1#! /usr/bin/env perl
2# Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15#
16# Hardware SPARC T4 support by David S. Miller
17# ====================================================================
18
19# Performance improvement is not really impressive on pre-T1 CPU: +8%
20# over Sun C and +25% over gcc [3.3]. While on T1, a.k.a. Niagara, it
21# turned to be 40% faster than 64-bit code generated by Sun C 5.8 and
22# >2x than 64-bit code generated by gcc 3.4. And there is a gimmick.
23# X[16] vector is packed to 8 64-bit registers and as result nothing
24# is spilled on stack. In addition input data is loaded in compact
25# instruction sequence, thus minimizing the window when the code is
26# subject to [inter-thread] cache-thrashing hazard. The goal is to
27# ensure scalability on UltraSPARC T1, or rather to avoid decay when
28# amount of active threads exceeds the number of physical cores.
29
30# SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x
31# faster than software. Multi-process benchmark saturates at 11x
32# single-process result on 8-core processor, or ~9GBps per 2.85GHz
33# socket.
34
35$output=pop;
36open STDOUT,">$output";
37
38@X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7");
39$rot1m="%g2";
40$tmp64="%g3";
41$Xi="%g4";
42$A="%l0";
43$B="%l1";
44$C="%l2";
45$D="%l3";
46$E="%l4";
47@V=($A,$B,$C,$D,$E);
48$K_00_19="%l5";
49$K_20_39="%l6";
50$K_40_59="%l7";
51$K_60_79="%g5";
52@K=($K_00_19,$K_20_39,$K_40_59,$K_60_79);
53
54$ctx="%i0";
55$inp="%i1";
56$len="%i2";
57$tmp0="%i3";
58$tmp1="%i4";
59$tmp2="%i5";
60
61sub BODY_00_15 {
62my ($i,$a,$b,$c,$d,$e)=@_;
63my $xi=($i&1)?@X[($i/2)%8]:$Xi;
64
65$code.=<<___;
66	sll	$a,5,$tmp0		!! $i
67	add	@K[$i/20],$e,$e
68	srl	$a,27,$tmp1
69	add	$tmp0,$e,$e
70	and	$c,$b,$tmp0
71	add	$tmp1,$e,$e
72	sll	$b,30,$tmp2
73	andn	$d,$b,$tmp1
74	srl	$b,2,$b
75	or	$tmp1,$tmp0,$tmp1
76	or	$tmp2,$b,$b
77	add	$xi,$e,$e
78___
79if ($i&1 && $i<15) {
80	$code.=
81	"	srlx	@X[(($i+1)/2)%8],32,$Xi\n";
82}
83$code.=<<___;
84	add	$tmp1,$e,$e
85___
86}
87
88sub Xupdate {
89my ($i,$a,$b,$c,$d,$e)=@_;
90my $j=$i/2;
91
92if ($i&1) {
93$code.=<<___;
94	sll	$a,5,$tmp0		!! $i
95	add	@K[$i/20],$e,$e
96	srl	$a,27,$tmp1
97___
98} else {
99$code.=<<___;
100	sllx	@X[($j+6)%8],32,$Xi	! Xupdate($i)
101	xor	@X[($j+1)%8],@X[$j%8],@X[$j%8]
102	srlx	@X[($j+7)%8],32,$tmp1
103	xor	@X[($j+4)%8],@X[$j%8],@X[$j%8]
104	sll	$a,5,$tmp0		!! $i
105	or	$tmp1,$Xi,$Xi
106	add	@K[$i/20],$e,$e		!!
107	xor	$Xi,@X[$j%8],@X[$j%8]
108	srlx	@X[$j%8],31,$Xi
109	add	@X[$j%8],@X[$j%8],@X[$j%8]
110	and	$Xi,$rot1m,$Xi
111	andn	@X[$j%8],$rot1m,@X[$j%8]
112	srl	$a,27,$tmp1		!!
113	or	$Xi,@X[$j%8],@X[$j%8]
114___
115}
116}
117
118sub BODY_16_19 {
119my ($i,$a,$b,$c,$d,$e)=@_;
120
121	&Xupdate(@_);
122    if ($i&1) {
123	$xi=@X[($i/2)%8];
124    } else {
125	$xi=$Xi;
126	$code.="\tsrlx	@X[($i/2)%8],32,$xi\n";
127    }
128$code.=<<___;
129	add	$tmp0,$e,$e		!!
130	and	$c,$b,$tmp0
131	add	$tmp1,$e,$e
132	sll	$b,30,$tmp2
133	add	$xi,$e,$e
134	andn	$d,$b,$tmp1
135	srl	$b,2,$b
136	or	$tmp1,$tmp0,$tmp1
137	or	$tmp2,$b,$b
138	add	$tmp1,$e,$e
139___
140}
141
142sub BODY_20_39 {
143my ($i,$a,$b,$c,$d,$e)=@_;
144my $xi;
145	&Xupdate(@_);
146    if ($i&1) {
147	$xi=@X[($i/2)%8];
148    } else {
149	$xi=$Xi;
150	$code.="\tsrlx	@X[($i/2)%8],32,$xi\n";
151    }
152$code.=<<___;
153	add	$tmp0,$e,$e		!!
154	xor	$c,$b,$tmp0
155	add	$tmp1,$e,$e
156	sll	$b,30,$tmp2
157	xor	$d,$tmp0,$tmp1
158	srl	$b,2,$b
159	add	$tmp1,$e,$e
160	or	$tmp2,$b,$b
161	add	$xi,$e,$e
162___
163}
164
165sub BODY_40_59 {
166my ($i,$a,$b,$c,$d,$e)=@_;
167my $xi;
168	&Xupdate(@_);
169    if ($i&1) {
170	$xi=@X[($i/2)%8];
171    } else {
172	$xi=$Xi;
173	$code.="\tsrlx	@X[($i/2)%8],32,$xi\n";
174    }
175$code.=<<___;
176	add	$tmp0,$e,$e		!!
177	and	$c,$b,$tmp0
178	add	$tmp1,$e,$e
179	sll	$b,30,$tmp2
180	or	$c,$b,$tmp1
181	srl	$b,2,$b
182	and	$d,$tmp1,$tmp1
183	add	$xi,$e,$e
184	or	$tmp1,$tmp0,$tmp1
185	or	$tmp2,$b,$b
186	add	$tmp1,$e,$e
187___
188}
189
190$code.=<<___;
191#include "sparc_arch.h"
192
193#ifdef __arch64__
194.register	%g2,#scratch
195.register	%g3,#scratch
196#endif
197
198.section	".text",#alloc,#execinstr
199
200#ifdef __PIC__
201SPARC_PIC_THUNK(%g1)
202#endif
203
204.align	32
205.globl	sha1_block_data_order
206sha1_block_data_order:
207	SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
208	ld	[%g1+4],%g1		! OPENSSL_sparcv9cap_P[1]
209
210	andcc	%g1, CFR_SHA1, %g0
211	be	.Lsoftware
212	nop
213
214	ld	[%o0 + 0x00], %f0	! load context
215	ld	[%o0 + 0x04], %f1
216	ld	[%o0 + 0x08], %f2
217	andcc	%o1, 0x7, %g0
218	ld	[%o0 + 0x0c], %f3
219	bne,pn	%icc, .Lhwunaligned
220	 ld	[%o0 + 0x10], %f4
221
222.Lhw_loop:
223	ldd	[%o1 + 0x00], %f8
224	ldd	[%o1 + 0x08], %f10
225	ldd	[%o1 + 0x10], %f12
226	ldd	[%o1 + 0x18], %f14
227	ldd	[%o1 + 0x20], %f16
228	ldd	[%o1 + 0x28], %f18
229	ldd	[%o1 + 0x30], %f20
230	subcc	%o2, 1, %o2		! done yet?
231	ldd	[%o1 + 0x38], %f22
232	add	%o1, 0x40, %o1
233	prefetch [%o1 + 63], 20
234
235	.word	0x81b02820		! SHA1
236
237	bne,pt	SIZE_T_CC, .Lhw_loop
238	nop
239
240.Lhwfinish:
241	st	%f0, [%o0 + 0x00]	! store context
242	st	%f1, [%o0 + 0x04]
243	st	%f2, [%o0 + 0x08]
244	st	%f3, [%o0 + 0x0c]
245	retl
246	st	%f4, [%o0 + 0x10]
247
248.align	8
249.Lhwunaligned:
250	alignaddr %o1, %g0, %o1
251
252	ldd	[%o1 + 0x00], %f10
253.Lhwunaligned_loop:
254	ldd	[%o1 + 0x08], %f12
255	ldd	[%o1 + 0x10], %f14
256	ldd	[%o1 + 0x18], %f16
257	ldd	[%o1 + 0x20], %f18
258	ldd	[%o1 + 0x28], %f20
259	ldd	[%o1 + 0x30], %f22
260	ldd	[%o1 + 0x38], %f24
261	subcc	%o2, 1, %o2		! done yet?
262	ldd	[%o1 + 0x40], %f26
263	add	%o1, 0x40, %o1
264	prefetch [%o1 + 63], 20
265
266	faligndata %f10, %f12, %f8
267	faligndata %f12, %f14, %f10
268	faligndata %f14, %f16, %f12
269	faligndata %f16, %f18, %f14
270	faligndata %f18, %f20, %f16
271	faligndata %f20, %f22, %f18
272	faligndata %f22, %f24, %f20
273	faligndata %f24, %f26, %f22
274
275	.word	0x81b02820		! SHA1
276
277	bne,pt	SIZE_T_CC, .Lhwunaligned_loop
278	for	%f26, %f26, %f10	! %f10=%f26
279
280	ba	.Lhwfinish
281	nop
282
283.align	16
284.Lsoftware:
285	save	%sp,-STACK_FRAME,%sp
286	sllx	$len,6,$len
287	add	$inp,$len,$len
288
289	or	%g0,1,$rot1m
290	sllx	$rot1m,32,$rot1m
291	or	$rot1m,1,$rot1m
292
293	ld	[$ctx+0],$A
294	ld	[$ctx+4],$B
295	ld	[$ctx+8],$C
296	ld	[$ctx+12],$D
297	ld	[$ctx+16],$E
298	andn	$inp,7,$tmp0
299
300	sethi	%hi(0x5a827999),$K_00_19
301	or	$K_00_19,%lo(0x5a827999),$K_00_19
302	sethi	%hi(0x6ed9eba1),$K_20_39
303	or	$K_20_39,%lo(0x6ed9eba1),$K_20_39
304	sethi	%hi(0x8f1bbcdc),$K_40_59
305	or	$K_40_59,%lo(0x8f1bbcdc),$K_40_59
306	sethi	%hi(0xca62c1d6),$K_60_79
307	or	$K_60_79,%lo(0xca62c1d6),$K_60_79
308
309.Lloop:
310	ldx	[$tmp0+0],@X[0]
311	ldx	[$tmp0+16],@X[2]
312	ldx	[$tmp0+32],@X[4]
313	ldx	[$tmp0+48],@X[6]
314	and	$inp,7,$tmp1
315	ldx	[$tmp0+8],@X[1]
316	sll	$tmp1,3,$tmp1
317	ldx	[$tmp0+24],@X[3]
318	subcc	%g0,$tmp1,$tmp2	! should be 64-$tmp1, but -$tmp1 works too
319	ldx	[$tmp0+40],@X[5]
320	bz,pt	%icc,.Laligned
321	ldx	[$tmp0+56],@X[7]
322
323	sllx	@X[0],$tmp1,@X[0]
324	ldx	[$tmp0+64],$tmp64
325___
326for($i=0;$i<7;$i++)
327{   $code.=<<___;
328	srlx	@X[$i+1],$tmp2,$Xi
329	sllx	@X[$i+1],$tmp1,@X[$i+1]
330	or	$Xi,@X[$i],@X[$i]
331___
332}
333$code.=<<___;
334	srlx	$tmp64,$tmp2,$tmp64
335	or	$tmp64,@X[7],@X[7]
336.Laligned:
337	srlx	@X[0],32,$Xi
338___
339for ($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
340for (;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
341for (;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
342for (;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
343for (;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
344$code.=<<___;
345
346	ld	[$ctx+0],@X[0]
347	ld	[$ctx+4],@X[1]
348	ld	[$ctx+8],@X[2]
349	ld	[$ctx+12],@X[3]
350	add	$inp,64,$inp
351	ld	[$ctx+16],@X[4]
352	cmp	$inp,$len
353
354	add	$A,@X[0],$A
355	st	$A,[$ctx+0]
356	add	$B,@X[1],$B
357	st	$B,[$ctx+4]
358	add	$C,@X[2],$C
359	st	$C,[$ctx+8]
360	add	$D,@X[3],$D
361	st	$D,[$ctx+12]
362	add	$E,@X[4],$E
363	st	$E,[$ctx+16]
364
365	bne	SIZE_T_CC,.Lloop
366	andn	$inp,7,$tmp0
367
368	ret
369	restore
370.type	sha1_block_data_order,#function
371.size	sha1_block_data_order,(.-sha1_block_data_order)
372.asciz	"SHA1 block transform for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
373.align	4
374___
375
376# Purpose of these subroutines is to explicitly encode VIS instructions,
377# so that one can compile the module without having to specify VIS
378# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
379# Idea is to reserve for option to produce "universal" binary and let
380# programmer detect if current CPU is VIS capable at run-time.
381sub unvis {
382my ($mnemonic,$rs1,$rs2,$rd)=@_;
383my $ref,$opf;
384my %visopf = (	"faligndata"	=> 0x048,
385		"for"		=> 0x07c	);
386
387    $ref = "$mnemonic\t$rs1,$rs2,$rd";
388
389    if ($opf=$visopf{$mnemonic}) {
390	foreach ($rs1,$rs2,$rd) {
391	    return $ref if (!/%f([0-9]{1,2})/);
392	    $_=$1;
393	    if ($1>=32) {
394		return $ref if ($1&1);
395		# re-encode for upper double register addressing
396		$_=($1|$1>>5)&31;
397	    }
398	}
399
400	return	sprintf ".word\t0x%08x !%s",
401			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
402			$ref;
403    } else {
404	return $ref;
405    }
406}
407sub unalignaddr {
408my ($mnemonic,$rs1,$rs2,$rd)=@_;
409my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
410my $ref="$mnemonic\t$rs1,$rs2,$rd";
411
412    foreach ($rs1,$rs2,$rd) {
413	if (/%([goli])([0-7])/)	{ $_=$bias{$1}+$2; }
414	else			{ return $ref; }
415    }
416    return  sprintf ".word\t0x%08x !%s",
417		    0x81b00300|$rd<<25|$rs1<<14|$rs2,
418		    $ref;
419}
420
421foreach (split("\n",$code)) {
422	s/\`([^\`]*)\`/eval $1/ge;
423
424	s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
425		&unvis($1,$2,$3,$4)
426	 /ge;
427	s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
428		&unalignaddr($1,$2,$3,$4)
429	 /ge;
430
431	print $_,"\n";
432}
433
434close STDOUT or die "error closing STDOUT: $!";
435