xref: /freebsd/lib/msun/src/s_fma.c (revision d5580d09)
1 /*-
2  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 /*
35  * Fused multiply-add: Compute x * y + z with a single rounding error.
36  *
37  * We use scaling to avoid overflow/underflow, along with the
38  * canonical precision-doubling technique adapted from:
39  *
40  *	Dekker, T.  A Floating-Point Technique for Extending the
41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
42  *
43  * This algorithm is sensitive to the rounding precision.  FPUs such
44  * as the i387 must be set in double-precision mode if variables are
45  * to be stored in FP registers in order to avoid incorrect results.
46  * This is the default on FreeBSD, but not on many other systems.
47  *
48  * Tests on an Itanium 2 indicate that the hardware's FMA instruction
49  * is almost twice as fast as this implementation.  The hardware
50  * instruction should be used on platforms that support it.
51  *
52  * XXX May incur an absolute error of 0x1p-1074 for subnormal results
53  *     due to double rounding induced by the final scaling operation.
54  *
55  * XXX On machines supporting quad precision, we should use that, but
56  *     see the caveat in s_fmaf.c.
57  */
58 double
59 fma(double x, double y, double z)
60 {
61 	static const double split = 0x1p27 + 1.0;
62 	double xs, ys, zs;
63 	double c, cc, hx, hy, p, q, tx, ty;
64 	double r, rr, s;
65 	int oround;
66 	int ex, ey, ez;
67 	int spread;
68 
69 	if (x == 0.0 || y == 0.0)
70 		return (z);
71 	if (z == 0.0)
72 		return (x * y);
73 
74 	/* Results of frexp() are undefined for these cases. */
75 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
76 		return (x * y + z);
77 
78 	xs = frexp(x, &ex);
79 	ys = frexp(y, &ey);
80 	zs = frexp(z, &ez);
81 	oround = fegetround();
82 	spread = ex + ey - ez;
83 
84 	/*
85 	 * If x * y and z are many orders of magnitude apart, the scaling
86 	 * will overflow, so we handle these cases specially.  Rounding
87 	 * modes other than FE_TONEAREST are painful.
88 	 */
89 	if (spread > DBL_MANT_DIG * 2) {
90 		fenv_t env;
91 		feraiseexcept(FE_INEXACT);
92 		switch(oround) {
93 		case FE_TONEAREST:
94 			return (x * y);
95 		case FE_TOWARDZERO:
96 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
97 				return (x * y);
98 			feholdexcept(&env);
99 			r = x * y;
100 			if (!fetestexcept(FE_INEXACT))
101 				r = nextafter(r, 0);
102 			feupdateenv(&env);
103 			return (r);
104 		case FE_DOWNWARD:
105 			if (z > 0.0)
106 				return (x * y);
107 			feholdexcept(&env);
108 			r = x * y;
109 			if (!fetestexcept(FE_INEXACT))
110 				r = nextafter(r, -INFINITY);
111 			feupdateenv(&env);
112 			return (r);
113 		default:	/* FE_UPWARD */
114 			if (z < 0.0)
115 				return (x * y);
116 			feholdexcept(&env);
117 			r = x * y;
118 			if (!fetestexcept(FE_INEXACT))
119 				r = nextafter(r, INFINITY);
120 			feupdateenv(&env);
121 			return (r);
122 		}
123 	}
124 	if (spread < -DBL_MANT_DIG) {
125 		feraiseexcept(FE_INEXACT);
126 		if (!isnormal(z))
127 			feraiseexcept(FE_UNDERFLOW);
128 		switch (oround) {
129 		case FE_TONEAREST:
130 			return (z);
131 		case FE_TOWARDZERO:
132 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
133 				return (z);
134 			else
135 				return (nextafter(z, 0));
136 		case FE_DOWNWARD:
137 			if (x > 0.0 ^ y < 0.0)
138 				return (z);
139 			else
140 				return (nextafter(z, -INFINITY));
141 		default:	/* FE_UPWARD */
142 			if (x > 0.0 ^ y < 0.0)
143 				return (nextafter(z, INFINITY));
144 			else
145 				return (z);
146 		}
147 	}
148 
149 	/*
150 	 * Use Dekker's algorithm to perform the multiplication and
151 	 * subsequent addition in twice the machine precision.
152 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
153 	 */
154 	fesetround(FE_TONEAREST);
155 
156 	p = xs * split;
157 	hx = xs - p;
158 	hx += p;
159 	tx = xs - hx;
160 
161 	p = ys * split;
162 	hy = ys - p;
163 	hy += p;
164 	ty = ys - hy;
165 
166 	p = hx * hy;
167 	q = hx * ty + tx * hy;
168 	c = p + q;
169 	cc = p - c + q + tx * ty;
170 
171 	zs = ldexp(zs, -spread);
172 	r = c + zs;
173 	s = r - c;
174 	rr = (c - (r - s)) + (zs - s) + cc;
175 
176 	fesetround(oround);
177 	return (ldexp(r + rr, ex + ey));
178 }
179