xref: /freebsd/lib/libc/regex/regcomp.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  * All rights reserved.
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/types.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <ctype.h>
53 #include <limits.h>
54 #include <stdlib.h>
55 #include <regex.h>
56 #include <stdbool.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 
60 #ifndef LIBREGEX
61 #include "collate.h"
62 #endif
63 
64 #include "utils.h"
65 #include "regex2.h"
66 
67 #include "cname.h"
68 
69 /*
70  * Branching context, used to keep track of branch state for all of the branch-
71  * aware functions. In addition to keeping track of branch positions for the
72  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
73  * detection of whether ^ is acting as an anchor or being used erroneously and
74  * also for whether we're in a sub-expression or not.
75  */
76 struct branchc {
77 	sopno start;
78 	sopno back;
79 	sopno fwd;
80 
81 	int nbranch;
82 	int nchain;
83 	bool outer;
84 	bool terminate;
85 };
86 
87 /*
88  * parse structure, passed up and down to avoid global variables and
89  * other clumsinesses
90  */
91 struct parse {
92 	const char *next;	/* next character in RE */
93 	const char *end;	/* end of string (-> NUL normally) */
94 	int error;		/* has an error been seen? */
95 	sop *strip;		/* malloced strip */
96 	sopno ssize;		/* malloced strip size (allocated) */
97 	sopno slen;		/* malloced strip length (used) */
98 	int ncsalloc;		/* number of csets allocated */
99 	struct re_guts *g;
100 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
101 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
102 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
103 	bool allowbranch;	/* can this expression branch? */
104 	bool bre;		/* convenience; is this a BRE? */
105 	bool (*parse_expr)(struct parse *, struct branchc *);
106 	void (*pre_parse)(struct parse *, struct branchc *);
107 	void (*post_parse)(struct parse *, struct branchc *);
108 };
109 
110 /* ========= begin header generated by ./mkh ========= */
111 #ifdef __cplusplus
112 extern "C" {
113 #endif
114 
115 /* === regcomp.c === */
116 static bool p_ere_exp(struct parse *p, struct branchc *bc);
117 static void p_str(struct parse *p);
118 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
119 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
120 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
121 static bool p_branch_empty(struct parse *p, struct branchc *bc);
122 static bool p_branch_do(struct parse *p, struct branchc *bc);
123 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
124 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
125 static void p_re(struct parse *p, int end1, int end2);
126 static bool p_simp_re(struct parse *p, struct branchc *bc);
127 static int p_count(struct parse *p);
128 static void p_bracket(struct parse *p);
129 static int p_range_cmp(wchar_t c1, wchar_t c2);
130 static void p_b_term(struct parse *p, cset *cs);
131 static void p_b_cclass(struct parse *p, cset *cs);
132 static void p_b_eclass(struct parse *p, cset *cs);
133 static wint_t p_b_symbol(struct parse *p);
134 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
135 static wint_t othercase(wint_t ch);
136 static void bothcases(struct parse *p, wint_t ch);
137 static void ordinary(struct parse *p, wint_t ch);
138 static void nonnewline(struct parse *p);
139 static void repeat(struct parse *p, sopno start, int from, int to);
140 static int seterr(struct parse *p, int e);
141 static cset *allocset(struct parse *p);
142 static void freeset(struct parse *p, cset *cs);
143 static void CHadd(struct parse *p, cset *cs, wint_t ch);
144 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
145 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
146 static wint_t singleton(cset *cs);
147 static sopno dupl(struct parse *p, sopno start, sopno finish);
148 static void doemit(struct parse *p, sop op, size_t opnd);
149 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
150 static void dofwd(struct parse *p, sopno pos, sop value);
151 static int enlarge(struct parse *p, sopno size);
152 static void stripsnug(struct parse *p, struct re_guts *g);
153 static void findmust(struct parse *p, struct re_guts *g);
154 static int altoffset(sop *scan, int offset);
155 static void computejumps(struct parse *p, struct re_guts *g);
156 static void computematchjumps(struct parse *p, struct re_guts *g);
157 static sopno pluscount(struct parse *p, struct re_guts *g);
158 static wint_t wgetnext(struct parse *p);
159 
160 #ifdef __cplusplus
161 }
162 #endif
163 /* ========= end header generated by ./mkh ========= */
164 
165 static char nuls[10];		/* place to point scanner in event of error */
166 
167 /*
168  * macros for use with parse structure
169  * BEWARE:  these know that the parse structure is named `p' !!!
170  */
171 #define	PEEK()	(*p->next)
172 #define	PEEK2()	(*(p->next+1))
173 #define	MORE()	(p->next < p->end)
174 #define	MORE2()	(p->next+1 < p->end)
175 #define	SEE(c)	(MORE() && PEEK() == (c))
176 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
177 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
178 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
179 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
180 #define	NEXT()	(p->next++)
181 #define	NEXT2()	(p->next += 2)
182 #define	NEXTn(n)	(p->next += (n))
183 #define	GETNEXT()	(*p->next++)
184 #define	WGETNEXT()	wgetnext(p)
185 #define	SETERROR(e)	seterr(p, (e))
186 #define	REQUIRE(co, e)	((co) || SETERROR(e))
187 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
188 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
189 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
190 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
191 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
192 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
193 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
194 #define	HERE()		(p->slen)
195 #define	THERE()		(p->slen - 1)
196 #define	THERETHERE()	(p->slen - 2)
197 #define	DROP(n)	(p->slen -= (n))
198 
199 #ifndef NDEBUG
200 static int never = 0;		/* for use in asserts; shuts lint up */
201 #else
202 #define	never	0		/* some <assert.h>s have bugs too */
203 #endif
204 
205 /* Macro used by computejump()/computematchjump() */
206 #define MIN(a,b)	((a)<(b)?(a):(b))
207 
208 /*
209  - regcomp - interface for parser and compilation
210  = extern int regcomp(regex_t *, const char *, int);
211  = #define	REG_BASIC	0000
212  = #define	REG_EXTENDED	0001
213  = #define	REG_ICASE	0002
214  = #define	REG_NOSUB	0004
215  = #define	REG_NEWLINE	0010
216  = #define	REG_NOSPEC	0020
217  = #define	REG_PEND	0040
218  = #define	REG_DUMP	0200
219  */
220 int				/* 0 success, otherwise REG_something */
221 regcomp(regex_t * __restrict preg,
222 	const char * __restrict pattern,
223 	int cflags)
224 {
225 	struct parse pa;
226 	struct re_guts *g;
227 	struct parse *p = &pa;
228 	int i;
229 	size_t len;
230 	size_t maxlen;
231 #ifdef REDEBUG
232 #	define	GOODFLAGS(f)	(f)
233 #else
234 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
235 #endif
236 
237 	cflags = GOODFLAGS(cflags);
238 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
239 		return(REG_INVARG);
240 
241 	if (cflags&REG_PEND) {
242 		if (preg->re_endp < pattern)
243 			return(REG_INVARG);
244 		len = preg->re_endp - pattern;
245 	} else
246 		len = strlen(pattern);
247 
248 	/* do the mallocs early so failure handling is easy */
249 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
250 	if (g == NULL)
251 		return(REG_ESPACE);
252 	/*
253 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
254 	 * extension.  Also avoid any signed overflow in case of conversion
255 	 * so make the real limit based on a 31-bit overflow.
256 	 *
257 	 * Likely not applicable on 64-bit systems but handle the case
258 	 * generically (who are we to stop people from using ~715MB+
259 	 * patterns?).
260 	 */
261 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
262 	if (len >= maxlen) {
263 		free((char *)g);
264 		return(REG_ESPACE);
265 	}
266 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
267 	assert(p->ssize >= len);
268 
269 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
270 	p->slen = 0;
271 	if (p->strip == NULL) {
272 		free((char *)g);
273 		return(REG_ESPACE);
274 	}
275 
276 	/* set things up */
277 	p->g = g;
278 	p->next = pattern;	/* convenience; we do not modify it */
279 	p->end = p->next + len;
280 	p->error = 0;
281 	p->ncsalloc = 0;
282 	for (i = 0; i < NPAREN; i++) {
283 		p->pbegin[i] = 0;
284 		p->pend[i] = 0;
285 	}
286 	if (cflags & REG_EXTENDED) {
287 		p->allowbranch = true;
288 		p->bre = false;
289 		p->parse_expr = p_ere_exp;
290 		p->pre_parse = NULL;
291 		p->post_parse = NULL;
292 	} else {
293 		p->allowbranch = false;
294 		p->bre = true;
295 		p->parse_expr = p_simp_re;
296 		p->pre_parse = p_bre_pre_parse;
297 		p->post_parse = p_bre_post_parse;
298 	}
299 	g->sets = NULL;
300 	g->ncsets = 0;
301 	g->cflags = cflags;
302 	g->iflags = 0;
303 	g->nbol = 0;
304 	g->neol = 0;
305 	g->must = NULL;
306 	g->moffset = -1;
307 	g->charjump = NULL;
308 	g->matchjump = NULL;
309 	g->mlen = 0;
310 	g->nsub = 0;
311 	g->backrefs = 0;
312 
313 	/* do it */
314 	EMIT(OEND, 0);
315 	g->firststate = THERE();
316 	if (cflags & REG_NOSPEC)
317 		p_str(p);
318 	else
319 		p_re(p, OUT, OUT);
320 	EMIT(OEND, 0);
321 	g->laststate = THERE();
322 
323 	/* tidy up loose ends and fill things in */
324 	stripsnug(p, g);
325 	findmust(p, g);
326 	/* only use Boyer-Moore algorithm if the pattern is bigger
327 	 * than three characters
328 	 */
329 	if(g->mlen > 3) {
330 		computejumps(p, g);
331 		computematchjumps(p, g);
332 		if(g->matchjump == NULL && g->charjump != NULL) {
333 			free(g->charjump);
334 			g->charjump = NULL;
335 		}
336 	}
337 	g->nplus = pluscount(p, g);
338 	g->magic = MAGIC2;
339 	preg->re_nsub = g->nsub;
340 	preg->re_g = g;
341 	preg->re_magic = MAGIC1;
342 #ifndef REDEBUG
343 	/* not debugging, so can't rely on the assert() in regexec() */
344 	if (g->iflags&BAD)
345 		SETERROR(REG_ASSERT);
346 #endif
347 
348 	/* win or lose, we're done */
349 	if (p->error != 0)	/* lose */
350 		regfree(preg);
351 	return(p->error);
352 }
353 
354 /*
355  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
356  - return whether we should terminate or not
357  == static bool p_ere_exp(struct parse *p);
358  */
359 static bool
360 p_ere_exp(struct parse *p, struct branchc *bc)
361 {
362 	char c;
363 	wint_t wc;
364 	sopno pos;
365 	int count;
366 	int count2;
367 	sopno subno;
368 	int wascaret = 0;
369 
370 	(void)bc;
371 	assert(MORE());		/* caller should have ensured this */
372 	c = GETNEXT();
373 
374 	pos = HERE();
375 	switch (c) {
376 	case '(':
377 		(void)REQUIRE(MORE(), REG_EPAREN);
378 		p->g->nsub++;
379 		subno = p->g->nsub;
380 		if (subno < NPAREN)
381 			p->pbegin[subno] = HERE();
382 		EMIT(OLPAREN, subno);
383 		if (!SEE(')'))
384 			p_re(p, ')', IGN);
385 		if (subno < NPAREN) {
386 			p->pend[subno] = HERE();
387 			assert(p->pend[subno] != 0);
388 		}
389 		EMIT(ORPAREN, subno);
390 		(void)MUSTEAT(')', REG_EPAREN);
391 		break;
392 #ifndef POSIX_MISTAKE
393 	case ')':		/* happens only if no current unmatched ( */
394 		/*
395 		 * You may ask, why the ifndef?  Because I didn't notice
396 		 * this until slightly too late for 1003.2, and none of the
397 		 * other 1003.2 regular-expression reviewers noticed it at
398 		 * all.  So an unmatched ) is legal POSIX, at least until
399 		 * we can get it fixed.
400 		 */
401 		SETERROR(REG_EPAREN);
402 		break;
403 #endif
404 	case '^':
405 		EMIT(OBOL, 0);
406 		p->g->iflags |= USEBOL;
407 		p->g->nbol++;
408 		wascaret = 1;
409 		break;
410 	case '$':
411 		EMIT(OEOL, 0);
412 		p->g->iflags |= USEEOL;
413 		p->g->neol++;
414 		break;
415 	case '|':
416 		SETERROR(REG_EMPTY);
417 		break;
418 	case '*':
419 	case '+':
420 	case '?':
421 	case '{':
422 		SETERROR(REG_BADRPT);
423 		break;
424 	case '.':
425 		if (p->g->cflags&REG_NEWLINE)
426 			nonnewline(p);
427 		else
428 			EMIT(OANY, 0);
429 		break;
430 	case '[':
431 		p_bracket(p);
432 		break;
433 	case '\\':
434 		(void)REQUIRE(MORE(), REG_EESCAPE);
435 		wc = WGETNEXT();
436 		switch (wc) {
437 		case '<':
438 			EMIT(OBOW, 0);
439 			break;
440 		case '>':
441 			EMIT(OEOW, 0);
442 			break;
443 		default:
444 			ordinary(p, wc);
445 			break;
446 		}
447 		break;
448 	default:
449 		if (p->error != 0)
450 			return (false);
451 		p->next--;
452 		wc = WGETNEXT();
453 		ordinary(p, wc);
454 		break;
455 	}
456 
457 	if (!MORE())
458 		return (false);
459 	c = PEEK();
460 	/* we call { a repetition if followed by a digit */
461 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
462 		return (false);		/* no repetition, we're done */
463 	else if (c == '{')
464 		(void)REQUIRE(MORE2() && \
465 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
466 	NEXT();
467 
468 	(void)REQUIRE(!wascaret, REG_BADRPT);
469 	switch (c) {
470 	case '*':	/* implemented as +? */
471 		/* this case does not require the (y|) trick, noKLUDGE */
472 		INSERT(OPLUS_, pos);
473 		ASTERN(O_PLUS, pos);
474 		INSERT(OQUEST_, pos);
475 		ASTERN(O_QUEST, pos);
476 		break;
477 	case '+':
478 		INSERT(OPLUS_, pos);
479 		ASTERN(O_PLUS, pos);
480 		break;
481 	case '?':
482 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
483 		INSERT(OCH_, pos);		/* offset slightly wrong */
484 		ASTERN(OOR1, pos);		/* this one's right */
485 		AHEAD(pos);			/* fix the OCH_ */
486 		EMIT(OOR2, 0);			/* offset very wrong... */
487 		AHEAD(THERE());			/* ...so fix it */
488 		ASTERN(O_CH, THERETHERE());
489 		break;
490 	case '{':
491 		count = p_count(p);
492 		if (EAT(',')) {
493 			if (isdigit((uch)PEEK())) {
494 				count2 = p_count(p);
495 				(void)REQUIRE(count <= count2, REG_BADBR);
496 			} else		/* single number with comma */
497 				count2 = INFINITY;
498 		} else		/* just a single number */
499 			count2 = count;
500 		repeat(p, pos, count, count2);
501 		if (!EAT('}')) {	/* error heuristics */
502 			while (MORE() && PEEK() != '}')
503 				NEXT();
504 			(void)REQUIRE(MORE(), REG_EBRACE);
505 			SETERROR(REG_BADBR);
506 		}
507 		break;
508 	}
509 
510 	if (!MORE())
511 		return (false);
512 	c = PEEK();
513 	if (!( c == '*' || c == '+' || c == '?' ||
514 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
515 		return (false);
516 	SETERROR(REG_BADRPT);
517 	return (false);
518 }
519 
520 /*
521  - p_str - string (no metacharacters) "parser"
522  == static void p_str(struct parse *p);
523  */
524 static void
525 p_str(struct parse *p)
526 {
527 	(void)REQUIRE(MORE(), REG_EMPTY);
528 	while (MORE())
529 		ordinary(p, WGETNEXT());
530 }
531 
532 /*
533  * Eat consecutive branch delimiters for the kind of expression that we are
534  * parsing, return the number of delimiters that we ate.
535  */
536 static int
537 p_branch_eat_delim(struct parse *p, struct branchc *bc)
538 {
539 	int nskip;
540 
541 	(void)bc;
542 	nskip = 0;
543 	while (EAT('|'))
544 		++nskip;
545 	return (nskip);
546 }
547 
548 /*
549  * Insert necessary branch book-keeping operations. This emits a
550  * bogus 'next' offset, since we still have more to parse
551  */
552 static void
553 p_branch_ins_offset(struct parse *p, struct branchc *bc)
554 {
555 
556 	if (bc->nbranch == 0) {
557 		INSERT(OCH_, bc->start);	/* offset is wrong */
558 		bc->fwd = bc->start;
559 		bc->back = bc->start;
560 	}
561 
562 	ASTERN(OOR1, bc->back);
563 	bc->back = THERE();
564 	AHEAD(bc->fwd);			/* fix previous offset */
565 	bc->fwd = HERE();
566 	EMIT(OOR2, 0);			/* offset is very wrong */
567 	++bc->nbranch;
568 }
569 
570 /*
571  * Fix the offset of the tail branch, if we actually had any branches.
572  * This is to correct the bogus placeholder offset that we use.
573  */
574 static void
575 p_branch_fix_tail(struct parse *p, struct branchc *bc)
576 {
577 
578 	/* Fix bogus offset at the tail if we actually have branches */
579 	if (bc->nbranch > 0) {
580 		AHEAD(bc->fwd);
581 		ASTERN(O_CH, bc->back);
582 	}
583 }
584 
585 /*
586  * Signal to the parser that an empty branch has been encountered; this will,
587  * in the future, be used to allow for more permissive behavior with empty
588  * branches. The return value should indicate whether parsing may continue
589  * or not.
590  */
591 static bool
592 p_branch_empty(struct parse *p, struct branchc *bc)
593 {
594 
595 	(void)bc;
596 	SETERROR(REG_EMPTY);
597 	return (false);
598 }
599 
600 /*
601  * Take care of any branching requirements. This includes inserting the
602  * appropriate branching instructions as well as eating all of the branch
603  * delimiters until we either run out of pattern or need to parse more pattern.
604  */
605 static bool
606 p_branch_do(struct parse *p, struct branchc *bc)
607 {
608 	int ate = 0;
609 
610 	ate = p_branch_eat_delim(p, bc);
611 	if (ate == 0)
612 		return (false);
613 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
614 		/*
615 		 * Halt parsing only if we have an empty branch and p_branch_empty
616 		 * indicates that we must not continue. In the future, this will not
617 		 * necessarily be an error.
618 		 */
619 		return (false);
620 	p_branch_ins_offset(p, bc);
621 
622 	return (true);
623 }
624 
625 static void
626 p_bre_pre_parse(struct parse *p, struct branchc *bc)
627 {
628 
629 	(void) bc;
630 	/*
631 	 * Does not move cleanly into expression parser because of
632 	 * ordinary interpration of * at the beginning position of
633 	 * an expression.
634 	 */
635 	if (EAT('^')) {
636 		EMIT(OBOL, 0);
637 		p->g->iflags |= USEBOL;
638 		p->g->nbol++;
639 	}
640 }
641 
642 static void
643 p_bre_post_parse(struct parse *p, struct branchc *bc)
644 {
645 
646 	/* Expression is terminating due to EOL token */
647 	if (bc->terminate) {
648 		DROP(1);
649 		EMIT(OEOL, 0);
650 		p->g->iflags |= USEEOL;
651 		p->g->neol++;
652 	}
653 }
654 
655 /*
656  - p_re - Top level parser, concatenation and BRE anchoring
657  == static void p_re(struct parse *p, int end1, int end2);
658  * Giving end1 as OUT essentially eliminates the end1/end2 check.
659  *
660  * This implementation is a bit of a kludge, in that a trailing $ is first
661  * taken as an ordinary character and then revised to be an anchor.
662  * The amount of lookahead needed to avoid this kludge is excessive.
663  */
664 static void
665 p_re(struct parse *p,
666 	int end1,	/* first terminating character */
667 	int end2)	/* second terminating character; ignored for EREs */
668 {
669 	struct branchc bc;
670 
671 	bc.nbranch = 0;
672 	if (end1 == OUT && end2 == OUT)
673 		bc.outer = true;
674 	else
675 		bc.outer = false;
676 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
677 	for (;;) {
678 		bc.start = HERE();
679 		bc.nchain = 0;
680 		bc.terminate = false;
681 		if (p->pre_parse != NULL)
682 			p->pre_parse(p, &bc);
683 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
684 			bc.terminate = p->parse_expr(p, &bc);
685 			++bc.nchain;
686 		}
687 		if (p->post_parse != NULL)
688 			p->post_parse(p, &bc);
689 		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
690 		if (!p->allowbranch)
691 			break;
692 		/*
693 		 * p_branch_do's return value indicates whether we should
694 		 * continue parsing or not. This is both for correctness and
695 		 * a slight optimization, because it will check if we've
696 		 * encountered an empty branch or the end of the string
697 		 * immediately following a branch delimiter.
698 		 */
699 		if (!p_branch_do(p, &bc))
700 			break;
701 	}
702 #undef SEE_END
703 	if (p->allowbranch)
704 		p_branch_fix_tail(p, &bc);
705 	assert(!MORE() || SEE(end1));
706 }
707 
708 /*
709  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
710  == static bool p_simp_re(struct parse *p, struct branchc *bc);
711  */
712 static bool			/* was the simple RE an unbackslashed $? */
713 p_simp_re(struct parse *p, struct branchc *bc)
714 {
715 	int c;
716 	int count;
717 	int count2;
718 	sopno pos;
719 	int i;
720 	wint_t wc;
721 	sopno subno;
722 #	define	BACKSL	(1<<CHAR_BIT)
723 
724 	pos = HERE();		/* repetition op, if any, covers from here */
725 
726 	assert(MORE());		/* caller should have ensured this */
727 	c = GETNEXT();
728 	if (c == '\\') {
729 		(void)REQUIRE(MORE(), REG_EESCAPE);
730 		c = BACKSL | GETNEXT();
731 	}
732 	switch (c) {
733 	case '.':
734 		if (p->g->cflags&REG_NEWLINE)
735 			nonnewline(p);
736 		else
737 			EMIT(OANY, 0);
738 		break;
739 	case '[':
740 		p_bracket(p);
741 		break;
742 	case BACKSL|'<':
743 		EMIT(OBOW, 0);
744 		break;
745 	case BACKSL|'>':
746 		EMIT(OEOW, 0);
747 		break;
748 	case BACKSL|'{':
749 		SETERROR(REG_BADRPT);
750 		break;
751 	case BACKSL|'(':
752 		p->g->nsub++;
753 		subno = p->g->nsub;
754 		if (subno < NPAREN)
755 			p->pbegin[subno] = HERE();
756 		EMIT(OLPAREN, subno);
757 		/* the MORE here is an error heuristic */
758 		if (MORE() && !SEETWO('\\', ')'))
759 			p_re(p, '\\', ')');
760 		if (subno < NPAREN) {
761 			p->pend[subno] = HERE();
762 			assert(p->pend[subno] != 0);
763 		}
764 		EMIT(ORPAREN, subno);
765 		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
766 		break;
767 	case BACKSL|')':	/* should not get here -- must be user */
768 		SETERROR(REG_EPAREN);
769 		break;
770 	case BACKSL|'1':
771 	case BACKSL|'2':
772 	case BACKSL|'3':
773 	case BACKSL|'4':
774 	case BACKSL|'5':
775 	case BACKSL|'6':
776 	case BACKSL|'7':
777 	case BACKSL|'8':
778 	case BACKSL|'9':
779 		i = (c&~BACKSL) - '0';
780 		assert(i < NPAREN);
781 		if (p->pend[i] != 0) {
782 			assert(i <= p->g->nsub);
783 			EMIT(OBACK_, i);
784 			assert(p->pbegin[i] != 0);
785 			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
786 			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
787 			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
788 			EMIT(O_BACK, i);
789 		} else
790 			SETERROR(REG_ESUBREG);
791 		p->g->backrefs = 1;
792 		break;
793 	case '*':
794 		/*
795 		 * Ordinary if used as the first character beyond BOL anchor of
796 		 * a (sub-)expression, counts as a bad repetition operator if it
797 		 * appears otherwise.
798 		 */
799 		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
800 		/* FALLTHROUGH */
801 	default:
802 		if (p->error != 0)
803 			return (false);	/* Definitely not $... */
804 		p->next--;
805 		wc = WGETNEXT();
806 		ordinary(p, wc);
807 		break;
808 	}
809 
810 	if (EAT('*')) {		/* implemented as +? */
811 		/* this case does not require the (y|) trick, noKLUDGE */
812 		INSERT(OPLUS_, pos);
813 		ASTERN(O_PLUS, pos);
814 		INSERT(OQUEST_, pos);
815 		ASTERN(O_QUEST, pos);
816 	} else if (EATTWO('\\', '{')) {
817 		count = p_count(p);
818 		if (EAT(',')) {
819 			if (MORE() && isdigit((uch)PEEK())) {
820 				count2 = p_count(p);
821 				(void)REQUIRE(count <= count2, REG_BADBR);
822 			} else		/* single number with comma */
823 				count2 = INFINITY;
824 		} else		/* just a single number */
825 			count2 = count;
826 		repeat(p, pos, count, count2);
827 		if (!EATTWO('\\', '}')) {	/* error heuristics */
828 			while (MORE() && !SEETWO('\\', '}'))
829 				NEXT();
830 			(void)REQUIRE(MORE(), REG_EBRACE);
831 			SETERROR(REG_BADBR);
832 		}
833 	} else if (c == '$')     /* $ (but not \$) ends it */
834 		return (true);
835 
836 	return (false);
837 }
838 
839 /*
840  - p_count - parse a repetition count
841  == static int p_count(struct parse *p);
842  */
843 static int			/* the value */
844 p_count(struct parse *p)
845 {
846 	int count = 0;
847 	int ndigits = 0;
848 
849 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
850 		count = count*10 + (GETNEXT() - '0');
851 		ndigits++;
852 	}
853 
854 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
855 	return(count);
856 }
857 
858 /*
859  - p_bracket - parse a bracketed character list
860  == static void p_bracket(struct parse *p);
861  */
862 static void
863 p_bracket(struct parse *p)
864 {
865 	cset *cs;
866 	wint_t ch;
867 
868 	/* Dept of Truly Sickening Special-Case Kludges */
869 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
870 		EMIT(OBOW, 0);
871 		NEXTn(6);
872 		return;
873 	}
874 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
875 		EMIT(OEOW, 0);
876 		NEXTn(6);
877 		return;
878 	}
879 
880 	if ((cs = allocset(p)) == NULL)
881 		return;
882 
883 	if (p->g->cflags&REG_ICASE)
884 		cs->icase = 1;
885 	if (EAT('^'))
886 		cs->invert = 1;
887 	if (EAT(']'))
888 		CHadd(p, cs, ']');
889 	else if (EAT('-'))
890 		CHadd(p, cs, '-');
891 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
892 		p_b_term(p, cs);
893 	if (EAT('-'))
894 		CHadd(p, cs, '-');
895 	(void)MUSTEAT(']', REG_EBRACK);
896 
897 	if (p->error != 0)	/* don't mess things up further */
898 		return;
899 
900 	if (cs->invert && p->g->cflags&REG_NEWLINE)
901 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
902 
903 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
904 		ordinary(p, ch);
905 		freeset(p, cs);
906 	} else
907 		EMIT(OANYOF, (int)(cs - p->g->sets));
908 }
909 
910 static int
911 p_range_cmp(wchar_t c1, wchar_t c2)
912 {
913 #ifndef LIBREGEX
914 	return __wcollate_range_cmp(c1, c2);
915 #else
916 	/* Copied from libc/collate __wcollate_range_cmp */
917 	wchar_t s1[2], s2[2];
918 
919 	s1[0] = c1;
920 	s1[1] = L'\0';
921 	s2[0] = c2;
922 	s2[1] = L'\0';
923 	return (wcscoll(s1, s2));
924 #endif
925 }
926 
927 /*
928  - p_b_term - parse one term of a bracketed character list
929  == static void p_b_term(struct parse *p, cset *cs);
930  */
931 static void
932 p_b_term(struct parse *p, cset *cs)
933 {
934 	char c;
935 	wint_t start, finish;
936 	wint_t i;
937 #ifndef LIBREGEX
938 	struct xlocale_collate *table =
939 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
940 #endif
941 	/* classify what we've got */
942 	switch ((MORE()) ? PEEK() : '\0') {
943 	case '[':
944 		c = (MORE2()) ? PEEK2() : '\0';
945 		break;
946 	case '-':
947 		SETERROR(REG_ERANGE);
948 		return;			/* NOTE RETURN */
949 	default:
950 		c = '\0';
951 		break;
952 	}
953 
954 	switch (c) {
955 	case ':':		/* character class */
956 		NEXT2();
957 		(void)REQUIRE(MORE(), REG_EBRACK);
958 		c = PEEK();
959 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
960 		p_b_cclass(p, cs);
961 		(void)REQUIRE(MORE(), REG_EBRACK);
962 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
963 		break;
964 	case '=':		/* equivalence class */
965 		NEXT2();
966 		(void)REQUIRE(MORE(), REG_EBRACK);
967 		c = PEEK();
968 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
969 		p_b_eclass(p, cs);
970 		(void)REQUIRE(MORE(), REG_EBRACK);
971 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
972 		break;
973 	default:		/* symbol, ordinary character, or range */
974 		start = p_b_symbol(p);
975 		if (SEE('-') && MORE2() && PEEK2() != ']') {
976 			/* range */
977 			NEXT();
978 			if (EAT('-'))
979 				finish = '-';
980 			else
981 				finish = p_b_symbol(p);
982 		} else
983 			finish = start;
984 		if (start == finish)
985 			CHadd(p, cs, start);
986 		else {
987 #ifndef LIBREGEX
988 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
989 #else
990 			if (MB_CUR_MAX > 1) {
991 #endif
992 				(void)REQUIRE(start <= finish, REG_ERANGE);
993 				CHaddrange(p, cs, start, finish);
994 			} else {
995 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
996 				for (i = 0; i <= UCHAR_MAX; i++) {
997 					if (p_range_cmp(start, i) <= 0 &&
998 					    p_range_cmp(i, finish) <= 0 )
999 						CHadd(p, cs, i);
1000 				}
1001 			}
1002 		}
1003 		break;
1004 	}
1005 }
1006 
1007 /*
1008  - p_b_cclass - parse a character-class name and deal with it
1009  == static void p_b_cclass(struct parse *p, cset *cs);
1010  */
1011 static void
1012 p_b_cclass(struct parse *p, cset *cs)
1013 {
1014 	const char *sp = p->next;
1015 	size_t len;
1016 	wctype_t wct;
1017 	char clname[16];
1018 
1019 	while (MORE() && isalpha((uch)PEEK()))
1020 		NEXT();
1021 	len = p->next - sp;
1022 	if (len >= sizeof(clname) - 1) {
1023 		SETERROR(REG_ECTYPE);
1024 		return;
1025 	}
1026 	memcpy(clname, sp, len);
1027 	clname[len] = '\0';
1028 	if ((wct = wctype(clname)) == 0) {
1029 		SETERROR(REG_ECTYPE);
1030 		return;
1031 	}
1032 	CHaddtype(p, cs, wct);
1033 }
1034 
1035 /*
1036  - p_b_eclass - parse an equivalence-class name and deal with it
1037  == static void p_b_eclass(struct parse *p, cset *cs);
1038  *
1039  * This implementation is incomplete. xxx
1040  */
1041 static void
1042 p_b_eclass(struct parse *p, cset *cs)
1043 {
1044 	wint_t c;
1045 
1046 	c = p_b_coll_elem(p, '=');
1047 	CHadd(p, cs, c);
1048 }
1049 
1050 /*
1051  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1052  == static wint_t p_b_symbol(struct parse *p);
1053  */
1054 static wint_t			/* value of symbol */
1055 p_b_symbol(struct parse *p)
1056 {
1057 	wint_t value;
1058 
1059 	(void)REQUIRE(MORE(), REG_EBRACK);
1060 	if (!EATTWO('[', '.'))
1061 		return(WGETNEXT());
1062 
1063 	/* collating symbol */
1064 	value = p_b_coll_elem(p, '.');
1065 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1066 	return(value);
1067 }
1068 
1069 /*
1070  - p_b_coll_elem - parse a collating-element name and look it up
1071  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1072  */
1073 static wint_t			/* value of collating element */
1074 p_b_coll_elem(struct parse *p,
1075 	wint_t endc)		/* name ended by endc,']' */
1076 {
1077 	const char *sp = p->next;
1078 	struct cname *cp;
1079 	mbstate_t mbs;
1080 	wchar_t wc;
1081 	size_t clen, len;
1082 
1083 	while (MORE() && !SEETWO(endc, ']'))
1084 		NEXT();
1085 	if (!MORE()) {
1086 		SETERROR(REG_EBRACK);
1087 		return(0);
1088 	}
1089 	len = p->next - sp;
1090 	for (cp = cnames; cp->name != NULL; cp++)
1091 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1092 			return(cp->code);	/* known name */
1093 	memset(&mbs, 0, sizeof(mbs));
1094 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1095 		return (wc);			/* single character */
1096 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1097 		SETERROR(REG_ILLSEQ);
1098 	else
1099 		SETERROR(REG_ECOLLATE);		/* neither */
1100 	return(0);
1101 }
1102 
1103 /*
1104  - othercase - return the case counterpart of an alphabetic
1105  == static wint_t othercase(wint_t ch);
1106  */
1107 static wint_t			/* if no counterpart, return ch */
1108 othercase(wint_t ch)
1109 {
1110 	assert(iswalpha(ch));
1111 	if (iswupper(ch))
1112 		return(towlower(ch));
1113 	else if (iswlower(ch))
1114 		return(towupper(ch));
1115 	else			/* peculiar, but could happen */
1116 		return(ch);
1117 }
1118 
1119 /*
1120  - bothcases - emit a dualcase version of a two-case character
1121  == static void bothcases(struct parse *p, wint_t ch);
1122  *
1123  * Boy, is this implementation ever a kludge...
1124  */
1125 static void
1126 bothcases(struct parse *p, wint_t ch)
1127 {
1128 	const char *oldnext = p->next;
1129 	const char *oldend = p->end;
1130 	char bracket[3 + MB_LEN_MAX];
1131 	size_t n;
1132 	mbstate_t mbs;
1133 
1134 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1135 	p->next = bracket;
1136 	memset(&mbs, 0, sizeof(mbs));
1137 	n = wcrtomb(bracket, ch, &mbs);
1138 	assert(n != (size_t)-1);
1139 	bracket[n] = ']';
1140 	bracket[n + 1] = '\0';
1141 	p->end = bracket+n+1;
1142 	p_bracket(p);
1143 	assert(p->next == p->end);
1144 	p->next = oldnext;
1145 	p->end = oldend;
1146 }
1147 
1148 /*
1149  - ordinary - emit an ordinary character
1150  == static void ordinary(struct parse *p, wint_t ch);
1151  */
1152 static void
1153 ordinary(struct parse *p, wint_t ch)
1154 {
1155 	cset *cs;
1156 
1157 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1158 		bothcases(p, ch);
1159 	else if ((ch & OPDMASK) == ch)
1160 		EMIT(OCHAR, ch);
1161 	else {
1162 		/*
1163 		 * Kludge: character is too big to fit into an OCHAR operand.
1164 		 * Emit a singleton set.
1165 		 */
1166 		if ((cs = allocset(p)) == NULL)
1167 			return;
1168 		CHadd(p, cs, ch);
1169 		EMIT(OANYOF, (int)(cs - p->g->sets));
1170 	}
1171 }
1172 
1173 /*
1174  - nonnewline - emit REG_NEWLINE version of OANY
1175  == static void nonnewline(struct parse *p);
1176  *
1177  * Boy, is this implementation ever a kludge...
1178  */
1179 static void
1180 nonnewline(struct parse *p)
1181 {
1182 	const char *oldnext = p->next;
1183 	const char *oldend = p->end;
1184 	char bracket[4];
1185 
1186 	p->next = bracket;
1187 	p->end = bracket+3;
1188 	bracket[0] = '^';
1189 	bracket[1] = '\n';
1190 	bracket[2] = ']';
1191 	bracket[3] = '\0';
1192 	p_bracket(p);
1193 	assert(p->next == bracket+3);
1194 	p->next = oldnext;
1195 	p->end = oldend;
1196 }
1197 
1198 /*
1199  - repeat - generate code for a bounded repetition, recursively if needed
1200  == static void repeat(struct parse *p, sopno start, int from, int to);
1201  */
1202 static void
1203 repeat(struct parse *p,
1204 	sopno start,		/* operand from here to end of strip */
1205 	int from,		/* repeated from this number */
1206 	int to)			/* to this number of times (maybe INFINITY) */
1207 {
1208 	sopno finish = HERE();
1209 #	define	N	2
1210 #	define	INF	3
1211 #	define	REP(f, t)	((f)*8 + (t))
1212 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1213 	sopno copy;
1214 
1215 	if (p->error != 0)	/* head off possible runaway recursion */
1216 		return;
1217 
1218 	assert(from <= to);
1219 
1220 	switch (REP(MAP(from), MAP(to))) {
1221 	case REP(0, 0):			/* must be user doing this */
1222 		DROP(finish-start);	/* drop the operand */
1223 		break;
1224 	case REP(0, 1):			/* as x{1,1}? */
1225 	case REP(0, N):			/* as x{1,n}? */
1226 	case REP(0, INF):		/* as x{1,}? */
1227 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1228 		INSERT(OCH_, start);		/* offset is wrong... */
1229 		repeat(p, start+1, 1, to);
1230 		ASTERN(OOR1, start);
1231 		AHEAD(start);			/* ... fix it */
1232 		EMIT(OOR2, 0);
1233 		AHEAD(THERE());
1234 		ASTERN(O_CH, THERETHERE());
1235 		break;
1236 	case REP(1, 1):			/* trivial case */
1237 		/* done */
1238 		break;
1239 	case REP(1, N):			/* as x?x{1,n-1} */
1240 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1241 		INSERT(OCH_, start);
1242 		ASTERN(OOR1, start);
1243 		AHEAD(start);
1244 		EMIT(OOR2, 0);			/* offset very wrong... */
1245 		AHEAD(THERE());			/* ...so fix it */
1246 		ASTERN(O_CH, THERETHERE());
1247 		copy = dupl(p, start+1, finish+1);
1248 		assert(copy == finish+4);
1249 		repeat(p, copy, 1, to-1);
1250 		break;
1251 	case REP(1, INF):		/* as x+ */
1252 		INSERT(OPLUS_, start);
1253 		ASTERN(O_PLUS, start);
1254 		break;
1255 	case REP(N, N):			/* as xx{m-1,n-1} */
1256 		copy = dupl(p, start, finish);
1257 		repeat(p, copy, from-1, to-1);
1258 		break;
1259 	case REP(N, INF):		/* as xx{n-1,INF} */
1260 		copy = dupl(p, start, finish);
1261 		repeat(p, copy, from-1, to);
1262 		break;
1263 	default:			/* "can't happen" */
1264 		SETERROR(REG_ASSERT);	/* just in case */
1265 		break;
1266 	}
1267 }
1268 
1269 /*
1270  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1271  - character from the parse struct, signals a REG_ILLSEQ error if the
1272  - character can't be converted. Returns the number of bytes consumed.
1273  */
1274 static wint_t
1275 wgetnext(struct parse *p)
1276 {
1277 	mbstate_t mbs;
1278 	wchar_t wc;
1279 	size_t n;
1280 
1281 	memset(&mbs, 0, sizeof(mbs));
1282 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1283 	if (n == (size_t)-1 || n == (size_t)-2) {
1284 		SETERROR(REG_ILLSEQ);
1285 		return (0);
1286 	}
1287 	if (n == 0)
1288 		n = 1;
1289 	p->next += n;
1290 	return (wc);
1291 }
1292 
1293 /*
1294  - seterr - set an error condition
1295  == static int seterr(struct parse *p, int e);
1296  */
1297 static int			/* useless but makes type checking happy */
1298 seterr(struct parse *p, int e)
1299 {
1300 	if (p->error == 0)	/* keep earliest error condition */
1301 		p->error = e;
1302 	p->next = nuls;		/* try to bring things to a halt */
1303 	p->end = nuls;
1304 	return(0);		/* make the return value well-defined */
1305 }
1306 
1307 /*
1308  - allocset - allocate a set of characters for []
1309  == static cset *allocset(struct parse *p);
1310  */
1311 static cset *
1312 allocset(struct parse *p)
1313 {
1314 	cset *cs, *ncs;
1315 
1316 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1317 	if (ncs == NULL) {
1318 		SETERROR(REG_ESPACE);
1319 		return (NULL);
1320 	}
1321 	p->g->sets = ncs;
1322 	cs = &p->g->sets[p->g->ncsets++];
1323 	memset(cs, 0, sizeof(*cs));
1324 
1325 	return(cs);
1326 }
1327 
1328 /*
1329  - freeset - free a now-unused set
1330  == static void freeset(struct parse *p, cset *cs);
1331  */
1332 static void
1333 freeset(struct parse *p, cset *cs)
1334 {
1335 	cset *top = &p->g->sets[p->g->ncsets];
1336 
1337 	free(cs->wides);
1338 	free(cs->ranges);
1339 	free(cs->types);
1340 	memset(cs, 0, sizeof(*cs));
1341 	if (cs == top-1)	/* recover only the easy case */
1342 		p->g->ncsets--;
1343 }
1344 
1345 /*
1346  - singleton - Determine whether a set contains only one character,
1347  - returning it if so, otherwise returning OUT.
1348  */
1349 static wint_t
1350 singleton(cset *cs)
1351 {
1352 	wint_t i, s, n;
1353 
1354 	for (i = n = 0; i < NC; i++)
1355 		if (CHIN(cs, i)) {
1356 			n++;
1357 			s = i;
1358 		}
1359 	if (n == 1)
1360 		return (s);
1361 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1362 	    cs->icase == 0)
1363 		return (cs->wides[0]);
1364 	/* Don't bother handling the other cases. */
1365 	return (OUT);
1366 }
1367 
1368 /*
1369  - CHadd - add character to character set.
1370  */
1371 static void
1372 CHadd(struct parse *p, cset *cs, wint_t ch)
1373 {
1374 	wint_t nch, *newwides;
1375 	assert(ch >= 0);
1376 	if (ch < NC)
1377 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1378 	else {
1379 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1380 		    sizeof(*cs->wides));
1381 		if (newwides == NULL) {
1382 			SETERROR(REG_ESPACE);
1383 			return;
1384 		}
1385 		cs->wides = newwides;
1386 		cs->wides[cs->nwides++] = ch;
1387 	}
1388 	if (cs->icase) {
1389 		if ((nch = towlower(ch)) < NC)
1390 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1391 		if ((nch = towupper(ch)) < NC)
1392 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1393 	}
1394 }
1395 
1396 /*
1397  - CHaddrange - add all characters in the range [min,max] to a character set.
1398  */
1399 static void
1400 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1401 {
1402 	crange *newranges;
1403 
1404 	for (; min < NC && min <= max; min++)
1405 		CHadd(p, cs, min);
1406 	if (min >= max)
1407 		return;
1408 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1409 	    sizeof(*cs->ranges));
1410 	if (newranges == NULL) {
1411 		SETERROR(REG_ESPACE);
1412 		return;
1413 	}
1414 	cs->ranges = newranges;
1415 	cs->ranges[cs->nranges].min = min;
1416 	cs->ranges[cs->nranges].max = max;
1417 	cs->nranges++;
1418 }
1419 
1420 /*
1421  - CHaddtype - add all characters of a certain type to a character set.
1422  */
1423 static void
1424 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1425 {
1426 	wint_t i;
1427 	wctype_t *newtypes;
1428 
1429 	for (i = 0; i < NC; i++)
1430 		if (iswctype(i, wct))
1431 			CHadd(p, cs, i);
1432 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1433 	    sizeof(*cs->types));
1434 	if (newtypes == NULL) {
1435 		SETERROR(REG_ESPACE);
1436 		return;
1437 	}
1438 	cs->types = newtypes;
1439 	cs->types[cs->ntypes++] = wct;
1440 }
1441 
1442 /*
1443  - dupl - emit a duplicate of a bunch of sops
1444  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1445  */
1446 static sopno			/* start of duplicate */
1447 dupl(struct parse *p,
1448 	sopno start,		/* from here */
1449 	sopno finish)		/* to this less one */
1450 {
1451 	sopno ret = HERE();
1452 	sopno len = finish - start;
1453 
1454 	assert(finish >= start);
1455 	if (len == 0)
1456 		return(ret);
1457 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1458 		return(ret);
1459 	(void) memcpy((char *)(p->strip + p->slen),
1460 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1461 	p->slen += len;
1462 	return(ret);
1463 }
1464 
1465 /*
1466  - doemit - emit a strip operator
1467  == static void doemit(struct parse *p, sop op, size_t opnd);
1468  *
1469  * It might seem better to implement this as a macro with a function as
1470  * hard-case backup, but it's just too big and messy unless there are
1471  * some changes to the data structures.  Maybe later.
1472  */
1473 static void
1474 doemit(struct parse *p, sop op, size_t opnd)
1475 {
1476 	/* avoid making error situations worse */
1477 	if (p->error != 0)
1478 		return;
1479 
1480 	/* deal with oversize operands ("can't happen", more or less) */
1481 	assert(opnd < 1<<OPSHIFT);
1482 
1483 	/* deal with undersized strip */
1484 	if (p->slen >= p->ssize)
1485 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1486 			return;
1487 
1488 	/* finally, it's all reduced to the easy case */
1489 	p->strip[p->slen++] = SOP(op, opnd);
1490 }
1491 
1492 /*
1493  - doinsert - insert a sop into the strip
1494  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1495  */
1496 static void
1497 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1498 {
1499 	sopno sn;
1500 	sop s;
1501 	int i;
1502 
1503 	/* avoid making error situations worse */
1504 	if (p->error != 0)
1505 		return;
1506 
1507 	sn = HERE();
1508 	EMIT(op, opnd);		/* do checks, ensure space */
1509 	assert(HERE() == sn+1);
1510 	s = p->strip[sn];
1511 
1512 	/* adjust paren pointers */
1513 	assert(pos > 0);
1514 	for (i = 1; i < NPAREN; i++) {
1515 		if (p->pbegin[i] >= pos) {
1516 			p->pbegin[i]++;
1517 		}
1518 		if (p->pend[i] >= pos) {
1519 			p->pend[i]++;
1520 		}
1521 	}
1522 
1523 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1524 						(HERE()-pos-1)*sizeof(sop));
1525 	p->strip[pos] = s;
1526 }
1527 
1528 /*
1529  - dofwd - complete a forward reference
1530  == static void dofwd(struct parse *p, sopno pos, sop value);
1531  */
1532 static void
1533 dofwd(struct parse *p, sopno pos, sop value)
1534 {
1535 	/* avoid making error situations worse */
1536 	if (p->error != 0)
1537 		return;
1538 
1539 	assert(value < 1<<OPSHIFT);
1540 	p->strip[pos] = OP(p->strip[pos]) | value;
1541 }
1542 
1543 /*
1544  - enlarge - enlarge the strip
1545  == static int enlarge(struct parse *p, sopno size);
1546  */
1547 static int
1548 enlarge(struct parse *p, sopno size)
1549 {
1550 	sop *sp;
1551 
1552 	if (p->ssize >= size)
1553 		return 1;
1554 
1555 	sp = reallocarray(p->strip, size, sizeof(sop));
1556 	if (sp == NULL) {
1557 		SETERROR(REG_ESPACE);
1558 		return 0;
1559 	}
1560 	p->strip = sp;
1561 	p->ssize = size;
1562 	return 1;
1563 }
1564 
1565 /*
1566  - stripsnug - compact the strip
1567  == static void stripsnug(struct parse *p, struct re_guts *g);
1568  */
1569 static void
1570 stripsnug(struct parse *p, struct re_guts *g)
1571 {
1572 	g->nstates = p->slen;
1573 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1574 	if (g->strip == NULL) {
1575 		SETERROR(REG_ESPACE);
1576 		g->strip = p->strip;
1577 	}
1578 }
1579 
1580 /*
1581  - findmust - fill in must and mlen with longest mandatory literal string
1582  == static void findmust(struct parse *p, struct re_guts *g);
1583  *
1584  * This algorithm could do fancy things like analyzing the operands of |
1585  * for common subsequences.  Someday.  This code is simple and finds most
1586  * of the interesting cases.
1587  *
1588  * Note that must and mlen got initialized during setup.
1589  */
1590 static void
1591 findmust(struct parse *p, struct re_guts *g)
1592 {
1593 	sop *scan;
1594 	sop *start = NULL;
1595 	sop *newstart = NULL;
1596 	sopno newlen;
1597 	sop s;
1598 	char *cp;
1599 	int offset;
1600 	char buf[MB_LEN_MAX];
1601 	size_t clen;
1602 	mbstate_t mbs;
1603 
1604 	/* avoid making error situations worse */
1605 	if (p->error != 0)
1606 		return;
1607 
1608 	/*
1609 	 * It's not generally safe to do a ``char'' substring search on
1610 	 * multibyte character strings, but it's safe for at least
1611 	 * UTF-8 (see RFC 3629).
1612 	 */
1613 	if (MB_CUR_MAX > 1 &&
1614 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1615 		return;
1616 
1617 	/* find the longest OCHAR sequence in strip */
1618 	newlen = 0;
1619 	offset = 0;
1620 	g->moffset = 0;
1621 	scan = g->strip + 1;
1622 	do {
1623 		s = *scan++;
1624 		switch (OP(s)) {
1625 		case OCHAR:		/* sequence member */
1626 			if (newlen == 0) {		/* new sequence */
1627 				memset(&mbs, 0, sizeof(mbs));
1628 				newstart = scan - 1;
1629 			}
1630 			clen = wcrtomb(buf, OPND(s), &mbs);
1631 			if (clen == (size_t)-1)
1632 				goto toohard;
1633 			newlen += clen;
1634 			break;
1635 		case OPLUS_:		/* things that don't break one */
1636 		case OLPAREN:
1637 		case ORPAREN:
1638 			break;
1639 		case OQUEST_:		/* things that must be skipped */
1640 		case OCH_:
1641 			offset = altoffset(scan, offset);
1642 			scan--;
1643 			do {
1644 				scan += OPND(s);
1645 				s = *scan;
1646 				/* assert() interferes w debug printouts */
1647 				if (OP(s) != (sop)O_QUEST &&
1648 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1649 					g->iflags |= BAD;
1650 					return;
1651 				}
1652 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1653 			/* FALLTHROUGH */
1654 		case OBOW:		/* things that break a sequence */
1655 		case OEOW:
1656 		case OBOL:
1657 		case OEOL:
1658 		case O_QUEST:
1659 		case O_CH:
1660 		case OEND:
1661 			if (newlen > (sopno)g->mlen) {		/* ends one */
1662 				start = newstart;
1663 				g->mlen = newlen;
1664 				if (offset > -1) {
1665 					g->moffset += offset;
1666 					offset = newlen;
1667 				} else
1668 					g->moffset = offset;
1669 			} else {
1670 				if (offset > -1)
1671 					offset += newlen;
1672 			}
1673 			newlen = 0;
1674 			break;
1675 		case OANY:
1676 			if (newlen > (sopno)g->mlen) {		/* ends one */
1677 				start = newstart;
1678 				g->mlen = newlen;
1679 				if (offset > -1) {
1680 					g->moffset += offset;
1681 					offset = newlen;
1682 				} else
1683 					g->moffset = offset;
1684 			} else {
1685 				if (offset > -1)
1686 					offset += newlen;
1687 			}
1688 			if (offset > -1)
1689 				offset++;
1690 			newlen = 0;
1691 			break;
1692 		case OANYOF:		/* may or may not invalidate offset */
1693 			/* First, everything as OANY */
1694 			if (newlen > (sopno)g->mlen) {		/* ends one */
1695 				start = newstart;
1696 				g->mlen = newlen;
1697 				if (offset > -1) {
1698 					g->moffset += offset;
1699 					offset = newlen;
1700 				} else
1701 					g->moffset = offset;
1702 			} else {
1703 				if (offset > -1)
1704 					offset += newlen;
1705 			}
1706 			if (offset > -1)
1707 				offset++;
1708 			newlen = 0;
1709 			break;
1710 		toohard:
1711 		default:
1712 			/* Anything here makes it impossible or too hard
1713 			 * to calculate the offset -- so we give up;
1714 			 * save the last known good offset, in case the
1715 			 * must sequence doesn't occur later.
1716 			 */
1717 			if (newlen > (sopno)g->mlen) {		/* ends one */
1718 				start = newstart;
1719 				g->mlen = newlen;
1720 				if (offset > -1)
1721 					g->moffset += offset;
1722 				else
1723 					g->moffset = offset;
1724 			}
1725 			offset = -1;
1726 			newlen = 0;
1727 			break;
1728 		}
1729 	} while (OP(s) != OEND);
1730 
1731 	if (g->mlen == 0) {		/* there isn't one */
1732 		g->moffset = -1;
1733 		return;
1734 	}
1735 
1736 	/* turn it into a character string */
1737 	g->must = malloc((size_t)g->mlen + 1);
1738 	if (g->must == NULL) {		/* argh; just forget it */
1739 		g->mlen = 0;
1740 		g->moffset = -1;
1741 		return;
1742 	}
1743 	cp = g->must;
1744 	scan = start;
1745 	memset(&mbs, 0, sizeof(mbs));
1746 	while (cp < g->must + g->mlen) {
1747 		while (OP(s = *scan++) != OCHAR)
1748 			continue;
1749 		clen = wcrtomb(cp, OPND(s), &mbs);
1750 		assert(clen != (size_t)-1);
1751 		cp += clen;
1752 	}
1753 	assert(cp == g->must + g->mlen);
1754 	*cp++ = '\0';		/* just on general principles */
1755 }
1756 
1757 /*
1758  - altoffset - choose biggest offset among multiple choices
1759  == static int altoffset(sop *scan, int offset);
1760  *
1761  * Compute, recursively if necessary, the largest offset among multiple
1762  * re paths.
1763  */
1764 static int
1765 altoffset(sop *scan, int offset)
1766 {
1767 	int largest;
1768 	int try;
1769 	sop s;
1770 
1771 	/* If we gave up already on offsets, return */
1772 	if (offset == -1)
1773 		return -1;
1774 
1775 	largest = 0;
1776 	try = 0;
1777 	s = *scan++;
1778 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
1779 		switch (OP(s)) {
1780 		case OOR1:
1781 			if (try > largest)
1782 				largest = try;
1783 			try = 0;
1784 			break;
1785 		case OQUEST_:
1786 		case OCH_:
1787 			try = altoffset(scan, try);
1788 			if (try == -1)
1789 				return -1;
1790 			scan--;
1791 			do {
1792 				scan += OPND(s);
1793 				s = *scan;
1794 				if (OP(s) != (sop)O_QUEST &&
1795 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
1796 					return -1;
1797 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1798 			/* We must skip to the next position, or we'll
1799 			 * leave altoffset() too early.
1800 			 */
1801 			scan++;
1802 			break;
1803 		case OANYOF:
1804 		case OCHAR:
1805 		case OANY:
1806 			try++;
1807 		case OBOW:
1808 		case OEOW:
1809 		case OLPAREN:
1810 		case ORPAREN:
1811 		case OOR2:
1812 			break;
1813 		default:
1814 			try = -1;
1815 			break;
1816 		}
1817 		if (try == -1)
1818 			return -1;
1819 		s = *scan++;
1820 	}
1821 
1822 	if (try > largest)
1823 		largest = try;
1824 
1825 	return largest+offset;
1826 }
1827 
1828 /*
1829  - computejumps - compute char jumps for BM scan
1830  == static void computejumps(struct parse *p, struct re_guts *g);
1831  *
1832  * This algorithm assumes g->must exists and is has size greater than
1833  * zero. It's based on the algorithm found on Computer Algorithms by
1834  * Sara Baase.
1835  *
1836  * A char jump is the number of characters one needs to jump based on
1837  * the value of the character from the text that was mismatched.
1838  */
1839 static void
1840 computejumps(struct parse *p, struct re_guts *g)
1841 {
1842 	int ch;
1843 	int mindex;
1844 
1845 	/* Avoid making errors worse */
1846 	if (p->error != 0)
1847 		return;
1848 
1849 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
1850 	if (g->charjump == NULL)	/* Not a fatal error */
1851 		return;
1852 	/* Adjust for signed chars, if necessary */
1853 	g->charjump = &g->charjump[-(CHAR_MIN)];
1854 
1855 	/* If the character does not exist in the pattern, the jump
1856 	 * is equal to the number of characters in the pattern.
1857 	 */
1858 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1859 		g->charjump[ch] = g->mlen;
1860 
1861 	/* If the character does exist, compute the jump that would
1862 	 * take us to the last character in the pattern equal to it
1863 	 * (notice that we match right to left, so that last character
1864 	 * is the first one that would be matched).
1865 	 */
1866 	for (mindex = 0; mindex < g->mlen; mindex++)
1867 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1868 }
1869 
1870 /*
1871  - computematchjumps - compute match jumps for BM scan
1872  == static void computematchjumps(struct parse *p, struct re_guts *g);
1873  *
1874  * This algorithm assumes g->must exists and is has size greater than
1875  * zero. It's based on the algorithm found on Computer Algorithms by
1876  * Sara Baase.
1877  *
1878  * A match jump is the number of characters one needs to advance based
1879  * on the already-matched suffix.
1880  * Notice that all values here are minus (g->mlen-1), because of the way
1881  * the search algorithm works.
1882  */
1883 static void
1884 computematchjumps(struct parse *p, struct re_guts *g)
1885 {
1886 	int mindex;		/* General "must" iterator */
1887 	int suffix;		/* Keeps track of matching suffix */
1888 	int ssuffix;		/* Keeps track of suffixes' suffix */
1889 	int* pmatches;		/* pmatches[k] points to the next i
1890 				 * such that i+1...mlen is a substring
1891 				 * of k+1...k+mlen-i-1
1892 				 */
1893 
1894 	/* Avoid making errors worse */
1895 	if (p->error != 0)
1896 		return;
1897 
1898 	pmatches = (int*) malloc(g->mlen * sizeof(int));
1899 	if (pmatches == NULL) {
1900 		g->matchjump = NULL;
1901 		return;
1902 	}
1903 
1904 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1905 	if (g->matchjump == NULL) {	/* Not a fatal error */
1906 		free(pmatches);
1907 		return;
1908 	}
1909 
1910 	/* Set maximum possible jump for each character in the pattern */
1911 	for (mindex = 0; mindex < g->mlen; mindex++)
1912 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1913 
1914 	/* Compute pmatches[] */
1915 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1916 	    mindex--, suffix--) {
1917 		pmatches[mindex] = suffix;
1918 
1919 		/* If a mismatch is found, interrupting the substring,
1920 		 * compute the matchjump for that position. If no
1921 		 * mismatch is found, then a text substring mismatched
1922 		 * against the suffix will also mismatch against the
1923 		 * substring.
1924 		 */
1925 		while (suffix < g->mlen
1926 		    && g->must[mindex] != g->must[suffix]) {
1927 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
1928 			    g->mlen - mindex - 1);
1929 			suffix = pmatches[suffix];
1930 		}
1931 	}
1932 
1933 	/* Compute the matchjump up to the last substring found to jump
1934 	 * to the beginning of the largest must pattern prefix matching
1935 	 * it's own suffix.
1936 	 */
1937 	for (mindex = 0; mindex <= suffix; mindex++)
1938 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
1939 		    g->mlen + suffix - mindex);
1940 
1941         ssuffix = pmatches[suffix];
1942         while (suffix < g->mlen) {
1943                 while (suffix <= ssuffix && suffix < g->mlen) {
1944                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
1945 			    g->mlen + ssuffix - suffix);
1946                         suffix++;
1947                 }
1948 		if (suffix < g->mlen)
1949                 	ssuffix = pmatches[ssuffix];
1950         }
1951 
1952 	free(pmatches);
1953 }
1954 
1955 /*
1956  - pluscount - count + nesting
1957  == static sopno pluscount(struct parse *p, struct re_guts *g);
1958  */
1959 static sopno			/* nesting depth */
1960 pluscount(struct parse *p, struct re_guts *g)
1961 {
1962 	sop *scan;
1963 	sop s;
1964 	sopno plusnest = 0;
1965 	sopno maxnest = 0;
1966 
1967 	if (p->error != 0)
1968 		return(0);	/* there may not be an OEND */
1969 
1970 	scan = g->strip + 1;
1971 	do {
1972 		s = *scan++;
1973 		switch (OP(s)) {
1974 		case OPLUS_:
1975 			plusnest++;
1976 			break;
1977 		case O_PLUS:
1978 			if (plusnest > maxnest)
1979 				maxnest = plusnest;
1980 			plusnest--;
1981 			break;
1982 		}
1983 	} while (OP(s) != OEND);
1984 	if (plusnest != 0)
1985 		g->iflags |= BAD;
1986 	return(maxnest);
1987 }
1988