1#! /usr/bin/env perl
2# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23#		SHA256-hw	SHA256(*)	SHA512
24# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
25# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
26# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
27# Denver	2.01		10.5 (+26%)	6.70 (+8%)
28# X-Gene			20.0 (+100%)	12.8 (+300%(***))
29# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
30# Kryo		1.92		17.4 (+30%)	11.2 (+8%)
31#
32# (*)	Software SHA256 results are of lesser relevance, presented
33#	mostly for informational purposes.
34# (**)	The result is a trade-off: it's possible to improve it by
35#	10% (or by 1 cycle per round), but at the cost of 20% loss
36#	on Cortex-A53 (or by 4 cycles per round).
37# (***)	Super-impressive coefficients over gcc-generated code are
38#	indication of some compiler "pathology", most notably code
39#	generated with -mgeneral-regs-only is significantly faster
40#	and the gap is only 40-90%.
41#
42# October 2016.
43#
44# Originally it was reckoned that it makes no sense to implement NEON
45# version of SHA256 for 64-bit processors. This is because performance
46# improvement on most wide-spread Cortex-A5x processors was observed
47# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
48# observed that 32-bit NEON SHA256 performs significantly better than
49# 64-bit scalar version on *some* of the more recent processors. As
50# result 64-bit NEON version of SHA256 was added to provide best
51# all-round performance. For example it executes ~30% faster on X-Gene
52# and Mongoose. [For reference, NEON version of SHA512 is bound to
53# deliver much less improvement, likely *negative* on Cortex-A5x.
54# Which is why NEON support is limited to SHA256.]
55
56$output=pop;
57$flavour=pop;
58
59if ($flavour && $flavour ne "void") {
60    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
61    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
62    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
63    die "can't locate arm-xlate.pl";
64
65    open OUT,"| \"$^X\" $xlate $flavour $output";
66    *STDOUT=*OUT;
67} else {
68    open STDOUT,">$output";
69}
70
71if ($output =~ /512/) {
72	$BITS=512;
73	$SZ=8;
74	@Sigma0=(28,34,39);
75	@Sigma1=(14,18,41);
76	@sigma0=(1,  8, 7);
77	@sigma1=(19,61, 6);
78	$rounds=80;
79	$reg_t="x";
80} else {
81	$BITS=256;
82	$SZ=4;
83	@Sigma0=( 2,13,22);
84	@Sigma1=( 6,11,25);
85	@sigma0=( 7,18, 3);
86	@sigma1=(17,19,10);
87	$rounds=64;
88	$reg_t="w";
89}
90
91$func="sha${BITS}_block_data_order";
92
93($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94
95@X=map("$reg_t$_",(3..15,0..2));
96@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
97($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
98
99sub BODY_00_xx {
100my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
101my $j=($i+1)&15;
102my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
103   $T0=@X[$i+3] if ($i<11);
104
105$code.=<<___	if ($i<16);
106#ifndef	__AARCH64EB__
107	rev	@X[$i],@X[$i]			// $i
108#endif
109___
110$code.=<<___	if ($i<13 && ($i&1));
111	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
112___
113$code.=<<___	if ($i==13);
114	ldp	@X[14],@X[15],[$inp]
115___
116$code.=<<___	if ($i>=14);
117	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
118___
119$code.=<<___	if ($i>0 && $i<16);
120	add	$a,$a,$t1			// h+=Sigma0(a)
121___
122$code.=<<___	if ($i>=11);
123	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
124___
125# While ARMv8 specifies merged rotate-n-logical operation such as
126# 'eor x,y,z,ror#n', it was found to negatively affect performance
127# on Apple A7. The reason seems to be that it requires even 'y' to
128# be available earlier. This means that such merged instruction is
129# not necessarily best choice on critical path... On the other hand
130# Cortex-A5x handles merged instructions much better than disjoint
131# rotate and logical... See (**) footnote above.
132$code.=<<___	if ($i<15);
133	ror	$t0,$e,#$Sigma1[0]
134	add	$h,$h,$t2			// h+=K[i]
135	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
136	and	$t1,$f,$e
137	bic	$t2,$g,$e
138	add	$h,$h,@X[$i&15]			// h+=X[i]
139	orr	$t1,$t1,$t2			// Ch(e,f,g)
140	eor	$t2,$a,$b			// a^b, b^c in next round
141	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
142	ror	$T0,$a,#$Sigma0[0]
143	add	$h,$h,$t1			// h+=Ch(e,f,g)
144	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
145	add	$h,$h,$t0			// h+=Sigma1(e)
146	and	$t3,$t3,$t2			// (b^c)&=(a^b)
147	add	$d,$d,$h			// d+=h
148	eor	$t3,$t3,$b			// Maj(a,b,c)
149	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
150	add	$h,$h,$t3			// h+=Maj(a,b,c)
151	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
152	//add	$h,$h,$t1			// h+=Sigma0(a)
153___
154$code.=<<___	if ($i>=15);
155	ror	$t0,$e,#$Sigma1[0]
156	add	$h,$h,$t2			// h+=K[i]
157	ror	$T1,@X[($j+1)&15],#$sigma0[0]
158	and	$t1,$f,$e
159	ror	$T2,@X[($j+14)&15],#$sigma1[0]
160	bic	$t2,$g,$e
161	ror	$T0,$a,#$Sigma0[0]
162	add	$h,$h,@X[$i&15]			// h+=X[i]
163	eor	$t0,$t0,$e,ror#$Sigma1[1]
164	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
165	orr	$t1,$t1,$t2			// Ch(e,f,g)
166	eor	$t2,$a,$b			// a^b, b^c in next round
167	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
168	eor	$T0,$T0,$a,ror#$Sigma0[1]
169	add	$h,$h,$t1			// h+=Ch(e,f,g)
170	and	$t3,$t3,$t2			// (b^c)&=(a^b)
171	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
172	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
173	add	$h,$h,$t0			// h+=Sigma1(e)
174	eor	$t3,$t3,$b			// Maj(a,b,c)
175	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
176	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
177	add	@X[$j],@X[$j],@X[($j+9)&15]
178	add	$d,$d,$h			// d+=h
179	add	$h,$h,$t3			// h+=Maj(a,b,c)
180	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
181	add	@X[$j],@X[$j],$T1
182	add	$h,$h,$t1			// h+=Sigma0(a)
183	add	@X[$j],@X[$j],$T2
184___
185	($t2,$t3)=($t3,$t2);
186}
187
188$code.=<<___;
189#ifndef	__KERNEL__
190# include "arm_arch.h"
191#endif
192
193.text
194
195.extern	OPENSSL_armcap_P
196.globl	$func
197.type	$func,%function
198.align	6
199$func:
200#ifndef	__KERNEL__
201# ifdef	__ILP32__
202	ldrsw	x16,.LOPENSSL_armcap_P
203# else
204	ldr	x16,.LOPENSSL_armcap_P
205# endif
206	adr	x17,.LOPENSSL_armcap_P
207	add	x16,x16,x17
208	ldr	w16,[x16]
209___
210$code.=<<___	if ($SZ==4);
211	tst	w16,#ARMV8_SHA256
212	b.ne	.Lv8_entry
213	tst	w16,#ARMV7_NEON
214	b.ne	.Lneon_entry
215___
216$code.=<<___	if ($SZ==8);
217	tst	w16,#ARMV8_SHA512
218	b.ne	.Lv8_entry
219___
220$code.=<<___;
221#endif
222	.inst	0xd503233f				// paciasp
223	stp	x29,x30,[sp,#-128]!
224	add	x29,sp,#0
225
226	stp	x19,x20,[sp,#16]
227	stp	x21,x22,[sp,#32]
228	stp	x23,x24,[sp,#48]
229	stp	x25,x26,[sp,#64]
230	stp	x27,x28,[sp,#80]
231	sub	sp,sp,#4*$SZ
232
233	ldp	$A,$B,[$ctx]				// load context
234	ldp	$C,$D,[$ctx,#2*$SZ]
235	ldp	$E,$F,[$ctx,#4*$SZ]
236	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
237	ldp	$G,$H,[$ctx,#6*$SZ]
238	adr	$Ktbl,.LK$BITS
239	stp	$ctx,$num,[x29,#96]
240
241.Loop:
242	ldp	@X[0],@X[1],[$inp],#2*$SZ
243	ldr	$t2,[$Ktbl],#$SZ			// *K++
244	eor	$t3,$B,$C				// magic seed
245	str	$inp,[x29,#112]
246___
247for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
248$code.=".Loop_16_xx:\n";
249for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
250$code.=<<___;
251	cbnz	$t2,.Loop_16_xx
252
253	ldp	$ctx,$num,[x29,#96]
254	ldr	$inp,[x29,#112]
255	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
256
257	ldp	@X[0],@X[1],[$ctx]
258	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
259	add	$inp,$inp,#14*$SZ			// advance input pointer
260	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
261	add	$A,$A,@X[0]
262	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
263	add	$B,$B,@X[1]
264	add	$C,$C,@X[2]
265	add	$D,$D,@X[3]
266	stp	$A,$B,[$ctx]
267	add	$E,$E,@X[4]
268	add	$F,$F,@X[5]
269	stp	$C,$D,[$ctx,#2*$SZ]
270	add	$G,$G,@X[6]
271	add	$H,$H,@X[7]
272	cmp	$inp,$num
273	stp	$E,$F,[$ctx,#4*$SZ]
274	stp	$G,$H,[$ctx,#6*$SZ]
275	b.ne	.Loop
276
277	ldp	x19,x20,[x29,#16]
278	add	sp,sp,#4*$SZ
279	ldp	x21,x22,[x29,#32]
280	ldp	x23,x24,[x29,#48]
281	ldp	x25,x26,[x29,#64]
282	ldp	x27,x28,[x29,#80]
283	ldp	x29,x30,[sp],#128
284	.inst	0xd50323bf				// autiasp
285	ret
286.size	$func,.-$func
287
288.align	6
289.type	.LK$BITS,%object
290.LK$BITS:
291___
292$code.=<<___ if ($SZ==8);
293	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
294	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
295	.quad	0x3956c25bf348b538,0x59f111f1b605d019
296	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
297	.quad	0xd807aa98a3030242,0x12835b0145706fbe
298	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
299	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
300	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
301	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
302	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
303	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
304	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
305	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
306	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
307	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
308	.quad	0x06ca6351e003826f,0x142929670a0e6e70
309	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
310	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
311	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
312	.quad	0x81c2c92e47edaee6,0x92722c851482353b
313	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
314	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
315	.quad	0xd192e819d6ef5218,0xd69906245565a910
316	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
317	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
318	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
319	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
320	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
321	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
322	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
323	.quad	0x90befffa23631e28,0xa4506cebde82bde9
324	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
325	.quad	0xca273eceea26619c,0xd186b8c721c0c207
326	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
327	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
328	.quad	0x113f9804bef90dae,0x1b710b35131c471b
329	.quad	0x28db77f523047d84,0x32caab7b40c72493
330	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
331	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
332	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
333	.quad	0	// terminator
334___
335$code.=<<___ if ($SZ==4);
336	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
337	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
338	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
339	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
340	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
341	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
342	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
343	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
344	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
345	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
346	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
347	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
348	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
349	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
350	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
351	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
352	.long	0	//terminator
353___
354$code.=<<___;
355.size	.LK$BITS,.-.LK$BITS
356#ifndef	__KERNEL__
357.align	3
358.LOPENSSL_armcap_P:
359# ifdef	__ILP32__
360	.long	OPENSSL_armcap_P-.
361# else
362	.quad	OPENSSL_armcap_P-.
363# endif
364#endif
365.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
366.align	2
367___
368
369if ($SZ==4) {
370my $Ktbl="x3";
371
372my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
373my @MSG=map("v$_.16b",(4..7));
374my ($W0,$W1)=("v16.4s","v17.4s");
375my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
376
377$code.=<<___;
378#ifndef	__KERNEL__
379.type	sha256_block_armv8,%function
380.align	6
381sha256_block_armv8:
382.Lv8_entry:
383	stp		x29,x30,[sp,#-16]!
384	add		x29,sp,#0
385
386	ld1.32		{$ABCD,$EFGH},[$ctx]
387	adr		$Ktbl,.LK256
388
389.Loop_hw:
390	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
391	sub		$num,$num,#1
392	ld1.32		{$W0},[$Ktbl],#16
393	rev32		@MSG[0],@MSG[0]
394	rev32		@MSG[1],@MSG[1]
395	rev32		@MSG[2],@MSG[2]
396	rev32		@MSG[3],@MSG[3]
397	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
398	orr		$EFGH_SAVE,$EFGH,$EFGH
399___
400for($i=0;$i<12;$i++) {
401$code.=<<___;
402	ld1.32		{$W1},[$Ktbl],#16
403	add.i32		$W0,$W0,@MSG[0]
404	sha256su0	@MSG[0],@MSG[1]
405	orr		$abcd,$ABCD,$ABCD
406	sha256h		$ABCD,$EFGH,$W0
407	sha256h2	$EFGH,$abcd,$W0
408	sha256su1	@MSG[0],@MSG[2],@MSG[3]
409___
410	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
411}
412$code.=<<___;
413	ld1.32		{$W1},[$Ktbl],#16
414	add.i32		$W0,$W0,@MSG[0]
415	orr		$abcd,$ABCD,$ABCD
416	sha256h		$ABCD,$EFGH,$W0
417	sha256h2	$EFGH,$abcd,$W0
418
419	ld1.32		{$W0},[$Ktbl],#16
420	add.i32		$W1,$W1,@MSG[1]
421	orr		$abcd,$ABCD,$ABCD
422	sha256h		$ABCD,$EFGH,$W1
423	sha256h2	$EFGH,$abcd,$W1
424
425	ld1.32		{$W1},[$Ktbl]
426	add.i32		$W0,$W0,@MSG[2]
427	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
428	orr		$abcd,$ABCD,$ABCD
429	sha256h		$ABCD,$EFGH,$W0
430	sha256h2	$EFGH,$abcd,$W0
431
432	add.i32		$W1,$W1,@MSG[3]
433	orr		$abcd,$ABCD,$ABCD
434	sha256h		$ABCD,$EFGH,$W1
435	sha256h2	$EFGH,$abcd,$W1
436
437	add.i32		$ABCD,$ABCD,$ABCD_SAVE
438	add.i32		$EFGH,$EFGH,$EFGH_SAVE
439
440	cbnz		$num,.Loop_hw
441
442	st1.32		{$ABCD,$EFGH},[$ctx]
443
444	ldr		x29,[sp],#16
445	ret
446.size	sha256_block_armv8,.-sha256_block_armv8
447#endif
448___
449}
450
451if ($SZ==4) {	######################################### NEON stuff #
452# You'll surely note a lot of similarities with sha256-armv4 module,
453# and of course it's not a coincidence. sha256-armv4 was used as
454# initial template, but was adapted for ARMv8 instruction set and
455# extensively re-tuned for all-round performance.
456
457my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
458my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
459my $Ktbl="x16";
460my $Xfer="x17";
461my @X = map("q$_",(0..3));
462my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
463my $j=0;
464
465sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
466{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
467  my $arg = pop;
468    $arg = "#$arg" if ($arg*1 eq $arg);
469    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
470}
471
472sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
473sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
474sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
475
476sub Xupdate()
477{ use integer;
478  my $body = shift;
479  my @insns = (&$body,&$body,&$body,&$body);
480  my ($a,$b,$c,$d,$e,$f,$g,$h);
481
482	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
483	 eval(shift(@insns));
484	 eval(shift(@insns));
485	 eval(shift(@insns));
486	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
487	 eval(shift(@insns));
488	 eval(shift(@insns));
489	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
490	 eval(shift(@insns));
491	 eval(shift(@insns));
492	&ushr_32	($T2,$T0,$sigma0[0]);
493	 eval(shift(@insns));
494	&ushr_32	($T1,$T0,$sigma0[2]);
495	 eval(shift(@insns));
496	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
497	 eval(shift(@insns));
498	&sli_32		($T2,$T0,32-$sigma0[0]);
499	 eval(shift(@insns));
500	 eval(shift(@insns));
501	&ushr_32	($T3,$T0,$sigma0[1]);
502	 eval(shift(@insns));
503	 eval(shift(@insns));
504	&eor_8		($T1,$T1,$T2);
505	 eval(shift(@insns));
506	 eval(shift(@insns));
507	&sli_32		($T3,$T0,32-$sigma0[1]);
508	 eval(shift(@insns));
509	 eval(shift(@insns));
510	  &ushr_32	($T4,$T7,$sigma1[0]);
511	 eval(shift(@insns));
512	 eval(shift(@insns));
513	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
514	 eval(shift(@insns));
515	 eval(shift(@insns));
516	  &sli_32	($T4,$T7,32-$sigma1[0]);
517	 eval(shift(@insns));
518	 eval(shift(@insns));
519	  &ushr_32	($T5,$T7,$sigma1[2]);
520	 eval(shift(@insns));
521	 eval(shift(@insns));
522	  &ushr_32	($T3,$T7,$sigma1[1]);
523	 eval(shift(@insns));
524	 eval(shift(@insns));
525	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
526	 eval(shift(@insns));
527	 eval(shift(@insns));
528	  &sli_u32	($T3,$T7,32-$sigma1[1]);
529	 eval(shift(@insns));
530	 eval(shift(@insns));
531	  &eor_8	($T5,$T5,$T4);
532	 eval(shift(@insns));
533	 eval(shift(@insns));
534	 eval(shift(@insns));
535	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
536	 eval(shift(@insns));
537	 eval(shift(@insns));
538	 eval(shift(@insns));
539	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
540	 eval(shift(@insns));
541	 eval(shift(@insns));
542	 eval(shift(@insns));
543	  &ushr_32	($T6,@X[0],$sigma1[0]);
544	 eval(shift(@insns));
545	  &ushr_32	($T7,@X[0],$sigma1[2]);
546	 eval(shift(@insns));
547	 eval(shift(@insns));
548	  &sli_32	($T6,@X[0],32-$sigma1[0]);
549	 eval(shift(@insns));
550	  &ushr_32	($T5,@X[0],$sigma1[1]);
551	 eval(shift(@insns));
552	 eval(shift(@insns));
553	  &eor_8	($T7,$T7,$T6);
554	 eval(shift(@insns));
555	 eval(shift(@insns));
556	  &sli_32	($T5,@X[0],32-$sigma1[1]);
557	 eval(shift(@insns));
558	 eval(shift(@insns));
559	&ld1_32		("{$T0}","[$Ktbl], #16");
560	 eval(shift(@insns));
561	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
562	 eval(shift(@insns));
563	 eval(shift(@insns));
564	&eor_8		($T5,$T5,$T5);
565	 eval(shift(@insns));
566	 eval(shift(@insns));
567	&mov		(&Dhi($T5), &Dlo($T7));
568	 eval(shift(@insns));
569	 eval(shift(@insns));
570	 eval(shift(@insns));
571	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
572	 eval(shift(@insns));
573	 eval(shift(@insns));
574	 eval(shift(@insns));
575	&add_32		($T0,$T0,@X[0]);
576	 while($#insns>=1) { eval(shift(@insns)); }
577	&st1_32		("{$T0}","[$Xfer], #16");
578	 eval(shift(@insns));
579
580	push(@X,shift(@X));		# "rotate" X[]
581}
582
583sub Xpreload()
584{ use integer;
585  my $body = shift;
586  my @insns = (&$body,&$body,&$body,&$body);
587  my ($a,$b,$c,$d,$e,$f,$g,$h);
588
589	 eval(shift(@insns));
590	 eval(shift(@insns));
591	&ld1_8		("{@X[0]}","[$inp],#16");
592	 eval(shift(@insns));
593	 eval(shift(@insns));
594	&ld1_32		("{$T0}","[$Ktbl],#16");
595	 eval(shift(@insns));
596	 eval(shift(@insns));
597	 eval(shift(@insns));
598	 eval(shift(@insns));
599	&rev32		(@X[0],@X[0]);
600	 eval(shift(@insns));
601	 eval(shift(@insns));
602	 eval(shift(@insns));
603	 eval(shift(@insns));
604	&add_32		($T0,$T0,@X[0]);
605	 foreach (@insns) { eval; }	# remaining instructions
606	&st1_32		("{$T0}","[$Xfer], #16");
607
608	push(@X,shift(@X));		# "rotate" X[]
609}
610
611sub body_00_15 () {
612	(
613	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
614	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
615	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
616	'&and	($t1,$f,$e)',
617	'&bic	($t4,$g,$e)',
618	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
619	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
620	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
621	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
622	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
623	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
624	'&ror	($t0,$t0,"#$Sigma1[0]")',
625	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
626	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
627	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
628	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
629	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
630	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
631	'&ror	($t4,$t4,"#$Sigma0[0]")',
632	'&add	($d,$d,$h)',			# d+=h
633	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
634	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
635	)
636}
637
638$code.=<<___;
639#ifdef	__KERNEL__
640.globl	sha256_block_neon
641#endif
642.type	sha256_block_neon,%function
643.align	4
644sha256_block_neon:
645.Lneon_entry:
646	stp	x29, x30, [sp, #-16]!
647	mov	x29, sp
648	sub	sp,sp,#16*4
649
650	adr	$Ktbl,.LK256
651	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
652
653	ld1.8	{@X[0]},[$inp], #16
654	ld1.8	{@X[1]},[$inp], #16
655	ld1.8	{@X[2]},[$inp], #16
656	ld1.8	{@X[3]},[$inp], #16
657	ld1.32	{$T0},[$Ktbl], #16
658	ld1.32	{$T1},[$Ktbl], #16
659	ld1.32	{$T2},[$Ktbl], #16
660	ld1.32	{$T3},[$Ktbl], #16
661	rev32	@X[0],@X[0]		// yes, even on
662	rev32	@X[1],@X[1]		// big-endian
663	rev32	@X[2],@X[2]
664	rev32	@X[3],@X[3]
665	mov	$Xfer,sp
666	add.32	$T0,$T0,@X[0]
667	add.32	$T1,$T1,@X[1]
668	add.32	$T2,$T2,@X[2]
669	st1.32	{$T0-$T1},[$Xfer], #32
670	add.32	$T3,$T3,@X[3]
671	st1.32	{$T2-$T3},[$Xfer]
672	sub	$Xfer,$Xfer,#32
673
674	ldp	$A,$B,[$ctx]
675	ldp	$C,$D,[$ctx,#8]
676	ldp	$E,$F,[$ctx,#16]
677	ldp	$G,$H,[$ctx,#24]
678	ldr	$t1,[sp,#0]
679	mov	$t2,wzr
680	eor	$t3,$B,$C
681	mov	$t4,wzr
682	b	.L_00_48
683
684.align	4
685.L_00_48:
686___
687	&Xupdate(\&body_00_15);
688	&Xupdate(\&body_00_15);
689	&Xupdate(\&body_00_15);
690	&Xupdate(\&body_00_15);
691$code.=<<___;
692	cmp	$t1,#0				// check for K256 terminator
693	ldr	$t1,[sp,#0]
694	sub	$Xfer,$Xfer,#64
695	bne	.L_00_48
696
697	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
698	cmp	$inp,$num
699	mov	$Xfer, #64
700	csel	$Xfer, $Xfer, xzr, eq
701	sub	$inp,$inp,$Xfer			// avoid SEGV
702	mov	$Xfer,sp
703___
704	&Xpreload(\&body_00_15);
705	&Xpreload(\&body_00_15);
706	&Xpreload(\&body_00_15);
707	&Xpreload(\&body_00_15);
708$code.=<<___;
709	add	$A,$A,$t4			// h+=Sigma0(a) from the past
710	ldp	$t0,$t1,[$ctx,#0]
711	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
712	ldp	$t2,$t3,[$ctx,#8]
713	add	$A,$A,$t0			// accumulate
714	add	$B,$B,$t1
715	ldp	$t0,$t1,[$ctx,#16]
716	add	$C,$C,$t2
717	add	$D,$D,$t3
718	ldp	$t2,$t3,[$ctx,#24]
719	add	$E,$E,$t0
720	add	$F,$F,$t1
721	 ldr	$t1,[sp,#0]
722	stp	$A,$B,[$ctx,#0]
723	add	$G,$G,$t2
724	 mov	$t2,wzr
725	stp	$C,$D,[$ctx,#8]
726	add	$H,$H,$t3
727	stp	$E,$F,[$ctx,#16]
728	 eor	$t3,$B,$C
729	stp	$G,$H,[$ctx,#24]
730	 mov	$t4,wzr
731	 mov	$Xfer,sp
732	b.ne	.L_00_48
733
734	ldr	x29,[x29]
735	add	sp,sp,#16*4+16
736	ret
737.size	sha256_block_neon,.-sha256_block_neon
738___
739}
740
741if ($SZ==8) {
742my $Ktbl="x3";
743
744my @H = map("v$_.16b",(0..4));
745my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
746my @MSG=map("v$_.16b",(16..23));
747my ($W0,$W1)=("v24.2d","v25.2d");
748my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
749
750$code.=<<___;
751#ifndef	__KERNEL__
752.type	sha512_block_armv8,%function
753.align	6
754sha512_block_armv8:
755.Lv8_entry:
756	stp		x29,x30,[sp,#-16]!
757	add		x29,sp,#0
758
759	ld1		{@MSG[0]-@MSG[3]},[$inp],#64	// load input
760	ld1		{@MSG[4]-@MSG[7]},[$inp],#64
761
762	ld1.64		{@H[0]-@H[3]},[$ctx]		// load context
763	adr		$Ktbl,.LK512
764
765	rev64		@MSG[0],@MSG[0]
766	rev64		@MSG[1],@MSG[1]
767	rev64		@MSG[2],@MSG[2]
768	rev64		@MSG[3],@MSG[3]
769	rev64		@MSG[4],@MSG[4]
770	rev64		@MSG[5],@MSG[5]
771	rev64		@MSG[6],@MSG[6]
772	rev64		@MSG[7],@MSG[7]
773	b		.Loop_hw
774
775.align	4
776.Loop_hw:
777	ld1.64		{$W0},[$Ktbl],#16
778	subs		$num,$num,#1
779	sub		x4,$inp,#128
780	orr		$AB,@H[0],@H[0]			// offload
781	orr		$CD,@H[1],@H[1]
782	orr		$EF,@H[2],@H[2]
783	orr		$GH,@H[3],@H[3]
784	csel		$inp,$inp,x4,ne			// conditional rewind
785___
786for($i=0;$i<32;$i++) {
787$code.=<<___;
788	add.i64		$W0,$W0,@MSG[0]
789	ld1.64		{$W1},[$Ktbl],#16
790	ext		$W0,$W0,$W0,#8
791	ext		$fg,@H[2],@H[3],#8
792	ext		$de,@H[1],@H[2],#8
793	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
794	 sha512su0	@MSG[0],@MSG[1]
795	 ext		$m9_10,@MSG[4],@MSG[5],#8
796	sha512h		@H[3],$fg,$de
797	 sha512su1	@MSG[0],@MSG[7],$m9_10
798	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
799	sha512h2	@H[3],$H[1],@H[0]
800___
801	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
802	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
803}
804for(;$i<40;$i++) {
805$code.=<<___	if ($i<39);
806	ld1.64		{$W1},[$Ktbl],#16
807___
808$code.=<<___	if ($i==39);
809	sub		$Ktbl,$Ktbl,#$rounds*$SZ	// rewind
810___
811$code.=<<___;
812	add.i64		$W0,$W0,@MSG[0]
813	 ld1		{@MSG[0]},[$inp],#16		// load next input
814	ext		$W0,$W0,$W0,#8
815	ext		$fg,@H[2],@H[3],#8
816	ext		$de,@H[1],@H[2],#8
817	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
818	sha512h		@H[3],$fg,$de
819	 rev64		@MSG[0],@MSG[0]
820	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
821	sha512h2	@H[3],$H[1],@H[0]
822___
823	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
824	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
825}
826$code.=<<___;
827	add.i64		@H[0],@H[0],$AB			// accumulate
828	add.i64		@H[1],@H[1],$CD
829	add.i64		@H[2],@H[2],$EF
830	add.i64		@H[3],@H[3],$GH
831
832	cbnz		$num,.Loop_hw
833
834	st1.64		{@H[0]-@H[3]},[$ctx]		// store context
835
836	ldr		x29,[sp],#16
837	ret
838.size	sha512_block_armv8,.-sha512_block_armv8
839#endif
840___
841}
842
843$code.=<<___;
844#ifndef	__KERNEL__
845.comm	OPENSSL_armcap_P,4,4
846#endif
847___
848
849{   my  %opcode = (
850	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
851	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
852
853    sub unsha256 {
854	my ($mnemonic,$arg)=@_;
855
856	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
857	&&
858	sprintf ".inst\t0x%08x\t//%s %s",
859			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
860			$mnemonic,$arg;
861    }
862}
863
864{   my  %opcode = (
865	"sha512h"	=> 0xce608000,	"sha512h2"	=> 0xce608400,
866	"sha512su0"	=> 0xcec08000,	"sha512su1"	=> 0xce608800	);
867
868    sub unsha512 {
869	my ($mnemonic,$arg)=@_;
870
871	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
872	&&
873	sprintf ".inst\t0x%08x\t//%s %s",
874			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
875			$mnemonic,$arg;
876    }
877}
878
879open SELF,$0;
880while(<SELF>) {
881        next if (/^#!/);
882        last if (!s/^#/\/\// and !/^$/);
883        print;
884}
885close SELF;
886
887foreach(split("\n",$code)) {
888
889	s/\`([^\`]*)\`/eval($1)/ge;
890
891	s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge	or
892	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
893
894	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
895
896	s/\.[ui]?8(\s)/$1/;
897	s/\.\w?64\b//		and s/\.16b/\.2d/g	or
898	s/\.\w?32\b//		and s/\.16b/\.4s/g;
899	m/\bext\b/		and s/\.2d/\.16b/g	or
900	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
901
902	print $_,"\n";
903}
904
905close STDOUT or die "error closing STDOUT: $!";
906