xref: /freebsd/lib/msun/src/s_erf.c (revision 0dd5a560)
13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard  * ====================================================
33a8617a8SJordan K. Hubbard  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard  *
53a8617a8SJordan K. Hubbard  * Developed at SunPro, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard  * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard  * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard  * is preserved.
93a8617a8SJordan K. Hubbard  * ====================================================
103a8617a8SJordan K. Hubbard  */
113a8617a8SJordan K. Hubbard 
123a8617a8SJordan K. Hubbard /* double erf(double x)
133a8617a8SJordan K. Hubbard  * double erfc(double x)
143a8617a8SJordan K. Hubbard  *			     x
153a8617a8SJordan K. Hubbard  *		      2      |\
163a8617a8SJordan K. Hubbard  *     erf(x)  =  ---------  | exp(-t*t)dt
173a8617a8SJordan K. Hubbard  *	 	   sqrt(pi) \|
183a8617a8SJordan K. Hubbard  *			     0
193a8617a8SJordan K. Hubbard  *
203a8617a8SJordan K. Hubbard  *     erfc(x) =  1-erf(x)
213a8617a8SJordan K. Hubbard  *  Note that
223a8617a8SJordan K. Hubbard  *		erf(-x) = -erf(x)
233a8617a8SJordan K. Hubbard  *		erfc(-x) = 2 - erfc(x)
243a8617a8SJordan K. Hubbard  *
253a8617a8SJordan K. Hubbard  * Method:
263a8617a8SJordan K. Hubbard  *	1. For |x| in [0, 0.84375]
273a8617a8SJordan K. Hubbard  *	    erf(x)  = x + x*R(x^2)
283a8617a8SJordan K. Hubbard  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
293a8617a8SJordan K. Hubbard  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
303a8617a8SJordan K. Hubbard  *	   where R = P/Q where P is an odd poly of degree 8 and
313a8617a8SJordan K. Hubbard  *	   Q is an odd poly of degree 10.
323a8617a8SJordan K. Hubbard  *						 -57.90
333a8617a8SJordan K. Hubbard  *			| R - (erf(x)-x)/x | <= 2
343a8617a8SJordan K. Hubbard  *
353a8617a8SJordan K. Hubbard  *
363a8617a8SJordan K. Hubbard  *	   Remark. The formula is derived by noting
373a8617a8SJordan K. Hubbard  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
383a8617a8SJordan K. Hubbard  *	   and that
393a8617a8SJordan K. Hubbard  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
403a8617a8SJordan K. Hubbard  *	   is close to one. The interval is chosen because the fix
413a8617a8SJordan K. Hubbard  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
423a8617a8SJordan K. Hubbard  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
433a8617a8SJordan K. Hubbard  * 	   guarantee the error is less than one ulp for erf.
443a8617a8SJordan K. Hubbard  *
453a8617a8SJordan K. Hubbard  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
463a8617a8SJordan K. Hubbard  *         c = 0.84506291151 rounded to single (24 bits)
473a8617a8SJordan K. Hubbard  *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
483a8617a8SJordan K. Hubbard  *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
493a8617a8SJordan K. Hubbard  *			  1+(c+P1(s)/Q1(s))    if x < 0
503a8617a8SJordan K. Hubbard  *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
513a8617a8SJordan K. Hubbard  *	   Remark: here we use the taylor series expansion at x=1.
523a8617a8SJordan K. Hubbard  *		erf(1+s) = erf(1) + s*Poly(s)
533a8617a8SJordan K. Hubbard  *			 = 0.845.. + P1(s)/Q1(s)
543a8617a8SJordan K. Hubbard  *	   That is, we use rational approximation to approximate
553a8617a8SJordan K. Hubbard  *			erf(1+s) - (c = (single)0.84506291151)
563a8617a8SJordan K. Hubbard  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
573a8617a8SJordan K. Hubbard  *	   where
583a8617a8SJordan K. Hubbard  *		P1(s) = degree 6 poly in s
593a8617a8SJordan K. Hubbard  *		Q1(s) = degree 6 poly in s
603a8617a8SJordan K. Hubbard  *
613a8617a8SJordan K. Hubbard  *      3. For x in [1.25,1/0.35(~2.857143)],
623a8617a8SJordan K. Hubbard  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
633a8617a8SJordan K. Hubbard  *         	erf(x)  = 1 - erfc(x)
643a8617a8SJordan K. Hubbard  *	   where
653a8617a8SJordan K. Hubbard  *		R1(z) = degree 7 poly in z, (z=1/x^2)
663a8617a8SJordan K. Hubbard  *		S1(z) = degree 8 poly in z
673a8617a8SJordan K. Hubbard  *
683a8617a8SJordan K. Hubbard  *      4. For x in [1/0.35,28]
693a8617a8SJordan K. Hubbard  *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
703a8617a8SJordan K. Hubbard  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
713a8617a8SJordan K. Hubbard  *			= 2.0 - tiny		(if x <= -6)
723a8617a8SJordan K. Hubbard  *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
733a8617a8SJordan K. Hubbard  *         	erf(x)  = sign(x)*(1.0 - tiny)
743a8617a8SJordan K. Hubbard  *	   where
753a8617a8SJordan K. Hubbard  *		R2(z) = degree 6 poly in z, (z=1/x^2)
763a8617a8SJordan K. Hubbard  *		S2(z) = degree 7 poly in z
773a8617a8SJordan K. Hubbard  *
783a8617a8SJordan K. Hubbard  *      Note1:
793a8617a8SJordan K. Hubbard  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
803a8617a8SJordan K. Hubbard  *	   precision number and s := x; then
813a8617a8SJordan K. Hubbard  *		-x*x = -s*s + (s-x)*(s+x)
823a8617a8SJordan K. Hubbard  *	        exp(-x*x-0.5626+R/S) =
833a8617a8SJordan K. Hubbard  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
843a8617a8SJordan K. Hubbard  *      Note2:
853a8617a8SJordan K. Hubbard  *	   Here 4 and 5 make use of the asymptotic series
863a8617a8SJordan K. Hubbard  *			  exp(-x*x)
873a8617a8SJordan K. Hubbard  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
883a8617a8SJordan K. Hubbard  *			  x*sqrt(pi)
893a8617a8SJordan K. Hubbard  *	   We use rational approximation to approximate
903a8617a8SJordan K. Hubbard  *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
913a8617a8SJordan K. Hubbard  *	   Here is the error bound for R1/S1 and R2/S2
923a8617a8SJordan K. Hubbard  *      	|R1/S1 - f(x)|  < 2**(-62.57)
933a8617a8SJordan K. Hubbard  *      	|R2/S2 - f(x)|  < 2**(-61.52)
943a8617a8SJordan K. Hubbard  *
953a8617a8SJordan K. Hubbard  *      5. For inf > x >= 28
963a8617a8SJordan K. Hubbard  *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
973a8617a8SJordan K. Hubbard  *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
983a8617a8SJordan K. Hubbard  *			= 2 - tiny if x<0
993a8617a8SJordan K. Hubbard  *
1003a8617a8SJordan K. Hubbard  *      7. Special case:
1013a8617a8SJordan K. Hubbard  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
1023a8617a8SJordan K. Hubbard  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
1033a8617a8SJordan K. Hubbard  *	   	erfc/erf(NaN) is NaN
1043a8617a8SJordan K. Hubbard  */
1053a8617a8SJordan K. Hubbard 
106003fdafbSJustin Hibbits #include <float.h>
1073a8617a8SJordan K. Hubbard #include "math.h"
1083a8617a8SJordan K. Hubbard #include "math_private.h"
1093a8617a8SJordan K. Hubbard 
110019ffb5dSSteve Kargl /* XXX Prevent compilers from erroneously constant folding: */
111019ffb5dSSteve Kargl static const volatile double tiny= 1e-300;
112019ffb5dSSteve Kargl 
1133a8617a8SJordan K. Hubbard static const double
114019ffb5dSSteve Kargl half= 0.5,
115019ffb5dSSteve Kargl one = 1,
116019ffb5dSSteve Kargl two = 2,
1173a8617a8SJordan K. Hubbard /* c = (float)0.84506291151 */
1183a8617a8SJordan K. Hubbard erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
119019ffb5dSSteve Kargl /*
120019ffb5dSSteve Kargl  * In the domain [0, 2**-28], only the first term in the power series
121019ffb5dSSteve Kargl  * expansion of erf(x) is used.  The magnitude of the first neglected
122019ffb5dSSteve Kargl  * terms is less than 2**-84.
123019ffb5dSSteve Kargl  */
124f2c0cd94SSteve Kargl efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
125f2c0cd94SSteve Kargl efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
1263a8617a8SJordan K. Hubbard /*
1273a8617a8SJordan K. Hubbard  * Coefficients for approximation to erf on [0,0.84375]
1283a8617a8SJordan K. Hubbard  */
1293a8617a8SJordan K. Hubbard pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
1303a8617a8SJordan K. Hubbard pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
1313a8617a8SJordan K. Hubbard pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
1323a8617a8SJordan K. Hubbard pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
1333a8617a8SJordan K. Hubbard pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
1343a8617a8SJordan K. Hubbard qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
1353a8617a8SJordan K. Hubbard qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
1363a8617a8SJordan K. Hubbard qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
1373a8617a8SJordan K. Hubbard qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
1383a8617a8SJordan K. Hubbard qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
1393a8617a8SJordan K. Hubbard /*
1403a8617a8SJordan K. Hubbard  * Coefficients for approximation to erf in [0.84375,1.25]
1413a8617a8SJordan K. Hubbard  */
1423a8617a8SJordan K. Hubbard pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
1433a8617a8SJordan K. Hubbard pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
1443a8617a8SJordan K. Hubbard pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
1453a8617a8SJordan K. Hubbard pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
1463a8617a8SJordan K. Hubbard pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
1473a8617a8SJordan K. Hubbard pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
1483a8617a8SJordan K. Hubbard pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
1493a8617a8SJordan K. Hubbard qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
1503a8617a8SJordan K. Hubbard qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
1513a8617a8SJordan K. Hubbard qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
1523a8617a8SJordan K. Hubbard qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
1533a8617a8SJordan K. Hubbard qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
1543a8617a8SJordan K. Hubbard qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
1553a8617a8SJordan K. Hubbard /*
1563a8617a8SJordan K. Hubbard  * Coefficients for approximation to erfc in [1.25,1/0.35]
1573a8617a8SJordan K. Hubbard  */
1583a8617a8SJordan K. Hubbard ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
1593a8617a8SJordan K. Hubbard ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
1603a8617a8SJordan K. Hubbard ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
1613a8617a8SJordan K. Hubbard ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
1623a8617a8SJordan K. Hubbard ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
1633a8617a8SJordan K. Hubbard ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
1643a8617a8SJordan K. Hubbard ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
1653a8617a8SJordan K. Hubbard ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
1663a8617a8SJordan K. Hubbard sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
1673a8617a8SJordan K. Hubbard sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
1683a8617a8SJordan K. Hubbard sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
1693a8617a8SJordan K. Hubbard sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
1703a8617a8SJordan K. Hubbard sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
1713a8617a8SJordan K. Hubbard sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
1723a8617a8SJordan K. Hubbard sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
1733a8617a8SJordan K. Hubbard sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
1743a8617a8SJordan K. Hubbard /*
1753a8617a8SJordan K. Hubbard  * Coefficients for approximation to erfc in [1/.35,28]
1763a8617a8SJordan K. Hubbard  */
1773a8617a8SJordan K. Hubbard rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
1783a8617a8SJordan K. Hubbard rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
1793a8617a8SJordan K. Hubbard rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
1803a8617a8SJordan K. Hubbard rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
1813a8617a8SJordan K. Hubbard rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
1823a8617a8SJordan K. Hubbard rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
1833a8617a8SJordan K. Hubbard rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
1843a8617a8SJordan K. Hubbard sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
1853a8617a8SJordan K. Hubbard sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
1863a8617a8SJordan K. Hubbard sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
1873a8617a8SJordan K. Hubbard sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
1883a8617a8SJordan K. Hubbard sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
1893a8617a8SJordan K. Hubbard sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
1903a8617a8SJordan K. Hubbard sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
1913a8617a8SJordan K. Hubbard 
19259b19ff1SAlfred Perlstein double
erf(double x)19359b19ff1SAlfred Perlstein erf(double x)
1943a8617a8SJordan K. Hubbard {
1953a8617a8SJordan K. Hubbard 	int32_t hx,ix,i;
1963a8617a8SJordan K. Hubbard 	double R,S,P,Q,s,y,z,r;
1973a8617a8SJordan K. Hubbard 	GET_HIGH_WORD(hx,x);
1983a8617a8SJordan K. Hubbard 	ix = hx&0x7fffffff;
1993a8617a8SJordan K. Hubbard 	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
2003a8617a8SJordan K. Hubbard 	    i = ((u_int32_t)hx>>31)<<1;
2013a8617a8SJordan K. Hubbard 	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
2023a8617a8SJordan K. Hubbard 	}
2033a8617a8SJordan K. Hubbard 
2043a8617a8SJordan K. Hubbard 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
2053a8617a8SJordan K. Hubbard 	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
2063a8617a8SJordan K. Hubbard 	        if (ix < 0x00800000)
2072a3910b9SSteve Kargl 		    return (8*x+efx8*x)/8;	/* avoid spurious underflow */
2083a8617a8SJordan K. Hubbard 		return x + efx*x;
2093a8617a8SJordan K. Hubbard 	    }
2103a8617a8SJordan K. Hubbard 	    z = x*x;
2113a8617a8SJordan K. Hubbard 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
2123a8617a8SJordan K. Hubbard 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
2133a8617a8SJordan K. Hubbard 	    y = r/s;
2143a8617a8SJordan K. Hubbard 	    return x + x*y;
2153a8617a8SJordan K. Hubbard 	}
2163a8617a8SJordan K. Hubbard 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
2173a8617a8SJordan K. Hubbard 	    s = fabs(x)-one;
2183a8617a8SJordan K. Hubbard 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
2193a8617a8SJordan K. Hubbard 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
2203a8617a8SJordan K. Hubbard 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
2213a8617a8SJordan K. Hubbard 	}
2223a8617a8SJordan K. Hubbard 	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
2233a8617a8SJordan K. Hubbard 	    if(hx>=0) return one-tiny; else return tiny-one;
2243a8617a8SJordan K. Hubbard 	}
2253a8617a8SJordan K. Hubbard 	x = fabs(x);
2263a8617a8SJordan K. Hubbard  	s = one/(x*x);
2273a8617a8SJordan K. Hubbard 	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
228f2c0cd94SSteve Kargl 	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
229f2c0cd94SSteve Kargl 	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
230f2c0cd94SSteve Kargl 		s*sa8)))))));
2313a8617a8SJordan K. Hubbard 	} else {	/* |x| >= 1/0.35 */
232f2c0cd94SSteve Kargl 	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
233f2c0cd94SSteve Kargl 	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
2343a8617a8SJordan K. Hubbard 	}
2353a8617a8SJordan K. Hubbard 	z  = x;
2363a8617a8SJordan K. Hubbard 	SET_LOW_WORD(z,0);
23799843eb8SSteve Kargl 	r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
2383a8617a8SJordan K. Hubbard 	if(hx>=0) return one-r/x; else return  r/x-one;
2393a8617a8SJordan K. Hubbard }
2403a8617a8SJordan K. Hubbard 
2413b5e0d0fSSteve Kargl #if (LDBL_MANT_DIG == 53)
2423b5e0d0fSSteve Kargl __weak_reference(erf, erfl);
2433b5e0d0fSSteve Kargl #endif
2443b5e0d0fSSteve Kargl 
24559b19ff1SAlfred Perlstein double
erfc(double x)24659b19ff1SAlfred Perlstein erfc(double x)
2473a8617a8SJordan K. Hubbard {
2483a8617a8SJordan K. Hubbard 	int32_t hx,ix;
2493a8617a8SJordan K. Hubbard 	double R,S,P,Q,s,y,z,r;
2503a8617a8SJordan K. Hubbard 	GET_HIGH_WORD(hx,x);
2513a8617a8SJordan K. Hubbard 	ix = hx&0x7fffffff;
2523a8617a8SJordan K. Hubbard 	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
2533a8617a8SJordan K. Hubbard 						/* erfc(+-inf)=0,2 */
2543a8617a8SJordan K. Hubbard 	    return (double)(((u_int32_t)hx>>31)<<1)+one/x;
2553a8617a8SJordan K. Hubbard 	}
2563a8617a8SJordan K. Hubbard 
2573a8617a8SJordan K. Hubbard 	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
2583a8617a8SJordan K. Hubbard 	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
2593a8617a8SJordan K. Hubbard 		return one-x;
2603a8617a8SJordan K. Hubbard 	    z = x*x;
2613a8617a8SJordan K. Hubbard 	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
2623a8617a8SJordan K. Hubbard 	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
2633a8617a8SJordan K. Hubbard 	    y = r/s;
2643a8617a8SJordan K. Hubbard 	    if(hx < 0x3fd00000) {  	/* x<1/4 */
2653a8617a8SJordan K. Hubbard 		return one-(x+x*y);
2663a8617a8SJordan K. Hubbard 	    } else {
2673a8617a8SJordan K. Hubbard 		r = x*y;
2683a8617a8SJordan K. Hubbard 		r += (x-half);
2693a8617a8SJordan K. Hubbard 	        return half - r ;
2703a8617a8SJordan K. Hubbard 	    }
2713a8617a8SJordan K. Hubbard 	}
2723a8617a8SJordan K. Hubbard 	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
2733a8617a8SJordan K. Hubbard 	    s = fabs(x)-one;
2743a8617a8SJordan K. Hubbard 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
2753a8617a8SJordan K. Hubbard 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
2763a8617a8SJordan K. Hubbard 	    if(hx>=0) {
2773a8617a8SJordan K. Hubbard 	        z  = one-erx; return z - P/Q;
2783a8617a8SJordan K. Hubbard 	    } else {
2793a8617a8SJordan K. Hubbard 		z = erx+P/Q; return one+z;
2803a8617a8SJordan K. Hubbard 	    }
2813a8617a8SJordan K. Hubbard 	}
2823a8617a8SJordan K. Hubbard 	if (ix < 0x403c0000) {		/* |x|<28 */
2833a8617a8SJordan K. Hubbard 	    x = fabs(x);
2843a8617a8SJordan K. Hubbard  	    s = one/(x*x);
2853a8617a8SJordan K. Hubbard 	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
286f2c0cd94SSteve Kargl 		R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
287f2c0cd94SSteve Kargl 		S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
288f2c0cd94SSteve Kargl 		    s*sa8)))))));
2893a8617a8SJordan K. Hubbard 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
2903a8617a8SJordan K. Hubbard 		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
291f2c0cd94SSteve Kargl 		R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
292f2c0cd94SSteve Kargl 		S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
2933a8617a8SJordan K. Hubbard 	    }
2943a8617a8SJordan K. Hubbard 	    z  = x;
2953a8617a8SJordan K. Hubbard 	    SET_LOW_WORD(z,0);
29699843eb8SSteve Kargl 	    r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
2973a8617a8SJordan K. Hubbard 	    if(hx>0) return r/x; else return two-r/x;
2983a8617a8SJordan K. Hubbard 	} else {
2993a8617a8SJordan K. Hubbard 	    if(hx>0) return tiny*tiny; else return two-tiny;
3003a8617a8SJordan K. Hubbard 	}
3013a8617a8SJordan K. Hubbard }
3023b5e0d0fSSteve Kargl 
3033b5e0d0fSSteve Kargl #if (LDBL_MANT_DIG == 53)
3043b5e0d0fSSteve Kargl __weak_reference(erfc, erfcl);
3053b5e0d0fSSteve Kargl #endif
306