xref: /freebsd/lib/libmemstat/memstat_malloc.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 #include <sys/malloc.h>
34 #include <sys/sysctl.h>
35 
36 #include <err.h>
37 #include <errno.h>
38 #include <kvm.h>
39 #include <nlist.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 
44 #include "memstat.h"
45 #include "memstat_internal.h"
46 
47 static struct nlist namelist[] = {
48 #define	X_KMEMSTATISTICS	0
49 	{ .n_name = "_kmemstatistics" },
50 #define	X_MP_MAXCPUS		1
51 	{ .n_name = "_mp_maxcpus" },
52 	{ .n_name = "" },
53 };
54 
55 /*
56  * Extract malloc(9) statistics from the running kernel, and store all memory
57  * type information in the passed list.  For each type, check the list for an
58  * existing entry with the right name/allocator -- if present, update that
59  * entry.  Otherwise, add a new entry.  On error, the entire list will be
60  * cleared, as entries will be in an inconsistent state.
61  *
62  * To reduce the level of work for a list that starts empty, we keep around a
63  * hint as to whether it was empty when we began, so we can avoid searching
64  * the list for entries to update.  Updates are O(n^2) due to searching for
65  * each entry before adding it.
66  */
67 int
68 memstat_sysctl_malloc(struct memory_type_list *list, int flags)
69 {
70 	struct malloc_type_stream_header *mtshp;
71 	struct malloc_type_header *mthp;
72 	struct malloc_type_stats *mtsp;
73 	struct memory_type *mtp;
74 	int count, hint_dontsearch, i, j, maxcpus;
75 	char *buffer, *p;
76 	size_t size;
77 
78 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
79 
80 	/*
81 	 * Query the number of CPUs, number of malloc types so that we can
82 	 * guess an initial buffer size.  We loop until we succeed or really
83 	 * fail.  Note that the value of maxcpus we query using sysctl is not
84 	 * the version we use when processing the real data -- that is read
85 	 * from the header.
86 	 */
87 retry:
88 	size = sizeof(maxcpus);
89 	if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
90 		if (errno == EACCES || errno == EPERM)
91 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
92 		else
93 			list->mtl_error = MEMSTAT_ERROR_DATAERROR;
94 		return (-1);
95 	}
96 	if (size != sizeof(maxcpus)) {
97 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
98 		return (-1);
99 	}
100 
101 	size = sizeof(count);
102 	if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
103 		if (errno == EACCES || errno == EPERM)
104 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
105 		else
106 			list->mtl_error = MEMSTAT_ERROR_VERSION;
107 		return (-1);
108 	}
109 	if (size != sizeof(count)) {
110 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
111 		return (-1);
112 	}
113 
114 	size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
115 	    maxcpus);
116 
117 	buffer = malloc(size);
118 	if (buffer == NULL) {
119 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
120 		return (-1);
121 	}
122 
123 	if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
124 		/*
125 		 * XXXRW: ENOMEM is an ambiguous return, we should bound the
126 		 * number of loops, perhaps.
127 		 */
128 		if (errno == ENOMEM) {
129 			free(buffer);
130 			goto retry;
131 		}
132 		if (errno == EACCES || errno == EPERM)
133 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
134 		else
135 			list->mtl_error = MEMSTAT_ERROR_VERSION;
136 		free(buffer);
137 		return (-1);
138 	}
139 
140 	if (size == 0) {
141 		free(buffer);
142 		return (0);
143 	}
144 
145 	if (size < sizeof(*mtshp)) {
146 		list->mtl_error = MEMSTAT_ERROR_VERSION;
147 		free(buffer);
148 		return (-1);
149 	}
150 	p = buffer;
151 	mtshp = (struct malloc_type_stream_header *)p;
152 	p += sizeof(*mtshp);
153 
154 	if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
155 		list->mtl_error = MEMSTAT_ERROR_VERSION;
156 		free(buffer);
157 		return (-1);
158 	}
159 
160 	/*
161 	 * For the remainder of this function, we are quite trusting about
162 	 * the layout of structures and sizes, since we've determined we have
163 	 * a matching version and acceptable CPU count.
164 	 */
165 	maxcpus = mtshp->mtsh_maxcpus;
166 	count = mtshp->mtsh_count;
167 	for (i = 0; i < count; i++) {
168 		mthp = (struct malloc_type_header *)p;
169 		p += sizeof(*mthp);
170 
171 		if (hint_dontsearch == 0) {
172 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
173 			    mthp->mth_name);
174 		} else
175 			mtp = NULL;
176 		if (mtp == NULL)
177 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
178 			    mthp->mth_name, maxcpus);
179 		if (mtp == NULL) {
180 			_memstat_mtl_empty(list);
181 			free(buffer);
182 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
183 			return (-1);
184 		}
185 
186 		/*
187 		 * Reset the statistics on a current node.
188 		 */
189 		_memstat_mt_reset_stats(mtp, maxcpus);
190 
191 		for (j = 0; j < maxcpus; j++) {
192 			mtsp = (struct malloc_type_stats *)p;
193 			p += sizeof(*mtsp);
194 
195 			/*
196 			 * Sumarize raw statistics across CPUs into coalesced
197 			 * statistics.
198 			 */
199 			mtp->mt_memalloced += mtsp->mts_memalloced;
200 			mtp->mt_memfreed += mtsp->mts_memfreed;
201 			mtp->mt_numallocs += mtsp->mts_numallocs;
202 			mtp->mt_numfrees += mtsp->mts_numfrees;
203 			mtp->mt_sizemask |= mtsp->mts_size;
204 
205 			/*
206 			 * Copies of per-CPU statistics.
207 			 */
208 			mtp->mt_percpu_alloc[j].mtp_memalloced =
209 			    mtsp->mts_memalloced;
210 			mtp->mt_percpu_alloc[j].mtp_memfreed =
211 			    mtsp->mts_memfreed;
212 			mtp->mt_percpu_alloc[j].mtp_numallocs =
213 			    mtsp->mts_numallocs;
214 			mtp->mt_percpu_alloc[j].mtp_numfrees =
215 			    mtsp->mts_numfrees;
216 			mtp->mt_percpu_alloc[j].mtp_sizemask =
217 			    mtsp->mts_size;
218 		}
219 
220 		/*
221 		 * Derived cross-CPU statistics.
222 		 */
223 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
224 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
225 	}
226 
227 	free(buffer);
228 
229 	return (0);
230 }
231 
232 static int
233 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
234     size_t offset)
235 {
236 	ssize_t ret;
237 
238 	ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
239 	    size);
240 	if (ret < 0)
241 		return (MEMSTAT_ERROR_KVM);
242 	if ((size_t)ret != size)
243 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
244 	return (0);
245 }
246 
247 static int
248 kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
249 {
250 	ssize_t ret;
251 	int i;
252 
253 	for (i = 0; i < buflen; i++) {
254 		ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
255 		    i, &(buffer[i]), sizeof(char));
256 		if (ret < 0)
257 			return (MEMSTAT_ERROR_KVM);
258 		if ((size_t)ret != sizeof(char))
259 			return (MEMSTAT_ERROR_KVM_SHORTREAD);
260 		if (buffer[i] == '\0')
261 			return (0);
262 	}
263 	/* Truncate. */
264 	buffer[i-1] = '\0';
265 	return (0);
266 }
267 
268 static int
269 kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
270     size_t offset)
271 {
272 	ssize_t ret;
273 
274 	ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
275 	if (ret < 0)
276 		return (MEMSTAT_ERROR_KVM);
277 	if ((size_t)ret != size)
278 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
279 	return (0);
280 }
281 
282 static int
283 kread_zpcpu(kvm_t *kvm, u_long base, void *buf, size_t size, int cpu)
284 {
285 	ssize_t ret;
286 
287 	ret = kvm_read_zpcpu(kvm, base, buf, size, cpu);
288 	if (ret < 0)
289 		return (MEMSTAT_ERROR_KVM);
290 	if ((size_t)ret != size)
291 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
292 	return (0);
293 }
294 
295 int
296 memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
297 {
298 	struct memory_type *mtp;
299 	void *kmemstatistics;
300 	int hint_dontsearch, j, mp_maxcpus, mp_ncpus, ret;
301 	char name[MEMTYPE_MAXNAME];
302 	struct malloc_type_stats mts;
303 	struct malloc_type_internal mti, *mtip;
304 	struct malloc_type type, *typep;
305 	kvm_t *kvm;
306 
307 	kvm = (kvm_t *)kvm_handle;
308 
309 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
310 
311 	if (kvm_nlist(kvm, namelist) != 0) {
312 		list->mtl_error = MEMSTAT_ERROR_KVM;
313 		return (-1);
314 	}
315 
316 	if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
317 	    namelist[X_KMEMSTATISTICS].n_value == 0) {
318 		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
319 		return (-1);
320 	}
321 
322 	ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
323 	    sizeof(mp_maxcpus), 0);
324 	if (ret != 0) {
325 		list->mtl_error = ret;
326 		return (-1);
327 	}
328 
329 	ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
330 	    sizeof(kmemstatistics), 0);
331 	if (ret != 0) {
332 		list->mtl_error = ret;
333 		return (-1);
334 	}
335 
336 	mp_ncpus = kvm_getncpus(kvm);
337 
338 	for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
339 		ret = kread(kvm, typep, &type, sizeof(type), 0);
340 		if (ret != 0) {
341 			_memstat_mtl_empty(list);
342 			list->mtl_error = ret;
343 			return (-1);
344 		}
345 		ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
346 		    MEMTYPE_MAXNAME);
347 		if (ret != 0) {
348 			_memstat_mtl_empty(list);
349 			list->mtl_error = ret;
350 			return (-1);
351 		}
352 
353 		/*
354 		 * Since our compile-time value for MAXCPU may differ from the
355 		 * kernel's, we populate our own array.
356 		 */
357 		mtip = type.ks_handle;
358 		ret = kread(kvm, mtip, &mti, sizeof(mti), 0);
359 		if (ret != 0) {
360 			_memstat_mtl_empty(list);
361 			list->mtl_error = ret;
362 			return (-1);
363 		}
364 
365 		if (hint_dontsearch == 0) {
366 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
367 		} else
368 			mtp = NULL;
369 		if (mtp == NULL)
370 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
371 			    name, mp_maxcpus);
372 		if (mtp == NULL) {
373 			_memstat_mtl_empty(list);
374 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
375 			return (-1);
376 		}
377 
378 		/*
379 		 * This logic is replicated from kern_malloc.c, and should
380 		 * be kept in sync.
381 		 */
382 		_memstat_mt_reset_stats(mtp, mp_maxcpus);
383 		for (j = 0; j < mp_ncpus; j++) {
384 			ret = kread_zpcpu(kvm, (u_long)mti.mti_stats, &mts,
385 			    sizeof(mts), j);
386 			if (ret != 0) {
387 				_memstat_mtl_empty(list);
388 				list->mtl_error = ret;
389 				return (-1);
390 			}
391 			mtp->mt_memalloced += mts.mts_memalloced;
392 			mtp->mt_memfreed += mts.mts_memfreed;
393 			mtp->mt_numallocs += mts.mts_numallocs;
394 			mtp->mt_numfrees += mts.mts_numfrees;
395 			mtp->mt_sizemask |= mts.mts_size;
396 
397 			mtp->mt_percpu_alloc[j].mtp_memalloced =
398 			    mts.mts_memalloced;
399 			mtp->mt_percpu_alloc[j].mtp_memfreed =
400 			    mts.mts_memfreed;
401 			mtp->mt_percpu_alloc[j].mtp_numallocs =
402 			    mts.mts_numallocs;
403 			mtp->mt_percpu_alloc[j].mtp_numfrees =
404 			    mts.mts_numfrees;
405 			mtp->mt_percpu_alloc[j].mtp_sizemask =
406 			    mts.mts_size;
407 		}
408 		for (; j < mp_maxcpus; j++) {
409 			bzero(&mtp->mt_percpu_alloc[j],
410 			    sizeof(mtp->mt_percpu_alloc[0]));
411 		}
412 
413 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
414 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
415 	}
416 
417 	return (0);
418 }
419