	&movdqa		($E_,$ABCD);
521	&sha1rnds4	($ABCD,$E,3);		# 72-75
522	&sha1nexte	($E_,@MSG[3]);
523	&movdqu		(@MSG[3],&QWP(0x30,$inp));
524	&pshufb		(@MSG[2],$BSWAP);
525
526	&movdqa		($E,$ABCD);
527	&sha1rnds4	($ABCD,$E_,3);		# 76-79
528	&movdqa		($E_,&QWP(0,"esp"));
529	&pshufb		(@MSG[3],$BSWAP);
530	&sha1nexte	($E,$E_);
531	&paddd		($ABCD,&QWP(16,"esp"));
532
533	&jnz		(&label("loop_shaext"));
534
535	&pshufd	($ABCD,$ABCD,0b00011011);
536	&pshufd	($E,$E,0b00011011);
537	&movdqu	(&QWP(0,$ctx),$ABCD)
538	&movd	(&DWP(16,$ctx),$E);
539	&mov	("esp","ebx");
540&function_end("_sha1_block_data_order_shaext");
541}
542######################################################################
543# The SSSE3 implementation.
544#
545# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
546# 32 elements of the message schedule or Xupdate outputs. First 4
547# quadruples are simply byte-swapped input, next 4 are calculated
548# according to method originally suggested by Dean Gaudet (modulo
549# being implemented in SSSE3). Once 8 quadruples or 32 elements are
550# collected, it switches to routine proposed by Max Locktyukhin.
551#
552# Calculations inevitably require temporary registers, and there are
553# no %xmm registers left to spare. For this reason part of the ring
554# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
555# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
556# X[-5], and X[4] - X[-4]...
557#
558# Another notable optimization is aggressive stack frame compression
559# aiming to minimize amount of 9-byte instructions...
560#
561# Yet another notable optimization is "jumping" $B variable. It means
562# that there is no register permanently allocated for $B value. This
563# allowed to eliminate one instruction from body_20_39...
564#
565my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
566my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
567my @V=($A,$B,$C,$D,$E);
568my $j=0;			# hash round
569my $rx=0;
570my @T=($T,$tmp1);
571my $inp;
572
573my $_rol=sub { &rol(@_) };
574my $_ror=sub { &ror(@_) };
575
576&function_begin("_sha1_block_data_order_ssse3");
577	&call	(&label("pic_point"));	# make it PIC!
578	&set_label("pic_point");
579	&blindpop($tmp1);
580	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
581&set_label("ssse3_shortcut");
582
583	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
584	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
585	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
586	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
587	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
588
589	&mov	($E,&wparam(0));		# load argument block
590	&mov	($inp=@T[1],&wparam(1));
591	&mov	($D,&wparam(2));
592	&mov	(@T[0],"esp");
593
594	# stack frame layout
595	#
596	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
597	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
598	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
599	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
600	#
601	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
602	#	X[4]	X[5]	X[6]	X[7]
603	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
604	#
605	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
606	#	K_40_59	K_40_59	K_40_59	K_40_59
607	#	K_60_79	K_60_79	K_60_79	K_60_79
608	#	K_00_19	K_00_19	K_00_19	K_00_19
609	#	pbswap mask
610	#
611	# +192	ctx				# argument block
612	# +196	inp
613	# +200	end
614	# +204	esp
615	&sub	("esp",208);
616	&and	("esp",-64);
617
618	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
619	&movdqa	(&QWP(112+16,"esp"),@X[5]);
620	&movdqa	(&QWP(112+32,"esp"),@X[6]);
621	&shl	($D,6);				# len*64
622	&movdqa	(&QWP(112+48,"esp"),@X[3]);
623	&add	($D,$inp);			# end of input
624	&movdqa	(&QWP(112+64,"esp"),@X[2]);
625	&add	($inp,64);
626	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
627	&mov	(&DWP(192+4,"esp"),$inp);
628	&mov	(&DWP(192+8,"esp"),$D);
629	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
630
631	&mov	($A,&DWP(0,$E));		# load context
632	&mov	($B,&DWP(4,$E));
633	&mov	($C,&DWP(8,$E));
634	&mov	($D,&DWP(12,$E));
635	&mov	($E,&DWP(16,$E));
636	&mov	(@T[0],$B);			# magic seed
637
638	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
639	&movdqu	(@X[-3&7],&QWP(-48,$inp));
640	&movdqu	(@X[-2&7],&QWP(-32,$inp));
641	&movdqu	(@X[-1&7],&QWP(-16,$inp));
642	&pshufb	(@X[-4&7],@X[2]);		# byte swap
643	&pshufb	(@X[-3&7],@X[2]);
644	&pshufb	(@X[-2&7],@X[2]);
645	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
646	&pshufb	(@X[-1&7],@X[2]);
647	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
648	&paddd	(@X[-3&7],@X[3]);
649	&paddd	(@X[-2&7],@X[3]);
650	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
651	&psubd	(@X[-4&7],@X[3]);		# restore X[]
652	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
653	&psubd	(@X[-3&7],@X[3]);
654	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
655	&mov	(@T[1],$C);
656	&psubd	(@X[-2&7],@X[3]);
657	&xor	(@T[1],$D);
658	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
659	&and	(@T[0],@T[1]);
660	&jmp	(&label("loop"));
661
662######################################################################
663# SSE instruction sequence is first broken to groups of independent
664# instructions, independent in respect to their inputs and shifter
665# (not all architectures have more than one). Then IALU instructions
666# are "knitted in" between the SSE groups. Distance is maintained for
667# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
668# [which allegedly also implements SSSE3]...
669#
670# Temporary registers usage. X[2] is volatile at the entry and at the
671# end is restored from backtrace ring buffer. X[3] is expected to
672# contain current K_XX_XX constant and is used to calculate X[-1]+K
673# from previous round, it becomes volatile the moment the value is
674# saved to stack for transfer to IALU. X[4] becomes volatile whenever
675# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
676# end it is loaded with next K_XX_XX [which becomes X[3] in next
677# round]...
678#
679sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
680{ use integer;
681  my $body = shift;
682  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
683  my ($a,$b,$c,$d,$e);
684
685	 eval(shift(@insns));		# ror
686	 eval(shift(@insns));
687	 eval(shift(@insns));
688	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
689	&movdqa	(@X[2],@X[-1&7]);
690	 eval(shift(@insns));
691	 eval(shift(@insns));
692
693	  &paddd	(@X[3],@X[-1&7]);
694	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
695	 eval(shift(@insns));		# rol
696	 eval(shift(@insns));
697	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
698	 eval(shift(@insns));
699	 eval(shift(@insns));
700	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
701	 eval(shift(@insns));
702	 eval(shift(@insns));		# ror
703
704	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
705	 eval(shift(@insns));
706	 eval(shift(@insns));
707	 eval(shift(@insns));
708
709	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
710	 eval(shift(@insns));
711	 eval(shift(@insns));		# rol
712	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
713	 eval(shift(@insns));
714	 eval(shift(@insns));
715
716	&movdqa	(@X[4],@X[0]);
717	 eval(shift(@insns));
718	 eval(shift(@insns));
719	 eval(shift(@insns));		# ror
720	&movdqa (@X[2],@X[0]);
721	 eval(shift(@insns));
722
723	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
724	&paddd	(@X[0],@X[0]);
725	 eval(shift(@insns));
726	 eval(shift(@insns));
727
728	&psrld	(@X[2],31);
729	 eval(shift(@insns));
730	 eval(shift(@insns));		# rol
731	&movdqa	(@X[3],@X[4]);
732	 eval(shift(@insns));
733	 eval(shift(@insns));
734	 eval(shift(@insns));
735
736	&psrld	(@X[4],30);
737	 eval(shift(@insns));
738	 eval(shift(@insns));		# ror
739	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
740	 eval(shift(@insns));
741	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
742	 eval(shift(@insns));
743	 eval(shift(@insns));
744
745	&pslld	(@X[3],2);
746	 eval(shift(@insns));
747	 eval(shift(@insns));		# rol
748	&pxor   (@X[0],@X[4]);
749	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
750	 eval(shift(@insns));
751	 eval(shift(@insns));
752
753	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
754	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
755	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
756	 eval(shift(@insns));
757	 eval(shift(@insns));
758
759	 foreach (@insns) { eval; }	# remaining instructions [if any]
760
761  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
762}
763
764sub Xupdate_ssse3_32_79()
765{ use integer;
766  my $body = shift;
767  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
768  my ($a,$b,$c,$d,$e);
769
770	 eval(shift(@insns));		# body_20_39
771	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
772	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
773	 eval(shift(@insns));
774	 eval(shift(@insns));
775	 eval(shift(@insns));		# rol
776
777	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
778	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
779	 eval(shift(@insns));
780	 eval(shift(@insns));
781	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
782	 if ($Xi%5) {
783	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
784	 } else {			# ... or load next one
785	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
786	 }
787	 eval(shift(@insns));		# ror
788	  &paddd	(@X[3],@X[-1&7]);
789	 eval(shift(@insns));
790
791	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
792	 eval(shift(@insns));		# body_20_39
793	 eval(shift(@insns));
794	 eval(shift(@insns));
795	 eval(shift(@insns));		# rol
796
797	&movdqa	(@X[2],@X[0]);
798	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
799	 eval(shift(@insns));
800	 eval(shift(@insns));
801	 eval(shift(@insns));		# ror
802	 eval(shift(@insns));
803	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
804
805	&pslld	(@X[0],2);
806	 eval(shift(@insns));		# body_20_39
807	 eval(shift(@insns));
808	&psrld	(@X[2],30);
809	 eval(shift(@insns));
810	 eval(shift(@insns));		# rol
811	 eval(shift(@insns));
812	 eval(shift(@insns));
813	 eval(shift(@insns));		# ror
814	 eval(shift(@insns));
815	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
816	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
817
818	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
819	 eval(shift(@insns));		# body_20_39
820	 eval(shift(@insns));
821	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
822	 eval(shift(@insns));
823	 eval(shift(@insns));		# rol
824	 eval(shift(@insns));
825	 eval(shift(@insns));
826	 eval(shift(@insns));		# ror
827	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
828	 eval(shift(@insns));
829
830	 foreach (@insns) { eval; }	# remaining instructions
831
832  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
833}
834
835sub Xuplast_ssse3_80()
836{ use integer;
837  my $body = shift;
838  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
839  my ($a,$b,$c,$d,$e);
840
841	 eval(shift(@insns));
842	 eval(shift(@insns));
843	 eval(shift(@insns));
844	 eval(shift(@insns));
845	 eval(shift(@insns));
846	 eval(shift(@insns));
847	 eval(shift(@insns));
848	  &paddd	(@X[3],@X[-1&7]);
849	 eval(shift(@insns));
850	 eval(shift(@insns));
851	 eval(shift(@insns));
852	 eval(shift(@insns));
853
854	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
855
856	 foreach (@insns) { eval; }		# remaining instructions
857
858	&mov	($inp=@T[1],&DWP(192+4,"esp"));
859	&cmp	($inp,&DWP(192+8,"esp"));
860	&je	(&label("done"));
861
862	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
863	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
864	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
865	&movdqu	(@X[-3&7],&QWP(16,$inp));
866	&movdqu	(@X[-2&7],&QWP(32,$inp));
867	&movdqu	(@X[-1&7],&QWP(48,$inp));
868	&add	($inp,64);
869	&pshufb	(@X[-4&7],@X[2]);		# byte swap
870	&mov	(&DWP(192+4,"esp"),$inp);
871	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
872
873  $Xi=0;
874}
875
876sub Xloop_ssse3()
877{ use integer;
878  my $body = shift;
879  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
880  my ($a,$b,$c,$d,$e);
881
882	 eval(shift(@insns));
883	 eval(shift(@insns));
884	 eval(shift(@insns));
885	 eval(shift(@insns));
886	 eval(shift(@insns));
887	 eval(shift(@insns));
888	 eval(shift(@insns));
889	&pshufb	(@X[($Xi-3)&7],@X[2]);
890	 eval(shift(@insns));
891	 eval(shift(@insns));
892	 eval(shift(@insns));
893	 eval(shift(@insns));
894	&paddd	(@X[($Xi-4)&7],@X[3]);
895	 eval(shift(@insns));
896	 eval(shift(@insns));
897	 eval(shift(@insns));
898	 eval(shift(@insns));
899	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
900	 eval(shift(@insns));
901	 eval(shift(@insns));
902	 eval(shift(@insns));
903	 eval(shift(@insns));
904	&psubd	(@X[($Xi-4)&7],@X[3]);
905
906	foreach (@insns) { eval; }
907  $Xi++;
908}
909
910sub Xtail_ssse3()
911{ use integer;
912  my $body = shift;
913  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
914  my ($a,$b,$c,$d,$e);
915
916	foreach (@insns) { eval; }
917}
918
919sub body_00_19 () {	# ((c^d)&b)^d
920	# on start @T[0]=(c^d)&b
921	return &body_20_39()	if ($rx==19);	$rx++;
922	(
923	'($a,$b,$c,$d,$e)=@V;'.
924	'&$_ror	($b,$j?7:2);',	# $b>>>2
925	'&xor	(@T[0],$d);',
926	'&mov	(@T[1],$a);',	# $b in next round
927
928	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
929	'&xor	($b,$c);',	# $c^$d for next round
930
931	'&$_rol	($a,5);',
932	'&add	($e,@T[0]);',
933	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
934
935	'&xor	($b,$c);',	# restore $b
936	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
937	);
938}
939
940sub body_20_39 () {	# b^d^c
941	# on entry @T[0]=b^d
942	return &body_40_59()	if ($rx==39);	$rx++;
943	(
944	'($a,$b,$c,$d,$e)=@V;'.
945	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
946	'&xor	(@T[0],$d)	if($j==19);'.
947	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
948	'&mov	(@T[1],$a);',	# $b in next round
949
950	'&$_rol	($a,5);',
951	'&add	($e,@T[0]);',
952	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
953
954	'&$_ror	($b,7);',	# $b>>>2
955	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
956	);
957}
958
959sub body_40_59 () {	# ((b^c)&(c^d))^c
960	# on entry @T[0]=(b^c), (c^=d)
961	$rx++;
962	(
963	'($a,$b,$c,$d,$e)=@V;'.
964	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
965	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
966	'&xor	($c,$d)		if ($j>=40);',	# restore $c
967
968	'&$_ror	($b,7);',	# $b>>>2
969	'&mov	(@T[1],$a);',	# $b for next round
970	'&xor	(@T[0],$c);',
971
972	'&$_rol	($a,5);',
973	'&add	($e,@T[0]);',
974	'&xor	(@T[1],$c)	if ($j==59);'.
975	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
976
977	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
978	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
979	);
980}
981######
982sub bodyx_00_19 () {	# ((c^d)&b)^d
983	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
984	return &bodyx_20_39()	if ($rx==19);	$rx++;
985	(
986	'($a,$b,$c,$d,$e)=@V;'.
987
988	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
989	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
990	'&lea	($e,&DWP(0,$e,@T[0]));',
991	'&rorx	(@T[0],$a,5);',
992
993	'&andn	(@T[1],$a,$c);',
994	'&and	($a,$b)',
995	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
996
997	'&xor	(@T[1],$a)',
998	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
999	);
1000}
1001
1002sub bodyx_20_39 () {	# b^d^c
1003	# on start $b=b^c^d
1004	return &bodyx_40_59()	if ($rx==39);	$rx++;
1005	(
1006	'($a,$b,$c,$d,$e)=@V;'.
1007
1008	'&add	($e,($j==19?@T[0]:$b))',
1009	'&rorx	($b,@T[1],7);',	# $b>>>2
1010	'&rorx	(@T[0],$a,5);',
1011
1012	'&xor	($a,$b)				if ($j<79);',
1013	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
1014	'&xor	($a,$c)				if ($j<79);',
1015	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1016	);
1017}
1018
1019sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
1020	# on start $b=((b^c)&(c^d))^c
1021	return &bodyx_20_39()	if ($rx==59);	$rx++;
1022	(
1023	'($a,$b,$c,$d,$e)=@V;'.
1024
1025	'&rorx	(@T[0],$a,5)',
1026	'&lea	($e,&DWP(0,$e,$b))',
1027	'&rorx	($b,@T[1],7)',	# $b>>>2
1028	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
1029
1030	'&mov	(@T[1],$c)',
1031	'&xor	($a,$b)',	# b^c for next round
1032	'&xor	(@T[1],$b)',	# c^d for next round
1033
1034	'&and	($a,@T[1])',
1035	'&add	($e,@T[0])',
1036	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
1037	);
1038}
1039
1040&set_label("loop",16);
1041	&Xupdate_ssse3_16_31(\&body_00_19);
1042	&Xupdate_ssse3_16_31(\&body_00_19);
1043	&Xupdate_ssse3_16_31(\&body_00_19);
1044	&Xupdate_ssse3_16_31(\&body_00_19);
1045	&Xupdate_ssse3_32_79(\&body_00_19);
1046	&Xupdate_ssse3_32_79(\&body_20_39);
1047	&Xupdate_ssse3_32_79(\&body_20_39);
1048	&Xupdate_ssse3_32_79(\&body_20_39);
1049	&Xupdate_ssse3_32_79(\&body_20_39);
1050	&Xupdate_ssse3_32_79(\&body_20_39);
1051	&Xupdate_ssse3_32_79(\&body_40_59);
1052	&Xupdate_ssse3_32_79(\&body_40_59);
1053	&Xupdate_ssse3_32_79(\&body_40_59);
1054	&Xupdate_ssse3_32_79(\&body_40_59);
1055	&Xupdate_ssse3_32_79(\&body_40_59);
1056	&Xupdate_ssse3_32_79(\&body_20_39);
1057	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
1058
1059				$saved_j=$j; @saved_V=@V;
1060
1061	&Xloop_ssse3(\&body_20_39);
1062	&Xloop_ssse3(\&body_20_39);
1063	&Xloop_ssse3(\&body_20_39);
1064
1065	&mov	(@T[1],&DWP(192,"esp"));	# update context
1066	&add	($A,&DWP(0,@T[1]));
1067	&add	(@T[0],&DWP(4,@T[1]));		# $b
1068	&add	($C,&DWP(8,@T[1]));
1069	&mov	(&DWP(0,@T[1]),$A);
1070	&add	($D,&DWP(12,@T[1]));
1071	&mov	(&DWP(4,@T[1]),@T[0]);
1072	&add	($E,&DWP(16,@T[1]));
1073	&mov	(&DWP(8,@T[1]),$C);
1074	&mov	($B,$C);
1075	&mov	(&DWP(12,@T[1]),$D);
1076	&xor	($B,$D);
1077	&mov	(&DWP(16,@T[1]),$E);
1078	&mov	(@T[1],@T[0]);
1079	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
1080	&and	(@T[0],$B);
1081	&mov	($B,$T[1]);
1082
1083	&jmp	(&label("loop"));
1084
1085&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1086
1087	&Xtail_ssse3(\&body_20_39);
1088	&Xtail_ssse3(\&body_20_39);
1089	&Xtail_ssse3(\&body_20_39);
1090
1091	&mov	(@T[1],&DWP(192,"esp"));	# update context
1092	&add	($A,&DWP(0,@T[1]));
1093	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1094	&add	(@T[0],&DWP(4,@T[1]));		# $b
1095	&add	($C,&DWP(8,@T[1]));
1096	&mov	(&DWP(0,@T[1]),$A);
1097	&add	($D,&DWP(12,@T[1]));
1098	&mov	(&DWP(4,@T[1]),@T[0]);
1099	&add	($E,&DWP(16,@T[1]));
1100	&mov	(&DWP(8,@T[1]),$C);
1101	&mov	(&DWP(12,@T[1]),$D);
1102	&mov	(&DWP(16,@T[1]),$E);
1103
1104&function_end("_sha1_block_data_order_ssse3");
1105
1106$rx=0;	# reset
1107
1108if ($ymm) {
1109my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
1110my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
1111my @V=($A,$B,$C,$D,$E);
1112my $j=0;			# hash round
1113my @T=($T,$tmp1);
1114my $inp;
1115
1116my $_rol=sub { &shld(@_[0],@_) };
1117my $_ror=sub { &shrd(@_[0],@_) };
1118
1119&function_begin("_sha1_block_data_order_avx");
1120	&call	(&label("pic_point"));	# make it PIC!
1121	&set_label("pic_point");
1122	&blindpop($tmp1);
1123	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1124&set_label("avx_shortcut");
1125	&vzeroall();
1126
1127	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
1128	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
1129	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
1130	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
1131	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
1132
1133	&mov	($E,&wparam(0));		# load argument block
1134	&mov	($inp=@T[1],&wparam(1));
1135	&mov	($D,&wparam(2));
1136	&mov	(@T[0],"esp");
1137
1138	# stack frame layout
1139	#
1140	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
1141	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
1142	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
1143	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
1144	#
1145	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
1146	#	X[4]	X[5]	X[6]	X[7]
1147	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
1148	#
1149	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
1150	#	K_40_59	K_40_59	K_40_59	K_40_59
1151	#	K_60_79	K_60_79	K_60_79	K_60_79
1152	#	K_00_19	K_00_19	K_00_19	K_00_19
1153	#	pbswap mask
1154	#
1155	# +192	ctx				# argument block
1156	# +196	inp
1157	# +200	end
1158	# +204	esp
1159	&sub	("esp",208);
1160	&and	("esp",-64);
1161
1162	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
1163	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
1164	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
1165	&shl	($D,6);				# len*64
1166	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
1167	&add	($D,$inp);			# end of input
1168	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
1169	&add	($inp,64);
1170	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
1171	&mov	(&DWP(192+4,"esp"),$inp);
1172	&mov	(&DWP(192+8,"esp"),$D);
1173	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
1174
1175	&mov	($A,&DWP(0,$E));		# load context
1176	&mov	($B,&DWP(4,$E));
1177	&mov	($C,&DWP(8,$E));
1178	&mov	($D,&DWP(12,$E));
1179	&mov	($E,&DWP(16,$E));
1180	&mov	(@T[0],$B);			# magic seed
1181
1182	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
1183	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
1184	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
1185	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
1186	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
1187	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1188	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1189	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1190	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1191	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
1192	&vpaddd	(@X[1],@X[-3&7],@X[3]);
1193	&vpaddd	(@X[2],@X[-2&7],@X[3]);
1194	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
1195	&mov	(@T[1],$C);
1196	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
1197	&xor	(@T[1],$D);
1198	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
1199	&and	(@T[0],@T[1]);
1200	&jmp	(&label("loop"));
1201
1202sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
1203{ use integer;
1204  my $body = shift;
1205  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
1206  my ($a,$b,$c,$d,$e);
1207
1208	 eval(shift(@insns));
1209	 eval(shift(@insns));
1210	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
1211	 eval(shift(@insns));
1212	 eval(shift(@insns));
1213
1214	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1215	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1216	 eval(shift(@insns));
1217	 eval(shift(@insns));
1218	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
1219	 eval(shift(@insns));
1220	 eval(shift(@insns));
1221	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
1222	 eval(shift(@insns));
1223	 eval(shift(@insns));
1224
1225	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
1226	 eval(shift(@insns));
1227	 eval(shift(@insns));
1228	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1229	 eval(shift(@insns));
1230	 eval(shift(@insns));
1231
1232	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
1233	 eval(shift(@insns));
1234	 eval(shift(@insns));
1235	 eval(shift(@insns));
1236	 eval(shift(@insns));
1237
1238	&vpsrld	(@X[2],@X[0],31);
1239	 eval(shift(@insns));
1240	 eval(shift(@insns));
1241	 eval(shift(@insns));
1242	 eval(shift(@insns));
1243
1244	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
1245	&vpaddd	(@X[0],@X[0],@X[0]);
1246	 eval(shift(@insns));
1247	 eval(shift(@insns));
1248	 eval(shift(@insns));
1249	 eval(shift(@insns));
1250
1251	&vpsrld	(@X[3],@X[4],30);
1252	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
1253	 eval(shift(@insns));
1254	 eval(shift(@insns));
1255	 eval(shift(@insns));
1256	 eval(shift(@insns));
1257
1258	&vpslld	(@X[4],@X[4],2);
1259	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
1260	 eval(shift(@insns));
1261	 eval(shift(@insns));
1262	&vpxor	(@X[0],@X[0],@X[3]);
1263	 eval(shift(@insns));
1264	 eval(shift(@insns));
1265	 eval(shift(@insns));
1266	 eval(shift(@insns));
1267
1268	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1269	 eval(shift(@insns));
1270	 eval(shift(@insns));
1271	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1272	 eval(shift(@insns));
1273	 eval(shift(@insns));
1274
1275	 foreach (@insns) { eval; }	# remaining instructions [if any]
1276
1277  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1278}
1279
1280sub Xupdate_avx_32_79()
1281{ use integer;
1282  my $body = shift;
1283  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
1284  my ($a,$b,$c,$d,$e);
1285
1286	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1287	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1288	 eval(shift(@insns));		# body_20_39
1289	 eval(shift(@insns));
1290	 eval(shift(@insns));
1291	 eval(shift(@insns));		# rol
1292
1293	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1294	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1295	 eval(shift(@insns));
1296	 eval(shift(@insns));
1297	 if ($Xi%5) {
1298	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1299	 } else {			# ... or load next one
1300	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1301	 }
1302	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1303	 eval(shift(@insns));		# ror
1304	 eval(shift(@insns));
1305
1306	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1307	 eval(shift(@insns));		# body_20_39
1308	 eval(shift(@insns));
1309	 eval(shift(@insns));
1310	 eval(shift(@insns));		# rol
1311
1312	&vpsrld	(@X[2],@X[0],30);
1313	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1314	 eval(shift(@insns));
1315	 eval(shift(@insns));
1316	 eval(shift(@insns));		# ror
1317	 eval(shift(@insns));
1318
1319	&vpslld	(@X[0],@X[0],2);
1320	 eval(shift(@insns));		# body_20_39
1321	 eval(shift(@insns));
1322	 eval(shift(@insns));
1323	 eval(shift(@insns));		# rol
1324	 eval(shift(@insns));
1325	 eval(shift(@insns));
1326	 eval(shift(@insns));		# ror
1327	 eval(shift(@insns));
1328
1329	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1330	 eval(shift(@insns));		# body_20_39
1331	 eval(shift(@insns));
1332	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1333	 eval(shift(@insns));
1334	 eval(shift(@insns));		# rol
1335	 eval(shift(@insns));
1336	 eval(shift(@insns));
1337	 eval(shift(@insns));		# ror
1338	 eval(shift(@insns));
1339
1340	 foreach (@insns) { eval; }	# remaining instructions
1341
1342  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1343}
1344
1345sub Xuplast_avx_80()
1346{ use integer;
1347  my $body = shift;
1348  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1349  my ($a,$b,$c,$d,$e);
1350
1351	 eval(shift(@insns));
1352	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1353	 eval(shift(@insns));
1354	 eval(shift(@insns));
1355	 eval(shift(@insns));
1356	 eval(shift(@insns));
1357
1358	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1359
1360	 foreach (@insns) { eval; }		# remaining instructions
1361
1362	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1363	&cmp	($inp,&DWP(192+8,"esp"));
1364	&je	(&label("done"));
1365
1366	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1367	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1368	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1369	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1370	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1371	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1372	&add	($inp,64);
1373	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1374	&mov	(&DWP(192+4,"esp"),$inp);
1375	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1376
1377  $Xi=0;
1378}
1379
1380sub Xloop_avx()
1381{ use integer;
1382  my $body = shift;
1383  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1384  my ($a,$b,$c,$d,$e);
1385
1386	 eval(shift(@insns));
1387	 eval(shift(@insns));
1388	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1389	 eval(shift(@insns));
1390	 eval(shift(@insns));
1391	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1392	 eval(shift(@insns));
1393	 eval(shift(@insns));
1394	 eval(shift(@insns));
1395	 eval(shift(@insns));
1396	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1397	 eval(shift(@insns));
1398	 eval(shift(@insns));
1399
1400	foreach (@insns) { eval; }
1401  $Xi++;
1402}
1403
1404sub Xtail_avx()
1405{ use integer;
1406  my $body = shift;
1407  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1408  my ($a,$b,$c,$d,$e);
1409
1410	foreach (@insns) { eval; }
1411}
1412
1413&set_label("loop",16);
1414	&Xupdate_avx_16_31(\&body_00_19);
1415	&Xupdate_avx_16_31(\&body_00_19);
1416	&Xupdate_avx_16_31(\&body_00_19);
1417	&Xupdate_avx_16_31(\&body_00_19);
1418	&Xupdate_avx_32_79(\&body_00_19);
1419	&Xupdate_avx_32_79(\&body_20_39);
1420	&Xupdate_avx_32_79(\&body_20_39);
1421	&Xupdate_avx_32_79(\&body_20_39);
1422	&Xupdate_avx_32_79(\&body_20_39);
1423	&Xupdate_avx_32_79(\&body_20_39);
1424	&Xupdate_avx_32_79(\&body_40_59);
1425	&Xupdate_avx_32_79(\&body_40_59);
1426	&Xupdate_avx_32_79(\&body_40_59);
1427	&Xupdate_avx_32_79(\&body_40_59);
1428	&Xupdate_avx_32_79(\&body_40_59);
1429	&Xupdate_avx_32_79(\&body_20_39);
1430	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1431
1432				$saved_j=$j; @saved_V=@V;
1433
1434	&Xloop_avx(\&body_20_39);
1435	&Xloop_avx(\&body_20_39);
1436	&Xloop_avx(\&body_20_39);
1437
1438	&mov	(@T[1],&DWP(192,"esp"));	# update context
1439	&add	($A,&DWP(0,@T[1]));
1440	&add	(@T[0],&DWP(4,@T[1]));		# $b
1441	&add	($C,&DWP(8,@T[1]));
1442	&mov	(&DWP(0,@T[1]),$A);
1443	&add	($D,&DWP(12,@T[1]));
1444	&mov	(&DWP(4,@T[1]),@T[0]);
1445	&add	($E,&DWP(16,@T[1]));
1446	&mov	($B,$C);
1447	&mov	(&DWP(8,@T[1]),$C);
1448	&xor	($B,$D);
1449	&mov	(&DWP(12,@T[1]),$D);
1450	&mov	(&DWP(16,@T[1]),$E);
1451	&mov	(@T[1],@T[0]);
1452	&and	(@T[0],$B);
1453	&mov	($B,@T[1]);
1454
1455	&jmp	(&label("loop"));
1456
1457&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1458
1459	&Xtail_avx(\&body_20_39);
1460	&Xtail_avx(\&body_20_39);
1461	&Xtail_avx(\&body_20_39);
1462
1463	&vzeroall();
1464
1465	&mov	(@T[1],&DWP(192,"esp"));	# update context
1466	&add	($A,&DWP(0,@T[1]));
1467	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1468	&add	(@T[0],&DWP(4,@T[1]));		# $b
1469	&add	($C,&DWP(8,@T[1]));
1470	&mov	(&DWP(0,@T[1]),$A);
1471	&add	($D,&DWP(12,@T[1]));
1472	&mov	(&DWP(4,@T[1]),@T[0]);
1473	&add	($E,&DWP(16,@T[1]));
1474	&mov	(&DWP(8,@T[1]),$C);
1475	&mov	(&DWP(12,@T[1]),$D);
1476	&mov	(&DWP(16,@T[1]),$E);
1477&function_end("_sha1_block_data_order_avx");
1478}
1479&set_label("K_XX_XX",64);
1480&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1481&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1482&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1483&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1484&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1485&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1486}
1487&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1488
1489&asm_finish();
1490
1491close STDOUT or die "error closing STDOUT: $!";
1492