xref: /freebsd/crypto/openssl/crypto/x509/v3_addr.c (revision 315ee00f)
1 /*
2  * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * Implementation of RFC 3779 section 2.2.
12  */
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <assert.h>
17 #include <string.h>
18 
19 #include "internal/cryptlib.h"
20 #include <openssl/conf.h>
21 #include <openssl/asn1.h>
22 #include <openssl/asn1t.h>
23 #include <openssl/buffer.h>
24 #include <openssl/x509v3.h>
25 #include "crypto/x509.h"
26 #include "ext_dat.h"
27 #include "x509_local.h"
28 
29 #ifndef OPENSSL_NO_RFC3779
30 
31 /*
32  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33  */
34 
35 ASN1_SEQUENCE(IPAddressRange) = {
36   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38 } ASN1_SEQUENCE_END(IPAddressRange)
39 
40 ASN1_CHOICE(IPAddressOrRange) = {
41   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
43 } ASN1_CHOICE_END(IPAddressOrRange)
44 
45 ASN1_CHOICE(IPAddressChoice) = {
46   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
47   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48 } ASN1_CHOICE_END(IPAddressChoice)
49 
50 ASN1_SEQUENCE(IPAddressFamily) = {
51   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
52   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53 } ASN1_SEQUENCE_END(IPAddressFamily)
54 
55 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
56   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57                         IPAddrBlocks, IPAddressFamily)
58 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59 
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64 
65 /*
66  * How much buffer space do we need for a raw address?
67  */
68 #define ADDR_RAW_BUF_LEN        16
69 
70 /*
71  * What's the address length associated with this AFI?
72  */
73 static int length_from_afi(const unsigned afi)
74 {
75     switch (afi) {
76     case IANA_AFI_IPV4:
77         return 4;
78     case IANA_AFI_IPV6:
79         return 16;
80     default:
81         return 0;
82     }
83 }
84 
85 /*
86  * Extract the AFI from an IPAddressFamily.
87  */
88 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89 {
90     if (f == NULL
91             || f->addressFamily == NULL
92             || f->addressFamily->data == NULL
93             || f->addressFamily->length < 2)
94         return 0;
95     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96 }
97 
98 /*
99  * Expand the bitstring form of an address into a raw byte array.
100  * At the moment this is coded for simplicity, not speed.
101  */
102 static int addr_expand(unsigned char *addr,
103                        const ASN1_BIT_STRING *bs,
104                        const int length, const unsigned char fill)
105 {
106     if (bs->length < 0 || bs->length > length)
107         return 0;
108     if (bs->length > 0) {
109         memcpy(addr, bs->data, bs->length);
110         if ((bs->flags & 7) != 0) {
111             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112             if (fill == 0)
113                 addr[bs->length - 1] &= ~mask;
114             else
115                 addr[bs->length - 1] |= mask;
116         }
117     }
118     memset(addr + bs->length, fill, length - bs->length);
119     return 1;
120 }
121 
122 /*
123  * Extract the prefix length from a bitstring.
124  */
125 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
126 
127 /*
128  * i2r handler for one address bitstring.
129  */
130 static int i2r_address(BIO *out,
131                        const unsigned afi,
132                        const unsigned char fill, const ASN1_BIT_STRING *bs)
133 {
134     unsigned char addr[ADDR_RAW_BUF_LEN];
135     int i, n;
136 
137     if (bs->length < 0)
138         return 0;
139     switch (afi) {
140     case IANA_AFI_IPV4:
141         if (!addr_expand(addr, bs, 4, fill))
142             return 0;
143         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
144         break;
145     case IANA_AFI_IPV6:
146         if (!addr_expand(addr, bs, 16, fill))
147             return 0;
148         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
149              n -= 2) ;
150         for (i = 0; i < n; i += 2)
151             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
152                        (i < 14 ? ":" : ""));
153         if (i < 16)
154             BIO_puts(out, ":");
155         if (i == 0)
156             BIO_puts(out, ":");
157         break;
158     default:
159         for (i = 0; i < bs->length; i++)
160             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
161         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
162         break;
163     }
164     return 1;
165 }
166 
167 /*
168  * i2r handler for a sequence of addresses and ranges.
169  */
170 static int i2r_IPAddressOrRanges(BIO *out,
171                                  const int indent,
172                                  const IPAddressOrRanges *aors,
173                                  const unsigned afi)
174 {
175     int i;
176     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
177         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
178         BIO_printf(out, "%*s", indent, "");
179         switch (aor->type) {
180         case IPAddressOrRange_addressPrefix:
181             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
182                 return 0;
183             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
184             continue;
185         case IPAddressOrRange_addressRange:
186             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
187                 return 0;
188             BIO_puts(out, "-");
189             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
190                 return 0;
191             BIO_puts(out, "\n");
192             continue;
193         }
194     }
195     return 1;
196 }
197 
198 /*
199  * i2r handler for an IPAddrBlocks extension.
200  */
201 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
202                             void *ext, BIO *out, int indent)
203 {
204     const IPAddrBlocks *addr = ext;
205     int i;
206     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
207         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
208         const unsigned int afi = X509v3_addr_get_afi(f);
209         switch (afi) {
210         case IANA_AFI_IPV4:
211             BIO_printf(out, "%*sIPv4", indent, "");
212             break;
213         case IANA_AFI_IPV6:
214             BIO_printf(out, "%*sIPv6", indent, "");
215             break;
216         default:
217             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
218             break;
219         }
220         if (f->addressFamily->length > 2) {
221             switch (f->addressFamily->data[2]) {
222             case 1:
223                 BIO_puts(out, " (Unicast)");
224                 break;
225             case 2:
226                 BIO_puts(out, " (Multicast)");
227                 break;
228             case 3:
229                 BIO_puts(out, " (Unicast/Multicast)");
230                 break;
231             case 4:
232                 BIO_puts(out, " (MPLS)");
233                 break;
234             case 64:
235                 BIO_puts(out, " (Tunnel)");
236                 break;
237             case 65:
238                 BIO_puts(out, " (VPLS)");
239                 break;
240             case 66:
241                 BIO_puts(out, " (BGP MDT)");
242                 break;
243             case 128:
244                 BIO_puts(out, " (MPLS-labeled VPN)");
245                 break;
246             default:
247                 BIO_printf(out, " (Unknown SAFI %u)",
248                            (unsigned)f->addressFamily->data[2]);
249                 break;
250             }
251         }
252         switch (f->ipAddressChoice->type) {
253         case IPAddressChoice_inherit:
254             BIO_puts(out, ": inherit\n");
255             break;
256         case IPAddressChoice_addressesOrRanges:
257             BIO_puts(out, ":\n");
258             if (!i2r_IPAddressOrRanges(out,
259                                        indent + 2,
260                                        f->ipAddressChoice->
261                                        u.addressesOrRanges, afi))
262                 return 0;
263             break;
264         }
265     }
266     return 1;
267 }
268 
269 /*
270  * Sort comparison function for a sequence of IPAddressOrRange
271  * elements.
272  *
273  * There's no sane answer we can give if addr_expand() fails, and an
274  * assertion failure on externally supplied data is seriously uncool,
275  * so we just arbitrarily declare that if given invalid inputs this
276  * function returns -1.  If this messes up your preferred sort order
277  * for garbage input, tough noogies.
278  */
279 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
280                                 const IPAddressOrRange *b, const int length)
281 {
282     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
283     int prefixlen_a = 0, prefixlen_b = 0;
284     int r;
285 
286     switch (a->type) {
287     case IPAddressOrRange_addressPrefix:
288         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
289             return -1;
290         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
291         break;
292     case IPAddressOrRange_addressRange:
293         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
294             return -1;
295         prefixlen_a = length * 8;
296         break;
297     }
298 
299     switch (b->type) {
300     case IPAddressOrRange_addressPrefix:
301         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
302             return -1;
303         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
304         break;
305     case IPAddressOrRange_addressRange:
306         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
307             return -1;
308         prefixlen_b = length * 8;
309         break;
310     }
311 
312     if ((r = memcmp(addr_a, addr_b, length)) != 0)
313         return r;
314     else
315         return prefixlen_a - prefixlen_b;
316 }
317 
318 /*
319  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
320  * comparison routines are only allowed two arguments.
321  */
322 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
323                                   const IPAddressOrRange *const *b)
324 {
325     return IPAddressOrRange_cmp(*a, *b, 4);
326 }
327 
328 /*
329  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
330  * comparison routines are only allowed two arguments.
331  */
332 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
333                                   const IPAddressOrRange *const *b)
334 {
335     return IPAddressOrRange_cmp(*a, *b, 16);
336 }
337 
338 /*
339  * Calculate whether a range collapses to a prefix.
340  * See last paragraph of RFC 3779 2.2.3.7.
341  */
342 static int range_should_be_prefix(const unsigned char *min,
343                                   const unsigned char *max, const int length)
344 {
345     unsigned char mask;
346     int i, j;
347 
348     /*
349      * It is the responsibility of the caller to confirm min <= max. We don't
350      * use ossl_assert() here since we have no way of signalling an error from
351      * this function - so we just use a plain assert instead.
352      */
353     assert(memcmp(min, max, length) <= 0);
354 
355     for (i = 0; i < length && min[i] == max[i]; i++) ;
356     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
357     if (i < j)
358         return -1;
359     if (i > j)
360         return i * 8;
361     mask = min[i] ^ max[i];
362     switch (mask) {
363     case 0x01:
364         j = 7;
365         break;
366     case 0x03:
367         j = 6;
368         break;
369     case 0x07:
370         j = 5;
371         break;
372     case 0x0F:
373         j = 4;
374         break;
375     case 0x1F:
376         j = 3;
377         break;
378     case 0x3F:
379         j = 2;
380         break;
381     case 0x7F:
382         j = 1;
383         break;
384     default:
385         return -1;
386     }
387     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
388         return -1;
389     else
390         return i * 8 + j;
391 }
392 
393 /*
394  * Construct a prefix.
395  */
396 static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
397                               const int prefixlen, const int afilen)
398 {
399     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
400     IPAddressOrRange *aor = IPAddressOrRange_new();
401 
402     if (prefixlen < 0 || prefixlen > (afilen * 8))
403         return 0;
404     if (aor == NULL)
405         return 0;
406     aor->type = IPAddressOrRange_addressPrefix;
407     if (aor->u.addressPrefix == NULL &&
408         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
409         goto err;
410     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
411         goto err;
412     aor->u.addressPrefix->flags &= ~7;
413     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
414     if (bitlen > 0) {
415         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
416         aor->u.addressPrefix->flags |= 8 - bitlen;
417     }
418 
419     *result = aor;
420     return 1;
421 
422  err:
423     IPAddressOrRange_free(aor);
424     return 0;
425 }
426 
427 /*
428  * Construct a range.  If it can be expressed as a prefix,
429  * return a prefix instead.  Doing this here simplifies
430  * the rest of the code considerably.
431  */
432 static int make_addressRange(IPAddressOrRange **result,
433                              unsigned char *min,
434                              unsigned char *max, const int length)
435 {
436     IPAddressOrRange *aor;
437     int i, prefixlen;
438 
439     if (memcmp(min, max, length) > 0)
440         return 0;
441 
442     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
443         return make_addressPrefix(result, min, prefixlen, length);
444 
445     if ((aor = IPAddressOrRange_new()) == NULL)
446         return 0;
447     aor->type = IPAddressOrRange_addressRange;
448     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
449         goto err;
450     if (aor->u.addressRange->min == NULL &&
451         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
452         goto err;
453     if (aor->u.addressRange->max == NULL &&
454         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
455         goto err;
456 
457     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
458     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
459         goto err;
460     aor->u.addressRange->min->flags &= ~7;
461     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
462     if (i > 0) {
463         unsigned char b = min[i - 1];
464         int j = 1;
465         while ((b & (0xFFU >> j)) != 0)
466             ++j;
467         aor->u.addressRange->min->flags |= 8 - j;
468     }
469 
470     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
471     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
472         goto err;
473     aor->u.addressRange->max->flags &= ~7;
474     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
475     if (i > 0) {
476         unsigned char b = max[i - 1];
477         int j = 1;
478         while ((b & (0xFFU >> j)) != (0xFFU >> j))
479             ++j;
480         aor->u.addressRange->max->flags |= 8 - j;
481     }
482 
483     *result = aor;
484     return 1;
485 
486  err:
487     IPAddressOrRange_free(aor);
488     return 0;
489 }
490 
491 /*
492  * Construct a new address family or find an existing one.
493  */
494 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
495                                              const unsigned afi,
496                                              const unsigned *safi)
497 {
498     IPAddressFamily *f;
499     unsigned char key[3];
500     int keylen;
501     int i;
502 
503     key[0] = (afi >> 8) & 0xFF;
504     key[1] = afi & 0xFF;
505     if (safi != NULL) {
506         key[2] = *safi & 0xFF;
507         keylen = 3;
508     } else {
509         keylen = 2;
510     }
511 
512     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
513         f = sk_IPAddressFamily_value(addr, i);
514         if (f->addressFamily->length == keylen &&
515             !memcmp(f->addressFamily->data, key, keylen))
516             return f;
517     }
518 
519     if ((f = IPAddressFamily_new()) == NULL)
520         goto err;
521     if (f->ipAddressChoice == NULL &&
522         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
523         goto err;
524     if (f->addressFamily == NULL &&
525         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
526         goto err;
527     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
528         goto err;
529     if (!sk_IPAddressFamily_push(addr, f))
530         goto err;
531 
532     return f;
533 
534  err:
535     IPAddressFamily_free(f);
536     return NULL;
537 }
538 
539 /*
540  * Add an inheritance element.
541  */
542 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
543                             const unsigned afi, const unsigned *safi)
544 {
545     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
546     if (f == NULL ||
547         f->ipAddressChoice == NULL ||
548         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
549          f->ipAddressChoice->u.addressesOrRanges != NULL))
550         return 0;
551     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
552         f->ipAddressChoice->u.inherit != NULL)
553         return 1;
554     if (f->ipAddressChoice->u.inherit == NULL &&
555         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
556         return 0;
557     f->ipAddressChoice->type = IPAddressChoice_inherit;
558     return 1;
559 }
560 
561 /*
562  * Construct an IPAddressOrRange sequence, or return an existing one.
563  */
564 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
565                                                const unsigned afi,
566                                                const unsigned *safi)
567 {
568     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
569     IPAddressOrRanges *aors = NULL;
570 
571     if (f == NULL ||
572         f->ipAddressChoice == NULL ||
573         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
574          f->ipAddressChoice->u.inherit != NULL))
575         return NULL;
576     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
577         aors = f->ipAddressChoice->u.addressesOrRanges;
578     if (aors != NULL)
579         return aors;
580     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
581         return NULL;
582     switch (afi) {
583     case IANA_AFI_IPV4:
584         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
585         break;
586     case IANA_AFI_IPV6:
587         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
588         break;
589     }
590     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
591     f->ipAddressChoice->u.addressesOrRanges = aors;
592     return aors;
593 }
594 
595 /*
596  * Add a prefix.
597  */
598 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
599                            const unsigned afi,
600                            const unsigned *safi,
601                            unsigned char *a, const int prefixlen)
602 {
603     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
604     IPAddressOrRange *aor;
605 
606     if (aors == NULL
607             || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
608         return 0;
609     if (sk_IPAddressOrRange_push(aors, aor))
610         return 1;
611     IPAddressOrRange_free(aor);
612     return 0;
613 }
614 
615 /*
616  * Add a range.
617  */
618 int X509v3_addr_add_range(IPAddrBlocks *addr,
619                           const unsigned afi,
620                           const unsigned *safi,
621                           unsigned char *min, unsigned char *max)
622 {
623     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
624     IPAddressOrRange *aor;
625     int length = length_from_afi(afi);
626     if (aors == NULL)
627         return 0;
628     if (!make_addressRange(&aor, min, max, length))
629         return 0;
630     if (sk_IPAddressOrRange_push(aors, aor))
631         return 1;
632     IPAddressOrRange_free(aor);
633     return 0;
634 }
635 
636 /*
637  * Extract min and max values from an IPAddressOrRange.
638  */
639 static int extract_min_max(IPAddressOrRange *aor,
640                            unsigned char *min, unsigned char *max, int length)
641 {
642     if (aor == NULL || min == NULL || max == NULL)
643         return 0;
644     switch (aor->type) {
645     case IPAddressOrRange_addressPrefix:
646         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
647                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
648     case IPAddressOrRange_addressRange:
649         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
650                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
651     }
652     return 0;
653 }
654 
655 /*
656  * Public wrapper for extract_min_max().
657  */
658 int X509v3_addr_get_range(IPAddressOrRange *aor,
659                           const unsigned afi,
660                           unsigned char *min,
661                           unsigned char *max, const int length)
662 {
663     int afi_length = length_from_afi(afi);
664     if (aor == NULL || min == NULL || max == NULL ||
665         afi_length == 0 || length < afi_length ||
666         (aor->type != IPAddressOrRange_addressPrefix &&
667          aor->type != IPAddressOrRange_addressRange) ||
668         !extract_min_max(aor, min, max, afi_length))
669         return 0;
670 
671     return afi_length;
672 }
673 
674 /*
675  * Sort comparison function for a sequence of IPAddressFamily.
676  *
677  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
678  * the ordering: I can read it as meaning that IPv6 without a SAFI
679  * comes before IPv4 with a SAFI, which seems pretty weird.  The
680  * examples in appendix B suggest that the author intended the
681  * null-SAFI rule to apply only within a single AFI, which is what I
682  * would have expected and is what the following code implements.
683  */
684 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
685                                const IPAddressFamily *const *b_)
686 {
687     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
688     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
689     int len = ((a->length <= b->length) ? a->length : b->length);
690     int cmp = memcmp(a->data, b->data, len);
691     return cmp ? cmp : a->length - b->length;
692 }
693 
694 static int IPAddressFamily_check_len(const IPAddressFamily *f)
695 {
696     if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
697         return 0;
698     else
699         return 1;
700 }
701 
702 /*
703  * Check whether an IPAddrBLocks is in canonical form.
704  */
705 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
706 {
707     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
708     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
709     IPAddressOrRanges *aors;
710     int i, j, k;
711 
712     /*
713      * Empty extension is canonical.
714      */
715     if (addr == NULL)
716         return 1;
717 
718     /*
719      * Check whether the top-level list is in order.
720      */
721     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
722         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
723         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
724 
725         if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
726             return 0;
727 
728         if (IPAddressFamily_cmp(&a, &b) >= 0)
729             return 0;
730     }
731 
732     /*
733      * Top level's ok, now check each address family.
734      */
735     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
736         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
737         int length = length_from_afi(X509v3_addr_get_afi(f));
738 
739         /*
740          * Inheritance is canonical.  Anything other than inheritance or
741          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
742          */
743         if (f == NULL || f->ipAddressChoice == NULL)
744             return 0;
745         switch (f->ipAddressChoice->type) {
746         case IPAddressChoice_inherit:
747             continue;
748         case IPAddressChoice_addressesOrRanges:
749             break;
750         default:
751             return 0;
752         }
753 
754         if (!IPAddressFamily_check_len(f))
755             return 0;
756 
757         /*
758          * It's an IPAddressOrRanges sequence, check it.
759          */
760         aors = f->ipAddressChoice->u.addressesOrRanges;
761         if (sk_IPAddressOrRange_num(aors) == 0)
762             return 0;
763         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
764             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
765             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
766 
767             if (!extract_min_max(a, a_min, a_max, length) ||
768                 !extract_min_max(b, b_min, b_max, length))
769                 return 0;
770 
771             /*
772              * Punt misordered list, overlapping start, or inverted range.
773              */
774             if (memcmp(a_min, b_min, length) >= 0 ||
775                 memcmp(a_min, a_max, length) > 0 ||
776                 memcmp(b_min, b_max, length) > 0)
777                 return 0;
778 
779             /*
780              * Punt if adjacent or overlapping.  Check for adjacency by
781              * subtracting one from b_min first.
782              */
783             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
784             if (memcmp(a_max, b_min, length) >= 0)
785                 return 0;
786 
787             /*
788              * Check for range that should be expressed as a prefix.
789              */
790             if (a->type == IPAddressOrRange_addressRange &&
791                 range_should_be_prefix(a_min, a_max, length) >= 0)
792                 return 0;
793         }
794 
795         /*
796          * Check range to see if it's inverted or should be a
797          * prefix.
798          */
799         j = sk_IPAddressOrRange_num(aors) - 1;
800         {
801             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
802             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
803                 if (!extract_min_max(a, a_min, a_max, length))
804                     return 0;
805                 if (memcmp(a_min, a_max, length) > 0 ||
806                     range_should_be_prefix(a_min, a_max, length) >= 0)
807                     return 0;
808             }
809         }
810     }
811 
812     /*
813      * If we made it through all that, we're happy.
814      */
815     return 1;
816 }
817 
818 /*
819  * Whack an IPAddressOrRanges into canonical form.
820  */
821 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
822                                       const unsigned afi)
823 {
824     int i, j, length = length_from_afi(afi);
825 
826     /*
827      * Sort the IPAddressOrRanges sequence.
828      */
829     sk_IPAddressOrRange_sort(aors);
830 
831     /*
832      * Clean up representation issues, punt on duplicates or overlaps.
833      */
834     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
835         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
836         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
837         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
838         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
839 
840         if (!extract_min_max(a, a_min, a_max, length) ||
841             !extract_min_max(b, b_min, b_max, length))
842             return 0;
843 
844         /*
845          * Punt inverted ranges.
846          */
847         if (memcmp(a_min, a_max, length) > 0 ||
848             memcmp(b_min, b_max, length) > 0)
849             return 0;
850 
851         /*
852          * Punt overlaps.
853          */
854         if (memcmp(a_max, b_min, length) >= 0)
855             return 0;
856 
857         /*
858          * Merge if a and b are adjacent.  We check for
859          * adjacency by subtracting one from b_min first.
860          */
861         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
862         if (memcmp(a_max, b_min, length) == 0) {
863             IPAddressOrRange *merged;
864             if (!make_addressRange(&merged, a_min, b_max, length))
865                 return 0;
866             (void)sk_IPAddressOrRange_set(aors, i, merged);
867             (void)sk_IPAddressOrRange_delete(aors, i + 1);
868             IPAddressOrRange_free(a);
869             IPAddressOrRange_free(b);
870             --i;
871             continue;
872         }
873     }
874 
875     /*
876      * Check for inverted final range.
877      */
878     j = sk_IPAddressOrRange_num(aors) - 1;
879     {
880         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
881         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
882             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
883             if (!extract_min_max(a, a_min, a_max, length))
884                 return 0;
885             if (memcmp(a_min, a_max, length) > 0)
886                 return 0;
887         }
888     }
889 
890     return 1;
891 }
892 
893 /*
894  * Whack an IPAddrBlocks extension into canonical form.
895  */
896 int X509v3_addr_canonize(IPAddrBlocks *addr)
897 {
898     int i;
899     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
900         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
901 
902         if (!IPAddressFamily_check_len(f))
903             return 0;
904 
905         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
906             !IPAddressOrRanges_canonize(f->ipAddressChoice->
907                                         u.addressesOrRanges,
908                                         X509v3_addr_get_afi(f)))
909             return 0;
910     }
911     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
912     sk_IPAddressFamily_sort(addr);
913     if (!ossl_assert(X509v3_addr_is_canonical(addr)))
914         return 0;
915     return 1;
916 }
917 
918 /*
919  * v2i handler for the IPAddrBlocks extension.
920  */
921 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
922                               struct v3_ext_ctx *ctx,
923                               STACK_OF(CONF_VALUE) *values)
924 {
925     static const char v4addr_chars[] = "0123456789.";
926     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
927     IPAddrBlocks *addr = NULL;
928     char *s = NULL, *t;
929     int i;
930 
931     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
932         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
933         return NULL;
934     }
935 
936     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
937         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
938         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
939         unsigned afi, *safi = NULL, safi_;
940         const char *addr_chars = NULL;
941         int prefixlen, i1, i2, delim, length;
942 
943         if (!ossl_v3_name_cmp(val->name, "IPv4")) {
944             afi = IANA_AFI_IPV4;
945         } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
946             afi = IANA_AFI_IPV6;
947         } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
948             afi = IANA_AFI_IPV4;
949             safi = &safi_;
950         } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
951             afi = IANA_AFI_IPV6;
952             safi = &safi_;
953         } else {
954             ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
955                            "%s", val->name);
956             goto err;
957         }
958 
959         switch (afi) {
960         case IANA_AFI_IPV4:
961             addr_chars = v4addr_chars;
962             break;
963         case IANA_AFI_IPV6:
964             addr_chars = v6addr_chars;
965             break;
966         }
967 
968         length = length_from_afi(afi);
969 
970         /*
971          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
972          * the other input values.
973          */
974         if (safi != NULL) {
975             *safi = strtoul(val->value, &t, 0);
976             t += strspn(t, " \t");
977             if (*safi > 0xFF || *t++ != ':') {
978                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
979                 X509V3_conf_add_error_name_value(val);
980                 goto err;
981             }
982             t += strspn(t, " \t");
983             s = OPENSSL_strdup(t);
984         } else {
985             s = OPENSSL_strdup(val->value);
986         }
987         if (s == NULL) {
988             ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
989             goto err;
990         }
991 
992         /*
993          * Check for inheritance.  Not worth additional complexity to
994          * optimize this (seldom-used) case.
995          */
996         if (strcmp(s, "inherit") == 0) {
997             if (!X509v3_addr_add_inherit(addr, afi, safi)) {
998                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
999                 X509V3_conf_add_error_name_value(val);
1000                 goto err;
1001             }
1002             OPENSSL_free(s);
1003             s = NULL;
1004             continue;
1005         }
1006 
1007         i1 = strspn(s, addr_chars);
1008         i2 = i1 + strspn(s + i1, " \t");
1009         delim = s[i2++];
1010         s[i1] = '\0';
1011 
1012         if (ossl_a2i_ipadd(min, s) != length) {
1013             ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1014             X509V3_conf_add_error_name_value(val);
1015             goto err;
1016         }
1017 
1018         switch (delim) {
1019         case '/':
1020             prefixlen = (int)strtoul(s + i2, &t, 10);
1021             if (t == s + i2
1022                     || *t != '\0'
1023                     || prefixlen > (length * 8)
1024                     || prefixlen < 0) {
1025                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1026                 X509V3_conf_add_error_name_value(val);
1027                 goto err;
1028             }
1029             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1030                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1031                 goto err;
1032             }
1033             break;
1034         case '-':
1035             i1 = i2 + strspn(s + i2, " \t");
1036             i2 = i1 + strspn(s + i1, addr_chars);
1037             if (i1 == i2 || s[i2] != '\0') {
1038                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1039                 X509V3_conf_add_error_name_value(val);
1040                 goto err;
1041             }
1042             if (ossl_a2i_ipadd(max, s + i1) != length) {
1043                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1044                 X509V3_conf_add_error_name_value(val);
1045                 goto err;
1046             }
1047             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1048                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1049                 X509V3_conf_add_error_name_value(val);
1050                 goto err;
1051             }
1052             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1053                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1054                 goto err;
1055             }
1056             break;
1057         case '\0':
1058             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1059                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1060                 goto err;
1061             }
1062             break;
1063         default:
1064             ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1065             X509V3_conf_add_error_name_value(val);
1066             goto err;
1067         }
1068 
1069         OPENSSL_free(s);
1070         s = NULL;
1071     }
1072 
1073     /*
1074      * Canonize the result, then we're done.
1075      */
1076     if (!X509v3_addr_canonize(addr))
1077         goto err;
1078     return addr;
1079 
1080  err:
1081     OPENSSL_free(s);
1082     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1083     return NULL;
1084 }
1085 
1086 /*
1087  * OpenSSL dispatch
1088  */
1089 const X509V3_EXT_METHOD ossl_v3_addr = {
1090     NID_sbgp_ipAddrBlock,       /* nid */
1091     0,                          /* flags */
1092     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1093     0, 0, 0, 0,                 /* old functions, ignored */
1094     0,                          /* i2s */
1095     0,                          /* s2i */
1096     0,                          /* i2v */
1097     v2i_IPAddrBlocks,           /* v2i */
1098     i2r_IPAddrBlocks,           /* i2r */
1099     0,                          /* r2i */
1100     NULL                        /* extension-specific data */
1101 };
1102 
1103 /*
1104  * Figure out whether extension sues inheritance.
1105  */
1106 int X509v3_addr_inherits(IPAddrBlocks *addr)
1107 {
1108     int i;
1109     if (addr == NULL)
1110         return 0;
1111     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1112         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1113         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1114             return 1;
1115     }
1116     return 0;
1117 }
1118 
1119 /*
1120  * Figure out whether parent contains child.
1121  */
1122 static int addr_contains(IPAddressOrRanges *parent,
1123                          IPAddressOrRanges *child, int length)
1124 {
1125     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1126     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1127     int p, c;
1128 
1129     if (child == NULL || parent == child)
1130         return 1;
1131     if (parent == NULL)
1132         return 0;
1133 
1134     p = 0;
1135     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1136         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1137                              c_min, c_max, length))
1138             return 0;
1139         for (;; p++) {
1140             if (p >= sk_IPAddressOrRange_num(parent))
1141                 return 0;
1142             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1143                                  p_min, p_max, length))
1144                 return 0;
1145             if (memcmp(p_max, c_max, length) < 0)
1146                 continue;
1147             if (memcmp(p_min, c_min, length) > 0)
1148                 return 0;
1149             break;
1150         }
1151     }
1152 
1153     return 1;
1154 }
1155 
1156 /*
1157  * Test whether a is a subset of b.
1158  */
1159 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1160 {
1161     int i;
1162     if (a == NULL || a == b)
1163         return 1;
1164     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1165         return 0;
1166     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1167     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1168         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1169         int j = sk_IPAddressFamily_find(b, fa);
1170         IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1171 
1172         if (fb == NULL)
1173             return 0;
1174         if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1175             return 0;
1176         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1177                            fa->ipAddressChoice->u.addressesOrRanges,
1178                            length_from_afi(X509v3_addr_get_afi(fb))))
1179             return 0;
1180     }
1181     return 1;
1182 }
1183 
1184 /*
1185  * Validation error handling via callback.
1186  */
1187 # define validation_err(_err_)            \
1188     do {                                  \
1189         if (ctx != NULL) {                \
1190             ctx->error = _err_;           \
1191             ctx->error_depth = i;         \
1192             ctx->current_cert = x;        \
1193             rv = ctx->verify_cb(0, ctx);  \
1194         } else {                          \
1195             rv = 0;                       \
1196         }                                 \
1197         if (rv == 0)                      \
1198             goto done;                    \
1199     } while (0)
1200 
1201 /*
1202  * Core code for RFC 3779 2.3 path validation.
1203  *
1204  * Returns 1 for success, 0 on error.
1205  *
1206  * When returning 0, ctx->error MUST be set to an appropriate value other than
1207  * X509_V_OK.
1208  */
1209 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1210                                        STACK_OF(X509) *chain,
1211                                        IPAddrBlocks *ext)
1212 {
1213     IPAddrBlocks *child = NULL;
1214     int i, j, ret = 0, rv;
1215     X509 *x;
1216 
1217     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1218             || !ossl_assert(ctx != NULL || ext != NULL)
1219             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1220         if (ctx != NULL)
1221             ctx->error = X509_V_ERR_UNSPECIFIED;
1222         return 0;
1223     }
1224 
1225     /*
1226      * Figure out where to start.  If we don't have an extension to
1227      * check, we're done.  Otherwise, check canonical form and
1228      * set up for walking up the chain.
1229      */
1230     if (ext != NULL) {
1231         i = -1;
1232         x = NULL;
1233     } else {
1234         i = 0;
1235         x = sk_X509_value(chain, i);
1236         if ((ext = x->rfc3779_addr) == NULL)
1237             return 1; /* Return success */
1238     }
1239     if (!X509v3_addr_is_canonical(ext))
1240         validation_err(X509_V_ERR_INVALID_EXTENSION);
1241     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1242     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1243         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1244         if (ctx != NULL)
1245             ctx->error = X509_V_ERR_OUT_OF_MEM;
1246         goto done;
1247     }
1248 
1249     /*
1250      * Now walk up the chain.  No cert may list resources that its
1251      * parent doesn't list.
1252      */
1253     for (i++; i < sk_X509_num(chain); i++) {
1254         x = sk_X509_value(chain, i);
1255         if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1256             validation_err(X509_V_ERR_INVALID_EXTENSION);
1257         if (x->rfc3779_addr == NULL) {
1258             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1259                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1260 
1261                 if (!IPAddressFamily_check_len(fc))
1262                     goto done;
1263 
1264                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1265                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1266                     break;
1267                 }
1268             }
1269             continue;
1270         }
1271         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1272                                               IPAddressFamily_cmp);
1273         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1274             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1275             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1276             IPAddressFamily *fp =
1277                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1278 
1279             if (fp == NULL) {
1280                 if (fc->ipAddressChoice->type ==
1281                     IPAddressChoice_addressesOrRanges) {
1282                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1283                     break;
1284                 }
1285                 continue;
1286             }
1287 
1288             if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1289                 goto done;
1290 
1291             if (fp->ipAddressChoice->type ==
1292                 IPAddressChoice_addressesOrRanges) {
1293                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1294                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1295                                      fc->ipAddressChoice->u.addressesOrRanges,
1296                                      length_from_afi(X509v3_addr_get_afi(fc))))
1297                     (void)sk_IPAddressFamily_set(child, j, fp);
1298                 else
1299                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1300             }
1301         }
1302     }
1303 
1304     /*
1305      * Trust anchor can't inherit.
1306      */
1307     if (x->rfc3779_addr != NULL) {
1308         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1309             IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1310 
1311             if (!IPAddressFamily_check_len(fp))
1312                 goto done;
1313 
1314             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1315                 && sk_IPAddressFamily_find(child, fp) >= 0)
1316                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1317         }
1318     }
1319     ret = 1;
1320  done:
1321     sk_IPAddressFamily_free(child);
1322     return ret;
1323 }
1324 
1325 #undef validation_err
1326 
1327 /*
1328  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1329  */
1330 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1331 {
1332     if (ctx->chain == NULL
1333             || sk_X509_num(ctx->chain) == 0
1334             || ctx->verify_cb == NULL) {
1335         ctx->error = X509_V_ERR_UNSPECIFIED;
1336         return 0;
1337     }
1338     return addr_validate_path_internal(ctx, ctx->chain, NULL);
1339 }
1340 
1341 /*
1342  * RFC 3779 2.3 path validation of an extension.
1343  * Test whether chain covers extension.
1344  */
1345 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1346                                   IPAddrBlocks *ext, int allow_inheritance)
1347 {
1348     if (ext == NULL)
1349         return 1;
1350     if (chain == NULL || sk_X509_num(chain) == 0)
1351         return 0;
1352     if (!allow_inheritance && X509v3_addr_inherits(ext))
1353         return 0;
1354     return addr_validate_path_internal(NULL, chain, ext);
1355 }
1356 
1357 #endif                          /* OPENSSL_NO_RFC3779 */
1358