xref: /freebsd/lib/msun/src/math_private.h (revision 780fb4a2)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 /*
24  * The original fdlibm code used statements like:
25  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
26  *	ix0 = *(n0+(int*)&x);			* high word of x *
27  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
28  * to dig two 32 bit words out of the 64 bit IEEE floating point
29  * value.  That is non-ANSI, and, moreover, the gcc instruction
30  * scheduler gets it wrong.  We instead use the following macros.
31  * Unlike the original code, we determine the endianness at compile
32  * time, not at run time; I don't see much benefit to selecting
33  * endianness at run time.
34  */
35 
36 /*
37  * A union which permits us to convert between a double and two 32 bit
38  * ints.
39  */
40 
41 #ifdef __arm__
42 #if defined(__VFP_FP__) || defined(__ARM_EABI__)
43 #define	IEEE_WORD_ORDER	BYTE_ORDER
44 #else
45 #define	IEEE_WORD_ORDER	BIG_ENDIAN
46 #endif
47 #else /* __arm__ */
48 #define	IEEE_WORD_ORDER	BYTE_ORDER
49 #endif
50 
51 #if IEEE_WORD_ORDER == BIG_ENDIAN
52 
53 typedef union
54 {
55   double value;
56   struct
57   {
58     u_int32_t msw;
59     u_int32_t lsw;
60   } parts;
61   struct
62   {
63     u_int64_t w;
64   } xparts;
65 } ieee_double_shape_type;
66 
67 #endif
68 
69 #if IEEE_WORD_ORDER == LITTLE_ENDIAN
70 
71 typedef union
72 {
73   double value;
74   struct
75   {
76     u_int32_t lsw;
77     u_int32_t msw;
78   } parts;
79   struct
80   {
81     u_int64_t w;
82   } xparts;
83 } ieee_double_shape_type;
84 
85 #endif
86 
87 /* Get two 32 bit ints from a double.  */
88 
89 #define EXTRACT_WORDS(ix0,ix1,d)				\
90 do {								\
91   ieee_double_shape_type ew_u;					\
92   ew_u.value = (d);						\
93   (ix0) = ew_u.parts.msw;					\
94   (ix1) = ew_u.parts.lsw;					\
95 } while (0)
96 
97 /* Get a 64-bit int from a double. */
98 #define EXTRACT_WORD64(ix,d)					\
99 do {								\
100   ieee_double_shape_type ew_u;					\
101   ew_u.value = (d);						\
102   (ix) = ew_u.xparts.w;						\
103 } while (0)
104 
105 /* Get the more significant 32 bit int from a double.  */
106 
107 #define GET_HIGH_WORD(i,d)					\
108 do {								\
109   ieee_double_shape_type gh_u;					\
110   gh_u.value = (d);						\
111   (i) = gh_u.parts.msw;						\
112 } while (0)
113 
114 /* Get the less significant 32 bit int from a double.  */
115 
116 #define GET_LOW_WORD(i,d)					\
117 do {								\
118   ieee_double_shape_type gl_u;					\
119   gl_u.value = (d);						\
120   (i) = gl_u.parts.lsw;						\
121 } while (0)
122 
123 /* Set a double from two 32 bit ints.  */
124 
125 #define INSERT_WORDS(d,ix0,ix1)					\
126 do {								\
127   ieee_double_shape_type iw_u;					\
128   iw_u.parts.msw = (ix0);					\
129   iw_u.parts.lsw = (ix1);					\
130   (d) = iw_u.value;						\
131 } while (0)
132 
133 /* Set a double from a 64-bit int. */
134 #define INSERT_WORD64(d,ix)					\
135 do {								\
136   ieee_double_shape_type iw_u;					\
137   iw_u.xparts.w = (ix);						\
138   (d) = iw_u.value;						\
139 } while (0)
140 
141 /* Set the more significant 32 bits of a double from an int.  */
142 
143 #define SET_HIGH_WORD(d,v)					\
144 do {								\
145   ieee_double_shape_type sh_u;					\
146   sh_u.value = (d);						\
147   sh_u.parts.msw = (v);						\
148   (d) = sh_u.value;						\
149 } while (0)
150 
151 /* Set the less significant 32 bits of a double from an int.  */
152 
153 #define SET_LOW_WORD(d,v)					\
154 do {								\
155   ieee_double_shape_type sl_u;					\
156   sl_u.value = (d);						\
157   sl_u.parts.lsw = (v);						\
158   (d) = sl_u.value;						\
159 } while (0)
160 
161 /*
162  * A union which permits us to convert between a float and a 32 bit
163  * int.
164  */
165 
166 typedef union
167 {
168   float value;
169   /* FIXME: Assumes 32 bit int.  */
170   unsigned int word;
171 } ieee_float_shape_type;
172 
173 /* Get a 32 bit int from a float.  */
174 
175 #define GET_FLOAT_WORD(i,d)					\
176 do {								\
177   ieee_float_shape_type gf_u;					\
178   gf_u.value = (d);						\
179   (i) = gf_u.word;						\
180 } while (0)
181 
182 /* Set a float from a 32 bit int.  */
183 
184 #define SET_FLOAT_WORD(d,i)					\
185 do {								\
186   ieee_float_shape_type sf_u;					\
187   sf_u.word = (i);						\
188   (d) = sf_u.value;						\
189 } while (0)
190 
191 /*
192  * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
193  * double.
194  */
195 
196 #define	EXTRACT_LDBL80_WORDS(ix0,ix1,d)				\
197 do {								\
198   union IEEEl2bits ew_u;					\
199   ew_u.e = (d);							\
200   (ix0) = ew_u.xbits.expsign;					\
201   (ix1) = ew_u.xbits.man;					\
202 } while (0)
203 
204 /*
205  * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
206  * long double.
207  */
208 
209 #define	EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)			\
210 do {								\
211   union IEEEl2bits ew_u;					\
212   ew_u.e = (d);							\
213   (ix0) = ew_u.xbits.expsign;					\
214   (ix1) = ew_u.xbits.manh;					\
215   (ix2) = ew_u.xbits.manl;					\
216 } while (0)
217 
218 /* Get expsign as a 16 bit int from a long double.  */
219 
220 #define	GET_LDBL_EXPSIGN(i,d)					\
221 do {								\
222   union IEEEl2bits ge_u;					\
223   ge_u.e = (d);							\
224   (i) = ge_u.xbits.expsign;					\
225 } while (0)
226 
227 /*
228  * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
229  * mantissa.
230  */
231 
232 #define	INSERT_LDBL80_WORDS(d,ix0,ix1)				\
233 do {								\
234   union IEEEl2bits iw_u;					\
235   iw_u.xbits.expsign = (ix0);					\
236   iw_u.xbits.man = (ix1);					\
237   (d) = iw_u.e;							\
238 } while (0)
239 
240 /*
241  * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
242  * comprising the mantissa.
243  */
244 
245 #define	INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)			\
246 do {								\
247   union IEEEl2bits iw_u;					\
248   iw_u.xbits.expsign = (ix0);					\
249   iw_u.xbits.manh = (ix1);					\
250   iw_u.xbits.manl = (ix2);					\
251   (d) = iw_u.e;							\
252 } while (0)
253 
254 /* Set expsign of a long double from a 16 bit int.  */
255 
256 #define	SET_LDBL_EXPSIGN(d,v)					\
257 do {								\
258   union IEEEl2bits se_u;					\
259   se_u.e = (d);							\
260   se_u.xbits.expsign = (v);					\
261   (d) = se_u.e;							\
262 } while (0)
263 
264 #ifdef __i386__
265 /* Long double constants are broken on i386. */
266 #define	LD80C(m, ex, v) {						\
267 	.xbits.man = __CONCAT(m, ULL),					\
268 	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
269 }
270 #else
271 /* The above works on non-i386 too, but we use this to check v. */
272 #define	LD80C(m, ex, v)	{ .e = (v), }
273 #endif
274 
275 #ifdef FLT_EVAL_METHOD
276 /*
277  * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
278  */
279 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
280 #define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
281 #else
282 #define	STRICT_ASSIGN(type, lval, rval) do {	\
283 	volatile type __lval;			\
284 						\
285 	if (sizeof(type) >= sizeof(long double))	\
286 		(lval) = (rval);		\
287 	else {					\
288 		__lval = (rval);		\
289 		(lval) = __lval;		\
290 	}					\
291 } while (0)
292 #endif
293 #endif /* FLT_EVAL_METHOD */
294 
295 /* Support switching the mode to FP_PE if necessary. */
296 #if defined(__i386__) && !defined(NO_FPSETPREC)
297 #define	ENTERI() ENTERIT(long double)
298 #define	ENTERIT(returntype)			\
299 	returntype __retval;			\
300 	fp_prec_t __oprec;			\
301 						\
302 	if ((__oprec = fpgetprec()) != FP_PE)	\
303 		fpsetprec(FP_PE)
304 #define	RETURNI(x) do {				\
305 	__retval = (x);				\
306 	if (__oprec != FP_PE)			\
307 		fpsetprec(__oprec);		\
308 	RETURNF(__retval);			\
309 } while (0)
310 #define	ENTERV()				\
311 	fp_prec_t __oprec;			\
312 						\
313 	if ((__oprec = fpgetprec()) != FP_PE)	\
314 		fpsetprec(FP_PE)
315 #define	RETURNV() do {				\
316 	if (__oprec != FP_PE)			\
317 		fpsetprec(__oprec);		\
318 	return;			\
319 } while (0)
320 #else
321 #define	ENTERI()
322 #define	ENTERIT(x)
323 #define	RETURNI(x)	RETURNF(x)
324 #define	ENTERV()
325 #define	RETURNV()	return
326 #endif
327 
328 /* Default return statement if hack*_t() is not used. */
329 #define      RETURNF(v)      return (v)
330 
331 /*
332  * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
333  * a == 0, but is slower.
334  */
335 #define	_2sum(a, b) do {	\
336 	__typeof(a) __s, __w;	\
337 				\
338 	__w = (a) + (b);	\
339 	__s = __w - (a);	\
340 	(b) = ((a) - (__w - __s)) + ((b) - __s); \
341 	(a) = __w;		\
342 } while (0)
343 
344 /*
345  * 2sumF algorithm.
346  *
347  * "Normalize" the terms in the infinite-precision expression a + b for
348  * the sum of 2 floating point values so that b is as small as possible
349  * relative to 'a'.  (The resulting 'a' is the value of the expression in
350  * the same precision as 'a' and the resulting b is the rounding error.)
351  * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
352  * exponent overflow or underflow must not occur.  This uses a Theorem of
353  * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
354  * is apparently due to Skewchuk (1997).
355  *
356  * For this to always work, assignment of a + b to 'a' must not retain any
357  * extra precision in a + b.  This is required by C standards but broken
358  * in many compilers.  The brokenness cannot be worked around using
359  * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
360  * algorithm would be destroyed by non-null strict assignments.  (The
361  * compilers are correct to be broken -- the efficiency of all floating
362  * point code calculations would be destroyed similarly if they forced the
363  * conversions.)
364  *
365  * Fortunately, a case that works well can usually be arranged by building
366  * any extra precision into the type of 'a' -- 'a' should have type float_t,
367  * double_t or long double.  b's type should be no larger than 'a's type.
368  * Callers should use these types with scopes as large as possible, to
369  * reduce their own extra-precision and efficiciency problems.  In
370  * particular, they shouldn't convert back and forth just to call here.
371  */
372 #ifdef DEBUG
373 #define	_2sumF(a, b) do {				\
374 	__typeof(a) __w;				\
375 	volatile __typeof(a) __ia, __ib, __r, __vw;	\
376 							\
377 	__ia = (a);					\
378 	__ib = (b);					\
379 	assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));	\
380 							\
381 	__w = (a) + (b);				\
382 	(b) = ((a) - __w) + (b);			\
383 	(a) = __w;					\
384 							\
385 	/* The next 2 assertions are weak if (a) is already long double. */ \
386 	assert((long double)__ia + __ib == (long double)(a) + (b));	\
387 	__vw = __ia + __ib;				\
388 	__r = __ia - __vw;				\
389 	__r += __ib;					\
390 	assert(__vw == (a) && __r == (b));		\
391 } while (0)
392 #else /* !DEBUG */
393 #define	_2sumF(a, b) do {	\
394 	__typeof(a) __w;	\
395 				\
396 	__w = (a) + (b);	\
397 	(b) = ((a) - __w) + (b); \
398 	(a) = __w;		\
399 } while (0)
400 #endif /* DEBUG */
401 
402 /*
403  * Set x += c, where x is represented in extra precision as a + b.
404  * x must be sufficiently normalized and sufficiently larger than c,
405  * and the result is then sufficiently normalized.
406  *
407  * The details of ordering are that |a| must be >= |c| (so that (a, c)
408  * can be normalized without extra work to swap 'a' with c).  The details of
409  * the normalization are that b must be small relative to the normalized 'a'.
410  * Normalization of (a, c) makes the normalized c tiny relative to the
411  * normalized a, so b remains small relative to 'a' in the result.  However,
412  * b need not ever be tiny relative to 'a'.  For example, b might be about
413  * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
414  * That is usually enough, and adding c (which by normalization is about
415  * 2**53 times smaller than a) cannot change b significantly.  However,
416  * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
417  * significantly relative to b.  The caller must ensure that significant
418  * cancellation doesn't occur, either by having c of the same sign as 'a',
419  * or by having |c| a few percent smaller than |a|.  Pre-normalization of
420  * (a, b) may help.
421  *
422  * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
423  * exercise 19).  We gain considerable efficiency by requiring the terms to
424  * be sufficiently normalized and sufficiently increasing.
425  */
426 #define	_3sumF(a, b, c) do {	\
427 	__typeof(a) __tmp;	\
428 				\
429 	__tmp = (c);		\
430 	_2sumF(__tmp, (a));	\
431 	(b) += (a);		\
432 	(a) = __tmp;		\
433 } while (0)
434 
435 /*
436  * Common routine to process the arguments to nan(), nanf(), and nanl().
437  */
438 void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
439 
440 #ifdef _COMPLEX_H
441 
442 /*
443  * C99 specifies that complex numbers have the same representation as
444  * an array of two elements, where the first element is the real part
445  * and the second element is the imaginary part.
446  */
447 typedef union {
448 	float complex f;
449 	float a[2];
450 } float_complex;
451 typedef union {
452 	double complex f;
453 	double a[2];
454 } double_complex;
455 typedef union {
456 	long double complex f;
457 	long double a[2];
458 } long_double_complex;
459 #define	REALPART(z)	((z).a[0])
460 #define	IMAGPART(z)	((z).a[1])
461 
462 /*
463  * Inline functions that can be used to construct complex values.
464  *
465  * The C99 standard intends x+I*y to be used for this, but x+I*y is
466  * currently unusable in general since gcc introduces many overflow,
467  * underflow, sign and efficiency bugs by rewriting I*y as
468  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
469  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
470  * to -0.0+I*0.0.
471  *
472  * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
473  * to construct complex values.  Compilers that conform to the C99
474  * standard require the following functions to avoid the above issues.
475  */
476 
477 #ifndef CMPLXF
478 static __inline float complex
479 CMPLXF(float x, float y)
480 {
481 	float_complex z;
482 
483 	REALPART(z) = x;
484 	IMAGPART(z) = y;
485 	return (z.f);
486 }
487 #endif
488 
489 #ifndef CMPLX
490 static __inline double complex
491 CMPLX(double x, double y)
492 {
493 	double_complex z;
494 
495 	REALPART(z) = x;
496 	IMAGPART(z) = y;
497 	return (z.f);
498 }
499 #endif
500 
501 #ifndef CMPLXL
502 static __inline long double complex
503 CMPLXL(long double x, long double y)
504 {
505 	long_double_complex z;
506 
507 	REALPART(z) = x;
508 	IMAGPART(z) = y;
509 	return (z.f);
510 }
511 #endif
512 
513 #endif /* _COMPLEX_H */
514 
515 #ifdef __GNUCLIKE_ASM
516 
517 /* Asm versions of some functions. */
518 
519 #ifdef __amd64__
520 static __inline int
521 irint(double x)
522 {
523 	int n;
524 
525 	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
526 	return (n);
527 }
528 #define	HAVE_EFFICIENT_IRINT
529 #endif
530 
531 #ifdef __i386__
532 static __inline int
533 irint(double x)
534 {
535 	int n;
536 
537 	asm("fistl %0" : "=m" (n) : "t" (x));
538 	return (n);
539 }
540 #define	HAVE_EFFICIENT_IRINT
541 #endif
542 
543 #if defined(__amd64__) || defined(__i386__)
544 static __inline int
545 irintl(long double x)
546 {
547 	int n;
548 
549 	asm("fistl %0" : "=m" (n) : "t" (x));
550 	return (n);
551 }
552 #define	HAVE_EFFICIENT_IRINTL
553 #endif
554 
555 #endif /* __GNUCLIKE_ASM */
556 
557 #ifdef DEBUG
558 #if defined(__amd64__) || defined(__i386__)
559 #define	breakpoint()	asm("int $3")
560 #else
561 #include <signal.h>
562 
563 #define	breakpoint()	raise(SIGTRAP)
564 #endif
565 #endif
566 
567 /* Write a pari script to test things externally. */
568 #ifdef DOPRINT
569 #include <stdio.h>
570 
571 #ifndef DOPRINT_SWIZZLE
572 #define	DOPRINT_SWIZZLE		0
573 #endif
574 
575 #ifdef DOPRINT_LD80
576 
577 #define	DOPRINT_START(xp) do {						\
578 	uint64_t __lx;							\
579 	uint16_t __hx;							\
580 									\
581 	/* Hack to give more-problematic args. */			\
582 	EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);				\
583 	__lx ^= DOPRINT_SWIZZLE;					\
584 	INSERT_LDBL80_WORDS(*xp, __hx, __lx);				\
585 	printf("x = %.21Lg; ", (long double)*xp);			\
586 } while (0)
587 #define	DOPRINT_END1(v)							\
588 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
589 #define	DOPRINT_END2(hi, lo)						\
590 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
591 	    (long double)(hi), (long double)(lo))
592 
593 #elif defined(DOPRINT_D64)
594 
595 #define	DOPRINT_START(xp) do {						\
596 	uint32_t __hx, __lx;						\
597 									\
598 	EXTRACT_WORDS(__hx, __lx, *xp);					\
599 	__lx ^= DOPRINT_SWIZZLE;					\
600 	INSERT_WORDS(*xp, __hx, __lx);					\
601 	printf("x = %.21Lg; ", (long double)*xp);			\
602 } while (0)
603 #define	DOPRINT_END1(v)							\
604 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
605 #define	DOPRINT_END2(hi, lo)						\
606 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
607 	    (long double)(hi), (long double)(lo))
608 
609 #elif defined(DOPRINT_F32)
610 
611 #define	DOPRINT_START(xp) do {						\
612 	uint32_t __hx;							\
613 									\
614 	GET_FLOAT_WORD(__hx, *xp);					\
615 	__hx ^= DOPRINT_SWIZZLE;					\
616 	SET_FLOAT_WORD(*xp, __hx);					\
617 	printf("x = %.21Lg; ", (long double)*xp);			\
618 } while (0)
619 #define	DOPRINT_END1(v)							\
620 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
621 #define	DOPRINT_END2(hi, lo)						\
622 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
623 	    (long double)(hi), (long double)(lo))
624 
625 #else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
626 
627 #ifndef DOPRINT_SWIZZLE_HIGH
628 #define	DOPRINT_SWIZZLE_HIGH	0
629 #endif
630 
631 #define	DOPRINT_START(xp) do {						\
632 	uint64_t __lx, __llx;						\
633 	uint16_t __hx;							\
634 									\
635 	EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);			\
636 	__llx ^= DOPRINT_SWIZZLE;					\
637 	__lx ^= DOPRINT_SWIZZLE_HIGH;					\
638 	INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);			\
639 	printf("x = %.36Lg; ", (long double)*xp);					\
640 } while (0)
641 #define	DOPRINT_END1(v)							\
642 	printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
643 #define	DOPRINT_END2(hi, lo)						\
644 	printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",		\
645 	    (long double)(hi), (long double)(lo))
646 
647 #endif /* DOPRINT_LD80 */
648 
649 #else /* !DOPRINT */
650 #define	DOPRINT_START(xp)
651 #define	DOPRINT_END1(v)
652 #define	DOPRINT_END2(hi, lo)
653 #endif /* DOPRINT */
654 
655 #define	RETURNP(x) do {			\
656 	DOPRINT_END1(x);		\
657 	RETURNF(x);			\
658 } while (0)
659 #define	RETURNPI(x) do {		\
660 	DOPRINT_END1(x);		\
661 	RETURNI(x);			\
662 } while (0)
663 #define	RETURN2P(x, y) do {		\
664 	DOPRINT_END2((x), (y));		\
665 	RETURNF((x) + (y));		\
666 } while (0)
667 #define	RETURN2PI(x, y) do {		\
668 	DOPRINT_END2((x), (y));		\
669 	RETURNI((x) + (y));		\
670 } while (0)
671 #ifdef STRUCT_RETURN
672 #define	RETURNSP(rp) do {		\
673 	if (!(rp)->lo_set)		\
674 		RETURNP((rp)->hi);	\
675 	RETURN2P((rp)->hi, (rp)->lo);	\
676 } while (0)
677 #define	RETURNSPI(rp) do {		\
678 	if (!(rp)->lo_set)		\
679 		RETURNPI((rp)->hi);	\
680 	RETURN2PI((rp)->hi, (rp)->lo);	\
681 } while (0)
682 #endif
683 #define	SUM2P(x, y) ({			\
684 	const __typeof (x) __x = (x);	\
685 	const __typeof (y) __y = (y);	\
686 					\
687 	DOPRINT_END2(__x, __y);		\
688 	__x + __y;			\
689 })
690 
691 /*
692  * ieee style elementary functions
693  *
694  * We rename functions here to improve other sources' diffability
695  * against fdlibm.
696  */
697 #define	__ieee754_sqrt	sqrt
698 #define	__ieee754_acos	acos
699 #define	__ieee754_acosh	acosh
700 #define	__ieee754_log	log
701 #define	__ieee754_log2	log2
702 #define	__ieee754_atanh	atanh
703 #define	__ieee754_asin	asin
704 #define	__ieee754_atan2	atan2
705 #define	__ieee754_exp	exp
706 #define	__ieee754_cosh	cosh
707 #define	__ieee754_fmod	fmod
708 #define	__ieee754_pow	pow
709 #define	__ieee754_lgamma lgamma
710 #define	__ieee754_gamma	gamma
711 #define	__ieee754_lgamma_r lgamma_r
712 #define	__ieee754_gamma_r gamma_r
713 #define	__ieee754_log10	log10
714 #define	__ieee754_sinh	sinh
715 #define	__ieee754_hypot	hypot
716 #define	__ieee754_j0	j0
717 #define	__ieee754_j1	j1
718 #define	__ieee754_y0	y0
719 #define	__ieee754_y1	y1
720 #define	__ieee754_jn	jn
721 #define	__ieee754_yn	yn
722 #define	__ieee754_remainder remainder
723 #define	__ieee754_scalb	scalb
724 #define	__ieee754_sqrtf	sqrtf
725 #define	__ieee754_acosf	acosf
726 #define	__ieee754_acoshf acoshf
727 #define	__ieee754_logf	logf
728 #define	__ieee754_atanhf atanhf
729 #define	__ieee754_asinf	asinf
730 #define	__ieee754_atan2f atan2f
731 #define	__ieee754_expf	expf
732 #define	__ieee754_coshf	coshf
733 #define	__ieee754_fmodf	fmodf
734 #define	__ieee754_powf	powf
735 #define	__ieee754_lgammaf lgammaf
736 #define	__ieee754_gammaf gammaf
737 #define	__ieee754_lgammaf_r lgammaf_r
738 #define	__ieee754_gammaf_r gammaf_r
739 #define	__ieee754_log10f log10f
740 #define	__ieee754_log2f log2f
741 #define	__ieee754_sinhf	sinhf
742 #define	__ieee754_hypotf hypotf
743 #define	__ieee754_j0f	j0f
744 #define	__ieee754_j1f	j1f
745 #define	__ieee754_y0f	y0f
746 #define	__ieee754_y1f	y1f
747 #define	__ieee754_jnf	jnf
748 #define	__ieee754_ynf	ynf
749 #define	__ieee754_remainderf remainderf
750 #define	__ieee754_scalbf scalbf
751 
752 /* fdlibm kernel function */
753 int	__kernel_rem_pio2(double*,double*,int,int,int);
754 
755 /* double precision kernel functions */
756 #ifndef INLINE_REM_PIO2
757 int	__ieee754_rem_pio2(double,double*);
758 #endif
759 double	__kernel_sin(double,double,int);
760 double	__kernel_cos(double,double);
761 double	__kernel_tan(double,double,int);
762 double	__ldexp_exp(double,int);
763 #ifdef _COMPLEX_H
764 double complex __ldexp_cexp(double complex,int);
765 #endif
766 
767 /* float precision kernel functions */
768 #ifndef INLINE_REM_PIO2F
769 int	__ieee754_rem_pio2f(float,double*);
770 #endif
771 #ifndef INLINE_KERNEL_SINDF
772 float	__kernel_sindf(double);
773 #endif
774 #ifndef INLINE_KERNEL_COSDF
775 float	__kernel_cosdf(double);
776 #endif
777 #ifndef INLINE_KERNEL_TANDF
778 float	__kernel_tandf(double,int);
779 #endif
780 float	__ldexp_expf(float,int);
781 #ifdef _COMPLEX_H
782 float complex __ldexp_cexpf(float complex,int);
783 #endif
784 
785 /* long double precision kernel functions */
786 long double __kernel_sinl(long double, long double, int);
787 long double __kernel_cosl(long double, long double);
788 long double __kernel_tanl(long double, long double, int);
789 
790 #endif /* !_MATH_PRIVATE_H_ */
791