1#! /usr/bin/env perl
2# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23#		SHA256-hw	SHA256(*)	SHA512
24# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
25# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
26# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
27# Denver	2.01		10.5 (+26%)	6.70 (+8%)
28# X-Gene			20.0 (+100%)	12.8 (+300%(***))
29# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
30# Kryo		1.92		17.4 (+30%)	11.2 (+8%)
31#
32# (*)	Software SHA256 results are of lesser relevance, presented
33#	mostly for informational purposes.
34# (**)	The result is a trade-off: it's possible to improve it by
35#	10% (or by 1 cycle per round), but at the cost of 20% loss
36#	on Cortex-A53 (or by 4 cycles per round).
37# (***)	Super-impressive coefficients over gcc-generated code are
38#	indication of some compiler "pathology", most notably code
39#	generated with -mgeneral-regs-only is significantly faster
40#	and the gap is only 40-90%.
41#
42# October 2016.
43#
44# Originally it was reckoned that it makes no sense to implement NEON
45# version of SHA256 for 64-bit processors. This is because performance
46# improvement on most wide-spread Cortex-A5x processors was observed
47# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
48# observed that 32-bit NEON SHA256 performs significantly better than
49# 64-bit scalar version on *some* of the more recent processors. As
50# result 64-bit NEON version of SHA256 was added to provide best
51# all-round performance. For example it executes ~30% faster on X-Gene
52# and Mongoose. [For reference, NEON version of SHA512 is bound to
53# deliver much less improvement, likely *negative* on Cortex-A5x.
54# Which is why NEON support is limited to SHA256.]
55
56$output=pop;
57$flavour=pop;
58
59if ($flavour && $flavour ne "void") {
60    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
61    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
62    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
63    die "can't locate arm-xlate.pl";
64
65    open OUT,"| \"$^X\" $xlate $flavour $output";
66    *STDOUT=*OUT;
67} else {
68    open STDOUT,">$output";
69}
70
71if ($output =~ /512/) {
72	$BITS=512;
73	$SZ=8;
74	@Sigma0=(28,34,39);
75	@Sigma1=(14,18,41);
76	@sigma0=(1,  8, 7);
77	@sigma1=(19,61, 6);
78	$rounds=80;
79	$reg_t="x";
80} else {
81	$BITS=256;
82	$SZ=4;
83	@Sigma0=( 2,13,22);
84	@Sigma1=( 6,11,25);
85	@sigma0=( 7,18, 3);
86	@sigma1=(17,19,10);
87	$rounds=64;
88	$reg_t="w";
89}
90
91$func="sha${BITS}_block_data_order";
92
93($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94
95@X=map("$reg_t$_",(3..15,0..2));
96@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
97($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
98
99sub BODY_00_xx {
100my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
101my $j=($i+1)&15;
102my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
103   $T0=@X[$i+3] if ($i<11);
104
105$code.=<<___	if ($i<16);
106#ifndef	__AARCH64EB__
107	rev	@X[$i],@X[$i]			// $i
108#endif
109___
110$code.=<<___	if ($i<13 && ($i&1));
111	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
112___
113$code.=<<___	if ($i==13);
114	ldp	@X[14],@X[15],[$inp]
115___
116$code.=<<___	if ($i>=14);
117	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
118___
119$code.=<<___	if ($i>0 && $i<16);
120	add	$a,$a,$t1			// h+=Sigma0(a)
121___
122$code.=<<___	if ($i>=11);
123	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
124___
125# While ARMv8 specifies merged rotate-n-logical operation such as
126# 'eor x,y,z,ror#n', it was found to negatively affect performance
127# on Apple A7. The reason seems to be that it requires even 'y' to
128# be available earlier. This means that such merged instruction is
129# not necessarily best choice on critical path... On the other hand
130# Cortex-A5x handles merged instructions much better than disjoint
131# rotate and logical... See (**) footnote above.
132$code.=<<___	if ($i<15);
133	ror	$t0,$e,#$Sigma1[0]
134	add	$h,$h,$t2			// h+=K[i]
135	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
136	and	$t1,$f,$e
137	bic	$t2,$g,$e
138	add	$h,$h,@X[$i&15]			// h+=X[i]
139	orr	$t1,$t1,$t2			// Ch(e,f,g)
140	eor	$t2,$a,$b			// a^b, b^c in next round
141	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
142	ror	$T0,$a,#$Sigma0[0]
143	add	$h,$h,$t1			// h+=Ch(e,f,g)
144	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
145	add	$h,$h,$t0			// h+=Sigma1(e)
146	and	$t3,$t3,$t2			// (b^c)&=(a^b)
147	add	$d,$d,$h			// d+=h
148	eor	$t3,$t3,$b			// Maj(a,b,c)
149	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
150	add	$h,$h,$t3			// h+=Maj(a,b,c)
151	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
152	//add	$h,$h,$t1			// h+=Sigma0(a)
153___
154$code.=<<___	if ($i>=15);
155	ror	$t0,$e,#$Sigma1[0]
156	add	$h,$h,$t2			// h+=K[i]
157	ror	$T1,@X[($j+1)&15],#$sigma0[0]
158	and	$t1,$f,$e
159	ror	$T2,@X[($j+14)&15],#$sigma1[0]
160	bic	$t2,$g,$e
161	ror	$T0,$a,#$Sigma0[0]
162	add	$h,$h,@X[$i&15]			// h+=X[i]
163	eor	$t0,$t0,$e,ror#$Sigma1[1]
164	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
165	orr	$t1,$t1,$t2			// Ch(e,f,g)
166	eor	$t2,$a,$b			// a^b, b^c in next round
167	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
168	eor	$T0,$T0,$a,ror#$Sigma0[1]
169	add	$h,$h,$t1			// h+=Ch(e,f,g)
170	and	$t3,$t3,$t2			// (b^c)&=(a^b)
171	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
172	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
173	add	$h,$h,$t0			// h+=Sigma1(e)
174	eor	$t3,$t3,$b			// Maj(a,b,c)
175	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
176	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
177	add	@X[$j],@X[$j],@X[($j+9)&15]
178	add	$d,$d,$h			// d+=h
179	add	$h,$h,$t3			// h+=Maj(a,b,c)
180	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
181	add	@X[$j],@X[$j],$T1
182	add	$h,$h,$t1			// h+=Sigma0(a)
183	add	@X[$j],@X[$j],$T2
184___
185	($t2,$t3)=($t3,$t2);
186}
187
188$code.=<<___;
189#ifndef	__KERNEL__
190# include "arm_arch.h"
191#endif
192
193.text
194
195.extern	OPENSSL_armcap_P
196.globl	$func
197.type	$func,%function
198.align	6
199$func:
200#ifndef	__KERNEL__
201# ifdef	__ILP32__
202	ldrsw	x16,.LOPENSSL_armcap_P
203# else
204	ldr	x16,.LOPENSSL_armcap_P
205# endif
206	adr	x17,.LOPENSSL_armcap_P
207	add	x16,x16,x17
208	ldr	w16,[x16]
209___
210$code.=<<___	if ($SZ==4);
211	tst	w16,#ARMV8_SHA256
212	b.ne	.Lv8_entry
213	tst	w16,#ARMV7_NEON
214	b.ne	.Lneon_entry
215___
216$code.=<<___	if ($SZ==8);
217	tst	w16,#ARMV8_SHA512
218	b.ne	.Lv8_entry
219___
220$code.=<<___;
221#endif
222	stp	x29,x30,[sp,#-128]!
223	add	x29,sp,#0
224
225	stp	x19,x20,[sp,#16]
226	stp	x21,x22,[sp,#32]
227	stp	x23,x24,[sp,#48]
228	stp	x25,x26,[sp,#64]
229	stp	x27,x28,[sp,#80]
230	sub	sp,sp,#4*$SZ
231
232	ldp	$A,$B,[$ctx]				// load context
233	ldp	$C,$D,[$ctx,#2*$SZ]
234	ldp	$E,$F,[$ctx,#4*$SZ]
235	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
236	ldp	$G,$H,[$ctx,#6*$SZ]
237	adr	$Ktbl,.LK$BITS
238	stp	$ctx,$num,[x29,#96]
239
240.Loop:
241	ldp	@X[0],@X[1],[$inp],#2*$SZ
242	ldr	$t2,[$Ktbl],#$SZ			// *K++
243	eor	$t3,$B,$C				// magic seed
244	str	$inp,[x29,#112]
245___
246for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
247$code.=".Loop_16_xx:\n";
248for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
249$code.=<<___;
250	cbnz	$t2,.Loop_16_xx
251
252	ldp	$ctx,$num,[x29,#96]
253	ldr	$inp,[x29,#112]
254	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
255
256	ldp	@X[0],@X[1],[$ctx]
257	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
258	add	$inp,$inp,#14*$SZ			// advance input pointer
259	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
260	add	$A,$A,@X[0]
261	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
262	add	$B,$B,@X[1]
263	add	$C,$C,@X[2]
264	add	$D,$D,@X[3]
265	stp	$A,$B,[$ctx]
266	add	$E,$E,@X[4]
267	add	$F,$F,@X[5]
268	stp	$C,$D,[$ctx,#2*$SZ]
269	add	$G,$G,@X[6]
270	add	$H,$H,@X[7]
271	cmp	$inp,$num
272	stp	$E,$F,[$ctx,#4*$SZ]
273	stp	$G,$H,[$ctx,#6*$SZ]
274	b.ne	.Loop
275
276	ldp	x19,x20,[x29,#16]
277	add	sp,sp,#4*$SZ
278	ldp	x21,x22,[x29,#32]
279	ldp	x23,x24,[x29,#48]
280	ldp	x25,x26,[x29,#64]
281	ldp	x27,x28,[x29,#80]
282	ldp	x29,x30,[sp],#128
283	ret
284.size	$func,.-$func
285
286.align	6
287.type	.LK$BITS,%object
288.LK$BITS:
289___
290$code.=<<___ if ($SZ==8);
291	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
292	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
293	.quad	0x3956c25bf348b538,0x59f111f1b605d019
294	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
295	.quad	0xd807aa98a3030242,0x12835b0145706fbe
296	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
297	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
298	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
299	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
300	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
301	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
302	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
303	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
304	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
305	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
306	.quad	0x06ca6351e003826f,0x142929670a0e6e70
307	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
308	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
309	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
310	.quad	0x81c2c92e47edaee6,0x92722c851482353b
311	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
312	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
313	.quad	0xd192e819d6ef5218,0xd69906245565a910
314	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
315	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
316	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
317	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
318	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
319	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
320	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
321	.quad	0x90befffa23631e28,0xa4506cebde82bde9
322	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
323	.quad	0xca273eceea26619c,0xd186b8c721c0c207
324	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
325	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
326	.quad	0x113f9804bef90dae,0x1b710b35131c471b
327	.quad	0x28db77f523047d84,0x32caab7b40c72493
328	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
329	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
330	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
331	.quad	0	// terminator
332___
333$code.=<<___ if ($SZ==4);
334	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
335	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
336	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
337	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
338	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
339	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
340	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
341	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
342	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
343	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
344	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
345	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
346	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
347	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
348	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
349	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
350	.long	0	//terminator
351___
352$code.=<<___;
353.size	.LK$BITS,.-.LK$BITS
354#ifndef	__KERNEL__
355.align	3
356.LOPENSSL_armcap_P:
357# ifdef	__ILP32__
358	.long	OPENSSL_armcap_P-.
359# else
360	.quad	OPENSSL_armcap_P-.
361# endif
362#endif
363.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
364.align	2
365___
366
367if ($SZ==4) {
368my $Ktbl="x3";
369
370my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
371my @MSG=map("v$_.16b",(4..7));
372my ($W0,$W1)=("v16.4s","v17.4s");
373my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
374
375$code.=<<___;
376#ifndef	__KERNEL__
377.type	sha256_block_armv8,%function
378.align	6
379sha256_block_armv8:
380.Lv8_entry:
381	stp		x29,x30,[sp,#-16]!
382	add		x29,sp,#0
383
384	ld1.32		{$ABCD,$EFGH},[$ctx]
385	adr		$Ktbl,.LK256
386
387.Loop_hw:
388	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
389	sub		$num,$num,#1
390	ld1.32		{$W0},[$Ktbl],#16
391	rev32		@MSG[0],@MSG[0]
392	rev32		@MSG[1],@MSG[1]
393	rev32		@MSG[2],@MSG[2]
394	rev32		@MSG[3],@MSG[3]
395	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
396	orr		$EFGH_SAVE,$EFGH,$EFGH
397___
398for($i=0;$i<12;$i++) {
399$code.=<<___;
400	ld1.32		{$W1},[$Ktbl],#16
401	add.i32		$W0,$W0,@MSG[0]
402	sha256su0	@MSG[0],@MSG[1]
403	orr		$abcd,$ABCD,$ABCD
404	sha256h		$ABCD,$EFGH,$W0
405	sha256h2	$EFGH,$abcd,$W0
406	sha256su1	@MSG[0],@MSG[2],@MSG[3]
407___
408	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
409}
410$code.=<<___;
411	ld1.32		{$W1},[$Ktbl],#16
412	add.i32		$W0,$W0,@MSG[0]
413	orr		$abcd,$ABCD,$ABCD
414	sha256h		$ABCD,$EFGH,$W0
415	sha256h2	$EFGH,$abcd,$W0
416
417	ld1.32		{$W0},[$Ktbl],#16
418	add.i32		$W1,$W1,@MSG[1]
419	orr		$abcd,$ABCD,$ABCD
420	sha256h		$ABCD,$EFGH,$W1
421	sha256h2	$EFGH,$abcd,$W1
422
423	ld1.32		{$W1},[$Ktbl]
424	add.i32		$W0,$W0,@MSG[2]
425	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
426	orr		$abcd,$ABCD,$ABCD
427	sha256h		$ABCD,$EFGH,$W0
428	sha256h2	$EFGH,$abcd,$W0
429
430	add.i32		$W1,$W1,@MSG[3]
431	orr		$abcd,$ABCD,$ABCD
432	sha256h		$ABCD,$EFGH,$W1
433	sha256h2	$EFGH,$abcd,$W1
434
435	add.i32		$ABCD,$ABCD,$ABCD_SAVE
436	add.i32		$EFGH,$EFGH,$EFGH_SAVE
437
438	cbnz		$num,.Loop_hw
439
440	st1.32		{$ABCD,$EFGH},[$ctx]
441
442	ldr		x29,[sp],#16
443	ret
444.size	sha256_block_armv8,.-sha256_block_armv8
445#endif
446___
447}
448
449if ($SZ==4) {	######################################### NEON stuff #
450# You'll surely note a lot of similarities with sha256-armv4 module,
451# and of course it's not a coincidence. sha256-armv4 was used as
452# initial template, but was adapted for ARMv8 instruction set and
453# extensively re-tuned for all-round performance.
454
455my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
456my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
457my $Ktbl="x16";
458my $Xfer="x17";
459my @X = map("q$_",(0..3));
460my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
461my $j=0;
462
463sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
464{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
465  my $arg = pop;
466    $arg = "#$arg" if ($arg*1 eq $arg);
467    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
468}
469
470sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
471sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
472sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
473
474sub Xupdate()
475{ use integer;
476  my $body = shift;
477  my @insns = (&$body,&$body,&$body,&$body);
478  my ($a,$b,$c,$d,$e,$f,$g,$h);
479
480	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
481	 eval(shift(@insns));
482	 eval(shift(@insns));
483	 eval(shift(@insns));
484	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
485	 eval(shift(@insns));
486	 eval(shift(@insns));
487	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
488	 eval(shift(@insns));
489	 eval(shift(@insns));
490	&ushr_32	($T2,$T0,$sigma0[0]);
491	 eval(shift(@insns));
492	&ushr_32	($T1,$T0,$sigma0[2]);
493	 eval(shift(@insns));
494	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
495	 eval(shift(@insns));
496	&sli_32		($T2,$T0,32-$sigma0[0]);
497	 eval(shift(@insns));
498	 eval(shift(@insns));
499	&ushr_32	($T3,$T0,$sigma0[1]);
500	 eval(shift(@insns));
501	 eval(shift(@insns));
502	&eor_8		($T1,$T1,$T2);
503	 eval(shift(@insns));
504	 eval(shift(@insns));
505	&sli_32		($T3,$T0,32-$sigma0[1]);
506	 eval(shift(@insns));
507	 eval(shift(@insns));
508	  &ushr_32	($T4,$T7,$sigma1[0]);
509	 eval(shift(@insns));
510	 eval(shift(@insns));
511	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
512	 eval(shift(@insns));
513	 eval(shift(@insns));
514	  &sli_32	($T4,$T7,32-$sigma1[0]);
515	 eval(shift(@insns));
516	 eval(shift(@insns));
517	  &ushr_32	($T5,$T7,$sigma1[2]);
518	 eval(shift(@insns));
519	 eval(shift(@insns));
520	  &ushr_32	($T3,$T7,$sigma1[1]);
521	 eval(shift(@insns));
522	 eval(shift(@insns));
523	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
524	 eval(shift(@insns));
525	 eval(shift(@insns));
526	  &sli_u32	($T3,$T7,32-$sigma1[1]);
527	 eval(shift(@insns));
528	 eval(shift(@insns));
529	  &eor_8	($T5,$T5,$T4);
530	 eval(shift(@insns));
531	 eval(shift(@insns));
532	 eval(shift(@insns));
533	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
534	 eval(shift(@insns));
535	 eval(shift(@insns));
536	 eval(shift(@insns));
537	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
538	 eval(shift(@insns));
539	 eval(shift(@insns));
540	 eval(shift(@insns));
541	  &ushr_32	($T6,@X[0],$sigma1[0]);
542	 eval(shift(@insns));
543	  &ushr_32	($T7,@X[0],$sigma1[2]);
544	 eval(shift(@insns));
545	 eval(shift(@insns));
546	  &sli_32	($T6,@X[0],32-$sigma1[0]);
547	 eval(shift(@insns));
548	  &ushr_32	($T5,@X[0],$sigma1[1]);
549	 eval(shift(@insns));
550	 eval(shift(@insns));
551	  &eor_8	($T7,$T7,$T6);
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554	  &sli_32	($T5,@X[0],32-$sigma1[1]);
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557	&ld1_32		("{$T0}","[$Ktbl], #16");
558	 eval(shift(@insns));
559	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
560	 eval(shift(@insns));
561	 eval(shift(@insns));
562	&eor_8		($T5,$T5,$T5);
563	 eval(shift(@insns));
564	 eval(shift(@insns));
565	&mov		(&Dhi($T5), &Dlo($T7));
566	 eval(shift(@insns));
567	 eval(shift(@insns));
568	 eval(shift(@insns));
569	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
570	 eval(shift(@insns));
571	 eval(shift(@insns));
572	 eval(shift(@insns));
573	&add_32		($T0,$T0,@X[0]);
574	 while($#insns>=1) { eval(shift(@insns)); }
575	&st1_32		("{$T0}","[$Xfer], #16");
576	 eval(shift(@insns));
577
578	push(@X,shift(@X));		# "rotate" X[]
579}
580
581sub Xpreload()
582{ use integer;
583  my $body = shift;
584  my @insns = (&$body,&$body,&$body,&$body);
585  my ($a,$b,$c,$d,$e,$f,$g,$h);
586
587	 eval(shift(@insns));
588	 eval(shift(@insns));
589	&ld1_8		("{@X[0]}","[$inp],#16");
590	 eval(shift(@insns));
591	 eval(shift(@insns));
592	&ld1_32		("{$T0}","[$Ktbl],#16");
593	 eval(shift(@insns));
594	 eval(shift(@insns));
595	 eval(shift(@insns));
596	 eval(shift(@insns));
597	&rev32		(@X[0],@X[0]);
598	 eval(shift(@insns));
599	 eval(shift(@insns));
600	 eval(shift(@insns));
601	 eval(shift(@insns));
602	&add_32		($T0,$T0,@X[0]);
603	 foreach (@insns) { eval; }	# remaining instructions
604	&st1_32		("{$T0}","[$Xfer], #16");
605
606	push(@X,shift(@X));		# "rotate" X[]
607}
608
609sub body_00_15 () {
610	(
611	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
612	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
613	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
614	'&and	($t1,$f,$e)',
615	'&bic	($t4,$g,$e)',
616	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
617	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
618	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
619	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
620	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
621	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
622	'&ror	($t0,$t0,"#$Sigma1[0]")',
623	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
624	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
625	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
626	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
627	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
628	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
629	'&ror	($t4,$t4,"#$Sigma0[0]")',
630	'&add	($d,$d,$h)',			# d+=h
631	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
632	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
633	)
634}
635
636$code.=<<___;
637#ifdef	__KERNEL__
638.globl	sha256_block_neon
639#endif
640.type	sha256_block_neon,%function
641.align	4
642sha256_block_neon:
643.Lneon_entry:
644	stp	x29, x30, [sp, #-16]!
645	mov	x29, sp
646	sub	sp,sp,#16*4
647
648	adr	$Ktbl,.LK256
649	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
650
651	ld1.8	{@X[0]},[$inp], #16
652	ld1.8	{@X[1]},[$inp], #16
653	ld1.8	{@X[2]},[$inp], #16
654	ld1.8	{@X[3]},[$inp], #16
655	ld1.32	{$T0},[$Ktbl], #16
656	ld1.32	{$T1},[$Ktbl], #16
657	ld1.32	{$T2},[$Ktbl], #16
658	ld1.32	{$T3},[$Ktbl], #16
659	rev32	@X[0],@X[0]		// yes, even on
660	rev32	@X[1],@X[1]		// big-endian
661	rev32	@X[2],@X[2]
662	rev32	@X[3],@X[3]
663	mov	$Xfer,sp
664	add.32	$T0,$T0,@X[0]
665	add.32	$T1,$T1,@X[1]
666	add.32	$T2,$T2,@X[2]
667	st1.32	{$T0-$T1},[$Xfer], #32
668	add.32	$T3,$T3,@X[3]
669	st1.32	{$T2-$T3},[$Xfer]
670	sub	$Xfer,$Xfer,#32
671
672	ldp	$A,$B,[$ctx]
673	ldp	$C,$D,[$ctx,#8]
674	ldp	$E,$F,[$ctx,#16]
675	ldp	$G,$H,[$ctx,#24]
676	ldr	$t1,[sp,#0]
677	mov	$t2,wzr
678	eor	$t3,$B,$C
679	mov	$t4,wzr
680	b	.L_00_48
681
682.align	4
683.L_00_48:
684___
685	&Xupdate(\&body_00_15);
686	&Xupdate(\&body_00_15);
687	&Xupdate(\&body_00_15);
688	&Xupdate(\&body_00_15);
689$code.=<<___;
690	cmp	$t1,#0				// check for K256 terminator
691	ldr	$t1,[sp,#0]
692	sub	$Xfer,$Xfer,#64
693	bne	.L_00_48
694
695	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
696	cmp	$inp,$num
697	mov	$Xfer, #64
698	csel	$Xfer, $Xfer, xzr, eq
699	sub	$inp,$inp,$Xfer			// avoid SEGV
700	mov	$Xfer,sp
701___
702	&Xpreload(\&body_00_15);
703	&Xpreload(\&body_00_15);
704	&Xpreload(\&body_00_15);
705	&Xpreload(\&body_00_15);
706$code.=<<___;
707	add	$A,$A,$t4			// h+=Sigma0(a) from the past
708	ldp	$t0,$t1,[$ctx,#0]
709	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
710	ldp	$t2,$t3,[$ctx,#8]
711	add	$A,$A,$t0			// accumulate
712	add	$B,$B,$t1
713	ldp	$t0,$t1,[$ctx,#16]
714	add	$C,$C,$t2
715	add	$D,$D,$t3
716	ldp	$t2,$t3,[$ctx,#24]
717	add	$E,$E,$t0
718	add	$F,$F,$t1
719	 ldr	$t1,[sp,#0]
720	stp	$A,$B,[$ctx,#0]
721	add	$G,$G,$t2
722	 mov	$t2,wzr
723	stp	$C,$D,[$ctx,#8]
724	add	$H,$H,$t3
725	stp	$E,$F,[$ctx,#16]
726	 eor	$t3,$B,$C
727	stp	$G,$H,[$ctx,#24]
728	 mov	$t4,wzr
729	 mov	$Xfer,sp
730	b.ne	.L_00_48
731
732	ldr	x29,[x29]
733	add	sp,sp,#16*4+16
734	ret
735.size	sha256_block_neon,.-sha256_block_neon
736___
737}
738
739if ($SZ==8) {
740my $Ktbl="x3";
741
742my @H = map("v$_.16b",(0..4));
743my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
744my @MSG=map("v$_.16b",(16..23));
745my ($W0,$W1)=("v24.2d","v25.2d");
746my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
747
748$code.=<<___;
749#ifndef	__KERNEL__
750.type	sha512_block_armv8,%function
751.align	6
752sha512_block_armv8:
753.Lv8_entry:
754	stp		x29,x30,[sp,#-16]!
755	add		x29,sp,#0
756
757	ld1		{@MSG[0]-@MSG[3]},[$inp],#64	// load input
758	ld1		{@MSG[4]-@MSG[7]},[$inp],#64
759
760	ld1.64		{@H[0]-@H[3]},[$ctx]		// load context
761	adr		$Ktbl,.LK512
762
763	rev64		@MSG[0],@MSG[0]
764	rev64		@MSG[1],@MSG[1]
765	rev64		@MSG[2],@MSG[2]
766	rev64		@MSG[3],@MSG[3]
767	rev64		@MSG[4],@MSG[4]
768	rev64		@MSG[5],@MSG[5]
769	rev64		@MSG[6],@MSG[6]
770	rev64		@MSG[7],@MSG[7]
771	b		.Loop_hw
772
773.align	4
774.Loop_hw:
775	ld1.64		{$W0},[$Ktbl],#16
776	subs		$num,$num,#1
777	sub		x4,$inp,#128
778	orr		$AB,@H[0],@H[0]			// offload
779	orr		$CD,@H[1],@H[1]
780	orr		$EF,@H[2],@H[2]
781	orr		$GH,@H[3],@H[3]
782	csel		$inp,$inp,x4,ne			// conditional rewind
783___
784for($i=0;$i<32;$i++) {
785$code.=<<___;
786	add.i64		$W0,$W0,@MSG[0]
787	ld1.64		{$W1},[$Ktbl],#16
788	ext		$W0,$W0,$W0,#8
789	ext		$fg,@H[2],@H[3],#8
790	ext		$de,@H[1],@H[2],#8
791	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
792	 sha512su0	@MSG[0],@MSG[1]
793	 ext		$m9_10,@MSG[4],@MSG[5],#8
794	sha512h		@H[3],$fg,$de
795	 sha512su1	@MSG[0],@MSG[7],$m9_10
796	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
797	sha512h2	@H[3],$H[1],@H[0]
798___
799	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
800	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
801}
802for(;$i<40;$i++) {
803$code.=<<___	if ($i<39);
804	ld1.64		{$W1},[$Ktbl],#16
805___
806$code.=<<___	if ($i==39);
807	sub		$Ktbl,$Ktbl,#$rounds*$SZ	// rewind
808___
809$code.=<<___;
810	add.i64		$W0,$W0,@MSG[0]
811	 ld1		{@MSG[0]},[$inp],#16		// load next input
812	ext		$W0,$W0,$W0,#8
813	ext		$fg,@H[2],@H[3],#8
814	ext		$de,@H[1],@H[2],#8
815	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
816	sha512h		@H[3],$fg,$de
817	 rev64		@MSG[0],@MSG[0]
818	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
819	sha512h2	@H[3],$H[1],@H[0]
820___
821	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
822	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
823}
824$code.=<<___;
825	add.i64		@H[0],@H[0],$AB			// accumulate
826	add.i64		@H[1],@H[1],$CD
827	add.i64		@H[2],@H[2],$EF
828	add.i64		@H[3],@H[3],$GH
829
830	cbnz		$num,.Loop_hw
831
832	st1.64		{@H[0]-@H[3]},[$ctx]		// store context
833
834	ldr		x29,[sp],#16
835	ret
836.size	sha512_block_armv8,.-sha512_block_armv8
837#endif
838___
839}
840
841$code.=<<___;
842#ifndef	__KERNEL__
843.comm	OPENSSL_armcap_P,4,4
844#endif
845___
846
847{   my  %opcode = (
848	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
849	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
850
851    sub unsha256 {
852	my ($mnemonic,$arg)=@_;
853
854	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
855	&&
856	sprintf ".inst\t0x%08x\t//%s %s",
857			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
858			$mnemonic,$arg;
859    }
860}
861
862{   my  %opcode = (
863	"sha512h"	=> 0xce608000,	"sha512h2"	=> 0xce608400,
864	"sha512su0"	=> 0xcec08000,	"sha512su1"	=> 0xce608800	);
865
866    sub unsha512 {
867	my ($mnemonic,$arg)=@_;
868
869	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
870	&&
871	sprintf ".inst\t0x%08x\t//%s %s",
872			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
873			$mnemonic,$arg;
874    }
875}
876
877open SELF,$0;
878while(<SELF>) {
879        next if (/^#!/);
880        last if (!s/^#/\/\// and !/^$/);
881        print;
882}
883close SELF;
884
885foreach(split("\n",$code)) {
886
887	s/\`([^\`]*)\`/eval($1)/ge;
888
889	s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge	or
890	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
891
892	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
893
894	s/\.[ui]?8(\s)/$1/;
895	s/\.\w?64\b//		and s/\.16b/\.2d/g	or
896	s/\.\w?32\b//		and s/\.16b/\.4s/g;
897	m/\bext\b/		and s/\.2d/\.16b/g	or
898	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
899
900	print $_,"\n";
901}
902
903close STDOUT;
904