xref: /freebsd/crypto/openssl/crypto/sha/sha256.c (revision 39beb93c)
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9 
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>
16 
17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
18 
19 int SHA224_Init (SHA256_CTX *c)
20 	{
21 	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
22 	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
23 	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
24 	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
25 	c->Nl=0;	c->Nh=0;
26 	c->num=0;	c->md_len=SHA224_DIGEST_LENGTH;
27 	return 1;
28 	}
29 
30 int SHA256_Init (SHA256_CTX *c)
31 	{
32 	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
33 	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
34 	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
35 	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
36 	c->Nl=0;	c->Nh=0;
37 	c->num=0;	c->md_len=SHA256_DIGEST_LENGTH;
38 	return 1;
39 	}
40 
41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
42 	{
43 	SHA256_CTX c;
44 	static unsigned char m[SHA224_DIGEST_LENGTH];
45 
46 	if (md == NULL) md=m;
47 	SHA224_Init(&c);
48 	SHA256_Update(&c,d,n);
49 	SHA256_Final(md,&c);
50 	OPENSSL_cleanse(&c,sizeof(c));
51 	return(md);
52 	}
53 
54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
55 	{
56 	SHA256_CTX c;
57 	static unsigned char m[SHA256_DIGEST_LENGTH];
58 
59 	if (md == NULL) md=m;
60 	SHA256_Init(&c);
61 	SHA256_Update(&c,d,n);
62 	SHA256_Final(md,&c);
63 	OPENSSL_cleanse(&c,sizeof(c));
64 	return(md);
65 	}
66 
67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68 {   return SHA256_Update (c,data,len);   }
69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70 {   return SHA256_Final (md,c);   }
71 
72 #ifndef	SHA_LONG_LOG2
73 #define	SHA_LONG_LOG2	2	/* default to 32 bits */
74 #endif
75 
76 #define	DATA_ORDER_IS_BIG_ENDIAN
77 
78 #define	HASH_LONG		SHA_LONG
79 #define	HASH_LONG_LOG2		SHA_LONG_LOG2
80 #define	HASH_CTX		SHA256_CTX
81 #define	HASH_CBLOCK		SHA_CBLOCK
82 #define	HASH_LBLOCK		SHA_LBLOCK
83 /*
84  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
85  * default: case below covers for it. It's not clear however if it's
86  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
87  * but if it is, then default: case shall be extended. For reference.
88  * Idea behind separate cases for pre-defined lenghts is to let the
89  * compiler decide if it's appropriate to unroll small loops.
90  */
91 #define	HASH_MAKE_STRING(c,s)	do {	\
92 	unsigned long ll;		\
93 	unsigned int  n;		\
94 	switch ((c)->md_len)		\
95 	{   case SHA224_DIGEST_LENGTH:	\
96 		for (n=0;n<SHA224_DIGEST_LENGTH/4;n++)	\
97 		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
98 		break;			\
99 	    case SHA256_DIGEST_LENGTH:	\
100 		for (n=0;n<SHA256_DIGEST_LENGTH/4;n++)	\
101 		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
102 		break;			\
103 	    default:			\
104 		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
105 		    return 0;				\
106 		for (n=0;n<(c)->md_len/4;n++)		\
107 		{   ll=(c)->h[n]; HOST_l2c(ll,(s));   }	\
108 		break;			\
109 	}				\
110 	} while (0)
111 
112 #define	HASH_UPDATE		SHA256_Update
113 #define	HASH_TRANSFORM		SHA256_Transform
114 #define	HASH_FINAL		SHA256_Final
115 #define	HASH_BLOCK_HOST_ORDER	sha256_block_host_order
116 #define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
117 void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
118 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
119 
120 #include "md32_common.h"
121 
122 #ifdef SHA256_ASM
123 void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host);
124 #else
125 static const SHA_LONG K256[64] = {
126 	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
127 	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
128 	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
129 	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
130 	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
131 	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
132 	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
133 	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
134 	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
135 	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
136 	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
137 	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
138 	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
139 	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
140 	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
141 	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
142 
143 /*
144  * FIPS specification refers to right rotations, while our ROTATE macro
145  * is left one. This is why you might notice that rotation coefficients
146  * differ from those observed in FIPS document by 32-N...
147  */
148 #define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
149 #define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
150 #define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
151 #define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
152 
153 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
154 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
155 
156 #ifdef OPENSSL_SMALL_FOOTPRINT
157 
158 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
159 	{
160 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
161 	SHA_LONG	X[16];
162 	int i;
163 	const unsigned char *data=in;
164 
165 			while (num--) {
166 
167 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
168 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
169 
170 	if (host)
171 		{
172 		const SHA_LONG *W=(const SHA_LONG *)data;
173 
174 		for (i=0;i<16;i++)
175 			{
176 			T1 = X[i] = W[i];
177 			T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
178 			T2 = Sigma0(a) + Maj(a,b,c);
179 			h = g;	g = f;	f = e;	e = d + T1;
180 			d = c;	c = b;	b = a;	a = T1 + T2;
181 			}
182 
183 		data += SHA256_CBLOCK;
184 		}
185 	else
186 		{
187 		SHA_LONG l;
188 
189 		for (i=0;i<16;i++)
190 			{
191 			HOST_c2l(data,l); T1 = X[i] = l;
192 			T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
193 			T2 = Sigma0(a) + Maj(a,b,c);
194 			h = g;	g = f;	f = e;	e = d + T1;
195 			d = c;	c = b;	b = a;	a = T1 + T2;
196 			}
197 		}
198 
199 	for (;i<64;i++)
200 		{
201 		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
202 		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
203 
204 		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
205 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
206 		T2 = Sigma0(a) + Maj(a,b,c);
207 		h = g;	g = f;	f = e;	e = d + T1;
208 		d = c;	c = b;	b = a;	a = T1 + T2;
209 		}
210 
211 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
212 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
213 
214 			}
215 }
216 
217 #else
218 
219 #define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
220 	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
221 	h = Sigma0(a) + Maj(a,b,c);			\
222 	d += T1;	h += T1;		} while (0)
223 
224 #define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
225 	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
226 	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
227 	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
228 	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
229 
230 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
231 	{
232 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
233 	SHA_LONG	X[16];
234 	int i;
235 	const unsigned char *data=in;
236 
237 			while (num--) {
238 
239 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
240 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
241 
242 	if (host)
243 		{
244 		const SHA_LONG *W=(const SHA_LONG *)data;
245 
246 		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
247 		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
248 		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
249 		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
250 		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
251 		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
252 		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
253 		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
254 		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
255 		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
256 		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
257 		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
258 		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
259 		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
260 		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
261 		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
262 
263 		data += SHA256_CBLOCK;
264 		}
265 	else
266 		{
267 		SHA_LONG l;
268 
269 		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
270 		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
271 		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
272 		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
273 		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
274 		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
275 		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
276 		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
277 		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
278 		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
279 		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
280 		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
281 		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
282 		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
283 		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
284 		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
285 		}
286 
287 	for (i=16;i<64;i+=8)
288 		{
289 		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
290 		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
291 		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
292 		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
293 		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
294 		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
295 		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
296 		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
297 		}
298 
299 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
300 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
301 
302 			}
303 	}
304 
305 #endif
306 #endif /* SHA256_ASM */
307 
308 /*
309  * Idea is to trade couple of cycles for some space. On IA-32 we save
310  * about 4K in "big footprint" case. In "small footprint" case any gain
311  * is appreciated:-)
312  */
313 void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
314 {   sha256_block (ctx,in,num,1);   }
315 
316 void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
317 {   sha256_block (ctx,in,num,0);   }
318 
319 #endif /* OPENSSL_NO_SHA256 */
320