xref: /freebsd/lib/msun/src/math_private.h (revision f56f82e0)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 /*
24  * The original fdlibm code used statements like:
25  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
26  *	ix0 = *(n0+(int*)&x);			* high word of x *
27  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
28  * to dig two 32 bit words out of the 64 bit IEEE floating point
29  * value.  That is non-ANSI, and, moreover, the gcc instruction
30  * scheduler gets it wrong.  We instead use the following macros.
31  * Unlike the original code, we determine the endianness at compile
32  * time, not at run time; I don't see much benefit to selecting
33  * endianness at run time.
34  */
35 
36 /*
37  * A union which permits us to convert between a double and two 32 bit
38  * ints.
39  */
40 
41 #ifdef __arm__
42 #if defined(__VFP_FP__) || defined(__ARM_EABI__)
43 #define	IEEE_WORD_ORDER	BYTE_ORDER
44 #else
45 #define	IEEE_WORD_ORDER	BIG_ENDIAN
46 #endif
47 #else /* __arm__ */
48 #define	IEEE_WORD_ORDER	BYTE_ORDER
49 #endif
50 
51 #if IEEE_WORD_ORDER == BIG_ENDIAN
52 
53 typedef union
54 {
55   double value;
56   struct
57   {
58     u_int32_t msw;
59     u_int32_t lsw;
60   } parts;
61   struct
62   {
63     u_int64_t w;
64   } xparts;
65 } ieee_double_shape_type;
66 
67 #endif
68 
69 #if IEEE_WORD_ORDER == LITTLE_ENDIAN
70 
71 typedef union
72 {
73   double value;
74   struct
75   {
76     u_int32_t lsw;
77     u_int32_t msw;
78   } parts;
79   struct
80   {
81     u_int64_t w;
82   } xparts;
83 } ieee_double_shape_type;
84 
85 #endif
86 
87 /* Get two 32 bit ints from a double.  */
88 
89 #define EXTRACT_WORDS(ix0,ix1,d)				\
90 do {								\
91   ieee_double_shape_type ew_u;					\
92   ew_u.value = (d);						\
93   (ix0) = ew_u.parts.msw;					\
94   (ix1) = ew_u.parts.lsw;					\
95 } while (0)
96 
97 /* Get a 64-bit int from a double. */
98 #define EXTRACT_WORD64(ix,d)					\
99 do {								\
100   ieee_double_shape_type ew_u;					\
101   ew_u.value = (d);						\
102   (ix) = ew_u.xparts.w;						\
103 } while (0)
104 
105 /* Get the more significant 32 bit int from a double.  */
106 
107 #define GET_HIGH_WORD(i,d)					\
108 do {								\
109   ieee_double_shape_type gh_u;					\
110   gh_u.value = (d);						\
111   (i) = gh_u.parts.msw;						\
112 } while (0)
113 
114 /* Get the less significant 32 bit int from a double.  */
115 
116 #define GET_LOW_WORD(i,d)					\
117 do {								\
118   ieee_double_shape_type gl_u;					\
119   gl_u.value = (d);						\
120   (i) = gl_u.parts.lsw;						\
121 } while (0)
122 
123 /* Set a double from two 32 bit ints.  */
124 
125 #define INSERT_WORDS(d,ix0,ix1)					\
126 do {								\
127   ieee_double_shape_type iw_u;					\
128   iw_u.parts.msw = (ix0);					\
129   iw_u.parts.lsw = (ix1);					\
130   (d) = iw_u.value;						\
131 } while (0)
132 
133 /* Set a double from a 64-bit int. */
134 #define INSERT_WORD64(d,ix)					\
135 do {								\
136   ieee_double_shape_type iw_u;					\
137   iw_u.xparts.w = (ix);						\
138   (d) = iw_u.value;						\
139 } while (0)
140 
141 /* Set the more significant 32 bits of a double from an int.  */
142 
143 #define SET_HIGH_WORD(d,v)					\
144 do {								\
145   ieee_double_shape_type sh_u;					\
146   sh_u.value = (d);						\
147   sh_u.parts.msw = (v);						\
148   (d) = sh_u.value;						\
149 } while (0)
150 
151 /* Set the less significant 32 bits of a double from an int.  */
152 
153 #define SET_LOW_WORD(d,v)					\
154 do {								\
155   ieee_double_shape_type sl_u;					\
156   sl_u.value = (d);						\
157   sl_u.parts.lsw = (v);						\
158   (d) = sl_u.value;						\
159 } while (0)
160 
161 /*
162  * A union which permits us to convert between a float and a 32 bit
163  * int.
164  */
165 
166 typedef union
167 {
168   float value;
169   /* FIXME: Assumes 32 bit int.  */
170   unsigned int word;
171 } ieee_float_shape_type;
172 
173 /* Get a 32 bit int from a float.  */
174 
175 #define GET_FLOAT_WORD(i,d)					\
176 do {								\
177   ieee_float_shape_type gf_u;					\
178   gf_u.value = (d);						\
179   (i) = gf_u.word;						\
180 } while (0)
181 
182 /* Set a float from a 32 bit int.  */
183 
184 #define SET_FLOAT_WORD(d,i)					\
185 do {								\
186   ieee_float_shape_type sf_u;					\
187   sf_u.word = (i);						\
188   (d) = sf_u.value;						\
189 } while (0)
190 
191 /*
192  * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
193  * double.
194  */
195 
196 #define	EXTRACT_LDBL80_WORDS(ix0,ix1,d)				\
197 do {								\
198   union IEEEl2bits ew_u;					\
199   ew_u.e = (d);							\
200   (ix0) = ew_u.xbits.expsign;					\
201   (ix1) = ew_u.xbits.man;					\
202 } while (0)
203 
204 /*
205  * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
206  * long double.
207  */
208 
209 #define	EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)			\
210 do {								\
211   union IEEEl2bits ew_u;					\
212   ew_u.e = (d);							\
213   (ix0) = ew_u.xbits.expsign;					\
214   (ix1) = ew_u.xbits.manh;					\
215   (ix2) = ew_u.xbits.manl;					\
216 } while (0)
217 
218 /* Get expsign as a 16 bit int from a long double.  */
219 
220 #define	GET_LDBL_EXPSIGN(i,d)					\
221 do {								\
222   union IEEEl2bits ge_u;					\
223   ge_u.e = (d);							\
224   (i) = ge_u.xbits.expsign;					\
225 } while (0)
226 
227 /*
228  * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
229  * mantissa.
230  */
231 
232 #define	INSERT_LDBL80_WORDS(d,ix0,ix1)				\
233 do {								\
234   union IEEEl2bits iw_u;					\
235   iw_u.xbits.expsign = (ix0);					\
236   iw_u.xbits.man = (ix1);					\
237   (d) = iw_u.e;							\
238 } while (0)
239 
240 /*
241  * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
242  * comprising the mantissa.
243  */
244 
245 #define	INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)			\
246 do {								\
247   union IEEEl2bits iw_u;					\
248   iw_u.xbits.expsign = (ix0);					\
249   iw_u.xbits.manh = (ix1);					\
250   iw_u.xbits.manl = (ix2);					\
251   (d) = iw_u.e;							\
252 } while (0)
253 
254 /* Set expsign of a long double from a 16 bit int.  */
255 
256 #define	SET_LDBL_EXPSIGN(d,v)					\
257 do {								\
258   union IEEEl2bits se_u;					\
259   se_u.e = (d);							\
260   se_u.xbits.expsign = (v);					\
261   (d) = se_u.e;							\
262 } while (0)
263 
264 #ifdef __i386__
265 /* Long double constants are broken on i386. */
266 #define	LD80C(m, ex, v) {						\
267 	.xbits.man = __CONCAT(m, ULL),					\
268 	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
269 }
270 #else
271 /* The above works on non-i386 too, but we use this to check v. */
272 #define	LD80C(m, ex, v)	{ .e = (v), }
273 #endif
274 
275 #ifdef FLT_EVAL_METHOD
276 /*
277  * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
278  */
279 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
280 #define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
281 #else
282 #define	STRICT_ASSIGN(type, lval, rval) do {	\
283 	volatile type __lval;			\
284 						\
285 	if (sizeof(type) >= sizeof(long double))	\
286 		(lval) = (rval);		\
287 	else {					\
288 		__lval = (rval);		\
289 		(lval) = __lval;		\
290 	}					\
291 } while (0)
292 #endif
293 #endif /* FLT_EVAL_METHOD */
294 
295 /* Support switching the mode to FP_PE if necessary. */
296 #if defined(__i386__) && !defined(NO_FPSETPREC)
297 #define	ENTERI()				\
298 	long double __retval;			\
299 	fp_prec_t __oprec;			\
300 						\
301 	if ((__oprec = fpgetprec()) != FP_PE)	\
302 		fpsetprec(FP_PE)
303 #define	RETURNI(x) do {				\
304 	__retval = (x);				\
305 	if (__oprec != FP_PE)			\
306 		fpsetprec(__oprec);		\
307 	RETURNF(__retval);			\
308 } while (0)
309 #define	ENTERV()				\
310 	fp_prec_t __oprec;			\
311 						\
312 	if ((__oprec = fpgetprec()) != FP_PE)	\
313 		fpsetprec(FP_PE)
314 #define	RETURNV() do {				\
315 	if (__oprec != FP_PE)			\
316 		fpsetprec(__oprec);		\
317 	return;			\
318 } while (0)
319 #else
320 #define	ENTERI()
321 #define	RETURNI(x)	RETURNF(x)
322 #define	ENTERV()
323 #define	RETURNV()	return
324 #endif
325 
326 /* Default return statement if hack*_t() is not used. */
327 #define      RETURNF(v)      return (v)
328 
329 /*
330  * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
331  * a == 0, but is slower.
332  */
333 #define	_2sum(a, b) do {	\
334 	__typeof(a) __s, __w;	\
335 				\
336 	__w = (a) + (b);	\
337 	__s = __w - (a);	\
338 	(b) = ((a) - (__w - __s)) + ((b) - __s); \
339 	(a) = __w;		\
340 } while (0)
341 
342 /*
343  * 2sumF algorithm.
344  *
345  * "Normalize" the terms in the infinite-precision expression a + b for
346  * the sum of 2 floating point values so that b is as small as possible
347  * relative to 'a'.  (The resulting 'a' is the value of the expression in
348  * the same precision as 'a' and the resulting b is the rounding error.)
349  * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
350  * exponent overflow or underflow must not occur.  This uses a Theorem of
351  * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
352  * is apparently due to Skewchuk (1997).
353  *
354  * For this to always work, assignment of a + b to 'a' must not retain any
355  * extra precision in a + b.  This is required by C standards but broken
356  * in many compilers.  The brokenness cannot be worked around using
357  * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
358  * algorithm would be destroyed by non-null strict assignments.  (The
359  * compilers are correct to be broken -- the efficiency of all floating
360  * point code calculations would be destroyed similarly if they forced the
361  * conversions.)
362  *
363  * Fortunately, a case that works well can usually be arranged by building
364  * any extra precision into the type of 'a' -- 'a' should have type float_t,
365  * double_t or long double.  b's type should be no larger than 'a's type.
366  * Callers should use these types with scopes as large as possible, to
367  * reduce their own extra-precision and efficiciency problems.  In
368  * particular, they shouldn't convert back and forth just to call here.
369  */
370 #ifdef DEBUG
371 #define	_2sumF(a, b) do {				\
372 	__typeof(a) __w;				\
373 	volatile __typeof(a) __ia, __ib, __r, __vw;	\
374 							\
375 	__ia = (a);					\
376 	__ib = (b);					\
377 	assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));	\
378 							\
379 	__w = (a) + (b);				\
380 	(b) = ((a) - __w) + (b);			\
381 	(a) = __w;					\
382 							\
383 	/* The next 2 assertions are weak if (a) is already long double. */ \
384 	assert((long double)__ia + __ib == (long double)(a) + (b));	\
385 	__vw = __ia + __ib;				\
386 	__r = __ia - __vw;				\
387 	__r += __ib;					\
388 	assert(__vw == (a) && __r == (b));		\
389 } while (0)
390 #else /* !DEBUG */
391 #define	_2sumF(a, b) do {	\
392 	__typeof(a) __w;	\
393 				\
394 	__w = (a) + (b);	\
395 	(b) = ((a) - __w) + (b); \
396 	(a) = __w;		\
397 } while (0)
398 #endif /* DEBUG */
399 
400 /*
401  * Set x += c, where x is represented in extra precision as a + b.
402  * x must be sufficiently normalized and sufficiently larger than c,
403  * and the result is then sufficiently normalized.
404  *
405  * The details of ordering are that |a| must be >= |c| (so that (a, c)
406  * can be normalized without extra work to swap 'a' with c).  The details of
407  * the normalization are that b must be small relative to the normalized 'a'.
408  * Normalization of (a, c) makes the normalized c tiny relative to the
409  * normalized a, so b remains small relative to 'a' in the result.  However,
410  * b need not ever be tiny relative to 'a'.  For example, b might be about
411  * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
412  * That is usually enough, and adding c (which by normalization is about
413  * 2**53 times smaller than a) cannot change b significantly.  However,
414  * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
415  * significantly relative to b.  The caller must ensure that significant
416  * cancellation doesn't occur, either by having c of the same sign as 'a',
417  * or by having |c| a few percent smaller than |a|.  Pre-normalization of
418  * (a, b) may help.
419  *
420  * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
421  * exercise 19).  We gain considerable efficiency by requiring the terms to
422  * be sufficiently normalized and sufficiently increasing.
423  */
424 #define	_3sumF(a, b, c) do {	\
425 	__typeof(a) __tmp;	\
426 				\
427 	__tmp = (c);		\
428 	_2sumF(__tmp, (a));	\
429 	(b) += (a);		\
430 	(a) = __tmp;		\
431 } while (0)
432 
433 /*
434  * Common routine to process the arguments to nan(), nanf(), and nanl().
435  */
436 void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
437 
438 #ifdef _COMPLEX_H
439 
440 /*
441  * C99 specifies that complex numbers have the same representation as
442  * an array of two elements, where the first element is the real part
443  * and the second element is the imaginary part.
444  */
445 typedef union {
446 	float complex f;
447 	float a[2];
448 } float_complex;
449 typedef union {
450 	double complex f;
451 	double a[2];
452 } double_complex;
453 typedef union {
454 	long double complex f;
455 	long double a[2];
456 } long_double_complex;
457 #define	REALPART(z)	((z).a[0])
458 #define	IMAGPART(z)	((z).a[1])
459 
460 /*
461  * Inline functions that can be used to construct complex values.
462  *
463  * The C99 standard intends x+I*y to be used for this, but x+I*y is
464  * currently unusable in general since gcc introduces many overflow,
465  * underflow, sign and efficiency bugs by rewriting I*y as
466  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
467  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
468  * to -0.0+I*0.0.
469  *
470  * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
471  * to construct complex values.  Compilers that conform to the C99
472  * standard require the following functions to avoid the above issues.
473  */
474 
475 #ifndef CMPLXF
476 static __inline float complex
477 CMPLXF(float x, float y)
478 {
479 	float_complex z;
480 
481 	REALPART(z) = x;
482 	IMAGPART(z) = y;
483 	return (z.f);
484 }
485 #endif
486 
487 #ifndef CMPLX
488 static __inline double complex
489 CMPLX(double x, double y)
490 {
491 	double_complex z;
492 
493 	REALPART(z) = x;
494 	IMAGPART(z) = y;
495 	return (z.f);
496 }
497 #endif
498 
499 #ifndef CMPLXL
500 static __inline long double complex
501 CMPLXL(long double x, long double y)
502 {
503 	long_double_complex z;
504 
505 	REALPART(z) = x;
506 	IMAGPART(z) = y;
507 	return (z.f);
508 }
509 #endif
510 
511 #endif /* _COMPLEX_H */
512 
513 #ifdef __GNUCLIKE_ASM
514 
515 /* Asm versions of some functions. */
516 
517 #ifdef __amd64__
518 static __inline int
519 irint(double x)
520 {
521 	int n;
522 
523 	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
524 	return (n);
525 }
526 #define	HAVE_EFFICIENT_IRINT
527 #endif
528 
529 #ifdef __i386__
530 static __inline int
531 irint(double x)
532 {
533 	int n;
534 
535 	asm("fistl %0" : "=m" (n) : "t" (x));
536 	return (n);
537 }
538 #define	HAVE_EFFICIENT_IRINT
539 #endif
540 
541 #if defined(__amd64__) || defined(__i386__)
542 static __inline int
543 irintl(long double x)
544 {
545 	int n;
546 
547 	asm("fistl %0" : "=m" (n) : "t" (x));
548 	return (n);
549 }
550 #define	HAVE_EFFICIENT_IRINTL
551 #endif
552 
553 #endif /* __GNUCLIKE_ASM */
554 
555 #ifdef DEBUG
556 #if defined(__amd64__) || defined(__i386__)
557 #define	breakpoint()	asm("int $3")
558 #else
559 #include <signal.h>
560 
561 #define	breakpoint()	raise(SIGTRAP)
562 #endif
563 #endif
564 
565 /* Write a pari script to test things externally. */
566 #ifdef DOPRINT
567 #include <stdio.h>
568 
569 #ifndef DOPRINT_SWIZZLE
570 #define	DOPRINT_SWIZZLE		0
571 #endif
572 
573 #ifdef DOPRINT_LD80
574 
575 #define	DOPRINT_START(xp) do {						\
576 	uint64_t __lx;							\
577 	uint16_t __hx;							\
578 									\
579 	/* Hack to give more-problematic args. */			\
580 	EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);				\
581 	__lx ^= DOPRINT_SWIZZLE;					\
582 	INSERT_LDBL80_WORDS(*xp, __hx, __lx);				\
583 	printf("x = %.21Lg; ", (long double)*xp);			\
584 } while (0)
585 #define	DOPRINT_END1(v)							\
586 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
587 #define	DOPRINT_END2(hi, lo)						\
588 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
589 	    (long double)(hi), (long double)(lo))
590 
591 #elif defined(DOPRINT_D64)
592 
593 #define	DOPRINT_START(xp) do {						\
594 	uint32_t __hx, __lx;						\
595 									\
596 	EXTRACT_WORDS(__hx, __lx, *xp);					\
597 	__lx ^= DOPRINT_SWIZZLE;					\
598 	INSERT_WORDS(*xp, __hx, __lx);					\
599 	printf("x = %.21Lg; ", (long double)*xp);			\
600 } while (0)
601 #define	DOPRINT_END1(v)							\
602 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
603 #define	DOPRINT_END2(hi, lo)						\
604 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
605 	    (long double)(hi), (long double)(lo))
606 
607 #elif defined(DOPRINT_F32)
608 
609 #define	DOPRINT_START(xp) do {						\
610 	uint32_t __hx;							\
611 									\
612 	GET_FLOAT_WORD(__hx, *xp);					\
613 	__hx ^= DOPRINT_SWIZZLE;					\
614 	SET_FLOAT_WORD(*xp, __hx);					\
615 	printf("x = %.21Lg; ", (long double)*xp);			\
616 } while (0)
617 #define	DOPRINT_END1(v)							\
618 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
619 #define	DOPRINT_END2(hi, lo)						\
620 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
621 	    (long double)(hi), (long double)(lo))
622 
623 #else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
624 
625 #ifndef DOPRINT_SWIZZLE_HIGH
626 #define	DOPRINT_SWIZZLE_HIGH	0
627 #endif
628 
629 #define	DOPRINT_START(xp) do {						\
630 	uint64_t __lx, __llx;						\
631 	uint16_t __hx;							\
632 									\
633 	EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);			\
634 	__llx ^= DOPRINT_SWIZZLE;					\
635 	__lx ^= DOPRINT_SWIZZLE_HIGH;					\
636 	INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);			\
637 	printf("x = %.36Lg; ", (long double)*xp);					\
638 } while (0)
639 #define	DOPRINT_END1(v)							\
640 	printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
641 #define	DOPRINT_END2(hi, lo)						\
642 	printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",		\
643 	    (long double)(hi), (long double)(lo))
644 
645 #endif /* DOPRINT_LD80 */
646 
647 #else /* !DOPRINT */
648 #define	DOPRINT_START(xp)
649 #define	DOPRINT_END1(v)
650 #define	DOPRINT_END2(hi, lo)
651 #endif /* DOPRINT */
652 
653 #define	RETURNP(x) do {			\
654 	DOPRINT_END1(x);		\
655 	RETURNF(x);			\
656 } while (0)
657 #define	RETURNPI(x) do {		\
658 	DOPRINT_END1(x);		\
659 	RETURNI(x);			\
660 } while (0)
661 #define	RETURN2P(x, y) do {		\
662 	DOPRINT_END2((x), (y));		\
663 	RETURNF((x) + (y));		\
664 } while (0)
665 #define	RETURN2PI(x, y) do {		\
666 	DOPRINT_END2((x), (y));		\
667 	RETURNI((x) + (y));		\
668 } while (0)
669 #ifdef STRUCT_RETURN
670 #define	RETURNSP(rp) do {		\
671 	if (!(rp)->lo_set)		\
672 		RETURNP((rp)->hi);	\
673 	RETURN2P((rp)->hi, (rp)->lo);	\
674 } while (0)
675 #define	RETURNSPI(rp) do {		\
676 	if (!(rp)->lo_set)		\
677 		RETURNPI((rp)->hi);	\
678 	RETURN2PI((rp)->hi, (rp)->lo);	\
679 } while (0)
680 #endif
681 #define	SUM2P(x, y) ({			\
682 	const __typeof (x) __x = (x);	\
683 	const __typeof (y) __y = (y);	\
684 					\
685 	DOPRINT_END2(__x, __y);		\
686 	__x + __y;			\
687 })
688 
689 /*
690  * ieee style elementary functions
691  *
692  * We rename functions here to improve other sources' diffability
693  * against fdlibm.
694  */
695 #define	__ieee754_sqrt	sqrt
696 #define	__ieee754_acos	acos
697 #define	__ieee754_acosh	acosh
698 #define	__ieee754_log	log
699 #define	__ieee754_log2	log2
700 #define	__ieee754_atanh	atanh
701 #define	__ieee754_asin	asin
702 #define	__ieee754_atan2	atan2
703 #define	__ieee754_exp	exp
704 #define	__ieee754_cosh	cosh
705 #define	__ieee754_fmod	fmod
706 #define	__ieee754_pow	pow
707 #define	__ieee754_lgamma lgamma
708 #define	__ieee754_gamma	gamma
709 #define	__ieee754_lgamma_r lgamma_r
710 #define	__ieee754_gamma_r gamma_r
711 #define	__ieee754_log10	log10
712 #define	__ieee754_sinh	sinh
713 #define	__ieee754_hypot	hypot
714 #define	__ieee754_j0	j0
715 #define	__ieee754_j1	j1
716 #define	__ieee754_y0	y0
717 #define	__ieee754_y1	y1
718 #define	__ieee754_jn	jn
719 #define	__ieee754_yn	yn
720 #define	__ieee754_remainder remainder
721 #define	__ieee754_scalb	scalb
722 #define	__ieee754_sqrtf	sqrtf
723 #define	__ieee754_acosf	acosf
724 #define	__ieee754_acoshf acoshf
725 #define	__ieee754_logf	logf
726 #define	__ieee754_atanhf atanhf
727 #define	__ieee754_asinf	asinf
728 #define	__ieee754_atan2f atan2f
729 #define	__ieee754_expf	expf
730 #define	__ieee754_coshf	coshf
731 #define	__ieee754_fmodf	fmodf
732 #define	__ieee754_powf	powf
733 #define	__ieee754_lgammaf lgammaf
734 #define	__ieee754_gammaf gammaf
735 #define	__ieee754_lgammaf_r lgammaf_r
736 #define	__ieee754_gammaf_r gammaf_r
737 #define	__ieee754_log10f log10f
738 #define	__ieee754_log2f log2f
739 #define	__ieee754_sinhf	sinhf
740 #define	__ieee754_hypotf hypotf
741 #define	__ieee754_j0f	j0f
742 #define	__ieee754_j1f	j1f
743 #define	__ieee754_y0f	y0f
744 #define	__ieee754_y1f	y1f
745 #define	__ieee754_jnf	jnf
746 #define	__ieee754_ynf	ynf
747 #define	__ieee754_remainderf remainderf
748 #define	__ieee754_scalbf scalbf
749 
750 /* fdlibm kernel function */
751 int	__kernel_rem_pio2(double*,double*,int,int,int);
752 
753 /* double precision kernel functions */
754 #ifndef INLINE_REM_PIO2
755 int	__ieee754_rem_pio2(double,double*);
756 #endif
757 double	__kernel_sin(double,double,int);
758 double	__kernel_cos(double,double);
759 double	__kernel_tan(double,double,int);
760 double	__ldexp_exp(double,int);
761 #ifdef _COMPLEX_H
762 double complex __ldexp_cexp(double complex,int);
763 #endif
764 
765 /* float precision kernel functions */
766 #ifndef INLINE_REM_PIO2F
767 int	__ieee754_rem_pio2f(float,double*);
768 #endif
769 #ifndef INLINE_KERNEL_SINDF
770 float	__kernel_sindf(double);
771 #endif
772 #ifndef INLINE_KERNEL_COSDF
773 float	__kernel_cosdf(double);
774 #endif
775 #ifndef INLINE_KERNEL_TANDF
776 float	__kernel_tandf(double,int);
777 #endif
778 float	__ldexp_expf(float,int);
779 #ifdef _COMPLEX_H
780 float complex __ldexp_cexpf(float complex,int);
781 #endif
782 
783 /* long double precision kernel functions */
784 long double __kernel_sinl(long double, long double, int);
785 long double __kernel_cosl(long double, long double);
786 long double __kernel_tanl(long double, long double, int);
787 
788 #endif /* !_MATH_PRIVATE_H_ */
789