xref: /freebsd/libexec/rtld-elf/rtld.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 
73 /* Types. */
74 typedef void (*func_ptr_type)(void);
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 
78 /* Variables that cannot be static: */
79 extern struct r_debug r_debug; /* For GDB */
80 extern int _thread_autoinit_dummy_decl;
81 extern char* __progname;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static Obj_Entry *dlcheck(void *);
96 static int dlclose_locked(void *, RtldLockState *);
97 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
98     int lo_flags, int mode, RtldLockState *lockstate);
99 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
100 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
101 static bool donelist_check(DoneList *, const Obj_Entry *);
102 static void errmsg_restore(char *);
103 static char *errmsg_save(void);
104 static void *fill_search_info(const char *, size_t, void *);
105 static char *find_library(const char *, const Obj_Entry *, int *);
106 static const char *gethints(bool);
107 static void hold_object(Obj_Entry *);
108 static void unhold_object(Obj_Entry *);
109 static void init_dag(Obj_Entry *);
110 static void init_marker(Obj_Entry *);
111 static void init_pagesizes(Elf_Auxinfo **aux_info);
112 static void init_rtld(caddr_t, Elf_Auxinfo **);
113 static void initlist_add_neededs(Needed_Entry *, Objlist *);
114 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
115 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
116 static void linkmap_add(Obj_Entry *);
117 static void linkmap_delete(Obj_Entry *);
118 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
119 static void unload_filtees(Obj_Entry *, RtldLockState *);
120 static int load_needed_objects(Obj_Entry *, int);
121 static int load_preload_objects(void);
122 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
123 static void map_stacks_exec(RtldLockState *);
124 static int obj_disable_relro(Obj_Entry *);
125 static int obj_enforce_relro(Obj_Entry *);
126 static Obj_Entry *obj_from_addr(const void *);
127 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
128 static void objlist_call_init(Objlist *, RtldLockState *);
129 static void objlist_clear(Objlist *);
130 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
131 static void objlist_init(Objlist *);
132 static void objlist_push_head(Objlist *, Obj_Entry *);
133 static void objlist_push_tail(Objlist *, Obj_Entry *);
134 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
135 static void objlist_remove(Objlist *, Obj_Entry *);
136 static int open_binary_fd(const char *argv0, bool search_in_path);
137 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
138 static int parse_integer(const char *);
139 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
140 static void print_usage(const char *argv0);
141 static void release_object(Obj_Entry *);
142 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
143     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
144 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
145     int flags, RtldLockState *lockstate);
146 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
147     RtldLockState *);
148 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
149 static int rtld_dirname(const char *, char *);
150 static int rtld_dirname_abs(const char *, char *);
151 static void *rtld_dlopen(const char *name, int fd, int mode);
152 static void rtld_exit(void);
153 static char *search_library_path(const char *, const char *, const char *,
154     int *);
155 static char *search_library_pathfds(const char *, const char *, int *);
156 static const void **get_program_var_addr(const char *, RtldLockState *);
157 static void set_program_var(const char *, const void *);
158 static int symlook_default(SymLook *, const Obj_Entry *refobj);
159 static int symlook_global(SymLook *, DoneList *);
160 static void symlook_init_from_req(SymLook *, const SymLook *);
161 static int symlook_list(SymLook *, const Objlist *, DoneList *);
162 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
163 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
164 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
165 static void trace_loaded_objects(Obj_Entry *);
166 static void unlink_object(Obj_Entry *);
167 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
168 static void unref_dag(Obj_Entry *);
169 static void ref_dag(Obj_Entry *);
170 static char *origin_subst_one(Obj_Entry *, char *, const char *,
171     const char *, bool);
172 static char *origin_subst(Obj_Entry *, const char *);
173 static bool obj_resolve_origin(Obj_Entry *obj);
174 static void preinit_main(void);
175 static int  rtld_verify_versions(const Objlist *);
176 static int  rtld_verify_object_versions(Obj_Entry *);
177 static void object_add_name(Obj_Entry *, const char *);
178 static int  object_match_name(const Obj_Entry *, const char *);
179 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
180 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
181     struct dl_phdr_info *phdr_info);
182 static uint32_t gnu_hash(const char *);
183 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
184     const unsigned long);
185 
186 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
187 void _r_debug_postinit(struct link_map *) __noinline __exported;
188 
189 int __sys_openat(int, const char *, int, ...);
190 
191 /*
192  * Data declarations.
193  */
194 static char *error_message;	/* Message for dlerror(), or NULL */
195 struct r_debug r_debug __exported;	/* for GDB; */
196 static bool libmap_disable;	/* Disable libmap */
197 static bool ld_loadfltr;	/* Immediate filters processing */
198 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
199 static bool trust;		/* False for setuid and setgid programs */
200 static bool dangerous_ld_env;	/* True if environment variables have been
201 				   used to affect the libraries loaded */
202 bool ld_bind_not;		/* Disable PLT update */
203 static char *ld_bind_now;	/* Environment variable for immediate binding */
204 static char *ld_debug;		/* Environment variable for debugging */
205 static char *ld_library_path;	/* Environment variable for search path */
206 static char *ld_library_dirs;	/* Environment variable for library descriptors */
207 static char *ld_preload;	/* Environment variable for libraries to
208 				   load first */
209 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
210 static const char *ld_tracing;	/* Called from ldd to print libs */
211 static char *ld_utrace;		/* Use utrace() to log events. */
212 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
213 static Obj_Entry *obj_main;	/* The main program shared object */
214 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
215 static unsigned int obj_count;	/* Number of objects in obj_list */
216 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
217 
218 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
219   STAILQ_HEAD_INITIALIZER(list_global);
220 static Objlist list_main =	/* Objects loaded at program startup */
221   STAILQ_HEAD_INITIALIZER(list_main);
222 static Objlist list_fini =	/* Objects needing fini() calls */
223   STAILQ_HEAD_INITIALIZER(list_fini);
224 
225 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
226 
227 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
228 
229 extern Elf_Dyn _DYNAMIC;
230 #pragma weak _DYNAMIC
231 
232 int dlclose(void *) __exported;
233 char *dlerror(void) __exported;
234 void *dlopen(const char *, int) __exported;
235 void *fdlopen(int, int) __exported;
236 void *dlsym(void *, const char *) __exported;
237 dlfunc_t dlfunc(void *, const char *) __exported;
238 void *dlvsym(void *, const char *, const char *) __exported;
239 int dladdr(const void *, Dl_info *) __exported;
240 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
241     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
242 int dlinfo(void *, int , void *) __exported;
243 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
244 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
245 int _rtld_get_stack_prot(void) __exported;
246 int _rtld_is_dlopened(void *) __exported;
247 void _rtld_error(const char *, ...) __exported;
248 
249 /* Only here to fix -Wmissing-prototypes warnings */
250 int __getosreldate(void);
251 void __pthread_cxa_finalize(struct dl_phdr_info *a);
252 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
253 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
254 
255 
256 int npagesizes;
257 static int osreldate;
258 size_t *pagesizes;
259 
260 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
261 static int max_stack_flags;
262 
263 /*
264  * Global declarations normally provided by crt1.  The dynamic linker is
265  * not built with crt1, so we have to provide them ourselves.
266  */
267 char *__progname;
268 char **environ;
269 
270 /*
271  * Used to pass argc, argv to init functions.
272  */
273 int main_argc;
274 char **main_argv;
275 
276 /*
277  * Globals to control TLS allocation.
278  */
279 size_t tls_last_offset;		/* Static TLS offset of last module */
280 size_t tls_last_size;		/* Static TLS size of last module */
281 size_t tls_static_space;	/* Static TLS space allocated */
282 static size_t tls_static_max_align;
283 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
284 int tls_max_index = 1;		/* Largest module index allocated */
285 
286 static bool ld_library_path_rpath = false;
287 
288 /*
289  * Globals for path names, and such
290  */
291 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
292 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
293 const char *ld_path_rtld = _PATH_RTLD;
294 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
295 const char *ld_env_prefix = LD_;
296 
297 /*
298  * Fill in a DoneList with an allocation large enough to hold all of
299  * the currently-loaded objects.  Keep this as a macro since it calls
300  * alloca and we want that to occur within the scope of the caller.
301  */
302 #define donelist_init(dlp)					\
303     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
304     assert((dlp)->objs != NULL),				\
305     (dlp)->num_alloc = obj_count,				\
306     (dlp)->num_used = 0)
307 
308 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
309 	if (ld_utrace != NULL)					\
310 		ld_utrace_log(e, h, mb, ms, r, n);		\
311 } while (0)
312 
313 static void
314 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
315     int refcnt, const char *name)
316 {
317 	struct utrace_rtld ut;
318 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
319 
320 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
321 	ut.event = event;
322 	ut.handle = handle;
323 	ut.mapbase = mapbase;
324 	ut.mapsize = mapsize;
325 	ut.refcnt = refcnt;
326 	bzero(ut.name, sizeof(ut.name));
327 	if (name)
328 		strlcpy(ut.name, name, sizeof(ut.name));
329 	utrace(&ut, sizeof(ut));
330 }
331 
332 #ifdef RTLD_VARIANT_ENV_NAMES
333 /*
334  * construct the env variable based on the type of binary that's
335  * running.
336  */
337 static inline const char *
338 _LD(const char *var)
339 {
340 	static char buffer[128];
341 
342 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
343 	strlcat(buffer, var, sizeof(buffer));
344 	return (buffer);
345 }
346 #else
347 #define _LD(x)	LD_ x
348 #endif
349 
350 /*
351  * Main entry point for dynamic linking.  The first argument is the
352  * stack pointer.  The stack is expected to be laid out as described
353  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
354  * Specifically, the stack pointer points to a word containing
355  * ARGC.  Following that in the stack is a null-terminated sequence
356  * of pointers to argument strings.  Then comes a null-terminated
357  * sequence of pointers to environment strings.  Finally, there is a
358  * sequence of "auxiliary vector" entries.
359  *
360  * The second argument points to a place to store the dynamic linker's
361  * exit procedure pointer and the third to a place to store the main
362  * program's object.
363  *
364  * The return value is the main program's entry point.
365  */
366 func_ptr_type
367 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
368 {
369     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
370     Objlist_Entry *entry;
371     Obj_Entry *last_interposer, *obj, *preload_tail;
372     const Elf_Phdr *phdr;
373     Objlist initlist;
374     RtldLockState lockstate;
375     struct stat st;
376     Elf_Addr *argcp;
377     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
378     const char *argv0;
379     caddr_t imgentry;
380     char buf[MAXPATHLEN];
381     int argc, fd, i, phnum, rtld_argc;
382     bool dir_enable, explicit_fd, search_in_path;
383 
384     /*
385      * On entry, the dynamic linker itself has not been relocated yet.
386      * Be very careful not to reference any global data until after
387      * init_rtld has returned.  It is OK to reference file-scope statics
388      * and string constants, and to call static and global functions.
389      */
390 
391     /* Find the auxiliary vector on the stack. */
392     argcp = sp;
393     argc = *sp++;
394     argv = (char **) sp;
395     sp += argc + 1;	/* Skip over arguments and NULL terminator */
396     env = (char **) sp;
397     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
398 	;
399     aux = (Elf_Auxinfo *) sp;
400 
401     /* Digest the auxiliary vector. */
402     for (i = 0;  i < AT_COUNT;  i++)
403 	aux_info[i] = NULL;
404     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
405 	if (auxp->a_type < AT_COUNT)
406 	    aux_info[auxp->a_type] = auxp;
407     }
408 
409     /* Initialize and relocate ourselves. */
410     assert(aux_info[AT_BASE] != NULL);
411     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
412 
413     __progname = obj_rtld.path;
414     argv0 = argv[0] != NULL ? argv[0] : "(null)";
415     environ = env;
416     main_argc = argc;
417     main_argv = argv;
418 
419     trust = !issetugid();
420 
421     md_abi_variant_hook(aux_info);
422 
423     fd = -1;
424     if (aux_info[AT_EXECFD] != NULL) {
425 	fd = aux_info[AT_EXECFD]->a_un.a_val;
426     } else {
427 	assert(aux_info[AT_PHDR] != NULL);
428 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
429 	if (phdr == obj_rtld.phdr) {
430 	    if (!trust) {
431 		_rtld_error("Tainted process refusing to run binary %s",
432 		    argv0);
433 		rtld_die();
434 	    }
435 	    dbg("opening main program in direct exec mode");
436 	    if (argc >= 2) {
437 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
438 		argv0 = argv[rtld_argc];
439 		explicit_fd = (fd != -1);
440 		if (!explicit_fd)
441 		    fd = open_binary_fd(argv0, search_in_path);
442 		if (fstat(fd, &st) == -1) {
443 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
444 		      explicit_fd ? "user-provided descriptor" : argv0,
445 		      rtld_strerror(errno));
446 		    rtld_die();
447 		}
448 
449 		/*
450 		 * Rough emulation of the permission checks done by
451 		 * execve(2), only Unix DACs are checked, ACLs are
452 		 * ignored.  Preserve the semantic of disabling owner
453 		 * to execute if owner x bit is cleared, even if
454 		 * others x bit is enabled.
455 		 * mmap(2) does not allow to mmap with PROT_EXEC if
456 		 * binary' file comes from noexec mount.  We cannot
457 		 * set VV_TEXT on the binary.
458 		 */
459 		dir_enable = false;
460 		if (st.st_uid == geteuid()) {
461 		    if ((st.st_mode & S_IXUSR) != 0)
462 			dir_enable = true;
463 		} else if (st.st_gid == getegid()) {
464 		    if ((st.st_mode & S_IXGRP) != 0)
465 			dir_enable = true;
466 		} else if ((st.st_mode & S_IXOTH) != 0) {
467 		    dir_enable = true;
468 		}
469 		if (!dir_enable) {
470 		    _rtld_error("No execute permission for binary %s",
471 		        argv0);
472 		    rtld_die();
473 		}
474 
475 		/*
476 		 * For direct exec mode, argv[0] is the interpreter
477 		 * name, we must remove it and shift arguments left
478 		 * before invoking binary main.  Since stack layout
479 		 * places environment pointers and aux vectors right
480 		 * after the terminating NULL, we must shift
481 		 * environment and aux as well.
482 		 */
483 		main_argc = argc - rtld_argc;
484 		for (i = 0; i <= main_argc; i++)
485 		    argv[i] = argv[i + rtld_argc];
486 		*argcp -= rtld_argc;
487 		environ = env = envp = argv + main_argc + 1;
488 		do {
489 		    *envp = *(envp + rtld_argc);
490 		    envp++;
491 		} while (*envp != NULL);
492 		aux = auxp = (Elf_Auxinfo *)envp;
493 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
494 		for (;; auxp++, auxpf++) {
495 		    *auxp = *auxpf;
496 		    if (auxp->a_type == AT_NULL)
497 			    break;
498 		}
499 	    } else {
500 		_rtld_error("No binary");
501 		rtld_die();
502 	    }
503 	}
504     }
505 
506     ld_bind_now = getenv(_LD("BIND_NOW"));
507 
508     /*
509      * If the process is tainted, then we un-set the dangerous environment
510      * variables.  The process will be marked as tainted until setuid(2)
511      * is called.  If any child process calls setuid(2) we do not want any
512      * future processes to honor the potentially un-safe variables.
513      */
514     if (!trust) {
515 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
516 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
517 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
518 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
519 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
520 		_rtld_error("environment corrupt; aborting");
521 		rtld_die();
522 	}
523     }
524     ld_debug = getenv(_LD("DEBUG"));
525     if (ld_bind_now == NULL)
526 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
527     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
528     libmap_override = getenv(_LD("LIBMAP"));
529     ld_library_path = getenv(_LD("LIBRARY_PATH"));
530     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
531     ld_preload = getenv(_LD("PRELOAD"));
532     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
533     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
534     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
535     if (library_path_rpath != NULL) {
536 	    if (library_path_rpath[0] == 'y' ||
537 		library_path_rpath[0] == 'Y' ||
538 		library_path_rpath[0] == '1')
539 		    ld_library_path_rpath = true;
540 	    else
541 		    ld_library_path_rpath = false;
542     }
543     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
544 	(ld_library_path != NULL) || (ld_preload != NULL) ||
545 	(ld_elf_hints_path != NULL) || ld_loadfltr;
546     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
547     ld_utrace = getenv(_LD("UTRACE"));
548 
549     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
550 	ld_elf_hints_path = ld_elf_hints_default;
551 
552     if (ld_debug != NULL && *ld_debug != '\0')
553 	debug = 1;
554     dbg("%s is initialized, base address = %p", __progname,
555 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
556     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
557     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
558 
559     dbg("initializing thread locks");
560     lockdflt_init();
561 
562     /*
563      * Load the main program, or process its program header if it is
564      * already loaded.
565      */
566     if (fd != -1) {	/* Load the main program. */
567 	dbg("loading main program");
568 	obj_main = map_object(fd, argv0, NULL);
569 	close(fd);
570 	if (obj_main == NULL)
571 	    rtld_die();
572 	max_stack_flags = obj_main->stack_flags;
573     } else {				/* Main program already loaded. */
574 	dbg("processing main program's program header");
575 	assert(aux_info[AT_PHDR] != NULL);
576 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
577 	assert(aux_info[AT_PHNUM] != NULL);
578 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
579 	assert(aux_info[AT_PHENT] != NULL);
580 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
581 	assert(aux_info[AT_ENTRY] != NULL);
582 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
583 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
584 	    rtld_die();
585     }
586 
587     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
588 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
589 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
590 	    if (kexecpath[0] == '/')
591 		    obj_main->path = kexecpath;
592 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
593 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
594 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
595 		    obj_main->path = xstrdup(argv0);
596 	    else
597 		    obj_main->path = xstrdup(buf);
598     } else {
599 	    dbg("No AT_EXECPATH or direct exec");
600 	    obj_main->path = xstrdup(argv0);
601     }
602     dbg("obj_main path %s", obj_main->path);
603     obj_main->mainprog = true;
604 
605     if (aux_info[AT_STACKPROT] != NULL &&
606       aux_info[AT_STACKPROT]->a_un.a_val != 0)
607 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
608 
609 #ifndef COMPAT_32BIT
610     /*
611      * Get the actual dynamic linker pathname from the executable if
612      * possible.  (It should always be possible.)  That ensures that
613      * gdb will find the right dynamic linker even if a non-standard
614      * one is being used.
615      */
616     if (obj_main->interp != NULL &&
617       strcmp(obj_main->interp, obj_rtld.path) != 0) {
618 	free(obj_rtld.path);
619 	obj_rtld.path = xstrdup(obj_main->interp);
620         __progname = obj_rtld.path;
621     }
622 #endif
623 
624     digest_dynamic(obj_main, 0);
625     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
626 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
627 	obj_main->dynsymcount);
628 
629     linkmap_add(obj_main);
630     linkmap_add(&obj_rtld);
631 
632     /* Link the main program into the list of objects. */
633     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
634     obj_count++;
635     obj_loads++;
636 
637     /* Initialize a fake symbol for resolving undefined weak references. */
638     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
639     sym_zero.st_shndx = SHN_UNDEF;
640     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
641 
642     if (!libmap_disable)
643         libmap_disable = (bool)lm_init(libmap_override);
644 
645     dbg("loading LD_PRELOAD libraries");
646     if (load_preload_objects() == -1)
647 	rtld_die();
648     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
649 
650     dbg("loading needed objects");
651     if (load_needed_objects(obj_main, 0) == -1)
652 	rtld_die();
653 
654     /* Make a list of all objects loaded at startup. */
655     last_interposer = obj_main;
656     TAILQ_FOREACH(obj, &obj_list, next) {
657 	if (obj->marker)
658 	    continue;
659 	if (obj->z_interpose && obj != obj_main) {
660 	    objlist_put_after(&list_main, last_interposer, obj);
661 	    last_interposer = obj;
662 	} else {
663 	    objlist_push_tail(&list_main, obj);
664 	}
665     	obj->refcount++;
666     }
667 
668     dbg("checking for required versions");
669     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
670 	rtld_die();
671 
672     if (ld_tracing) {		/* We're done */
673 	trace_loaded_objects(obj_main);
674 	exit(0);
675     }
676 
677     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
678        dump_relocations(obj_main);
679        exit (0);
680     }
681 
682     /*
683      * Processing tls relocations requires having the tls offsets
684      * initialized.  Prepare offsets before starting initial
685      * relocation processing.
686      */
687     dbg("initializing initial thread local storage offsets");
688     STAILQ_FOREACH(entry, &list_main, link) {
689 	/*
690 	 * Allocate all the initial objects out of the static TLS
691 	 * block even if they didn't ask for it.
692 	 */
693 	allocate_tls_offset(entry->obj);
694     }
695 
696     if (relocate_objects(obj_main,
697       ld_bind_now != NULL && *ld_bind_now != '\0',
698       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
699 	rtld_die();
700 
701     dbg("doing copy relocations");
702     if (do_copy_relocations(obj_main) == -1)
703 	rtld_die();
704 
705     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
706        dump_relocations(obj_main);
707        exit (0);
708     }
709 
710     ifunc_init(aux);
711 
712     /*
713      * Setup TLS for main thread.  This must be done after the
714      * relocations are processed, since tls initialization section
715      * might be the subject for relocations.
716      */
717     dbg("initializing initial thread local storage");
718     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
719 
720     dbg("initializing key program variables");
721     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
722     set_program_var("environ", env);
723     set_program_var("__elf_aux_vector", aux);
724 
725     /* Make a list of init functions to call. */
726     objlist_init(&initlist);
727     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
728       preload_tail, &initlist);
729 
730     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
731 
732     map_stacks_exec(NULL);
733 
734     if (!obj_main->crt_no_init) {
735 	/*
736 	 * Make sure we don't call the main program's init and fini
737 	 * functions for binaries linked with old crt1 which calls
738 	 * _init itself.
739 	 */
740 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
741 	obj_main->preinit_array = obj_main->init_array =
742 	    obj_main->fini_array = (Elf_Addr)NULL;
743     }
744 
745     /*
746      * Execute MD initializers required before we call the objects'
747      * init functions.
748      */
749     pre_init();
750 
751     wlock_acquire(rtld_bind_lock, &lockstate);
752 
753     dbg("resolving ifuncs");
754     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
755       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
756 	rtld_die();
757 
758     if (obj_main->crt_no_init)
759 	preinit_main();
760     objlist_call_init(&initlist, &lockstate);
761     _r_debug_postinit(&obj_main->linkmap);
762     objlist_clear(&initlist);
763     dbg("loading filtees");
764     TAILQ_FOREACH(obj, &obj_list, next) {
765 	if (obj->marker)
766 	    continue;
767 	if (ld_loadfltr || obj->z_loadfltr)
768 	    load_filtees(obj, 0, &lockstate);
769     }
770 
771     dbg("enforcing main obj relro");
772     if (obj_enforce_relro(obj_main) == -1)
773 	rtld_die();
774 
775     lock_release(rtld_bind_lock, &lockstate);
776 
777     dbg("transferring control to program entry point = %p", obj_main->entry);
778 
779     /* Return the exit procedure and the program entry point. */
780     *exit_proc = rtld_exit;
781     *objp = obj_main;
782     return (func_ptr_type) obj_main->entry;
783 }
784 
785 void *
786 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
787 {
788 	void *ptr;
789 	Elf_Addr target;
790 
791 	ptr = (void *)make_function_pointer(def, obj);
792 	target = call_ifunc_resolver(ptr);
793 	return ((void *)target);
794 }
795 
796 /*
797  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
798  * Changes to this function should be applied there as well.
799  */
800 Elf_Addr
801 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
802 {
803     const Elf_Rel *rel;
804     const Elf_Sym *def;
805     const Obj_Entry *defobj;
806     Elf_Addr *where;
807     Elf_Addr target;
808     RtldLockState lockstate;
809 
810     rlock_acquire(rtld_bind_lock, &lockstate);
811     if (sigsetjmp(lockstate.env, 0) != 0)
812 	    lock_upgrade(rtld_bind_lock, &lockstate);
813     if (obj->pltrel)
814 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
815     else
816 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
817 
818     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
819     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
820 	NULL, &lockstate);
821     if (def == NULL)
822 	rtld_die();
823     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
824 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
825     else
826 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
827 
828     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
829       defobj->strtab + def->st_name, basename(obj->path),
830       (void *)target, basename(defobj->path));
831 
832     /*
833      * Write the new contents for the jmpslot. Note that depending on
834      * architecture, the value which we need to return back to the
835      * lazy binding trampoline may or may not be the target
836      * address. The value returned from reloc_jmpslot() is the value
837      * that the trampoline needs.
838      */
839     target = reloc_jmpslot(where, target, defobj, obj, rel);
840     lock_release(rtld_bind_lock, &lockstate);
841     return target;
842 }
843 
844 /*
845  * Error reporting function.  Use it like printf.  If formats the message
846  * into a buffer, and sets things up so that the next call to dlerror()
847  * will return the message.
848  */
849 void
850 _rtld_error(const char *fmt, ...)
851 {
852     static char buf[512];
853     va_list ap;
854 
855     va_start(ap, fmt);
856     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
857     error_message = buf;
858     va_end(ap);
859     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
860 }
861 
862 /*
863  * Return a dynamically-allocated copy of the current error message, if any.
864  */
865 static char *
866 errmsg_save(void)
867 {
868     return error_message == NULL ? NULL : xstrdup(error_message);
869 }
870 
871 /*
872  * Restore the current error message from a copy which was previously saved
873  * by errmsg_save().  The copy is freed.
874  */
875 static void
876 errmsg_restore(char *saved_msg)
877 {
878     if (saved_msg == NULL)
879 	error_message = NULL;
880     else {
881 	_rtld_error("%s", saved_msg);
882 	free(saved_msg);
883     }
884 }
885 
886 static const char *
887 basename(const char *name)
888 {
889     const char *p = strrchr(name, '/');
890     return p != NULL ? p + 1 : name;
891 }
892 
893 static struct utsname uts;
894 
895 static char *
896 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
897     const char *subst, bool may_free)
898 {
899 	char *p, *p1, *res, *resp;
900 	int subst_len, kw_len, subst_count, old_len, new_len;
901 
902 	kw_len = strlen(kw);
903 
904 	/*
905 	 * First, count the number of the keyword occurrences, to
906 	 * preallocate the final string.
907 	 */
908 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
909 		p1 = strstr(p, kw);
910 		if (p1 == NULL)
911 			break;
912 	}
913 
914 	/*
915 	 * If the keyword is not found, just return.
916 	 *
917 	 * Return non-substituted string if resolution failed.  We
918 	 * cannot do anything more reasonable, the failure mode of the
919 	 * caller is unresolved library anyway.
920 	 */
921 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
922 		return (may_free ? real : xstrdup(real));
923 	if (obj != NULL)
924 		subst = obj->origin_path;
925 
926 	/*
927 	 * There is indeed something to substitute.  Calculate the
928 	 * length of the resulting string, and allocate it.
929 	 */
930 	subst_len = strlen(subst);
931 	old_len = strlen(real);
932 	new_len = old_len + (subst_len - kw_len) * subst_count;
933 	res = xmalloc(new_len + 1);
934 
935 	/*
936 	 * Now, execute the substitution loop.
937 	 */
938 	for (p = real, resp = res, *resp = '\0';;) {
939 		p1 = strstr(p, kw);
940 		if (p1 != NULL) {
941 			/* Copy the prefix before keyword. */
942 			memcpy(resp, p, p1 - p);
943 			resp += p1 - p;
944 			/* Keyword replacement. */
945 			memcpy(resp, subst, subst_len);
946 			resp += subst_len;
947 			*resp = '\0';
948 			p = p1 + kw_len;
949 		} else
950 			break;
951 	}
952 
953 	/* Copy to the end of string and finish. */
954 	strcat(resp, p);
955 	if (may_free)
956 		free(real);
957 	return (res);
958 }
959 
960 static char *
961 origin_subst(Obj_Entry *obj, const char *real)
962 {
963 	char *res1, *res2, *res3, *res4;
964 
965 	if (obj == NULL || !trust)
966 		return (xstrdup(real));
967 	if (uts.sysname[0] == '\0') {
968 		if (uname(&uts) != 0) {
969 			_rtld_error("utsname failed: %d", errno);
970 			return (NULL);
971 		}
972 	}
973 	/* __DECONST is safe here since without may_free real is unchanged */
974 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
975 	    false);
976 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
977 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
978 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
979 	return (res4);
980 }
981 
982 void
983 rtld_die(void)
984 {
985     const char *msg = dlerror();
986 
987     if (msg == NULL)
988 	msg = "Fatal error";
989     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
990     rtld_fdputstr(STDERR_FILENO, msg);
991     rtld_fdputchar(STDERR_FILENO, '\n');
992     _exit(1);
993 }
994 
995 /*
996  * Process a shared object's DYNAMIC section, and save the important
997  * information in its Obj_Entry structure.
998  */
999 static void
1000 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1001     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1002 {
1003     const Elf_Dyn *dynp;
1004     Needed_Entry **needed_tail = &obj->needed;
1005     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1006     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1007     const Elf_Hashelt *hashtab;
1008     const Elf32_Word *hashval;
1009     Elf32_Word bkt, nmaskwords;
1010     int bloom_size32;
1011     int plttype = DT_REL;
1012 
1013     *dyn_rpath = NULL;
1014     *dyn_soname = NULL;
1015     *dyn_runpath = NULL;
1016 
1017     obj->bind_now = false;
1018     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1019 	switch (dynp->d_tag) {
1020 
1021 	case DT_REL:
1022 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1023 	    break;
1024 
1025 	case DT_RELSZ:
1026 	    obj->relsize = dynp->d_un.d_val;
1027 	    break;
1028 
1029 	case DT_RELENT:
1030 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1031 	    break;
1032 
1033 	case DT_JMPREL:
1034 	    obj->pltrel = (const Elf_Rel *)
1035 	      (obj->relocbase + dynp->d_un.d_ptr);
1036 	    break;
1037 
1038 	case DT_PLTRELSZ:
1039 	    obj->pltrelsize = dynp->d_un.d_val;
1040 	    break;
1041 
1042 	case DT_RELA:
1043 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1044 	    break;
1045 
1046 	case DT_RELASZ:
1047 	    obj->relasize = dynp->d_un.d_val;
1048 	    break;
1049 
1050 	case DT_RELAENT:
1051 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1052 	    break;
1053 
1054 	case DT_PLTREL:
1055 	    plttype = dynp->d_un.d_val;
1056 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1057 	    break;
1058 
1059 	case DT_SYMTAB:
1060 	    obj->symtab = (const Elf_Sym *)
1061 	      (obj->relocbase + dynp->d_un.d_ptr);
1062 	    break;
1063 
1064 	case DT_SYMENT:
1065 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1066 	    break;
1067 
1068 	case DT_STRTAB:
1069 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1070 	    break;
1071 
1072 	case DT_STRSZ:
1073 	    obj->strsize = dynp->d_un.d_val;
1074 	    break;
1075 
1076 	case DT_VERNEED:
1077 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1078 		dynp->d_un.d_val);
1079 	    break;
1080 
1081 	case DT_VERNEEDNUM:
1082 	    obj->verneednum = dynp->d_un.d_val;
1083 	    break;
1084 
1085 	case DT_VERDEF:
1086 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1087 		dynp->d_un.d_val);
1088 	    break;
1089 
1090 	case DT_VERDEFNUM:
1091 	    obj->verdefnum = dynp->d_un.d_val;
1092 	    break;
1093 
1094 	case DT_VERSYM:
1095 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1096 		dynp->d_un.d_val);
1097 	    break;
1098 
1099 	case DT_HASH:
1100 	    {
1101 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1102 		    dynp->d_un.d_ptr);
1103 		obj->nbuckets = hashtab[0];
1104 		obj->nchains = hashtab[1];
1105 		obj->buckets = hashtab + 2;
1106 		obj->chains = obj->buckets + obj->nbuckets;
1107 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1108 		  obj->buckets != NULL;
1109 	    }
1110 	    break;
1111 
1112 	case DT_GNU_HASH:
1113 	    {
1114 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1115 		    dynp->d_un.d_ptr);
1116 		obj->nbuckets_gnu = hashtab[0];
1117 		obj->symndx_gnu = hashtab[1];
1118 		nmaskwords = hashtab[2];
1119 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1120 		obj->maskwords_bm_gnu = nmaskwords - 1;
1121 		obj->shift2_gnu = hashtab[3];
1122 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1123 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1124 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1125 		  obj->symndx_gnu;
1126 		/* Number of bitmask words is required to be power of 2 */
1127 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1128 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1129 	    }
1130 	    break;
1131 
1132 	case DT_NEEDED:
1133 	    if (!obj->rtld) {
1134 		Needed_Entry *nep = NEW(Needed_Entry);
1135 		nep->name = dynp->d_un.d_val;
1136 		nep->obj = NULL;
1137 		nep->next = NULL;
1138 
1139 		*needed_tail = nep;
1140 		needed_tail = &nep->next;
1141 	    }
1142 	    break;
1143 
1144 	case DT_FILTER:
1145 	    if (!obj->rtld) {
1146 		Needed_Entry *nep = NEW(Needed_Entry);
1147 		nep->name = dynp->d_un.d_val;
1148 		nep->obj = NULL;
1149 		nep->next = NULL;
1150 
1151 		*needed_filtees_tail = nep;
1152 		needed_filtees_tail = &nep->next;
1153 	    }
1154 	    break;
1155 
1156 	case DT_AUXILIARY:
1157 	    if (!obj->rtld) {
1158 		Needed_Entry *nep = NEW(Needed_Entry);
1159 		nep->name = dynp->d_un.d_val;
1160 		nep->obj = NULL;
1161 		nep->next = NULL;
1162 
1163 		*needed_aux_filtees_tail = nep;
1164 		needed_aux_filtees_tail = &nep->next;
1165 	    }
1166 	    break;
1167 
1168 	case DT_PLTGOT:
1169 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1170 	    break;
1171 
1172 	case DT_TEXTREL:
1173 	    obj->textrel = true;
1174 	    break;
1175 
1176 	case DT_SYMBOLIC:
1177 	    obj->symbolic = true;
1178 	    break;
1179 
1180 	case DT_RPATH:
1181 	    /*
1182 	     * We have to wait until later to process this, because we
1183 	     * might not have gotten the address of the string table yet.
1184 	     */
1185 	    *dyn_rpath = dynp;
1186 	    break;
1187 
1188 	case DT_SONAME:
1189 	    *dyn_soname = dynp;
1190 	    break;
1191 
1192 	case DT_RUNPATH:
1193 	    *dyn_runpath = dynp;
1194 	    break;
1195 
1196 	case DT_INIT:
1197 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1198 	    break;
1199 
1200 	case DT_PREINIT_ARRAY:
1201 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1202 	    break;
1203 
1204 	case DT_PREINIT_ARRAYSZ:
1205 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1206 	    break;
1207 
1208 	case DT_INIT_ARRAY:
1209 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1210 	    break;
1211 
1212 	case DT_INIT_ARRAYSZ:
1213 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1214 	    break;
1215 
1216 	case DT_FINI:
1217 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1218 	    break;
1219 
1220 	case DT_FINI_ARRAY:
1221 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1222 	    break;
1223 
1224 	case DT_FINI_ARRAYSZ:
1225 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1226 	    break;
1227 
1228 	/*
1229 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1230 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1231 	 */
1232 
1233 #ifndef __mips__
1234 	case DT_DEBUG:
1235 	    if (!early)
1236 		dbg("Filling in DT_DEBUG entry");
1237 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1238 	    break;
1239 #endif
1240 
1241 	case DT_FLAGS:
1242 		if (dynp->d_un.d_val & DF_ORIGIN)
1243 		    obj->z_origin = true;
1244 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1245 		    obj->symbolic = true;
1246 		if (dynp->d_un.d_val & DF_TEXTREL)
1247 		    obj->textrel = true;
1248 		if (dynp->d_un.d_val & DF_BIND_NOW)
1249 		    obj->bind_now = true;
1250 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1251 		    ;*/
1252 	    break;
1253 #ifdef __mips__
1254 	case DT_MIPS_LOCAL_GOTNO:
1255 		obj->local_gotno = dynp->d_un.d_val;
1256 		break;
1257 
1258 	case DT_MIPS_SYMTABNO:
1259 		obj->symtabno = dynp->d_un.d_val;
1260 		break;
1261 
1262 	case DT_MIPS_GOTSYM:
1263 		obj->gotsym = dynp->d_un.d_val;
1264 		break;
1265 
1266 	case DT_MIPS_RLD_MAP:
1267 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1268 		break;
1269 
1270 	case DT_MIPS_RLD_MAP_REL:
1271 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1272 		// section relative to the address of the tag itself.
1273 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1274 		    (Elf_Addr) &r_debug;
1275 		break;
1276 
1277 	case DT_MIPS_PLTGOT:
1278 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1279 		    dynp->d_un.d_ptr);
1280 		break;
1281 
1282 #endif
1283 
1284 #ifdef __powerpc64__
1285 	case DT_PPC64_GLINK:
1286 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1287 		break;
1288 #endif
1289 
1290 	case DT_FLAGS_1:
1291 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1292 		    obj->z_noopen = true;
1293 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1294 		    obj->z_origin = true;
1295 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1296 		    obj->z_global = true;
1297 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1298 		    obj->bind_now = true;
1299 		if (dynp->d_un.d_val & DF_1_NODELETE)
1300 		    obj->z_nodelete = true;
1301 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1302 		    obj->z_loadfltr = true;
1303 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1304 		    obj->z_interpose = true;
1305 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1306 		    obj->z_nodeflib = true;
1307 	    break;
1308 
1309 	default:
1310 	    if (!early) {
1311 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1312 		    (long)dynp->d_tag);
1313 	    }
1314 	    break;
1315 	}
1316     }
1317 
1318     obj->traced = false;
1319 
1320     if (plttype == DT_RELA) {
1321 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1322 	obj->pltrel = NULL;
1323 	obj->pltrelasize = obj->pltrelsize;
1324 	obj->pltrelsize = 0;
1325     }
1326 
1327     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1328     if (obj->valid_hash_sysv)
1329 	obj->dynsymcount = obj->nchains;
1330     else if (obj->valid_hash_gnu) {
1331 	obj->dynsymcount = 0;
1332 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1333 	    if (obj->buckets_gnu[bkt] == 0)
1334 		continue;
1335 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1336 	    do
1337 		obj->dynsymcount++;
1338 	    while ((*hashval++ & 1u) == 0);
1339 	}
1340 	obj->dynsymcount += obj->symndx_gnu;
1341     }
1342 }
1343 
1344 static bool
1345 obj_resolve_origin(Obj_Entry *obj)
1346 {
1347 
1348 	if (obj->origin_path != NULL)
1349 		return (true);
1350 	obj->origin_path = xmalloc(PATH_MAX);
1351 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1352 }
1353 
1354 static void
1355 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1356     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1357 {
1358 
1359 	if (obj->z_origin && !obj_resolve_origin(obj))
1360 		rtld_die();
1361 
1362 	if (dyn_runpath != NULL) {
1363 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1364 		obj->runpath = origin_subst(obj, obj->runpath);
1365 	} else if (dyn_rpath != NULL) {
1366 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1367 		obj->rpath = origin_subst(obj, obj->rpath);
1368 	}
1369 	if (dyn_soname != NULL)
1370 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1371 }
1372 
1373 static void
1374 digest_dynamic(Obj_Entry *obj, int early)
1375 {
1376 	const Elf_Dyn *dyn_rpath;
1377 	const Elf_Dyn *dyn_soname;
1378 	const Elf_Dyn *dyn_runpath;
1379 
1380 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1381 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1382 }
1383 
1384 /*
1385  * Process a shared object's program header.  This is used only for the
1386  * main program, when the kernel has already loaded the main program
1387  * into memory before calling the dynamic linker.  It creates and
1388  * returns an Obj_Entry structure.
1389  */
1390 static Obj_Entry *
1391 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1392 {
1393     Obj_Entry *obj;
1394     const Elf_Phdr *phlimit = phdr + phnum;
1395     const Elf_Phdr *ph;
1396     Elf_Addr note_start, note_end;
1397     int nsegs = 0;
1398 
1399     obj = obj_new();
1400     for (ph = phdr;  ph < phlimit;  ph++) {
1401 	if (ph->p_type != PT_PHDR)
1402 	    continue;
1403 
1404 	obj->phdr = phdr;
1405 	obj->phsize = ph->p_memsz;
1406 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1407 	break;
1408     }
1409 
1410     obj->stack_flags = PF_X | PF_R | PF_W;
1411 
1412     for (ph = phdr;  ph < phlimit;  ph++) {
1413 	switch (ph->p_type) {
1414 
1415 	case PT_INTERP:
1416 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1417 	    break;
1418 
1419 	case PT_LOAD:
1420 	    if (nsegs == 0) {	/* First load segment */
1421 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1422 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1423 	    } else {		/* Last load segment */
1424 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1425 		  obj->vaddrbase;
1426 	    }
1427 	    nsegs++;
1428 	    break;
1429 
1430 	case PT_DYNAMIC:
1431 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1432 	    break;
1433 
1434 	case PT_TLS:
1435 	    obj->tlsindex = 1;
1436 	    obj->tlssize = ph->p_memsz;
1437 	    obj->tlsalign = ph->p_align;
1438 	    obj->tlsinitsize = ph->p_filesz;
1439 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1440 	    break;
1441 
1442 	case PT_GNU_STACK:
1443 	    obj->stack_flags = ph->p_flags;
1444 	    break;
1445 
1446 	case PT_GNU_RELRO:
1447 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1448 	    obj->relro_size = round_page(ph->p_memsz);
1449 	    break;
1450 
1451 	case PT_NOTE:
1452 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1453 	    note_end = note_start + ph->p_filesz;
1454 	    digest_notes(obj, note_start, note_end);
1455 	    break;
1456 	}
1457     }
1458     if (nsegs < 1) {
1459 	_rtld_error("%s: too few PT_LOAD segments", path);
1460 	return NULL;
1461     }
1462 
1463     obj->entry = entry;
1464     return obj;
1465 }
1466 
1467 void
1468 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1469 {
1470 	const Elf_Note *note;
1471 	const char *note_name;
1472 	uintptr_t p;
1473 
1474 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1475 	    note = (const Elf_Note *)((const char *)(note + 1) +
1476 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1477 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1478 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1479 		    note->n_descsz != sizeof(int32_t))
1480 			continue;
1481 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1482 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1483 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1484 			continue;
1485 		note_name = (const char *)(note + 1);
1486 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1487 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1488 			continue;
1489 		switch (note->n_type) {
1490 		case NT_FREEBSD_ABI_TAG:
1491 			/* FreeBSD osrel note */
1492 			p = (uintptr_t)(note + 1);
1493 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1494 			obj->osrel = *(const int32_t *)(p);
1495 			dbg("note osrel %d", obj->osrel);
1496 			break;
1497 		case NT_FREEBSD_FEATURE_CTL:
1498 			/* FreeBSD ABI feature control note */
1499 			p = (uintptr_t)(note + 1);
1500 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1501 			obj->fctl0 = *(const uint32_t *)(p);
1502 			dbg("note fctl0 %#x", obj->fctl0);
1503 			break;
1504 		case NT_FREEBSD_NOINIT_TAG:
1505 			/* FreeBSD 'crt does not call init' note */
1506 			obj->crt_no_init = true;
1507 			dbg("note crt_no_init");
1508 			break;
1509 		}
1510 	}
1511 }
1512 
1513 static Obj_Entry *
1514 dlcheck(void *handle)
1515 {
1516     Obj_Entry *obj;
1517 
1518     TAILQ_FOREACH(obj, &obj_list, next) {
1519 	if (obj == (Obj_Entry *) handle)
1520 	    break;
1521     }
1522 
1523     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1524 	_rtld_error("Invalid shared object handle %p", handle);
1525 	return NULL;
1526     }
1527     return obj;
1528 }
1529 
1530 /*
1531  * If the given object is already in the donelist, return true.  Otherwise
1532  * add the object to the list and return false.
1533  */
1534 static bool
1535 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1536 {
1537     unsigned int i;
1538 
1539     for (i = 0;  i < dlp->num_used;  i++)
1540 	if (dlp->objs[i] == obj)
1541 	    return true;
1542     /*
1543      * Our donelist allocation should always be sufficient.  But if
1544      * our threads locking isn't working properly, more shared objects
1545      * could have been loaded since we allocated the list.  That should
1546      * never happen, but we'll handle it properly just in case it does.
1547      */
1548     if (dlp->num_used < dlp->num_alloc)
1549 	dlp->objs[dlp->num_used++] = obj;
1550     return false;
1551 }
1552 
1553 /*
1554  * Hash function for symbol table lookup.  Don't even think about changing
1555  * this.  It is specified by the System V ABI.
1556  */
1557 unsigned long
1558 elf_hash(const char *name)
1559 {
1560     const unsigned char *p = (const unsigned char *) name;
1561     unsigned long h = 0;
1562     unsigned long g;
1563 
1564     while (*p != '\0') {
1565 	h = (h << 4) + *p++;
1566 	if ((g = h & 0xf0000000) != 0)
1567 	    h ^= g >> 24;
1568 	h &= ~g;
1569     }
1570     return h;
1571 }
1572 
1573 /*
1574  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1575  * unsigned in case it's implemented with a wider type.
1576  */
1577 static uint32_t
1578 gnu_hash(const char *s)
1579 {
1580 	uint32_t h;
1581 	unsigned char c;
1582 
1583 	h = 5381;
1584 	for (c = *s; c != '\0'; c = *++s)
1585 		h = h * 33 + c;
1586 	return (h & 0xffffffff);
1587 }
1588 
1589 
1590 /*
1591  * Find the library with the given name, and return its full pathname.
1592  * The returned string is dynamically allocated.  Generates an error
1593  * message and returns NULL if the library cannot be found.
1594  *
1595  * If the second argument is non-NULL, then it refers to an already-
1596  * loaded shared object, whose library search path will be searched.
1597  *
1598  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1599  * descriptor (which is close-on-exec) will be passed out via the third
1600  * argument.
1601  *
1602  * The search order is:
1603  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1604  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1605  *   LD_LIBRARY_PATH
1606  *   DT_RUNPATH in the referencing file
1607  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1608  *	 from list)
1609  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1610  *
1611  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1612  */
1613 static char *
1614 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1615 {
1616 	char *pathname, *refobj_path;
1617 	const char *name;
1618 	bool nodeflib, objgiven;
1619 
1620 	objgiven = refobj != NULL;
1621 
1622 	if (libmap_disable || !objgiven ||
1623 	    (name = lm_find(refobj->path, xname)) == NULL)
1624 		name = xname;
1625 
1626 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1627 		if (name[0] != '/' && !trust) {
1628 			_rtld_error("Absolute pathname required "
1629 			    "for shared object \"%s\"", name);
1630 			return (NULL);
1631 		}
1632 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1633 		    __DECONST(char *, name)));
1634 	}
1635 
1636 	dbg(" Searching for \"%s\"", name);
1637 	refobj_path = objgiven ? refobj->path : NULL;
1638 
1639 	/*
1640 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1641 	 * back to pre-conforming behaviour if user requested so with
1642 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1643 	 * nodeflib.
1644 	 */
1645 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1646 		pathname = search_library_path(name, ld_library_path,
1647 		    refobj_path, fdp);
1648 		if (pathname != NULL)
1649 			return (pathname);
1650 		if (refobj != NULL) {
1651 			pathname = search_library_path(name, refobj->rpath,
1652 			    refobj_path, fdp);
1653 			if (pathname != NULL)
1654 				return (pathname);
1655 		}
1656 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1657 		if (pathname != NULL)
1658 			return (pathname);
1659 		pathname = search_library_path(name, gethints(false),
1660 		    refobj_path, fdp);
1661 		if (pathname != NULL)
1662 			return (pathname);
1663 		pathname = search_library_path(name, ld_standard_library_path,
1664 		    refobj_path, fdp);
1665 		if (pathname != NULL)
1666 			return (pathname);
1667 	} else {
1668 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1669 		if (objgiven) {
1670 			pathname = search_library_path(name, refobj->rpath,
1671 			    refobj->path, fdp);
1672 			if (pathname != NULL)
1673 				return (pathname);
1674 		}
1675 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1676 			pathname = search_library_path(name, obj_main->rpath,
1677 			    refobj_path, fdp);
1678 			if (pathname != NULL)
1679 				return (pathname);
1680 		}
1681 		pathname = search_library_path(name, ld_library_path,
1682 		    refobj_path, fdp);
1683 		if (pathname != NULL)
1684 			return (pathname);
1685 		if (objgiven) {
1686 			pathname = search_library_path(name, refobj->runpath,
1687 			    refobj_path, fdp);
1688 			if (pathname != NULL)
1689 				return (pathname);
1690 		}
1691 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1692 		if (pathname != NULL)
1693 			return (pathname);
1694 		pathname = search_library_path(name, gethints(nodeflib),
1695 		    refobj_path, fdp);
1696 		if (pathname != NULL)
1697 			return (pathname);
1698 		if (objgiven && !nodeflib) {
1699 			pathname = search_library_path(name,
1700 			    ld_standard_library_path, refobj_path, fdp);
1701 			if (pathname != NULL)
1702 				return (pathname);
1703 		}
1704 	}
1705 
1706 	if (objgiven && refobj->path != NULL) {
1707 		_rtld_error("Shared object \"%s\" not found, "
1708 		    "required by \"%s\"", name, basename(refobj->path));
1709 	} else {
1710 		_rtld_error("Shared object \"%s\" not found", name);
1711 	}
1712 	return (NULL);
1713 }
1714 
1715 /*
1716  * Given a symbol number in a referencing object, find the corresponding
1717  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1718  * no definition was found.  Returns a pointer to the Obj_Entry of the
1719  * defining object via the reference parameter DEFOBJ_OUT.
1720  */
1721 const Elf_Sym *
1722 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1723     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1724     RtldLockState *lockstate)
1725 {
1726     const Elf_Sym *ref;
1727     const Elf_Sym *def;
1728     const Obj_Entry *defobj;
1729     const Ver_Entry *ve;
1730     SymLook req;
1731     const char *name;
1732     int res;
1733 
1734     /*
1735      * If we have already found this symbol, get the information from
1736      * the cache.
1737      */
1738     if (symnum >= refobj->dynsymcount)
1739 	return NULL;	/* Bad object */
1740     if (cache != NULL && cache[symnum].sym != NULL) {
1741 	*defobj_out = cache[symnum].obj;
1742 	return cache[symnum].sym;
1743     }
1744 
1745     ref = refobj->symtab + symnum;
1746     name = refobj->strtab + ref->st_name;
1747     def = NULL;
1748     defobj = NULL;
1749     ve = NULL;
1750 
1751     /*
1752      * We don't have to do a full scale lookup if the symbol is local.
1753      * We know it will bind to the instance in this load module; to
1754      * which we already have a pointer (ie ref). By not doing a lookup,
1755      * we not only improve performance, but it also avoids unresolvable
1756      * symbols when local symbols are not in the hash table. This has
1757      * been seen with the ia64 toolchain.
1758      */
1759     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1760 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1761 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1762 		symnum);
1763 	}
1764 	symlook_init(&req, name);
1765 	req.flags = flags;
1766 	ve = req.ventry = fetch_ventry(refobj, symnum);
1767 	req.lockstate = lockstate;
1768 	res = symlook_default(&req, refobj);
1769 	if (res == 0) {
1770 	    def = req.sym_out;
1771 	    defobj = req.defobj_out;
1772 	}
1773     } else {
1774 	def = ref;
1775 	defobj = refobj;
1776     }
1777 
1778     /*
1779      * If we found no definition and the reference is weak, treat the
1780      * symbol as having the value zero.
1781      */
1782     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1783 	def = &sym_zero;
1784 	defobj = obj_main;
1785     }
1786 
1787     if (def != NULL) {
1788 	*defobj_out = defobj;
1789 	/* Record the information in the cache to avoid subsequent lookups. */
1790 	if (cache != NULL) {
1791 	    cache[symnum].sym = def;
1792 	    cache[symnum].obj = defobj;
1793 	}
1794     } else {
1795 	if (refobj != &obj_rtld)
1796 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1797 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1798     }
1799     return def;
1800 }
1801 
1802 /*
1803  * Return the search path from the ldconfig hints file, reading it if
1804  * necessary.  If nostdlib is true, then the default search paths are
1805  * not added to result.
1806  *
1807  * Returns NULL if there are problems with the hints file,
1808  * or if the search path there is empty.
1809  */
1810 static const char *
1811 gethints(bool nostdlib)
1812 {
1813 	static char *filtered_path;
1814 	static const char *hints;
1815 	static struct elfhints_hdr hdr;
1816 	struct fill_search_info_args sargs, hargs;
1817 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1818 	struct dl_serpath *SLPpath, *hintpath;
1819 	char *p;
1820 	struct stat hint_stat;
1821 	unsigned int SLPndx, hintndx, fndx, fcount;
1822 	int fd;
1823 	size_t flen;
1824 	uint32_t dl;
1825 	bool skip;
1826 
1827 	/* First call, read the hints file */
1828 	if (hints == NULL) {
1829 		/* Keep from trying again in case the hints file is bad. */
1830 		hints = "";
1831 
1832 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1833 			return (NULL);
1834 
1835 		/*
1836 		 * Check of hdr.dirlistlen value against type limit
1837 		 * intends to pacify static analyzers.  Further
1838 		 * paranoia leads to checks that dirlist is fully
1839 		 * contained in the file range.
1840 		 */
1841 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1842 		    hdr.magic != ELFHINTS_MAGIC ||
1843 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1844 		    fstat(fd, &hint_stat) == -1) {
1845 cleanup1:
1846 			close(fd);
1847 			hdr.dirlistlen = 0;
1848 			return (NULL);
1849 		}
1850 		dl = hdr.strtab;
1851 		if (dl + hdr.dirlist < dl)
1852 			goto cleanup1;
1853 		dl += hdr.dirlist;
1854 		if (dl + hdr.dirlistlen < dl)
1855 			goto cleanup1;
1856 		dl += hdr.dirlistlen;
1857 		if (dl > hint_stat.st_size)
1858 			goto cleanup1;
1859 		p = xmalloc(hdr.dirlistlen + 1);
1860 		if (pread(fd, p, hdr.dirlistlen + 1,
1861 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1862 		    p[hdr.dirlistlen] != '\0') {
1863 			free(p);
1864 			goto cleanup1;
1865 		}
1866 		hints = p;
1867 		close(fd);
1868 	}
1869 
1870 	/*
1871 	 * If caller agreed to receive list which includes the default
1872 	 * paths, we are done. Otherwise, if we still did not
1873 	 * calculated filtered result, do it now.
1874 	 */
1875 	if (!nostdlib)
1876 		return (hints[0] != '\0' ? hints : NULL);
1877 	if (filtered_path != NULL)
1878 		goto filt_ret;
1879 
1880 	/*
1881 	 * Obtain the list of all configured search paths, and the
1882 	 * list of the default paths.
1883 	 *
1884 	 * First estimate the size of the results.
1885 	 */
1886 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1887 	smeta.dls_cnt = 0;
1888 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1889 	hmeta.dls_cnt = 0;
1890 
1891 	sargs.request = RTLD_DI_SERINFOSIZE;
1892 	sargs.serinfo = &smeta;
1893 	hargs.request = RTLD_DI_SERINFOSIZE;
1894 	hargs.serinfo = &hmeta;
1895 
1896 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1897 	    &sargs);
1898 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1899 
1900 	SLPinfo = xmalloc(smeta.dls_size);
1901 	hintinfo = xmalloc(hmeta.dls_size);
1902 
1903 	/*
1904 	 * Next fetch both sets of paths.
1905 	 */
1906 	sargs.request = RTLD_DI_SERINFO;
1907 	sargs.serinfo = SLPinfo;
1908 	sargs.serpath = &SLPinfo->dls_serpath[0];
1909 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1910 
1911 	hargs.request = RTLD_DI_SERINFO;
1912 	hargs.serinfo = hintinfo;
1913 	hargs.serpath = &hintinfo->dls_serpath[0];
1914 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1915 
1916 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1917 	    &sargs);
1918 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1919 
1920 	/*
1921 	 * Now calculate the difference between two sets, by excluding
1922 	 * standard paths from the full set.
1923 	 */
1924 	fndx = 0;
1925 	fcount = 0;
1926 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1927 	hintpath = &hintinfo->dls_serpath[0];
1928 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1929 		skip = false;
1930 		SLPpath = &SLPinfo->dls_serpath[0];
1931 		/*
1932 		 * Check each standard path against current.
1933 		 */
1934 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1935 			/* matched, skip the path */
1936 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1937 				skip = true;
1938 				break;
1939 			}
1940 		}
1941 		if (skip)
1942 			continue;
1943 		/*
1944 		 * Not matched against any standard path, add the path
1945 		 * to result. Separate consequtive paths with ':'.
1946 		 */
1947 		if (fcount > 0) {
1948 			filtered_path[fndx] = ':';
1949 			fndx++;
1950 		}
1951 		fcount++;
1952 		flen = strlen(hintpath->dls_name);
1953 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1954 		fndx += flen;
1955 	}
1956 	filtered_path[fndx] = '\0';
1957 
1958 	free(SLPinfo);
1959 	free(hintinfo);
1960 
1961 filt_ret:
1962 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1963 }
1964 
1965 static void
1966 init_dag(Obj_Entry *root)
1967 {
1968     const Needed_Entry *needed;
1969     const Objlist_Entry *elm;
1970     DoneList donelist;
1971 
1972     if (root->dag_inited)
1973 	return;
1974     donelist_init(&donelist);
1975 
1976     /* Root object belongs to own DAG. */
1977     objlist_push_tail(&root->dldags, root);
1978     objlist_push_tail(&root->dagmembers, root);
1979     donelist_check(&donelist, root);
1980 
1981     /*
1982      * Add dependencies of root object to DAG in breadth order
1983      * by exploiting the fact that each new object get added
1984      * to the tail of the dagmembers list.
1985      */
1986     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1987 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1988 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1989 		continue;
1990 	    objlist_push_tail(&needed->obj->dldags, root);
1991 	    objlist_push_tail(&root->dagmembers, needed->obj);
1992 	}
1993     }
1994     root->dag_inited = true;
1995 }
1996 
1997 static void
1998 init_marker(Obj_Entry *marker)
1999 {
2000 
2001 	bzero(marker, sizeof(*marker));
2002 	marker->marker = true;
2003 }
2004 
2005 Obj_Entry *
2006 globallist_curr(const Obj_Entry *obj)
2007 {
2008 
2009 	for (;;) {
2010 		if (obj == NULL)
2011 			return (NULL);
2012 		if (!obj->marker)
2013 			return (__DECONST(Obj_Entry *, obj));
2014 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2015 	}
2016 }
2017 
2018 Obj_Entry *
2019 globallist_next(const Obj_Entry *obj)
2020 {
2021 
2022 	for (;;) {
2023 		obj = TAILQ_NEXT(obj, next);
2024 		if (obj == NULL)
2025 			return (NULL);
2026 		if (!obj->marker)
2027 			return (__DECONST(Obj_Entry *, obj));
2028 	}
2029 }
2030 
2031 /* Prevent the object from being unmapped while the bind lock is dropped. */
2032 static void
2033 hold_object(Obj_Entry *obj)
2034 {
2035 
2036 	obj->holdcount++;
2037 }
2038 
2039 static void
2040 unhold_object(Obj_Entry *obj)
2041 {
2042 
2043 	assert(obj->holdcount > 0);
2044 	if (--obj->holdcount == 0 && obj->unholdfree)
2045 		release_object(obj);
2046 }
2047 
2048 static void
2049 process_z(Obj_Entry *root)
2050 {
2051 	const Objlist_Entry *elm;
2052 	Obj_Entry *obj;
2053 
2054 	/*
2055 	 * Walk over object DAG and process every dependent object
2056 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2057 	 * to grow their own DAG.
2058 	 *
2059 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2060 	 * symlook_global() to work.
2061 	 *
2062 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2063 	 */
2064 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2065 		obj = elm->obj;
2066 		if (obj == NULL)
2067 			continue;
2068 		if (obj->z_nodelete && !obj->ref_nodel) {
2069 			dbg("obj %s -z nodelete", obj->path);
2070 			init_dag(obj);
2071 			ref_dag(obj);
2072 			obj->ref_nodel = true;
2073 		}
2074 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2075 			dbg("obj %s -z global", obj->path);
2076 			objlist_push_tail(&list_global, obj);
2077 			init_dag(obj);
2078 		}
2079 	}
2080 }
2081 /*
2082  * Initialize the dynamic linker.  The argument is the address at which
2083  * the dynamic linker has been mapped into memory.  The primary task of
2084  * this function is to relocate the dynamic linker.
2085  */
2086 static void
2087 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2088 {
2089     Obj_Entry objtmp;	/* Temporary rtld object */
2090     const Elf_Ehdr *ehdr;
2091     const Elf_Dyn *dyn_rpath;
2092     const Elf_Dyn *dyn_soname;
2093     const Elf_Dyn *dyn_runpath;
2094 
2095 #ifdef RTLD_INIT_PAGESIZES_EARLY
2096     /* The page size is required by the dynamic memory allocator. */
2097     init_pagesizes(aux_info);
2098 #endif
2099 
2100     /*
2101      * Conjure up an Obj_Entry structure for the dynamic linker.
2102      *
2103      * The "path" member can't be initialized yet because string constants
2104      * cannot yet be accessed. Below we will set it correctly.
2105      */
2106     memset(&objtmp, 0, sizeof(objtmp));
2107     objtmp.path = NULL;
2108     objtmp.rtld = true;
2109     objtmp.mapbase = mapbase;
2110 #ifdef PIC
2111     objtmp.relocbase = mapbase;
2112 #endif
2113 
2114     objtmp.dynamic = rtld_dynamic(&objtmp);
2115     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2116     assert(objtmp.needed == NULL);
2117 #if !defined(__mips__)
2118     /* MIPS has a bogus DT_TEXTREL. */
2119     assert(!objtmp.textrel);
2120 #endif
2121     /*
2122      * Temporarily put the dynamic linker entry into the object list, so
2123      * that symbols can be found.
2124      */
2125     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2126 
2127     ehdr = (Elf_Ehdr *)mapbase;
2128     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2129     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2130 
2131     /* Initialize the object list. */
2132     TAILQ_INIT(&obj_list);
2133 
2134     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2135     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2136 
2137 #ifndef RTLD_INIT_PAGESIZES_EARLY
2138     /* The page size is required by the dynamic memory allocator. */
2139     init_pagesizes(aux_info);
2140 #endif
2141 
2142     if (aux_info[AT_OSRELDATE] != NULL)
2143 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2144 
2145     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2146 
2147     /* Replace the path with a dynamically allocated copy. */
2148     obj_rtld.path = xstrdup(ld_path_rtld);
2149 
2150     r_debug.r_brk = r_debug_state;
2151     r_debug.r_state = RT_CONSISTENT;
2152 }
2153 
2154 /*
2155  * Retrieve the array of supported page sizes.  The kernel provides the page
2156  * sizes in increasing order.
2157  */
2158 static void
2159 init_pagesizes(Elf_Auxinfo **aux_info)
2160 {
2161 	static size_t psa[MAXPAGESIZES];
2162 	int mib[2];
2163 	size_t len, size;
2164 
2165 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2166 	    NULL) {
2167 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2168 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2169 	} else {
2170 		len = 2;
2171 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2172 			size = sizeof(psa);
2173 		else {
2174 			/* As a fallback, retrieve the base page size. */
2175 			size = sizeof(psa[0]);
2176 			if (aux_info[AT_PAGESZ] != NULL) {
2177 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2178 				goto psa_filled;
2179 			} else {
2180 				mib[0] = CTL_HW;
2181 				mib[1] = HW_PAGESIZE;
2182 				len = 2;
2183 			}
2184 		}
2185 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2186 			_rtld_error("sysctl for hw.pagesize(s) failed");
2187 			rtld_die();
2188 		}
2189 psa_filled:
2190 		pagesizes = psa;
2191 	}
2192 	npagesizes = size / sizeof(pagesizes[0]);
2193 	/* Discard any invalid entries at the end of the array. */
2194 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2195 		npagesizes--;
2196 }
2197 
2198 /*
2199  * Add the init functions from a needed object list (and its recursive
2200  * needed objects) to "list".  This is not used directly; it is a helper
2201  * function for initlist_add_objects().  The write lock must be held
2202  * when this function is called.
2203  */
2204 static void
2205 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2206 {
2207     /* Recursively process the successor needed objects. */
2208     if (needed->next != NULL)
2209 	initlist_add_neededs(needed->next, list);
2210 
2211     /* Process the current needed object. */
2212     if (needed->obj != NULL)
2213 	initlist_add_objects(needed->obj, needed->obj, list);
2214 }
2215 
2216 /*
2217  * Scan all of the DAGs rooted in the range of objects from "obj" to
2218  * "tail" and add their init functions to "list".  This recurses over
2219  * the DAGs and ensure the proper init ordering such that each object's
2220  * needed libraries are initialized before the object itself.  At the
2221  * same time, this function adds the objects to the global finalization
2222  * list "list_fini" in the opposite order.  The write lock must be
2223  * held when this function is called.
2224  */
2225 static void
2226 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2227 {
2228     Obj_Entry *nobj;
2229 
2230     if (obj->init_scanned || obj->init_done)
2231 	return;
2232     obj->init_scanned = true;
2233 
2234     /* Recursively process the successor objects. */
2235     nobj = globallist_next(obj);
2236     if (nobj != NULL && obj != tail)
2237 	initlist_add_objects(nobj, tail, list);
2238 
2239     /* Recursively process the needed objects. */
2240     if (obj->needed != NULL)
2241 	initlist_add_neededs(obj->needed, list);
2242     if (obj->needed_filtees != NULL)
2243 	initlist_add_neededs(obj->needed_filtees, list);
2244     if (obj->needed_aux_filtees != NULL)
2245 	initlist_add_neededs(obj->needed_aux_filtees, list);
2246 
2247     /* Add the object to the init list. */
2248     objlist_push_tail(list, obj);
2249 
2250     /* Add the object to the global fini list in the reverse order. */
2251     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2252       && !obj->on_fini_list) {
2253 	objlist_push_head(&list_fini, obj);
2254 	obj->on_fini_list = true;
2255     }
2256 }
2257 
2258 #ifndef FPTR_TARGET
2259 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2260 #endif
2261 
2262 static void
2263 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2264 {
2265     Needed_Entry *needed, *needed1;
2266 
2267     for (needed = n; needed != NULL; needed = needed->next) {
2268 	if (needed->obj != NULL) {
2269 	    dlclose_locked(needed->obj, lockstate);
2270 	    needed->obj = NULL;
2271 	}
2272     }
2273     for (needed = n; needed != NULL; needed = needed1) {
2274 	needed1 = needed->next;
2275 	free(needed);
2276     }
2277 }
2278 
2279 static void
2280 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2281 {
2282 
2283 	free_needed_filtees(obj->needed_filtees, lockstate);
2284 	obj->needed_filtees = NULL;
2285 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2286 	obj->needed_aux_filtees = NULL;
2287 	obj->filtees_loaded = false;
2288 }
2289 
2290 static void
2291 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2292     RtldLockState *lockstate)
2293 {
2294 
2295     for (; needed != NULL; needed = needed->next) {
2296 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2297 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2298 	  RTLD_LOCAL, lockstate);
2299     }
2300 }
2301 
2302 static void
2303 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2304 {
2305 
2306     lock_restart_for_upgrade(lockstate);
2307     if (!obj->filtees_loaded) {
2308 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2309 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2310 	obj->filtees_loaded = true;
2311     }
2312 }
2313 
2314 static int
2315 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2316 {
2317     Obj_Entry *obj1;
2318 
2319     for (; needed != NULL; needed = needed->next) {
2320 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2321 	  flags & ~RTLD_LO_NOLOAD);
2322 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2323 	    return (-1);
2324     }
2325     return (0);
2326 }
2327 
2328 /*
2329  * Given a shared object, traverse its list of needed objects, and load
2330  * each of them.  Returns 0 on success.  Generates an error message and
2331  * returns -1 on failure.
2332  */
2333 static int
2334 load_needed_objects(Obj_Entry *first, int flags)
2335 {
2336     Obj_Entry *obj;
2337 
2338     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2339 	if (obj->marker)
2340 	    continue;
2341 	if (process_needed(obj, obj->needed, flags) == -1)
2342 	    return (-1);
2343     }
2344     return (0);
2345 }
2346 
2347 static int
2348 load_preload_objects(void)
2349 {
2350     char *p = ld_preload;
2351     Obj_Entry *obj;
2352     static const char delim[] = " \t:;";
2353 
2354     if (p == NULL)
2355 	return 0;
2356 
2357     p += strspn(p, delim);
2358     while (*p != '\0') {
2359 	size_t len = strcspn(p, delim);
2360 	char savech;
2361 
2362 	savech = p[len];
2363 	p[len] = '\0';
2364 	obj = load_object(p, -1, NULL, 0);
2365 	if (obj == NULL)
2366 	    return -1;	/* XXX - cleanup */
2367 	obj->z_interpose = true;
2368 	p[len] = savech;
2369 	p += len;
2370 	p += strspn(p, delim);
2371     }
2372     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2373     return 0;
2374 }
2375 
2376 static const char *
2377 printable_path(const char *path)
2378 {
2379 
2380 	return (path == NULL ? "<unknown>" : path);
2381 }
2382 
2383 /*
2384  * Load a shared object into memory, if it is not already loaded.  The
2385  * object may be specified by name or by user-supplied file descriptor
2386  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2387  * duplicate is.
2388  *
2389  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2390  * on failure.
2391  */
2392 static Obj_Entry *
2393 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2394 {
2395     Obj_Entry *obj;
2396     int fd;
2397     struct stat sb;
2398     char *path;
2399 
2400     fd = -1;
2401     if (name != NULL) {
2402 	TAILQ_FOREACH(obj, &obj_list, next) {
2403 	    if (obj->marker || obj->doomed)
2404 		continue;
2405 	    if (object_match_name(obj, name))
2406 		return (obj);
2407 	}
2408 
2409 	path = find_library(name, refobj, &fd);
2410 	if (path == NULL)
2411 	    return (NULL);
2412     } else
2413 	path = NULL;
2414 
2415     if (fd >= 0) {
2416 	/*
2417 	 * search_library_pathfds() opens a fresh file descriptor for the
2418 	 * library, so there is no need to dup().
2419 	 */
2420     } else if (fd_u == -1) {
2421 	/*
2422 	 * If we didn't find a match by pathname, or the name is not
2423 	 * supplied, open the file and check again by device and inode.
2424 	 * This avoids false mismatches caused by multiple links or ".."
2425 	 * in pathnames.
2426 	 *
2427 	 * To avoid a race, we open the file and use fstat() rather than
2428 	 * using stat().
2429 	 */
2430 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2431 	    _rtld_error("Cannot open \"%s\"", path);
2432 	    free(path);
2433 	    return (NULL);
2434 	}
2435     } else {
2436 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2437 	if (fd == -1) {
2438 	    _rtld_error("Cannot dup fd");
2439 	    free(path);
2440 	    return (NULL);
2441 	}
2442     }
2443     if (fstat(fd, &sb) == -1) {
2444 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2445 	close(fd);
2446 	free(path);
2447 	return NULL;
2448     }
2449     TAILQ_FOREACH(obj, &obj_list, next) {
2450 	if (obj->marker || obj->doomed)
2451 	    continue;
2452 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2453 	    break;
2454     }
2455     if (obj != NULL && name != NULL) {
2456 	object_add_name(obj, name);
2457 	free(path);
2458 	close(fd);
2459 	return obj;
2460     }
2461     if (flags & RTLD_LO_NOLOAD) {
2462 	free(path);
2463 	close(fd);
2464 	return (NULL);
2465     }
2466 
2467     /* First use of this object, so we must map it in */
2468     obj = do_load_object(fd, name, path, &sb, flags);
2469     if (obj == NULL)
2470 	free(path);
2471     close(fd);
2472 
2473     return obj;
2474 }
2475 
2476 static Obj_Entry *
2477 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2478   int flags)
2479 {
2480     Obj_Entry *obj;
2481     struct statfs fs;
2482 
2483     /*
2484      * but first, make sure that environment variables haven't been
2485      * used to circumvent the noexec flag on a filesystem.
2486      */
2487     if (dangerous_ld_env) {
2488 	if (fstatfs(fd, &fs) != 0) {
2489 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2490 	    return NULL;
2491 	}
2492 	if (fs.f_flags & MNT_NOEXEC) {
2493 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2494 	    return NULL;
2495 	}
2496     }
2497     dbg("loading \"%s\"", printable_path(path));
2498     obj = map_object(fd, printable_path(path), sbp);
2499     if (obj == NULL)
2500         return NULL;
2501 
2502     /*
2503      * If DT_SONAME is present in the object, digest_dynamic2 already
2504      * added it to the object names.
2505      */
2506     if (name != NULL)
2507 	object_add_name(obj, name);
2508     obj->path = path;
2509     digest_dynamic(obj, 0);
2510     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2511 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2512     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2513       RTLD_LO_DLOPEN) {
2514 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2515 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2516 	munmap(obj->mapbase, obj->mapsize);
2517 	obj_free(obj);
2518 	return (NULL);
2519     }
2520 
2521     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2522     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2523     obj_count++;
2524     obj_loads++;
2525     linkmap_add(obj);	/* for GDB & dlinfo() */
2526     max_stack_flags |= obj->stack_flags;
2527 
2528     dbg("  %p .. %p: %s", obj->mapbase,
2529          obj->mapbase + obj->mapsize - 1, obj->path);
2530     if (obj->textrel)
2531 	dbg("  WARNING: %s has impure text", obj->path);
2532     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2533 	obj->path);
2534 
2535     return obj;
2536 }
2537 
2538 static Obj_Entry *
2539 obj_from_addr(const void *addr)
2540 {
2541     Obj_Entry *obj;
2542 
2543     TAILQ_FOREACH(obj, &obj_list, next) {
2544 	if (obj->marker)
2545 	    continue;
2546 	if (addr < (void *) obj->mapbase)
2547 	    continue;
2548 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2549 	    return obj;
2550     }
2551     return NULL;
2552 }
2553 
2554 static void
2555 preinit_main(void)
2556 {
2557     Elf_Addr *preinit_addr;
2558     int index;
2559 
2560     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2561     if (preinit_addr == NULL)
2562 	return;
2563 
2564     for (index = 0; index < obj_main->preinit_array_num; index++) {
2565 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2566 	    dbg("calling preinit function for %s at %p", obj_main->path,
2567 	      (void *)preinit_addr[index]);
2568 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2569 	      0, 0, obj_main->path);
2570 	    call_init_pointer(obj_main, preinit_addr[index]);
2571 	}
2572     }
2573 }
2574 
2575 /*
2576  * Call the finalization functions for each of the objects in "list"
2577  * belonging to the DAG of "root" and referenced once. If NULL "root"
2578  * is specified, every finalization function will be called regardless
2579  * of the reference count and the list elements won't be freed. All of
2580  * the objects are expected to have non-NULL fini functions.
2581  */
2582 static void
2583 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2584 {
2585     Objlist_Entry *elm;
2586     char *saved_msg;
2587     Elf_Addr *fini_addr;
2588     int index;
2589 
2590     assert(root == NULL || root->refcount == 1);
2591 
2592     if (root != NULL)
2593 	root->doomed = true;
2594 
2595     /*
2596      * Preserve the current error message since a fini function might
2597      * call into the dynamic linker and overwrite it.
2598      */
2599     saved_msg = errmsg_save();
2600     do {
2601 	STAILQ_FOREACH(elm, list, link) {
2602 	    if (root != NULL && (elm->obj->refcount != 1 ||
2603 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2604 		continue;
2605 	    /* Remove object from fini list to prevent recursive invocation. */
2606 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2607 	    /* Ensure that new references cannot be acquired. */
2608 	    elm->obj->doomed = true;
2609 
2610 	    hold_object(elm->obj);
2611 	    lock_release(rtld_bind_lock, lockstate);
2612 	    /*
2613 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2614 	     * When this happens, DT_FINI_ARRAY is processed first.
2615 	     */
2616 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2617 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2618 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2619 		  index--) {
2620 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2621 			dbg("calling fini function for %s at %p",
2622 			    elm->obj->path, (void *)fini_addr[index]);
2623 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2624 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2625 			call_initfini_pointer(elm->obj, fini_addr[index]);
2626 		    }
2627 		}
2628 	    }
2629 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2630 		dbg("calling fini function for %s at %p", elm->obj->path,
2631 		    (void *)elm->obj->fini);
2632 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2633 		    0, 0, elm->obj->path);
2634 		call_initfini_pointer(elm->obj, elm->obj->fini);
2635 	    }
2636 	    wlock_acquire(rtld_bind_lock, lockstate);
2637 	    unhold_object(elm->obj);
2638 	    /* No need to free anything if process is going down. */
2639 	    if (root != NULL)
2640 	    	free(elm);
2641 	    /*
2642 	     * We must restart the list traversal after every fini call
2643 	     * because a dlclose() call from the fini function or from
2644 	     * another thread might have modified the reference counts.
2645 	     */
2646 	    break;
2647 	}
2648     } while (elm != NULL);
2649     errmsg_restore(saved_msg);
2650 }
2651 
2652 /*
2653  * Call the initialization functions for each of the objects in
2654  * "list".  All of the objects are expected to have non-NULL init
2655  * functions.
2656  */
2657 static void
2658 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2659 {
2660     Objlist_Entry *elm;
2661     Obj_Entry *obj;
2662     char *saved_msg;
2663     Elf_Addr *init_addr;
2664     int index;
2665 
2666     /*
2667      * Clean init_scanned flag so that objects can be rechecked and
2668      * possibly initialized earlier if any of vectors called below
2669      * cause the change by using dlopen.
2670      */
2671     TAILQ_FOREACH(obj, &obj_list, next) {
2672 	if (obj->marker)
2673 	    continue;
2674 	obj->init_scanned = false;
2675     }
2676 
2677     /*
2678      * Preserve the current error message since an init function might
2679      * call into the dynamic linker and overwrite it.
2680      */
2681     saved_msg = errmsg_save();
2682     STAILQ_FOREACH(elm, list, link) {
2683 	if (elm->obj->init_done) /* Initialized early. */
2684 	    continue;
2685 	/*
2686 	 * Race: other thread might try to use this object before current
2687 	 * one completes the initialization. Not much can be done here
2688 	 * without better locking.
2689 	 */
2690 	elm->obj->init_done = true;
2691 	hold_object(elm->obj);
2692 	lock_release(rtld_bind_lock, lockstate);
2693 
2694         /*
2695          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2696          * When this happens, DT_INIT is processed first.
2697          */
2698 	if (elm->obj->init != (Elf_Addr)NULL) {
2699 	    dbg("calling init function for %s at %p", elm->obj->path,
2700 	        (void *)elm->obj->init);
2701 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2702 	        0, 0, elm->obj->path);
2703 	    call_initfini_pointer(elm->obj, elm->obj->init);
2704 	}
2705 	init_addr = (Elf_Addr *)elm->obj->init_array;
2706 	if (init_addr != NULL) {
2707 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2708 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2709 		    dbg("calling init function for %s at %p", elm->obj->path,
2710 			(void *)init_addr[index]);
2711 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2712 			(void *)init_addr[index], 0, 0, elm->obj->path);
2713 		    call_init_pointer(elm->obj, init_addr[index]);
2714 		}
2715 	    }
2716 	}
2717 	wlock_acquire(rtld_bind_lock, lockstate);
2718 	unhold_object(elm->obj);
2719     }
2720     errmsg_restore(saved_msg);
2721 }
2722 
2723 static void
2724 objlist_clear(Objlist *list)
2725 {
2726     Objlist_Entry *elm;
2727 
2728     while (!STAILQ_EMPTY(list)) {
2729 	elm = STAILQ_FIRST(list);
2730 	STAILQ_REMOVE_HEAD(list, link);
2731 	free(elm);
2732     }
2733 }
2734 
2735 static Objlist_Entry *
2736 objlist_find(Objlist *list, const Obj_Entry *obj)
2737 {
2738     Objlist_Entry *elm;
2739 
2740     STAILQ_FOREACH(elm, list, link)
2741 	if (elm->obj == obj)
2742 	    return elm;
2743     return NULL;
2744 }
2745 
2746 static void
2747 objlist_init(Objlist *list)
2748 {
2749     STAILQ_INIT(list);
2750 }
2751 
2752 static void
2753 objlist_push_head(Objlist *list, Obj_Entry *obj)
2754 {
2755     Objlist_Entry *elm;
2756 
2757     elm = NEW(Objlist_Entry);
2758     elm->obj = obj;
2759     STAILQ_INSERT_HEAD(list, elm, link);
2760 }
2761 
2762 static void
2763 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2764 {
2765     Objlist_Entry *elm;
2766 
2767     elm = NEW(Objlist_Entry);
2768     elm->obj = obj;
2769     STAILQ_INSERT_TAIL(list, elm, link);
2770 }
2771 
2772 static void
2773 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2774 {
2775 	Objlist_Entry *elm, *listelm;
2776 
2777 	STAILQ_FOREACH(listelm, list, link) {
2778 		if (listelm->obj == listobj)
2779 			break;
2780 	}
2781 	elm = NEW(Objlist_Entry);
2782 	elm->obj = obj;
2783 	if (listelm != NULL)
2784 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2785 	else
2786 		STAILQ_INSERT_TAIL(list, elm, link);
2787 }
2788 
2789 static void
2790 objlist_remove(Objlist *list, Obj_Entry *obj)
2791 {
2792     Objlist_Entry *elm;
2793 
2794     if ((elm = objlist_find(list, obj)) != NULL) {
2795 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2796 	free(elm);
2797     }
2798 }
2799 
2800 /*
2801  * Relocate dag rooted in the specified object.
2802  * Returns 0 on success, or -1 on failure.
2803  */
2804 
2805 static int
2806 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2807     int flags, RtldLockState *lockstate)
2808 {
2809 	Objlist_Entry *elm;
2810 	int error;
2811 
2812 	error = 0;
2813 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2814 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2815 		    lockstate);
2816 		if (error == -1)
2817 			break;
2818 	}
2819 	return (error);
2820 }
2821 
2822 /*
2823  * Prepare for, or clean after, relocating an object marked with
2824  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2825  * segments are remapped read-write.  After relocations are done, the
2826  * segment's permissions are returned back to the modes specified in
2827  * the phdrs.  If any relocation happened, or always for wired
2828  * program, COW is triggered.
2829  */
2830 static int
2831 reloc_textrel_prot(Obj_Entry *obj, bool before)
2832 {
2833 	const Elf_Phdr *ph;
2834 	void *base;
2835 	size_t l, sz;
2836 	int prot;
2837 
2838 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2839 	    l--, ph++) {
2840 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2841 			continue;
2842 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2843 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2844 		    trunc_page(ph->p_vaddr);
2845 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2846 		if (mprotect(base, sz, prot) == -1) {
2847 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2848 			    obj->path, before ? "en" : "dis",
2849 			    rtld_strerror(errno));
2850 			return (-1);
2851 		}
2852 	}
2853 	return (0);
2854 }
2855 
2856 /*
2857  * Relocate single object.
2858  * Returns 0 on success, or -1 on failure.
2859  */
2860 static int
2861 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2862     int flags, RtldLockState *lockstate)
2863 {
2864 
2865 	if (obj->relocated)
2866 		return (0);
2867 	obj->relocated = true;
2868 	if (obj != rtldobj)
2869 		dbg("relocating \"%s\"", obj->path);
2870 
2871 	if (obj->symtab == NULL || obj->strtab == NULL ||
2872 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2873 		_rtld_error("%s: Shared object has no run-time symbol table",
2874 			    obj->path);
2875 		return (-1);
2876 	}
2877 
2878 	/* There are relocations to the write-protected text segment. */
2879 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2880 		return (-1);
2881 
2882 	/* Process the non-PLT non-IFUNC relocations. */
2883 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2884 		return (-1);
2885 
2886 	/* Re-protected the text segment. */
2887 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2888 		return (-1);
2889 
2890 	/* Set the special PLT or GOT entries. */
2891 	init_pltgot(obj);
2892 
2893 	/* Process the PLT relocations. */
2894 	if (reloc_plt(obj, flags, lockstate) == -1)
2895 		return (-1);
2896 	/* Relocate the jump slots if we are doing immediate binding. */
2897 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2898 	    lockstate) == -1)
2899 		return (-1);
2900 
2901 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2902 		return (-1);
2903 
2904 	/*
2905 	 * Set up the magic number and version in the Obj_Entry.  These
2906 	 * were checked in the crt1.o from the original ElfKit, so we
2907 	 * set them for backward compatibility.
2908 	 */
2909 	obj->magic = RTLD_MAGIC;
2910 	obj->version = RTLD_VERSION;
2911 
2912 	return (0);
2913 }
2914 
2915 /*
2916  * Relocate newly-loaded shared objects.  The argument is a pointer to
2917  * the Obj_Entry for the first such object.  All objects from the first
2918  * to the end of the list of objects are relocated.  Returns 0 on success,
2919  * or -1 on failure.
2920  */
2921 static int
2922 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2923     int flags, RtldLockState *lockstate)
2924 {
2925 	Obj_Entry *obj;
2926 	int error;
2927 
2928 	for (error = 0, obj = first;  obj != NULL;
2929 	    obj = TAILQ_NEXT(obj, next)) {
2930 		if (obj->marker)
2931 			continue;
2932 		error = relocate_object(obj, bind_now, rtldobj, flags,
2933 		    lockstate);
2934 		if (error == -1)
2935 			break;
2936 	}
2937 	return (error);
2938 }
2939 
2940 /*
2941  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2942  * referencing STT_GNU_IFUNC symbols is postponed till the other
2943  * relocations are done.  The indirect functions specified as
2944  * ifunc are allowed to call other symbols, so we need to have
2945  * objects relocated before asking for resolution from indirects.
2946  *
2947  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2948  * instead of the usual lazy handling of PLT slots.  It is
2949  * consistent with how GNU does it.
2950  */
2951 static int
2952 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2953     RtldLockState *lockstate)
2954 {
2955 
2956 	if (obj->ifuncs_resolved)
2957 		return (0);
2958 	obj->ifuncs_resolved = true;
2959 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2960 		return (-1);
2961 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc) {
2962 		if (obj_disable_relro(obj) ||
2963 		    reloc_gnu_ifunc(obj, flags, lockstate) == -1 ||
2964 		    obj_enforce_relro(obj))
2965 			return (-1);
2966 	}
2967 	return (0);
2968 }
2969 
2970 static int
2971 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2972     RtldLockState *lockstate)
2973 {
2974 	Objlist_Entry *elm;
2975 	Obj_Entry *obj;
2976 
2977 	STAILQ_FOREACH(elm, list, link) {
2978 		obj = elm->obj;
2979 		if (obj->marker)
2980 			continue;
2981 		if (resolve_object_ifunc(obj, bind_now, flags,
2982 		    lockstate) == -1)
2983 			return (-1);
2984 	}
2985 	return (0);
2986 }
2987 
2988 /*
2989  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2990  * before the process exits.
2991  */
2992 static void
2993 rtld_exit(void)
2994 {
2995     RtldLockState lockstate;
2996 
2997     wlock_acquire(rtld_bind_lock, &lockstate);
2998     dbg("rtld_exit()");
2999     objlist_call_fini(&list_fini, NULL, &lockstate);
3000     /* No need to remove the items from the list, since we are exiting. */
3001     if (!libmap_disable)
3002         lm_fini();
3003     lock_release(rtld_bind_lock, &lockstate);
3004 }
3005 
3006 /*
3007  * Iterate over a search path, translate each element, and invoke the
3008  * callback on the result.
3009  */
3010 static void *
3011 path_enumerate(const char *path, path_enum_proc callback,
3012     const char *refobj_path, void *arg)
3013 {
3014     const char *trans;
3015     if (path == NULL)
3016 	return (NULL);
3017 
3018     path += strspn(path, ":;");
3019     while (*path != '\0') {
3020 	size_t len;
3021 	char  *res;
3022 
3023 	len = strcspn(path, ":;");
3024 	trans = lm_findn(refobj_path, path, len);
3025 	if (trans)
3026 	    res = callback(trans, strlen(trans), arg);
3027 	else
3028 	    res = callback(path, len, arg);
3029 
3030 	if (res != NULL)
3031 	    return (res);
3032 
3033 	path += len;
3034 	path += strspn(path, ":;");
3035     }
3036 
3037     return (NULL);
3038 }
3039 
3040 struct try_library_args {
3041     const char	*name;
3042     size_t	 namelen;
3043     char	*buffer;
3044     size_t	 buflen;
3045     int		 fd;
3046 };
3047 
3048 static void *
3049 try_library_path(const char *dir, size_t dirlen, void *param)
3050 {
3051     struct try_library_args *arg;
3052     int fd;
3053 
3054     arg = param;
3055     if (*dir == '/' || trust) {
3056 	char *pathname;
3057 
3058 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3059 		return (NULL);
3060 
3061 	pathname = arg->buffer;
3062 	strncpy(pathname, dir, dirlen);
3063 	pathname[dirlen] = '/';
3064 	strcpy(pathname + dirlen + 1, arg->name);
3065 
3066 	dbg("  Trying \"%s\"", pathname);
3067 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3068 	if (fd >= 0) {
3069 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3070 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3071 	    strcpy(pathname, arg->buffer);
3072 	    arg->fd = fd;
3073 	    return (pathname);
3074 	} else {
3075 	    dbg("  Failed to open \"%s\": %s",
3076 		pathname, rtld_strerror(errno));
3077 	}
3078     }
3079     return (NULL);
3080 }
3081 
3082 static char *
3083 search_library_path(const char *name, const char *path,
3084     const char *refobj_path, int *fdp)
3085 {
3086     char *p;
3087     struct try_library_args arg;
3088 
3089     if (path == NULL)
3090 	return NULL;
3091 
3092     arg.name = name;
3093     arg.namelen = strlen(name);
3094     arg.buffer = xmalloc(PATH_MAX);
3095     arg.buflen = PATH_MAX;
3096     arg.fd = -1;
3097 
3098     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3099     *fdp = arg.fd;
3100 
3101     free(arg.buffer);
3102 
3103     return (p);
3104 }
3105 
3106 
3107 /*
3108  * Finds the library with the given name using the directory descriptors
3109  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3110  *
3111  * Returns a freshly-opened close-on-exec file descriptor for the library,
3112  * or -1 if the library cannot be found.
3113  */
3114 static char *
3115 search_library_pathfds(const char *name, const char *path, int *fdp)
3116 {
3117 	char *envcopy, *fdstr, *found, *last_token;
3118 	size_t len;
3119 	int dirfd, fd;
3120 
3121 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3122 
3123 	/* Don't load from user-specified libdirs into setuid binaries. */
3124 	if (!trust)
3125 		return (NULL);
3126 
3127 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3128 	if (path == NULL)
3129 		return (NULL);
3130 
3131 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3132 	if (name[0] == '/') {
3133 		dbg("Absolute path (%s) passed to %s", name, __func__);
3134 		return (NULL);
3135 	}
3136 
3137 	/*
3138 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3139 	 * copy of the path, as strtok_r rewrites separator tokens
3140 	 * with '\0'.
3141 	 */
3142 	found = NULL;
3143 	envcopy = xstrdup(path);
3144 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3145 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3146 		dirfd = parse_integer(fdstr);
3147 		if (dirfd < 0) {
3148 			_rtld_error("failed to parse directory FD: '%s'",
3149 				fdstr);
3150 			break;
3151 		}
3152 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3153 		if (fd >= 0) {
3154 			*fdp = fd;
3155 			len = strlen(fdstr) + strlen(name) + 3;
3156 			found = xmalloc(len);
3157 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3158 				_rtld_error("error generating '%d/%s'",
3159 				    dirfd, name);
3160 				rtld_die();
3161 			}
3162 			dbg("open('%s') => %d", found, fd);
3163 			break;
3164 		}
3165 	}
3166 	free(envcopy);
3167 
3168 	return (found);
3169 }
3170 
3171 
3172 int
3173 dlclose(void *handle)
3174 {
3175 	RtldLockState lockstate;
3176 	int error;
3177 
3178 	wlock_acquire(rtld_bind_lock, &lockstate);
3179 	error = dlclose_locked(handle, &lockstate);
3180 	lock_release(rtld_bind_lock, &lockstate);
3181 	return (error);
3182 }
3183 
3184 static int
3185 dlclose_locked(void *handle, RtldLockState *lockstate)
3186 {
3187     Obj_Entry *root;
3188 
3189     root = dlcheck(handle);
3190     if (root == NULL)
3191 	return -1;
3192     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3193 	root->path);
3194 
3195     /* Unreference the object and its dependencies. */
3196     root->dl_refcount--;
3197 
3198     if (root->refcount == 1) {
3199 	/*
3200 	 * The object will be no longer referenced, so we must unload it.
3201 	 * First, call the fini functions.
3202 	 */
3203 	objlist_call_fini(&list_fini, root, lockstate);
3204 
3205 	unref_dag(root);
3206 
3207 	/* Finish cleaning up the newly-unreferenced objects. */
3208 	GDB_STATE(RT_DELETE,&root->linkmap);
3209 	unload_object(root, lockstate);
3210 	GDB_STATE(RT_CONSISTENT,NULL);
3211     } else
3212 	unref_dag(root);
3213 
3214     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3215     return 0;
3216 }
3217 
3218 char *
3219 dlerror(void)
3220 {
3221     char *msg = error_message;
3222     error_message = NULL;
3223     return msg;
3224 }
3225 
3226 /*
3227  * This function is deprecated and has no effect.
3228  */
3229 void
3230 dllockinit(void *context,
3231     void *(*_lock_create)(void *context) __unused,
3232     void (*_rlock_acquire)(void *lock) __unused,
3233     void (*_wlock_acquire)(void *lock)  __unused,
3234     void (*_lock_release)(void *lock) __unused,
3235     void (*_lock_destroy)(void *lock) __unused,
3236     void (*context_destroy)(void *context))
3237 {
3238     static void *cur_context;
3239     static void (*cur_context_destroy)(void *);
3240 
3241     /* Just destroy the context from the previous call, if necessary. */
3242     if (cur_context_destroy != NULL)
3243 	cur_context_destroy(cur_context);
3244     cur_context = context;
3245     cur_context_destroy = context_destroy;
3246 }
3247 
3248 void *
3249 dlopen(const char *name, int mode)
3250 {
3251 
3252 	return (rtld_dlopen(name, -1, mode));
3253 }
3254 
3255 void *
3256 fdlopen(int fd, int mode)
3257 {
3258 
3259 	return (rtld_dlopen(NULL, fd, mode));
3260 }
3261 
3262 static void *
3263 rtld_dlopen(const char *name, int fd, int mode)
3264 {
3265     RtldLockState lockstate;
3266     int lo_flags;
3267 
3268     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3269     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3270     if (ld_tracing != NULL) {
3271 	rlock_acquire(rtld_bind_lock, &lockstate);
3272 	if (sigsetjmp(lockstate.env, 0) != 0)
3273 	    lock_upgrade(rtld_bind_lock, &lockstate);
3274 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3275 	lock_release(rtld_bind_lock, &lockstate);
3276     }
3277     lo_flags = RTLD_LO_DLOPEN;
3278     if (mode & RTLD_NODELETE)
3279 	    lo_flags |= RTLD_LO_NODELETE;
3280     if (mode & RTLD_NOLOAD)
3281 	    lo_flags |= RTLD_LO_NOLOAD;
3282     if (ld_tracing != NULL)
3283 	    lo_flags |= RTLD_LO_TRACE;
3284 
3285     return (dlopen_object(name, fd, obj_main, lo_flags,
3286       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3287 }
3288 
3289 static void
3290 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3291 {
3292 
3293 	obj->dl_refcount--;
3294 	unref_dag(obj);
3295 	if (obj->refcount == 0)
3296 		unload_object(obj, lockstate);
3297 }
3298 
3299 static Obj_Entry *
3300 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3301     int mode, RtldLockState *lockstate)
3302 {
3303     Obj_Entry *old_obj_tail;
3304     Obj_Entry *obj;
3305     Objlist initlist;
3306     RtldLockState mlockstate;
3307     int result;
3308 
3309     objlist_init(&initlist);
3310 
3311     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3312 	wlock_acquire(rtld_bind_lock, &mlockstate);
3313 	lockstate = &mlockstate;
3314     }
3315     GDB_STATE(RT_ADD,NULL);
3316 
3317     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3318     obj = NULL;
3319     if (name == NULL && fd == -1) {
3320 	obj = obj_main;
3321 	obj->refcount++;
3322     } else {
3323 	obj = load_object(name, fd, refobj, lo_flags);
3324     }
3325 
3326     if (obj) {
3327 	obj->dl_refcount++;
3328 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3329 	    objlist_push_tail(&list_global, obj);
3330 	if (globallist_next(old_obj_tail) != NULL) {
3331 	    /* We loaded something new. */
3332 	    assert(globallist_next(old_obj_tail) == obj);
3333 	    result = load_needed_objects(obj,
3334 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3335 	    init_dag(obj);
3336 	    ref_dag(obj);
3337 	    if (result != -1)
3338 		result = rtld_verify_versions(&obj->dagmembers);
3339 	    if (result != -1 && ld_tracing)
3340 		goto trace;
3341 	    if (result == -1 || relocate_object_dag(obj,
3342 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3343 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3344 	      lockstate) == -1) {
3345 		dlopen_cleanup(obj, lockstate);
3346 		obj = NULL;
3347 	    } else if (lo_flags & RTLD_LO_EARLY) {
3348 		/*
3349 		 * Do not call the init functions for early loaded
3350 		 * filtees.  The image is still not initialized enough
3351 		 * for them to work.
3352 		 *
3353 		 * Our object is found by the global object list and
3354 		 * will be ordered among all init calls done right
3355 		 * before transferring control to main.
3356 		 */
3357 	    } else {
3358 		/* Make list of init functions to call. */
3359 		initlist_add_objects(obj, obj, &initlist);
3360 	    }
3361 	    /*
3362 	     * Process all no_delete or global objects here, given
3363 	     * them own DAGs to prevent their dependencies from being
3364 	     * unloaded.  This has to be done after we have loaded all
3365 	     * of the dependencies, so that we do not miss any.
3366 	     */
3367 	    if (obj != NULL)
3368 		process_z(obj);
3369 	} else {
3370 	    /*
3371 	     * Bump the reference counts for objects on this DAG.  If
3372 	     * this is the first dlopen() call for the object that was
3373 	     * already loaded as a dependency, initialize the dag
3374 	     * starting at it.
3375 	     */
3376 	    init_dag(obj);
3377 	    ref_dag(obj);
3378 
3379 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3380 		goto trace;
3381 	}
3382 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3383 	  obj->z_nodelete) && !obj->ref_nodel) {
3384 	    dbg("obj %s nodelete", obj->path);
3385 	    ref_dag(obj);
3386 	    obj->z_nodelete = obj->ref_nodel = true;
3387 	}
3388     }
3389 
3390     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3391 	name);
3392     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3393 
3394     if (!(lo_flags & RTLD_LO_EARLY)) {
3395 	map_stacks_exec(lockstate);
3396     }
3397 
3398     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3399       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3400       lockstate) == -1) {
3401 	objlist_clear(&initlist);
3402 	dlopen_cleanup(obj, lockstate);
3403 	if (lockstate == &mlockstate)
3404 	    lock_release(rtld_bind_lock, lockstate);
3405 	return (NULL);
3406     }
3407 
3408     if (!(lo_flags & RTLD_LO_EARLY)) {
3409 	/* Call the init functions. */
3410 	objlist_call_init(&initlist, lockstate);
3411     }
3412     objlist_clear(&initlist);
3413     if (lockstate == &mlockstate)
3414 	lock_release(rtld_bind_lock, lockstate);
3415     return obj;
3416 trace:
3417     trace_loaded_objects(obj);
3418     if (lockstate == &mlockstate)
3419 	lock_release(rtld_bind_lock, lockstate);
3420     exit(0);
3421 }
3422 
3423 static void *
3424 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3425     int flags)
3426 {
3427     DoneList donelist;
3428     const Obj_Entry *obj, *defobj;
3429     const Elf_Sym *def;
3430     SymLook req;
3431     RtldLockState lockstate;
3432     tls_index ti;
3433     void *sym;
3434     int res;
3435 
3436     def = NULL;
3437     defobj = NULL;
3438     symlook_init(&req, name);
3439     req.ventry = ve;
3440     req.flags = flags | SYMLOOK_IN_PLT;
3441     req.lockstate = &lockstate;
3442 
3443     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3444     rlock_acquire(rtld_bind_lock, &lockstate);
3445     if (sigsetjmp(lockstate.env, 0) != 0)
3446 	    lock_upgrade(rtld_bind_lock, &lockstate);
3447     if (handle == NULL || handle == RTLD_NEXT ||
3448 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3449 
3450 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3451 	    _rtld_error("Cannot determine caller's shared object");
3452 	    lock_release(rtld_bind_lock, &lockstate);
3453 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3454 	    return NULL;
3455 	}
3456 	if (handle == NULL) {	/* Just the caller's shared object. */
3457 	    res = symlook_obj(&req, obj);
3458 	    if (res == 0) {
3459 		def = req.sym_out;
3460 		defobj = req.defobj_out;
3461 	    }
3462 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3463 		   handle == RTLD_SELF) { /* ... caller included */
3464 	    if (handle == RTLD_NEXT)
3465 		obj = globallist_next(obj);
3466 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3467 		if (obj->marker)
3468 		    continue;
3469 		res = symlook_obj(&req, obj);
3470 		if (res == 0) {
3471 		    if (def == NULL ||
3472 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3473 			def = req.sym_out;
3474 			defobj = req.defobj_out;
3475 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3476 			    break;
3477 		    }
3478 		}
3479 	    }
3480 	    /*
3481 	     * Search the dynamic linker itself, and possibly resolve the
3482 	     * symbol from there.  This is how the application links to
3483 	     * dynamic linker services such as dlopen.
3484 	     */
3485 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3486 		res = symlook_obj(&req, &obj_rtld);
3487 		if (res == 0) {
3488 		    def = req.sym_out;
3489 		    defobj = req.defobj_out;
3490 		}
3491 	    }
3492 	} else {
3493 	    assert(handle == RTLD_DEFAULT);
3494 	    res = symlook_default(&req, obj);
3495 	    if (res == 0) {
3496 		defobj = req.defobj_out;
3497 		def = req.sym_out;
3498 	    }
3499 	}
3500     } else {
3501 	if ((obj = dlcheck(handle)) == NULL) {
3502 	    lock_release(rtld_bind_lock, &lockstate);
3503 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3504 	    return NULL;
3505 	}
3506 
3507 	donelist_init(&donelist);
3508 	if (obj->mainprog) {
3509             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3510 	    res = symlook_global(&req, &donelist);
3511 	    if (res == 0) {
3512 		def = req.sym_out;
3513 		defobj = req.defobj_out;
3514 	    }
3515 	    /*
3516 	     * Search the dynamic linker itself, and possibly resolve the
3517 	     * symbol from there.  This is how the application links to
3518 	     * dynamic linker services such as dlopen.
3519 	     */
3520 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3521 		res = symlook_obj(&req, &obj_rtld);
3522 		if (res == 0) {
3523 		    def = req.sym_out;
3524 		    defobj = req.defobj_out;
3525 		}
3526 	    }
3527 	}
3528 	else {
3529 	    /* Search the whole DAG rooted at the given object. */
3530 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3531 	    if (res == 0) {
3532 		def = req.sym_out;
3533 		defobj = req.defobj_out;
3534 	    }
3535 	}
3536     }
3537 
3538     if (def != NULL) {
3539 	lock_release(rtld_bind_lock, &lockstate);
3540 
3541 	/*
3542 	 * The value required by the caller is derived from the value
3543 	 * of the symbol. this is simply the relocated value of the
3544 	 * symbol.
3545 	 */
3546 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3547 	    sym = make_function_pointer(def, defobj);
3548 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3549 	    sym = rtld_resolve_ifunc(defobj, def);
3550 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3551 	    ti.ti_module = defobj->tlsindex;
3552 	    ti.ti_offset = def->st_value;
3553 	    sym = __tls_get_addr(&ti);
3554 	} else
3555 	    sym = defobj->relocbase + def->st_value;
3556 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3557 	return (sym);
3558     }
3559 
3560     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3561       ve != NULL ? ve->name : "");
3562     lock_release(rtld_bind_lock, &lockstate);
3563     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3564     return NULL;
3565 }
3566 
3567 void *
3568 dlsym(void *handle, const char *name)
3569 {
3570 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3571 	    SYMLOOK_DLSYM);
3572 }
3573 
3574 dlfunc_t
3575 dlfunc(void *handle, const char *name)
3576 {
3577 	union {
3578 		void *d;
3579 		dlfunc_t f;
3580 	} rv;
3581 
3582 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3583 	    SYMLOOK_DLSYM);
3584 	return (rv.f);
3585 }
3586 
3587 void *
3588 dlvsym(void *handle, const char *name, const char *version)
3589 {
3590 	Ver_Entry ventry;
3591 
3592 	ventry.name = version;
3593 	ventry.file = NULL;
3594 	ventry.hash = elf_hash(version);
3595 	ventry.flags= 0;
3596 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3597 	    SYMLOOK_DLSYM);
3598 }
3599 
3600 int
3601 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3602 {
3603     const Obj_Entry *obj;
3604     RtldLockState lockstate;
3605 
3606     rlock_acquire(rtld_bind_lock, &lockstate);
3607     obj = obj_from_addr(addr);
3608     if (obj == NULL) {
3609         _rtld_error("No shared object contains address");
3610 	lock_release(rtld_bind_lock, &lockstate);
3611         return (0);
3612     }
3613     rtld_fill_dl_phdr_info(obj, phdr_info);
3614     lock_release(rtld_bind_lock, &lockstate);
3615     return (1);
3616 }
3617 
3618 int
3619 dladdr(const void *addr, Dl_info *info)
3620 {
3621     const Obj_Entry *obj;
3622     const Elf_Sym *def;
3623     void *symbol_addr;
3624     unsigned long symoffset;
3625     RtldLockState lockstate;
3626 
3627     rlock_acquire(rtld_bind_lock, &lockstate);
3628     obj = obj_from_addr(addr);
3629     if (obj == NULL) {
3630         _rtld_error("No shared object contains address");
3631 	lock_release(rtld_bind_lock, &lockstate);
3632         return 0;
3633     }
3634     info->dli_fname = obj->path;
3635     info->dli_fbase = obj->mapbase;
3636     info->dli_saddr = (void *)0;
3637     info->dli_sname = NULL;
3638 
3639     /*
3640      * Walk the symbol list looking for the symbol whose address is
3641      * closest to the address sent in.
3642      */
3643     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3644         def = obj->symtab + symoffset;
3645 
3646         /*
3647          * For skip the symbol if st_shndx is either SHN_UNDEF or
3648          * SHN_COMMON.
3649          */
3650         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3651             continue;
3652 
3653         /*
3654          * If the symbol is greater than the specified address, or if it
3655          * is further away from addr than the current nearest symbol,
3656          * then reject it.
3657          */
3658         symbol_addr = obj->relocbase + def->st_value;
3659         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3660             continue;
3661 
3662         /* Update our idea of the nearest symbol. */
3663         info->dli_sname = obj->strtab + def->st_name;
3664         info->dli_saddr = symbol_addr;
3665 
3666         /* Exact match? */
3667         if (info->dli_saddr == addr)
3668             break;
3669     }
3670     lock_release(rtld_bind_lock, &lockstate);
3671     return 1;
3672 }
3673 
3674 int
3675 dlinfo(void *handle, int request, void *p)
3676 {
3677     const Obj_Entry *obj;
3678     RtldLockState lockstate;
3679     int error;
3680 
3681     rlock_acquire(rtld_bind_lock, &lockstate);
3682 
3683     if (handle == NULL || handle == RTLD_SELF) {
3684 	void *retaddr;
3685 
3686 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3687 	if ((obj = obj_from_addr(retaddr)) == NULL)
3688 	    _rtld_error("Cannot determine caller's shared object");
3689     } else
3690 	obj = dlcheck(handle);
3691 
3692     if (obj == NULL) {
3693 	lock_release(rtld_bind_lock, &lockstate);
3694 	return (-1);
3695     }
3696 
3697     error = 0;
3698     switch (request) {
3699     case RTLD_DI_LINKMAP:
3700 	*((struct link_map const **)p) = &obj->linkmap;
3701 	break;
3702     case RTLD_DI_ORIGIN:
3703 	error = rtld_dirname(obj->path, p);
3704 	break;
3705 
3706     case RTLD_DI_SERINFOSIZE:
3707     case RTLD_DI_SERINFO:
3708 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3709 	break;
3710 
3711     default:
3712 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3713 	error = -1;
3714     }
3715 
3716     lock_release(rtld_bind_lock, &lockstate);
3717 
3718     return (error);
3719 }
3720 
3721 static void
3722 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3723 {
3724 
3725 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3726 	phdr_info->dlpi_name = obj->path;
3727 	phdr_info->dlpi_phdr = obj->phdr;
3728 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3729 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3730 	phdr_info->dlpi_tls_data = obj->tlsinit;
3731 	phdr_info->dlpi_adds = obj_loads;
3732 	phdr_info->dlpi_subs = obj_loads - obj_count;
3733 }
3734 
3735 int
3736 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3737 {
3738 	struct dl_phdr_info phdr_info;
3739 	Obj_Entry *obj, marker;
3740 	RtldLockState bind_lockstate, phdr_lockstate;
3741 	int error;
3742 
3743 	init_marker(&marker);
3744 	error = 0;
3745 
3746 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3747 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3748 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3749 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3750 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3751 		hold_object(obj);
3752 		lock_release(rtld_bind_lock, &bind_lockstate);
3753 
3754 		error = callback(&phdr_info, sizeof phdr_info, param);
3755 
3756 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3757 		unhold_object(obj);
3758 		obj = globallist_next(&marker);
3759 		TAILQ_REMOVE(&obj_list, &marker, next);
3760 		if (error != 0) {
3761 			lock_release(rtld_bind_lock, &bind_lockstate);
3762 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3763 			return (error);
3764 		}
3765 	}
3766 
3767 	if (error == 0) {
3768 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3769 		lock_release(rtld_bind_lock, &bind_lockstate);
3770 		error = callback(&phdr_info, sizeof(phdr_info), param);
3771 	}
3772 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3773 	return (error);
3774 }
3775 
3776 static void *
3777 fill_search_info(const char *dir, size_t dirlen, void *param)
3778 {
3779     struct fill_search_info_args *arg;
3780 
3781     arg = param;
3782 
3783     if (arg->request == RTLD_DI_SERINFOSIZE) {
3784 	arg->serinfo->dls_cnt ++;
3785 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3786     } else {
3787 	struct dl_serpath *s_entry;
3788 
3789 	s_entry = arg->serpath;
3790 	s_entry->dls_name  = arg->strspace;
3791 	s_entry->dls_flags = arg->flags;
3792 
3793 	strncpy(arg->strspace, dir, dirlen);
3794 	arg->strspace[dirlen] = '\0';
3795 
3796 	arg->strspace += dirlen + 1;
3797 	arg->serpath++;
3798     }
3799 
3800     return (NULL);
3801 }
3802 
3803 static int
3804 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3805 {
3806     struct dl_serinfo _info;
3807     struct fill_search_info_args args;
3808 
3809     args.request = RTLD_DI_SERINFOSIZE;
3810     args.serinfo = &_info;
3811 
3812     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3813     _info.dls_cnt  = 0;
3814 
3815     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3816     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3817     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3818     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3819     if (!obj->z_nodeflib)
3820       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3821 
3822 
3823     if (request == RTLD_DI_SERINFOSIZE) {
3824 	info->dls_size = _info.dls_size;
3825 	info->dls_cnt = _info.dls_cnt;
3826 	return (0);
3827     }
3828 
3829     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3830 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3831 	return (-1);
3832     }
3833 
3834     args.request  = RTLD_DI_SERINFO;
3835     args.serinfo  = info;
3836     args.serpath  = &info->dls_serpath[0];
3837     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3838 
3839     args.flags = LA_SER_RUNPATH;
3840     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3841 	return (-1);
3842 
3843     args.flags = LA_SER_LIBPATH;
3844     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3845 	return (-1);
3846 
3847     args.flags = LA_SER_RUNPATH;
3848     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3849 	return (-1);
3850 
3851     args.flags = LA_SER_CONFIG;
3852     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3853       != NULL)
3854 	return (-1);
3855 
3856     args.flags = LA_SER_DEFAULT;
3857     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3858       fill_search_info, NULL, &args) != NULL)
3859 	return (-1);
3860     return (0);
3861 }
3862 
3863 static int
3864 rtld_dirname(const char *path, char *bname)
3865 {
3866     const char *endp;
3867 
3868     /* Empty or NULL string gets treated as "." */
3869     if (path == NULL || *path == '\0') {
3870 	bname[0] = '.';
3871 	bname[1] = '\0';
3872 	return (0);
3873     }
3874 
3875     /* Strip trailing slashes */
3876     endp = path + strlen(path) - 1;
3877     while (endp > path && *endp == '/')
3878 	endp--;
3879 
3880     /* Find the start of the dir */
3881     while (endp > path && *endp != '/')
3882 	endp--;
3883 
3884     /* Either the dir is "/" or there are no slashes */
3885     if (endp == path) {
3886 	bname[0] = *endp == '/' ? '/' : '.';
3887 	bname[1] = '\0';
3888 	return (0);
3889     } else {
3890 	do {
3891 	    endp--;
3892 	} while (endp > path && *endp == '/');
3893     }
3894 
3895     if (endp - path + 2 > PATH_MAX)
3896     {
3897 	_rtld_error("Filename is too long: %s", path);
3898 	return(-1);
3899     }
3900 
3901     strncpy(bname, path, endp - path + 1);
3902     bname[endp - path + 1] = '\0';
3903     return (0);
3904 }
3905 
3906 static int
3907 rtld_dirname_abs(const char *path, char *base)
3908 {
3909 	char *last;
3910 
3911 	if (realpath(path, base) == NULL)
3912 		return (-1);
3913 	dbg("%s -> %s", path, base);
3914 	last = strrchr(base, '/');
3915 	if (last == NULL)
3916 		return (-1);
3917 	if (last != base)
3918 		*last = '\0';
3919 	return (0);
3920 }
3921 
3922 static void
3923 linkmap_add(Obj_Entry *obj)
3924 {
3925     struct link_map *l = &obj->linkmap;
3926     struct link_map *prev;
3927 
3928     obj->linkmap.l_name = obj->path;
3929     obj->linkmap.l_addr = obj->mapbase;
3930     obj->linkmap.l_ld = obj->dynamic;
3931 #ifdef __mips__
3932     /* GDB needs load offset on MIPS to use the symbols */
3933     obj->linkmap.l_offs = obj->relocbase;
3934 #endif
3935 
3936     if (r_debug.r_map == NULL) {
3937 	r_debug.r_map = l;
3938 	return;
3939     }
3940 
3941     /*
3942      * Scan to the end of the list, but not past the entry for the
3943      * dynamic linker, which we want to keep at the very end.
3944      */
3945     for (prev = r_debug.r_map;
3946       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3947       prev = prev->l_next)
3948 	;
3949 
3950     /* Link in the new entry. */
3951     l->l_prev = prev;
3952     l->l_next = prev->l_next;
3953     if (l->l_next != NULL)
3954 	l->l_next->l_prev = l;
3955     prev->l_next = l;
3956 }
3957 
3958 static void
3959 linkmap_delete(Obj_Entry *obj)
3960 {
3961     struct link_map *l = &obj->linkmap;
3962 
3963     if (l->l_prev == NULL) {
3964 	if ((r_debug.r_map = l->l_next) != NULL)
3965 	    l->l_next->l_prev = NULL;
3966 	return;
3967     }
3968 
3969     if ((l->l_prev->l_next = l->l_next) != NULL)
3970 	l->l_next->l_prev = l->l_prev;
3971 }
3972 
3973 /*
3974  * Function for the debugger to set a breakpoint on to gain control.
3975  *
3976  * The two parameters allow the debugger to easily find and determine
3977  * what the runtime loader is doing and to whom it is doing it.
3978  *
3979  * When the loadhook trap is hit (r_debug_state, set at program
3980  * initialization), the arguments can be found on the stack:
3981  *
3982  *  +8   struct link_map *m
3983  *  +4   struct r_debug  *rd
3984  *  +0   RetAddr
3985  */
3986 void
3987 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
3988 {
3989     /*
3990      * The following is a hack to force the compiler to emit calls to
3991      * this function, even when optimizing.  If the function is empty,
3992      * the compiler is not obliged to emit any code for calls to it,
3993      * even when marked __noinline.  However, gdb depends on those
3994      * calls being made.
3995      */
3996     __compiler_membar();
3997 }
3998 
3999 /*
4000  * A function called after init routines have completed. This can be used to
4001  * break before a program's entry routine is called, and can be used when
4002  * main is not available in the symbol table.
4003  */
4004 void
4005 _r_debug_postinit(struct link_map *m __unused)
4006 {
4007 
4008 	/* See r_debug_state(). */
4009 	__compiler_membar();
4010 }
4011 
4012 static void
4013 release_object(Obj_Entry *obj)
4014 {
4015 
4016 	if (obj->holdcount > 0) {
4017 		obj->unholdfree = true;
4018 		return;
4019 	}
4020 	munmap(obj->mapbase, obj->mapsize);
4021 	linkmap_delete(obj);
4022 	obj_free(obj);
4023 }
4024 
4025 /*
4026  * Get address of the pointer variable in the main program.
4027  * Prefer non-weak symbol over the weak one.
4028  */
4029 static const void **
4030 get_program_var_addr(const char *name, RtldLockState *lockstate)
4031 {
4032     SymLook req;
4033     DoneList donelist;
4034 
4035     symlook_init(&req, name);
4036     req.lockstate = lockstate;
4037     donelist_init(&donelist);
4038     if (symlook_global(&req, &donelist) != 0)
4039 	return (NULL);
4040     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4041 	return ((const void **)make_function_pointer(req.sym_out,
4042 	  req.defobj_out));
4043     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4044 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4045     else
4046 	return ((const void **)(req.defobj_out->relocbase +
4047 	  req.sym_out->st_value));
4048 }
4049 
4050 /*
4051  * Set a pointer variable in the main program to the given value.  This
4052  * is used to set key variables such as "environ" before any of the
4053  * init functions are called.
4054  */
4055 static void
4056 set_program_var(const char *name, const void *value)
4057 {
4058     const void **addr;
4059 
4060     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4061 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4062 	*addr = value;
4063     }
4064 }
4065 
4066 /*
4067  * Search the global objects, including dependencies and main object,
4068  * for the given symbol.
4069  */
4070 static int
4071 symlook_global(SymLook *req, DoneList *donelist)
4072 {
4073     SymLook req1;
4074     const Objlist_Entry *elm;
4075     int res;
4076 
4077     symlook_init_from_req(&req1, req);
4078 
4079     /* Search all objects loaded at program start up. */
4080     if (req->defobj_out == NULL ||
4081       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4082 	res = symlook_list(&req1, &list_main, donelist);
4083 	if (res == 0 && (req->defobj_out == NULL ||
4084 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4085 	    req->sym_out = req1.sym_out;
4086 	    req->defobj_out = req1.defobj_out;
4087 	    assert(req->defobj_out != NULL);
4088 	}
4089     }
4090 
4091     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4092     STAILQ_FOREACH(elm, &list_global, link) {
4093 	if (req->defobj_out != NULL &&
4094 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4095 	    break;
4096 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4097 	if (res == 0 && (req->defobj_out == NULL ||
4098 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4099 	    req->sym_out = req1.sym_out;
4100 	    req->defobj_out = req1.defobj_out;
4101 	    assert(req->defobj_out != NULL);
4102 	}
4103     }
4104 
4105     return (req->sym_out != NULL ? 0 : ESRCH);
4106 }
4107 
4108 /*
4109  * Given a symbol name in a referencing object, find the corresponding
4110  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4111  * no definition was found.  Returns a pointer to the Obj_Entry of the
4112  * defining object via the reference parameter DEFOBJ_OUT.
4113  */
4114 static int
4115 symlook_default(SymLook *req, const Obj_Entry *refobj)
4116 {
4117     DoneList donelist;
4118     const Objlist_Entry *elm;
4119     SymLook req1;
4120     int res;
4121 
4122     donelist_init(&donelist);
4123     symlook_init_from_req(&req1, req);
4124 
4125     /*
4126      * Look first in the referencing object if linked symbolically,
4127      * and similarly handle protected symbols.
4128      */
4129     res = symlook_obj(&req1, refobj);
4130     if (res == 0 && (refobj->symbolic ||
4131       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4132 	req->sym_out = req1.sym_out;
4133 	req->defobj_out = req1.defobj_out;
4134 	assert(req->defobj_out != NULL);
4135     }
4136     if (refobj->symbolic || req->defobj_out != NULL)
4137 	donelist_check(&donelist, refobj);
4138 
4139     symlook_global(req, &donelist);
4140 
4141     /* Search all dlopened DAGs containing the referencing object. */
4142     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4143 	if (req->sym_out != NULL &&
4144 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4145 	    break;
4146 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4147 	if (res == 0 && (req->sym_out == NULL ||
4148 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4149 	    req->sym_out = req1.sym_out;
4150 	    req->defobj_out = req1.defobj_out;
4151 	    assert(req->defobj_out != NULL);
4152 	}
4153     }
4154 
4155     /*
4156      * Search the dynamic linker itself, and possibly resolve the
4157      * symbol from there.  This is how the application links to
4158      * dynamic linker services such as dlopen.
4159      */
4160     if (req->sym_out == NULL ||
4161       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4162 	res = symlook_obj(&req1, &obj_rtld);
4163 	if (res == 0) {
4164 	    req->sym_out = req1.sym_out;
4165 	    req->defobj_out = req1.defobj_out;
4166 	    assert(req->defobj_out != NULL);
4167 	}
4168     }
4169 
4170     return (req->sym_out != NULL ? 0 : ESRCH);
4171 }
4172 
4173 static int
4174 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4175 {
4176     const Elf_Sym *def;
4177     const Obj_Entry *defobj;
4178     const Objlist_Entry *elm;
4179     SymLook req1;
4180     int res;
4181 
4182     def = NULL;
4183     defobj = NULL;
4184     STAILQ_FOREACH(elm, objlist, link) {
4185 	if (donelist_check(dlp, elm->obj))
4186 	    continue;
4187 	symlook_init_from_req(&req1, req);
4188 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4189 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4190 		def = req1.sym_out;
4191 		defobj = req1.defobj_out;
4192 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4193 		    break;
4194 	    }
4195 	}
4196     }
4197     if (def != NULL) {
4198 	req->sym_out = def;
4199 	req->defobj_out = defobj;
4200 	return (0);
4201     }
4202     return (ESRCH);
4203 }
4204 
4205 /*
4206  * Search the chain of DAGS cointed to by the given Needed_Entry
4207  * for a symbol of the given name.  Each DAG is scanned completely
4208  * before advancing to the next one.  Returns a pointer to the symbol,
4209  * or NULL if no definition was found.
4210  */
4211 static int
4212 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4213 {
4214     const Elf_Sym *def;
4215     const Needed_Entry *n;
4216     const Obj_Entry *defobj;
4217     SymLook req1;
4218     int res;
4219 
4220     def = NULL;
4221     defobj = NULL;
4222     symlook_init_from_req(&req1, req);
4223     for (n = needed; n != NULL; n = n->next) {
4224 	if (n->obj == NULL ||
4225 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4226 	    continue;
4227 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4228 	    def = req1.sym_out;
4229 	    defobj = req1.defobj_out;
4230 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4231 		break;
4232 	}
4233     }
4234     if (def != NULL) {
4235 	req->sym_out = def;
4236 	req->defobj_out = defobj;
4237 	return (0);
4238     }
4239     return (ESRCH);
4240 }
4241 
4242 /*
4243  * Search the symbol table of a single shared object for a symbol of
4244  * the given name and version, if requested.  Returns a pointer to the
4245  * symbol, or NULL if no definition was found.  If the object is
4246  * filter, return filtered symbol from filtee.
4247  *
4248  * The symbol's hash value is passed in for efficiency reasons; that
4249  * eliminates many recomputations of the hash value.
4250  */
4251 int
4252 symlook_obj(SymLook *req, const Obj_Entry *obj)
4253 {
4254     DoneList donelist;
4255     SymLook req1;
4256     int flags, res, mres;
4257 
4258     /*
4259      * If there is at least one valid hash at this point, we prefer to
4260      * use the faster GNU version if available.
4261      */
4262     if (obj->valid_hash_gnu)
4263 	mres = symlook_obj1_gnu(req, obj);
4264     else if (obj->valid_hash_sysv)
4265 	mres = symlook_obj1_sysv(req, obj);
4266     else
4267 	return (EINVAL);
4268 
4269     if (mres == 0) {
4270 	if (obj->needed_filtees != NULL) {
4271 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4272 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4273 	    donelist_init(&donelist);
4274 	    symlook_init_from_req(&req1, req);
4275 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4276 	    if (res == 0) {
4277 		req->sym_out = req1.sym_out;
4278 		req->defobj_out = req1.defobj_out;
4279 	    }
4280 	    return (res);
4281 	}
4282 	if (obj->needed_aux_filtees != NULL) {
4283 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4284 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4285 	    donelist_init(&donelist);
4286 	    symlook_init_from_req(&req1, req);
4287 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4288 	    if (res == 0) {
4289 		req->sym_out = req1.sym_out;
4290 		req->defobj_out = req1.defobj_out;
4291 		return (res);
4292 	    }
4293 	}
4294     }
4295     return (mres);
4296 }
4297 
4298 /* Symbol match routine common to both hash functions */
4299 static bool
4300 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4301     const unsigned long symnum)
4302 {
4303 	Elf_Versym verndx;
4304 	const Elf_Sym *symp;
4305 	const char *strp;
4306 
4307 	symp = obj->symtab + symnum;
4308 	strp = obj->strtab + symp->st_name;
4309 
4310 	switch (ELF_ST_TYPE(symp->st_info)) {
4311 	case STT_FUNC:
4312 	case STT_NOTYPE:
4313 	case STT_OBJECT:
4314 	case STT_COMMON:
4315 	case STT_GNU_IFUNC:
4316 		if (symp->st_value == 0)
4317 			return (false);
4318 		/* fallthrough */
4319 	case STT_TLS:
4320 		if (symp->st_shndx != SHN_UNDEF)
4321 			break;
4322 #ifndef __mips__
4323 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4324 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4325 			break;
4326 #endif
4327 		/* fallthrough */
4328 	default:
4329 		return (false);
4330 	}
4331 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4332 		return (false);
4333 
4334 	if (req->ventry == NULL) {
4335 		if (obj->versyms != NULL) {
4336 			verndx = VER_NDX(obj->versyms[symnum]);
4337 			if (verndx > obj->vernum) {
4338 				_rtld_error(
4339 				    "%s: symbol %s references wrong version %d",
4340 				    obj->path, obj->strtab + symnum, verndx);
4341 				return (false);
4342 			}
4343 			/*
4344 			 * If we are not called from dlsym (i.e. this
4345 			 * is a normal relocation from unversioned
4346 			 * binary), accept the symbol immediately if
4347 			 * it happens to have first version after this
4348 			 * shared object became versioned.  Otherwise,
4349 			 * if symbol is versioned and not hidden,
4350 			 * remember it. If it is the only symbol with
4351 			 * this name exported by the shared object, it
4352 			 * will be returned as a match by the calling
4353 			 * function. If symbol is global (verndx < 2)
4354 			 * accept it unconditionally.
4355 			 */
4356 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4357 			    verndx == VER_NDX_GIVEN) {
4358 				result->sym_out = symp;
4359 				return (true);
4360 			}
4361 			else if (verndx >= VER_NDX_GIVEN) {
4362 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4363 				    == 0) {
4364 					if (result->vsymp == NULL)
4365 						result->vsymp = symp;
4366 					result->vcount++;
4367 				}
4368 				return (false);
4369 			}
4370 		}
4371 		result->sym_out = symp;
4372 		return (true);
4373 	}
4374 	if (obj->versyms == NULL) {
4375 		if (object_match_name(obj, req->ventry->name)) {
4376 			_rtld_error("%s: object %s should provide version %s "
4377 			    "for symbol %s", obj_rtld.path, obj->path,
4378 			    req->ventry->name, obj->strtab + symnum);
4379 			return (false);
4380 		}
4381 	} else {
4382 		verndx = VER_NDX(obj->versyms[symnum]);
4383 		if (verndx > obj->vernum) {
4384 			_rtld_error("%s: symbol %s references wrong version %d",
4385 			    obj->path, obj->strtab + symnum, verndx);
4386 			return (false);
4387 		}
4388 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4389 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4390 			/*
4391 			 * Version does not match. Look if this is a
4392 			 * global symbol and if it is not hidden. If
4393 			 * global symbol (verndx < 2) is available,
4394 			 * use it. Do not return symbol if we are
4395 			 * called by dlvsym, because dlvsym looks for
4396 			 * a specific version and default one is not
4397 			 * what dlvsym wants.
4398 			 */
4399 			if ((req->flags & SYMLOOK_DLSYM) ||
4400 			    (verndx >= VER_NDX_GIVEN) ||
4401 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4402 				return (false);
4403 		}
4404 	}
4405 	result->sym_out = symp;
4406 	return (true);
4407 }
4408 
4409 /*
4410  * Search for symbol using SysV hash function.
4411  * obj->buckets is known not to be NULL at this point; the test for this was
4412  * performed with the obj->valid_hash_sysv assignment.
4413  */
4414 static int
4415 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4416 {
4417 	unsigned long symnum;
4418 	Sym_Match_Result matchres;
4419 
4420 	matchres.sym_out = NULL;
4421 	matchres.vsymp = NULL;
4422 	matchres.vcount = 0;
4423 
4424 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4425 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4426 		if (symnum >= obj->nchains)
4427 			return (ESRCH);	/* Bad object */
4428 
4429 		if (matched_symbol(req, obj, &matchres, symnum)) {
4430 			req->sym_out = matchres.sym_out;
4431 			req->defobj_out = obj;
4432 			return (0);
4433 		}
4434 	}
4435 	if (matchres.vcount == 1) {
4436 		req->sym_out = matchres.vsymp;
4437 		req->defobj_out = obj;
4438 		return (0);
4439 	}
4440 	return (ESRCH);
4441 }
4442 
4443 /* Search for symbol using GNU hash function */
4444 static int
4445 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4446 {
4447 	Elf_Addr bloom_word;
4448 	const Elf32_Word *hashval;
4449 	Elf32_Word bucket;
4450 	Sym_Match_Result matchres;
4451 	unsigned int h1, h2;
4452 	unsigned long symnum;
4453 
4454 	matchres.sym_out = NULL;
4455 	matchres.vsymp = NULL;
4456 	matchres.vcount = 0;
4457 
4458 	/* Pick right bitmask word from Bloom filter array */
4459 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4460 	    obj->maskwords_bm_gnu];
4461 
4462 	/* Calculate modulus word size of gnu hash and its derivative */
4463 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4464 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4465 
4466 	/* Filter out the "definitely not in set" queries */
4467 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4468 		return (ESRCH);
4469 
4470 	/* Locate hash chain and corresponding value element*/
4471 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4472 	if (bucket == 0)
4473 		return (ESRCH);
4474 	hashval = &obj->chain_zero_gnu[bucket];
4475 	do {
4476 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4477 			symnum = hashval - obj->chain_zero_gnu;
4478 			if (matched_symbol(req, obj, &matchres, symnum)) {
4479 				req->sym_out = matchres.sym_out;
4480 				req->defobj_out = obj;
4481 				return (0);
4482 			}
4483 		}
4484 	} while ((*hashval++ & 1) == 0);
4485 	if (matchres.vcount == 1) {
4486 		req->sym_out = matchres.vsymp;
4487 		req->defobj_out = obj;
4488 		return (0);
4489 	}
4490 	return (ESRCH);
4491 }
4492 
4493 static void
4494 trace_loaded_objects(Obj_Entry *obj)
4495 {
4496     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4497     int c;
4498 
4499     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4500 	main_local = "";
4501 
4502     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4503 	fmt1 = "\t%o => %p (%x)\n";
4504 
4505     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4506 	fmt2 = "\t%o (%x)\n";
4507 
4508     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4509 
4510     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4511 	Needed_Entry *needed;
4512 	const char *name, *path;
4513 	bool is_lib;
4514 
4515 	if (obj->marker)
4516 	    continue;
4517 	if (list_containers && obj->needed != NULL)
4518 	    rtld_printf("%s:\n", obj->path);
4519 	for (needed = obj->needed; needed; needed = needed->next) {
4520 	    if (needed->obj != NULL) {
4521 		if (needed->obj->traced && !list_containers)
4522 		    continue;
4523 		needed->obj->traced = true;
4524 		path = needed->obj->path;
4525 	    } else
4526 		path = "not found";
4527 
4528 	    name = obj->strtab + needed->name;
4529 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4530 
4531 	    fmt = is_lib ? fmt1 : fmt2;
4532 	    while ((c = *fmt++) != '\0') {
4533 		switch (c) {
4534 		default:
4535 		    rtld_putchar(c);
4536 		    continue;
4537 		case '\\':
4538 		    switch (c = *fmt) {
4539 		    case '\0':
4540 			continue;
4541 		    case 'n':
4542 			rtld_putchar('\n');
4543 			break;
4544 		    case 't':
4545 			rtld_putchar('\t');
4546 			break;
4547 		    }
4548 		    break;
4549 		case '%':
4550 		    switch (c = *fmt) {
4551 		    case '\0':
4552 			continue;
4553 		    case '%':
4554 		    default:
4555 			rtld_putchar(c);
4556 			break;
4557 		    case 'A':
4558 			rtld_putstr(main_local);
4559 			break;
4560 		    case 'a':
4561 			rtld_putstr(obj_main->path);
4562 			break;
4563 		    case 'o':
4564 			rtld_putstr(name);
4565 			break;
4566 #if 0
4567 		    case 'm':
4568 			rtld_printf("%d", sodp->sod_major);
4569 			break;
4570 		    case 'n':
4571 			rtld_printf("%d", sodp->sod_minor);
4572 			break;
4573 #endif
4574 		    case 'p':
4575 			rtld_putstr(path);
4576 			break;
4577 		    case 'x':
4578 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4579 			  0);
4580 			break;
4581 		    }
4582 		    break;
4583 		}
4584 		++fmt;
4585 	    }
4586 	}
4587     }
4588 }
4589 
4590 /*
4591  * Unload a dlopened object and its dependencies from memory and from
4592  * our data structures.  It is assumed that the DAG rooted in the
4593  * object has already been unreferenced, and that the object has a
4594  * reference count of 0.
4595  */
4596 static void
4597 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4598 {
4599 	Obj_Entry marker, *obj, *next;
4600 
4601 	assert(root->refcount == 0);
4602 
4603 	/*
4604 	 * Pass over the DAG removing unreferenced objects from
4605 	 * appropriate lists.
4606 	 */
4607 	unlink_object(root);
4608 
4609 	/* Unmap all objects that are no longer referenced. */
4610 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4611 		next = TAILQ_NEXT(obj, next);
4612 		if (obj->marker || obj->refcount != 0)
4613 			continue;
4614 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4615 		    obj->mapsize, 0, obj->path);
4616 		dbg("unloading \"%s\"", obj->path);
4617 		/*
4618 		 * Unlink the object now to prevent new references from
4619 		 * being acquired while the bind lock is dropped in
4620 		 * recursive dlclose() invocations.
4621 		 */
4622 		TAILQ_REMOVE(&obj_list, obj, next);
4623 		obj_count--;
4624 
4625 		if (obj->filtees_loaded) {
4626 			if (next != NULL) {
4627 				init_marker(&marker);
4628 				TAILQ_INSERT_BEFORE(next, &marker, next);
4629 				unload_filtees(obj, lockstate);
4630 				next = TAILQ_NEXT(&marker, next);
4631 				TAILQ_REMOVE(&obj_list, &marker, next);
4632 			} else
4633 				unload_filtees(obj, lockstate);
4634 		}
4635 		release_object(obj);
4636 	}
4637 }
4638 
4639 static void
4640 unlink_object(Obj_Entry *root)
4641 {
4642     Objlist_Entry *elm;
4643 
4644     if (root->refcount == 0) {
4645 	/* Remove the object from the RTLD_GLOBAL list. */
4646 	objlist_remove(&list_global, root);
4647 
4648     	/* Remove the object from all objects' DAG lists. */
4649     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4650 	    objlist_remove(&elm->obj->dldags, root);
4651 	    if (elm->obj != root)
4652 		unlink_object(elm->obj);
4653 	}
4654     }
4655 }
4656 
4657 static void
4658 ref_dag(Obj_Entry *root)
4659 {
4660     Objlist_Entry *elm;
4661 
4662     assert(root->dag_inited);
4663     STAILQ_FOREACH(elm, &root->dagmembers, link)
4664 	elm->obj->refcount++;
4665 }
4666 
4667 static void
4668 unref_dag(Obj_Entry *root)
4669 {
4670     Objlist_Entry *elm;
4671 
4672     assert(root->dag_inited);
4673     STAILQ_FOREACH(elm, &root->dagmembers, link)
4674 	elm->obj->refcount--;
4675 }
4676 
4677 /*
4678  * Common code for MD __tls_get_addr().
4679  */
4680 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4681 static void *
4682 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4683 {
4684     Elf_Addr *newdtv, *dtv;
4685     RtldLockState lockstate;
4686     int to_copy;
4687 
4688     dtv = *dtvp;
4689     /* Check dtv generation in case new modules have arrived */
4690     if (dtv[0] != tls_dtv_generation) {
4691 	wlock_acquire(rtld_bind_lock, &lockstate);
4692 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4693 	to_copy = dtv[1];
4694 	if (to_copy > tls_max_index)
4695 	    to_copy = tls_max_index;
4696 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4697 	newdtv[0] = tls_dtv_generation;
4698 	newdtv[1] = tls_max_index;
4699 	free(dtv);
4700 	lock_release(rtld_bind_lock, &lockstate);
4701 	dtv = *dtvp = newdtv;
4702     }
4703 
4704     /* Dynamically allocate module TLS if necessary */
4705     if (dtv[index + 1] == 0) {
4706 	/* Signal safe, wlock will block out signals. */
4707 	wlock_acquire(rtld_bind_lock, &lockstate);
4708 	if (!dtv[index + 1])
4709 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4710 	lock_release(rtld_bind_lock, &lockstate);
4711     }
4712     return ((void *)(dtv[index + 1] + offset));
4713 }
4714 
4715 void *
4716 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4717 {
4718 	Elf_Addr *dtv;
4719 
4720 	dtv = *dtvp;
4721 	/* Check dtv generation in case new modules have arrived */
4722 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4723 	    dtv[index + 1] != 0))
4724 		return ((void *)(dtv[index + 1] + offset));
4725 	return (tls_get_addr_slow(dtvp, index, offset));
4726 }
4727 
4728 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4729     defined(__powerpc__) || defined(__riscv)
4730 
4731 /*
4732  * Return pointer to allocated TLS block
4733  */
4734 static void *
4735 get_tls_block_ptr(void *tcb, size_t tcbsize)
4736 {
4737     size_t extra_size, post_size, pre_size, tls_block_size;
4738     size_t tls_init_align;
4739 
4740     tls_init_align = MAX(obj_main->tlsalign, 1);
4741 
4742     /* Compute fragments sizes. */
4743     extra_size = tcbsize - TLS_TCB_SIZE;
4744     post_size = calculate_tls_post_size(tls_init_align);
4745     tls_block_size = tcbsize + post_size;
4746     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4747 
4748     return ((char *)tcb - pre_size - extra_size);
4749 }
4750 
4751 /*
4752  * Allocate Static TLS using the Variant I method.
4753  *
4754  * For details on the layout, see lib/libc/gen/tls.c.
4755  *
4756  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4757  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4758  *     offsets, whereas libc's tls_static_space is just the executable's static
4759  *     TLS segment.
4760  */
4761 void *
4762 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4763 {
4764     Obj_Entry *obj;
4765     char *tls_block;
4766     Elf_Addr *dtv, **tcb;
4767     Elf_Addr addr;
4768     Elf_Addr i;
4769     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4770     size_t tls_init_align;
4771 
4772     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4773 	return (oldtcb);
4774 
4775     assert(tcbsize >= TLS_TCB_SIZE);
4776     maxalign = MAX(tcbalign, tls_static_max_align);
4777     tls_init_align = MAX(obj_main->tlsalign, 1);
4778 
4779     /* Compute fragmets sizes. */
4780     extra_size = tcbsize - TLS_TCB_SIZE;
4781     post_size = calculate_tls_post_size(tls_init_align);
4782     tls_block_size = tcbsize + post_size;
4783     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4784     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4785 
4786     /* Allocate whole TLS block */
4787     tls_block = malloc_aligned(tls_block_size, maxalign);
4788     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4789 
4790     if (oldtcb != NULL) {
4791 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4792 	    tls_static_space);
4793 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4794 
4795 	/* Adjust the DTV. */
4796 	dtv = tcb[0];
4797 	for (i = 0; i < dtv[1]; i++) {
4798 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4799 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4800 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4801 	    }
4802 	}
4803     } else {
4804 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4805 	tcb[0] = dtv;
4806 	dtv[0] = tls_dtv_generation;
4807 	dtv[1] = tls_max_index;
4808 
4809 	for (obj = globallist_curr(objs); obj != NULL;
4810 	  obj = globallist_next(obj)) {
4811 	    if (obj->tlsoffset > 0) {
4812 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4813 		if (obj->tlsinitsize > 0)
4814 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4815 		if (obj->tlssize > obj->tlsinitsize)
4816 		    memset((void*)(addr + obj->tlsinitsize), 0,
4817 			   obj->tlssize - obj->tlsinitsize);
4818 		dtv[obj->tlsindex + 1] = addr;
4819 	    }
4820 	}
4821     }
4822 
4823     return (tcb);
4824 }
4825 
4826 void
4827 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4828 {
4829     Elf_Addr *dtv;
4830     Elf_Addr tlsstart, tlsend;
4831     size_t post_size;
4832     size_t dtvsize, i, tls_init_align;
4833 
4834     assert(tcbsize >= TLS_TCB_SIZE);
4835     tls_init_align = MAX(obj_main->tlsalign, 1);
4836 
4837     /* Compute fragments sizes. */
4838     post_size = calculate_tls_post_size(tls_init_align);
4839 
4840     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4841     tlsend = (Elf_Addr)tcb + tls_static_space;
4842 
4843     dtv = *(Elf_Addr **)tcb;
4844     dtvsize = dtv[1];
4845     for (i = 0; i < dtvsize; i++) {
4846 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4847 	    free((void*)dtv[i+2]);
4848 	}
4849     }
4850     free(dtv);
4851     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4852 }
4853 
4854 #endif
4855 
4856 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4857 
4858 /*
4859  * Allocate Static TLS using the Variant II method.
4860  */
4861 void *
4862 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4863 {
4864     Obj_Entry *obj;
4865     size_t size, ralign;
4866     char *tls;
4867     Elf_Addr *dtv, *olddtv;
4868     Elf_Addr segbase, oldsegbase, addr;
4869     size_t i;
4870 
4871     ralign = tcbalign;
4872     if (tls_static_max_align > ralign)
4873 	    ralign = tls_static_max_align;
4874     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4875 
4876     assert(tcbsize >= 2*sizeof(Elf_Addr));
4877     tls = malloc_aligned(size, ralign);
4878     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4879 
4880     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4881     ((Elf_Addr*)segbase)[0] = segbase;
4882     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4883 
4884     dtv[0] = tls_dtv_generation;
4885     dtv[1] = tls_max_index;
4886 
4887     if (oldtls) {
4888 	/*
4889 	 * Copy the static TLS block over whole.
4890 	 */
4891 	oldsegbase = (Elf_Addr) oldtls;
4892 	memcpy((void *)(segbase - tls_static_space),
4893 	       (const void *)(oldsegbase - tls_static_space),
4894 	       tls_static_space);
4895 
4896 	/*
4897 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4898 	 * move them over.
4899 	 */
4900 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4901 	for (i = 0; i < olddtv[1]; i++) {
4902 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4903 		dtv[i+2] = olddtv[i+2];
4904 		olddtv[i+2] = 0;
4905 	    }
4906 	}
4907 
4908 	/*
4909 	 * We assume that this block was the one we created with
4910 	 * allocate_initial_tls().
4911 	 */
4912 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4913     } else {
4914 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4915 		if (obj->marker || obj->tlsoffset == 0)
4916 			continue;
4917 		addr = segbase - obj->tlsoffset;
4918 		memset((void*)(addr + obj->tlsinitsize),
4919 		       0, obj->tlssize - obj->tlsinitsize);
4920 		if (obj->tlsinit)
4921 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4922 		dtv[obj->tlsindex + 1] = addr;
4923 	}
4924     }
4925 
4926     return (void*) segbase;
4927 }
4928 
4929 void
4930 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4931 {
4932     Elf_Addr* dtv;
4933     size_t size, ralign;
4934     int dtvsize, i;
4935     Elf_Addr tlsstart, tlsend;
4936 
4937     /*
4938      * Figure out the size of the initial TLS block so that we can
4939      * find stuff which ___tls_get_addr() allocated dynamically.
4940      */
4941     ralign = tcbalign;
4942     if (tls_static_max_align > ralign)
4943 	    ralign = tls_static_max_align;
4944     size = round(tls_static_space, ralign);
4945 
4946     dtv = ((Elf_Addr**)tls)[1];
4947     dtvsize = dtv[1];
4948     tlsend = (Elf_Addr) tls;
4949     tlsstart = tlsend - size;
4950     for (i = 0; i < dtvsize; i++) {
4951 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4952 		free_aligned((void *)dtv[i + 2]);
4953 	}
4954     }
4955 
4956     free_aligned((void *)tlsstart);
4957     free((void*) dtv);
4958 }
4959 
4960 #endif
4961 
4962 /*
4963  * Allocate TLS block for module with given index.
4964  */
4965 void *
4966 allocate_module_tls(int index)
4967 {
4968     Obj_Entry* obj;
4969     char* p;
4970 
4971     TAILQ_FOREACH(obj, &obj_list, next) {
4972 	if (obj->marker)
4973 	    continue;
4974 	if (obj->tlsindex == index)
4975 	    break;
4976     }
4977     if (!obj) {
4978 	_rtld_error("Can't find module with TLS index %d", index);
4979 	rtld_die();
4980     }
4981 
4982     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4983     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4984     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4985 
4986     return p;
4987 }
4988 
4989 bool
4990 allocate_tls_offset(Obj_Entry *obj)
4991 {
4992     size_t off;
4993 
4994     if (obj->tls_done)
4995 	return true;
4996 
4997     if (obj->tlssize == 0) {
4998 	obj->tls_done = true;
4999 	return true;
5000     }
5001 
5002     if (tls_last_offset == 0)
5003 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5004     else
5005 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5006 				   obj->tlssize, obj->tlsalign);
5007 
5008     /*
5009      * If we have already fixed the size of the static TLS block, we
5010      * must stay within that size. When allocating the static TLS, we
5011      * leave a small amount of space spare to be used for dynamically
5012      * loading modules which use static TLS.
5013      */
5014     if (tls_static_space != 0) {
5015 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5016 	    return false;
5017     } else if (obj->tlsalign > tls_static_max_align) {
5018 	    tls_static_max_align = obj->tlsalign;
5019     }
5020 
5021     tls_last_offset = obj->tlsoffset = off;
5022     tls_last_size = obj->tlssize;
5023     obj->tls_done = true;
5024 
5025     return true;
5026 }
5027 
5028 void
5029 free_tls_offset(Obj_Entry *obj)
5030 {
5031 
5032     /*
5033      * If we were the last thing to allocate out of the static TLS
5034      * block, we give our space back to the 'allocator'. This is a
5035      * simplistic workaround to allow libGL.so.1 to be loaded and
5036      * unloaded multiple times.
5037      */
5038     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5039 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5040 	tls_last_offset -= obj->tlssize;
5041 	tls_last_size = 0;
5042     }
5043 }
5044 
5045 void *
5046 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5047 {
5048     void *ret;
5049     RtldLockState lockstate;
5050 
5051     wlock_acquire(rtld_bind_lock, &lockstate);
5052     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5053       tcbsize, tcbalign);
5054     lock_release(rtld_bind_lock, &lockstate);
5055     return (ret);
5056 }
5057 
5058 void
5059 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5060 {
5061     RtldLockState lockstate;
5062 
5063     wlock_acquire(rtld_bind_lock, &lockstate);
5064     free_tls(tcb, tcbsize, tcbalign);
5065     lock_release(rtld_bind_lock, &lockstate);
5066 }
5067 
5068 static void
5069 object_add_name(Obj_Entry *obj, const char *name)
5070 {
5071     Name_Entry *entry;
5072     size_t len;
5073 
5074     len = strlen(name);
5075     entry = malloc(sizeof(Name_Entry) + len);
5076 
5077     if (entry != NULL) {
5078 	strcpy(entry->name, name);
5079 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5080     }
5081 }
5082 
5083 static int
5084 object_match_name(const Obj_Entry *obj, const char *name)
5085 {
5086     Name_Entry *entry;
5087 
5088     STAILQ_FOREACH(entry, &obj->names, link) {
5089 	if (strcmp(name, entry->name) == 0)
5090 	    return (1);
5091     }
5092     return (0);
5093 }
5094 
5095 static Obj_Entry *
5096 locate_dependency(const Obj_Entry *obj, const char *name)
5097 {
5098     const Objlist_Entry *entry;
5099     const Needed_Entry *needed;
5100 
5101     STAILQ_FOREACH(entry, &list_main, link) {
5102 	if (object_match_name(entry->obj, name))
5103 	    return entry->obj;
5104     }
5105 
5106     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5107 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5108 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5109 	    /*
5110 	     * If there is DT_NEEDED for the name we are looking for,
5111 	     * we are all set.  Note that object might not be found if
5112 	     * dependency was not loaded yet, so the function can
5113 	     * return NULL here.  This is expected and handled
5114 	     * properly by the caller.
5115 	     */
5116 	    return (needed->obj);
5117 	}
5118     }
5119     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5120 	obj->path, name);
5121     rtld_die();
5122 }
5123 
5124 static int
5125 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5126     const Elf_Vernaux *vna)
5127 {
5128     const Elf_Verdef *vd;
5129     const char *vername;
5130 
5131     vername = refobj->strtab + vna->vna_name;
5132     vd = depobj->verdef;
5133     if (vd == NULL) {
5134 	_rtld_error("%s: version %s required by %s not defined",
5135 	    depobj->path, vername, refobj->path);
5136 	return (-1);
5137     }
5138     for (;;) {
5139 	if (vd->vd_version != VER_DEF_CURRENT) {
5140 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5141 		depobj->path, vd->vd_version);
5142 	    return (-1);
5143 	}
5144 	if (vna->vna_hash == vd->vd_hash) {
5145 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5146 		((const char *)vd + vd->vd_aux);
5147 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5148 		return (0);
5149 	}
5150 	if (vd->vd_next == 0)
5151 	    break;
5152 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5153     }
5154     if (vna->vna_flags & VER_FLG_WEAK)
5155 	return (0);
5156     _rtld_error("%s: version %s required by %s not found",
5157 	depobj->path, vername, refobj->path);
5158     return (-1);
5159 }
5160 
5161 static int
5162 rtld_verify_object_versions(Obj_Entry *obj)
5163 {
5164     const Elf_Verneed *vn;
5165     const Elf_Verdef  *vd;
5166     const Elf_Verdaux *vda;
5167     const Elf_Vernaux *vna;
5168     const Obj_Entry *depobj;
5169     int maxvernum, vernum;
5170 
5171     if (obj->ver_checked)
5172 	return (0);
5173     obj->ver_checked = true;
5174 
5175     maxvernum = 0;
5176     /*
5177      * Walk over defined and required version records and figure out
5178      * max index used by any of them. Do very basic sanity checking
5179      * while there.
5180      */
5181     vn = obj->verneed;
5182     while (vn != NULL) {
5183 	if (vn->vn_version != VER_NEED_CURRENT) {
5184 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5185 		obj->path, vn->vn_version);
5186 	    return (-1);
5187 	}
5188 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5189 	for (;;) {
5190 	    vernum = VER_NEED_IDX(vna->vna_other);
5191 	    if (vernum > maxvernum)
5192 		maxvernum = vernum;
5193 	    if (vna->vna_next == 0)
5194 		 break;
5195 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5196 	}
5197 	if (vn->vn_next == 0)
5198 	    break;
5199 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5200     }
5201 
5202     vd = obj->verdef;
5203     while (vd != NULL) {
5204 	if (vd->vd_version != VER_DEF_CURRENT) {
5205 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5206 		obj->path, vd->vd_version);
5207 	    return (-1);
5208 	}
5209 	vernum = VER_DEF_IDX(vd->vd_ndx);
5210 	if (vernum > maxvernum)
5211 		maxvernum = vernum;
5212 	if (vd->vd_next == 0)
5213 	    break;
5214 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5215     }
5216 
5217     if (maxvernum == 0)
5218 	return (0);
5219 
5220     /*
5221      * Store version information in array indexable by version index.
5222      * Verify that object version requirements are satisfied along the
5223      * way.
5224      */
5225     obj->vernum = maxvernum + 1;
5226     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5227 
5228     vd = obj->verdef;
5229     while (vd != NULL) {
5230 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5231 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5232 	    assert(vernum <= maxvernum);
5233 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5234 	    obj->vertab[vernum].hash = vd->vd_hash;
5235 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5236 	    obj->vertab[vernum].file = NULL;
5237 	    obj->vertab[vernum].flags = 0;
5238 	}
5239 	if (vd->vd_next == 0)
5240 	    break;
5241 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5242     }
5243 
5244     vn = obj->verneed;
5245     while (vn != NULL) {
5246 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5247 	if (depobj == NULL)
5248 	    return (-1);
5249 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5250 	for (;;) {
5251 	    if (check_object_provided_version(obj, depobj, vna))
5252 		return (-1);
5253 	    vernum = VER_NEED_IDX(vna->vna_other);
5254 	    assert(vernum <= maxvernum);
5255 	    obj->vertab[vernum].hash = vna->vna_hash;
5256 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5257 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5258 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5259 		VER_INFO_HIDDEN : 0;
5260 	    if (vna->vna_next == 0)
5261 		 break;
5262 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5263 	}
5264 	if (vn->vn_next == 0)
5265 	    break;
5266 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5267     }
5268     return 0;
5269 }
5270 
5271 static int
5272 rtld_verify_versions(const Objlist *objlist)
5273 {
5274     Objlist_Entry *entry;
5275     int rc;
5276 
5277     rc = 0;
5278     STAILQ_FOREACH(entry, objlist, link) {
5279 	/*
5280 	 * Skip dummy objects or objects that have their version requirements
5281 	 * already checked.
5282 	 */
5283 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5284 	    continue;
5285 	if (rtld_verify_object_versions(entry->obj) == -1) {
5286 	    rc = -1;
5287 	    if (ld_tracing == NULL)
5288 		break;
5289 	}
5290     }
5291     if (rc == 0 || ld_tracing != NULL)
5292     	rc = rtld_verify_object_versions(&obj_rtld);
5293     return rc;
5294 }
5295 
5296 const Ver_Entry *
5297 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5298 {
5299     Elf_Versym vernum;
5300 
5301     if (obj->vertab) {
5302 	vernum = VER_NDX(obj->versyms[symnum]);
5303 	if (vernum >= obj->vernum) {
5304 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5305 		obj->path, obj->strtab + symnum, vernum);
5306 	} else if (obj->vertab[vernum].hash != 0) {
5307 	    return &obj->vertab[vernum];
5308 	}
5309     }
5310     return NULL;
5311 }
5312 
5313 int
5314 _rtld_get_stack_prot(void)
5315 {
5316 
5317 	return (stack_prot);
5318 }
5319 
5320 int
5321 _rtld_is_dlopened(void *arg)
5322 {
5323 	Obj_Entry *obj;
5324 	RtldLockState lockstate;
5325 	int res;
5326 
5327 	rlock_acquire(rtld_bind_lock, &lockstate);
5328 	obj = dlcheck(arg);
5329 	if (obj == NULL)
5330 		obj = obj_from_addr(arg);
5331 	if (obj == NULL) {
5332 		_rtld_error("No shared object contains address");
5333 		lock_release(rtld_bind_lock, &lockstate);
5334 		return (-1);
5335 	}
5336 	res = obj->dlopened ? 1 : 0;
5337 	lock_release(rtld_bind_lock, &lockstate);
5338 	return (res);
5339 }
5340 
5341 static int
5342 obj_remap_relro(Obj_Entry *obj, int prot)
5343 {
5344 
5345 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5346 	    prot) == -1) {
5347 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5348 		    obj->path, prot, rtld_strerror(errno));
5349 		return (-1);
5350 	}
5351 	return (0);
5352 }
5353 
5354 static int
5355 obj_disable_relro(Obj_Entry *obj)
5356 {
5357 
5358 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5359 }
5360 
5361 static int
5362 obj_enforce_relro(Obj_Entry *obj)
5363 {
5364 
5365 	return (obj_remap_relro(obj, PROT_READ));
5366 }
5367 
5368 static void
5369 map_stacks_exec(RtldLockState *lockstate)
5370 {
5371 	void (*thr_map_stacks_exec)(void);
5372 
5373 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5374 		return;
5375 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5376 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5377 	if (thr_map_stacks_exec != NULL) {
5378 		stack_prot |= PROT_EXEC;
5379 		thr_map_stacks_exec();
5380 	}
5381 }
5382 
5383 void
5384 symlook_init(SymLook *dst, const char *name)
5385 {
5386 
5387 	bzero(dst, sizeof(*dst));
5388 	dst->name = name;
5389 	dst->hash = elf_hash(name);
5390 	dst->hash_gnu = gnu_hash(name);
5391 }
5392 
5393 static void
5394 symlook_init_from_req(SymLook *dst, const SymLook *src)
5395 {
5396 
5397 	dst->name = src->name;
5398 	dst->hash = src->hash;
5399 	dst->hash_gnu = src->hash_gnu;
5400 	dst->ventry = src->ventry;
5401 	dst->flags = src->flags;
5402 	dst->defobj_out = NULL;
5403 	dst->sym_out = NULL;
5404 	dst->lockstate = src->lockstate;
5405 }
5406 
5407 static int
5408 open_binary_fd(const char *argv0, bool search_in_path)
5409 {
5410 	char *pathenv, *pe, binpath[PATH_MAX];
5411 	int fd;
5412 
5413 	if (search_in_path && strchr(argv0, '/') == NULL) {
5414 		pathenv = getenv("PATH");
5415 		if (pathenv == NULL) {
5416 			_rtld_error("-p and no PATH environment variable");
5417 			rtld_die();
5418 		}
5419 		pathenv = strdup(pathenv);
5420 		if (pathenv == NULL) {
5421 			_rtld_error("Cannot allocate memory");
5422 			rtld_die();
5423 		}
5424 		fd = -1;
5425 		errno = ENOENT;
5426 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5427 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5428 			    sizeof(binpath))
5429 				continue;
5430 			if (binpath[0] != '\0' &&
5431 			    strlcat(binpath, "/", sizeof(binpath)) >=
5432 			    sizeof(binpath))
5433 				continue;
5434 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5435 			    sizeof(binpath))
5436 				continue;
5437 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5438 			if (fd != -1 || errno != ENOENT)
5439 				break;
5440 		}
5441 		free(pathenv);
5442 	} else {
5443 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5444 	}
5445 
5446 	if (fd == -1) {
5447 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5448 		rtld_die();
5449 	}
5450 	return (fd);
5451 }
5452 
5453 /*
5454  * Parse a set of command-line arguments.
5455  */
5456 static int
5457 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5458 {
5459 	const char *arg;
5460 	int fd, i, j, arglen;
5461 	char opt;
5462 
5463 	dbg("Parsing command-line arguments");
5464 	*use_pathp = false;
5465 	*fdp = -1;
5466 
5467 	for (i = 1; i < argc; i++ ) {
5468 		arg = argv[i];
5469 		dbg("argv[%d]: '%s'", i, arg);
5470 
5471 		/*
5472 		 * rtld arguments end with an explicit "--" or with the first
5473 		 * non-prefixed argument.
5474 		 */
5475 		if (strcmp(arg, "--") == 0) {
5476 			i++;
5477 			break;
5478 		}
5479 		if (arg[0] != '-')
5480 			break;
5481 
5482 		/*
5483 		 * All other arguments are single-character options that can
5484 		 * be combined, so we need to search through `arg` for them.
5485 		 */
5486 		arglen = strlen(arg);
5487 		for (j = 1; j < arglen; j++) {
5488 			opt = arg[j];
5489 			if (opt == 'h') {
5490 				print_usage(argv[0]);
5491 				_exit(0);
5492 			} else if (opt == 'f') {
5493 			/*
5494 			 * -f XX can be used to specify a descriptor for the
5495 			 * binary named at the command line (i.e., the later
5496 			 * argument will specify the process name but the
5497 			 * descriptor is what will actually be executed)
5498 			 */
5499 			if (j != arglen - 1) {
5500 				/* -f must be the last option in, e.g., -abcf */
5501 				_rtld_error("Invalid options: %s", arg);
5502 				rtld_die();
5503 			}
5504 			i++;
5505 			fd = parse_integer(argv[i]);
5506 			if (fd == -1) {
5507 				_rtld_error("Invalid file descriptor: '%s'",
5508 				    argv[i]);
5509 				rtld_die();
5510 			}
5511 			*fdp = fd;
5512 			break;
5513 			} else if (opt == 'p') {
5514 				*use_pathp = true;
5515 			} else {
5516 				_rtld_error("Invalid argument: '%s'", arg);
5517 				print_usage(argv[0]);
5518 				rtld_die();
5519 			}
5520 		}
5521 	}
5522 
5523 	return (i);
5524 }
5525 
5526 /*
5527  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5528  */
5529 static int
5530 parse_integer(const char *str)
5531 {
5532 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5533 	const char *orig;
5534 	int n;
5535 	char c;
5536 
5537 	orig = str;
5538 	n = 0;
5539 	for (c = *str; c != '\0'; c = *++str) {
5540 		if (c < '0' || c > '9')
5541 			return (-1);
5542 
5543 		n *= RADIX;
5544 		n += c - '0';
5545 	}
5546 
5547 	/* Make sure we actually parsed something. */
5548 	if (str == orig)
5549 		return (-1);
5550 	return (n);
5551 }
5552 
5553 static void
5554 print_usage(const char *argv0)
5555 {
5556 
5557 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5558 		"\n"
5559 		"Options:\n"
5560 		"  -h        Display this help message\n"
5561 		"  -p        Search in PATH for named binary\n"
5562 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5563 		"  --        End of RTLD options\n"
5564 		"  <binary>  Name of process to execute\n"
5565 		"  <args>    Arguments to the executed process\n", argv0);
5566 }
5567 
5568 /*
5569  * Overrides for libc_pic-provided functions.
5570  */
5571 
5572 int
5573 __getosreldate(void)
5574 {
5575 	size_t len;
5576 	int oid[2];
5577 	int error, osrel;
5578 
5579 	if (osreldate != 0)
5580 		return (osreldate);
5581 
5582 	oid[0] = CTL_KERN;
5583 	oid[1] = KERN_OSRELDATE;
5584 	osrel = 0;
5585 	len = sizeof(osrel);
5586 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5587 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5588 		osreldate = osrel;
5589 	return (osreldate);
5590 }
5591 
5592 void
5593 exit(int status)
5594 {
5595 
5596 	_exit(status);
5597 }
5598 
5599 void (*__cleanup)(void);
5600 int __isthreaded = 0;
5601 int _thread_autoinit_dummy_decl = 1;
5602 
5603 /*
5604  * No unresolved symbols for rtld.
5605  */
5606 void
5607 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5608 {
5609 }
5610 
5611 const char *
5612 rtld_strerror(int errnum)
5613 {
5614 
5615 	if (errnum < 0 || errnum >= sys_nerr)
5616 		return ("Unknown error");
5617 	return (sys_errlist[errnum]);
5618 }
5619 
5620 /*
5621  * No ifunc relocations.
5622  */
5623 void *
5624 memset(void *dest, int c, size_t len)
5625 {
5626 	size_t i;
5627 
5628 	for (i = 0; i < len; i++)
5629 		((char *)dest)[i] = c;
5630 	return (dest);
5631 }
5632 
5633 void
5634 bzero(void *dest, size_t len)
5635 {
5636 	size_t i;
5637 
5638 	for (i = 0; i < len; i++)
5639 		((char *)dest)[i] = 0;
5640 }
5641 
5642 /* malloc */
5643 void *
5644 malloc(size_t nbytes)
5645 {
5646 
5647 	return (__crt_malloc(nbytes));
5648 }
5649 
5650 void *
5651 calloc(size_t num, size_t size)
5652 {
5653 
5654 	return (__crt_calloc(num, size));
5655 }
5656 
5657 void
5658 free(void *cp)
5659 {
5660 
5661 	__crt_free(cp);
5662 }
5663 
5664 void *
5665 realloc(void *cp, size_t nbytes)
5666 {
5667 
5668 	return (__crt_realloc(cp, nbytes));
5669 }
5670