xref: /freebsd/libexec/rtld-elf/rtld.c (revision 783d3ff6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80 
81 struct dlerror_save {
82 	int seen;
83 	char *msg;
84 };
85 
86 /*
87  * Function declarations.
88  */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91     const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93     const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100     int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140     const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142     const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150     int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152     RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160     int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178     const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int  rtld_verify_versions(const Objlist *);
183 static int  rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int  object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188     struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191     const unsigned long);
192 
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195 
196 int __sys_openat(int, const char *, int, ...);
197 
198 /*
199  * Data declarations.
200  */
201 struct r_debug r_debug __exported;	/* for GDB; */
202 static bool libmap_disable;	/* Disable libmap */
203 static bool ld_loadfltr;	/* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust;		/* False for setuid and setgid programs */
206 static bool dangerous_ld_env;	/* True if environment variables have been
207 				   used to affect the libraries loaded */
208 bool ld_bind_not;		/* Disable PLT update */
209 static const char *ld_bind_now;	/* Environment variable for immediate binding */
210 static const char *ld_debug;	/* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 				       weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload;	/* Environment variable for libraries to
216 				   load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 				   descriptors */
219 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
220 static const char *ld_tracing;	/* Called from ldd to print libs */
221 static const char *ld_utrace;	/* Use utrace() to log events. */
222 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
223 static Obj_Entry *obj_main;	/* The main program shared object */
224 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
225 static unsigned int obj_count;	/* Number of objects in obj_list */
226 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
228   RTLD_STATIC_TLS_EXTRA;
229 
230 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
231   STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main =	/* Objects loaded at program startup */
233   STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini =	/* Objects needing fini() calls */
235   STAILQ_HEAD_INITIALIZER(list_fini);
236 
237 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
238 
239 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
240 
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243 
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
256 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
257 int _rtld_get_stack_prot(void) __exported;
258 int _rtld_is_dlopened(void *) __exported;
259 void _rtld_error(const char *, ...) __exported;
260 
261 /* Only here to fix -Wmissing-prototypes warnings */
262 int __getosreldate(void);
263 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
264 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
265 
266 int npagesizes;
267 static int osreldate;
268 size_t *pagesizes;
269 size_t page_size;
270 
271 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
272 static int max_stack_flags;
273 
274 /*
275  * Global declarations normally provided by crt1.  The dynamic linker is
276  * not built with crt1, so we have to provide them ourselves.
277  */
278 char *__progname;
279 char **environ;
280 
281 /*
282  * Used to pass argc, argv to init functions.
283  */
284 int main_argc;
285 char **main_argv;
286 
287 /*
288  * Globals to control TLS allocation.
289  */
290 size_t tls_last_offset;		/* Static TLS offset of last module */
291 size_t tls_last_size;		/* Static TLS size of last module */
292 size_t tls_static_space;	/* Static TLS space allocated */
293 static size_t tls_static_max_align;
294 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
295 int tls_max_index = 1;		/* Largest module index allocated */
296 
297 static bool ld_library_path_rpath = false;
298 bool ld_fast_sigblock = false;
299 
300 /*
301  * Globals for path names, and such
302  */
303 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
304 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
305 const char *ld_path_rtld = _PATH_RTLD;
306 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
307 const char *ld_env_prefix = LD_;
308 
309 static void (*rtld_exit_ptr)(void);
310 
311 /*
312  * Fill in a DoneList with an allocation large enough to hold all of
313  * the currently-loaded objects.  Keep this as a macro since it calls
314  * alloca and we want that to occur within the scope of the caller.
315  */
316 #define donelist_init(dlp)					\
317     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
318     assert((dlp)->objs != NULL),				\
319     (dlp)->num_alloc = obj_count,				\
320     (dlp)->num_used = 0)
321 
322 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
323 	if (ld_utrace != NULL)					\
324 		ld_utrace_log(e, h, mb, ms, r, n);		\
325 } while (0)
326 
327 static void
328 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
329     int refcnt, const char *name)
330 {
331 	struct utrace_rtld ut;
332 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
333 
334 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
335 	ut.event = event;
336 	ut.handle = handle;
337 	ut.mapbase = mapbase;
338 	ut.mapsize = mapsize;
339 	ut.refcnt = refcnt;
340 	bzero(ut.name, sizeof(ut.name));
341 	if (name)
342 		strlcpy(ut.name, name, sizeof(ut.name));
343 	utrace(&ut, sizeof(ut));
344 }
345 
346 enum {
347 	LD_BIND_NOW = 0,
348 	LD_PRELOAD,
349 	LD_LIBMAP,
350 	LD_LIBRARY_PATH,
351 	LD_LIBRARY_PATH_FDS,
352 	LD_LIBMAP_DISABLE,
353 	LD_BIND_NOT,
354 	LD_DEBUG,
355 	LD_ELF_HINTS_PATH,
356 	LD_LOADFLTR,
357 	LD_LIBRARY_PATH_RPATH,
358 	LD_PRELOAD_FDS,
359 	LD_DYNAMIC_WEAK,
360 	LD_TRACE_LOADED_OBJECTS,
361 	LD_UTRACE,
362 	LD_DUMP_REL_PRE,
363 	LD_DUMP_REL_POST,
364 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
365 	LD_TRACE_LOADED_OBJECTS_FMT1,
366 	LD_TRACE_LOADED_OBJECTS_FMT2,
367 	LD_TRACE_LOADED_OBJECTS_ALL,
368 	LD_SHOW_AUXV,
369 	LD_STATIC_TLS_EXTRA,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
404 };
405 
406 static const char *
407 ld_get_env_var(int idx)
408 {
409 	return (ld_env_vars[idx].val);
410 }
411 
412 static const char *
413 rtld_get_env_val(char **env, const char *name, size_t name_len)
414 {
415 	char **m, *n, *v;
416 
417 	for (m = env; *m != NULL; m++) {
418 		n = *m;
419 		v = strchr(n, '=');
420 		if (v == NULL) {
421 			/* corrupt environment? */
422 			continue;
423 		}
424 		if (v - n == (ptrdiff_t)name_len &&
425 		    strncmp(name, n, name_len) == 0)
426 			return (v + 1);
427 	}
428 	return (NULL);
429 }
430 
431 static void
432 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
433 {
434 	struct ld_env_var_desc *lvd;
435 	size_t prefix_len, nlen;
436 	char **m, *n, *v;
437 	int i;
438 
439 	prefix_len = strlen(env_prefix);
440 	for (m = env; *m != NULL; m++) {
441 		n = *m;
442 		if (strncmp(env_prefix, n, prefix_len) != 0) {
443 			/* Not a rtld environment variable. */
444 			continue;
445 		}
446 		n += prefix_len;
447 		v = strchr(n, '=');
448 		if (v == NULL) {
449 			/* corrupt environment? */
450 			continue;
451 		}
452 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
453 			lvd = &ld_env_vars[i];
454 			if (lvd->val != NULL) {
455 				/* Saw higher-priority variable name already. */
456 				continue;
457 			}
458 			nlen = strlen(lvd->n);
459 			if (v - n == (ptrdiff_t)nlen &&
460 			    strncmp(lvd->n, n, nlen) == 0) {
461 				lvd->val = v + 1;
462 				break;
463 			}
464 		}
465 	}
466 }
467 
468 static void
469 rtld_init_env_vars(char **env)
470 {
471 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
472 }
473 
474 static void
475 set_ld_elf_hints_path(void)
476 {
477 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
478 		ld_elf_hints_path = ld_elf_hints_default;
479 }
480 
481 uintptr_t
482 rtld_round_page(uintptr_t x)
483 {
484 	return (roundup2(x, page_size));
485 }
486 
487 uintptr_t
488 rtld_trunc_page(uintptr_t x)
489 {
490 	return (rounddown2(x, page_size));
491 }
492 
493 /*
494  * Main entry point for dynamic linking.  The first argument is the
495  * stack pointer.  The stack is expected to be laid out as described
496  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
497  * Specifically, the stack pointer points to a word containing
498  * ARGC.  Following that in the stack is a null-terminated sequence
499  * of pointers to argument strings.  Then comes a null-terminated
500  * sequence of pointers to environment strings.  Finally, there is a
501  * sequence of "auxiliary vector" entries.
502  *
503  * The second argument points to a place to store the dynamic linker's
504  * exit procedure pointer and the third to a place to store the main
505  * program's object.
506  *
507  * The return value is the main program's entry point.
508  */
509 func_ptr_type
510 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
511 {
512     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
513     Objlist_Entry *entry;
514     Obj_Entry *last_interposer, *obj, *preload_tail;
515     const Elf_Phdr *phdr;
516     Objlist initlist;
517     RtldLockState lockstate;
518     struct stat st;
519     Elf_Addr *argcp;
520     char **argv, **env, **envp, *kexecpath;
521     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
522     struct ld_env_var_desc *lvd;
523     caddr_t imgentry;
524     char buf[MAXPATHLEN];
525     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
526     size_t sz;
527 #ifdef __powerpc__
528     int old_auxv_format = 1;
529 #endif
530     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
531 
532     /*
533      * On entry, the dynamic linker itself has not been relocated yet.
534      * Be very careful not to reference any global data until after
535      * init_rtld has returned.  It is OK to reference file-scope statics
536      * and string constants, and to call static and global functions.
537      */
538 
539     /* Find the auxiliary vector on the stack. */
540     argcp = sp;
541     argc = *sp++;
542     argv = (char **) sp;
543     sp += argc + 1;	/* Skip over arguments and NULL terminator */
544     env = (char **) sp;
545     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
546 	;
547     aux = (Elf_Auxinfo *) sp;
548 
549     /* Digest the auxiliary vector. */
550     for (i = 0;  i < AT_COUNT;  i++)
551 	aux_info[i] = NULL;
552     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
553 	if (auxp->a_type < AT_COUNT)
554 	    aux_info[auxp->a_type] = auxp;
555 #ifdef __powerpc__
556 	if (auxp->a_type == 23) /* AT_STACKPROT */
557 	    old_auxv_format = 0;
558 #endif
559     }
560 
561 #ifdef __powerpc__
562     if (old_auxv_format) {
563 	/* Remap from old-style auxv numbers. */
564 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
565 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
566 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
567 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
568 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
569 	aux_info[13] = NULL;		/* AT_GID */
570 
571 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
572 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
573 	aux_info[16] = aux_info[14];	/* AT_CANARY */
574 	aux_info[14] = NULL;		/* AT_EGID */
575     }
576 #endif
577 
578     /* Initialize and relocate ourselves. */
579     assert(aux_info[AT_BASE] != NULL);
580     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
581 
582     dlerror_dflt_init();
583 
584     __progname = obj_rtld.path;
585     argv0 = argv[0] != NULL ? argv[0] : "(null)";
586     environ = env;
587     main_argc = argc;
588     main_argv = argv;
589 
590     if (aux_info[AT_BSDFLAGS] != NULL &&
591 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
592 	    ld_fast_sigblock = true;
593 
594     trust = !issetugid();
595     direct_exec = false;
596 
597     md_abi_variant_hook(aux_info);
598     rtld_init_env_vars(env);
599 
600     fd = -1;
601     if (aux_info[AT_EXECFD] != NULL) {
602 	fd = aux_info[AT_EXECFD]->a_un.a_val;
603     } else {
604 	assert(aux_info[AT_PHDR] != NULL);
605 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
606 	if (phdr == obj_rtld.phdr) {
607 	    if (!trust) {
608 		_rtld_error("Tainted process refusing to run binary %s",
609 		    argv0);
610 		rtld_die();
611 	    }
612 	    direct_exec = true;
613 
614 	    dbg("opening main program in direct exec mode");
615 	    if (argc >= 2) {
616 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
617 		  &argv0, &dir_ignore);
618 		explicit_fd = (fd != -1);
619 		binpath = NULL;
620 		if (!explicit_fd)
621 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
622 		if (fstat(fd, &st) == -1) {
623 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
624 		      explicit_fd ? "user-provided descriptor" : argv0,
625 		      rtld_strerror(errno));
626 		    rtld_die();
627 		}
628 
629 		/*
630 		 * Rough emulation of the permission checks done by
631 		 * execve(2), only Unix DACs are checked, ACLs are
632 		 * ignored.  Preserve the semantic of disabling owner
633 		 * to execute if owner x bit is cleared, even if
634 		 * others x bit is enabled.
635 		 * mmap(2) does not allow to mmap with PROT_EXEC if
636 		 * binary' file comes from noexec mount.  We cannot
637 		 * set a text reference on the binary.
638 		 */
639 		dir_enable = false;
640 		if (st.st_uid == geteuid()) {
641 		    if ((st.st_mode & S_IXUSR) != 0)
642 			dir_enable = true;
643 		} else if (st.st_gid == getegid()) {
644 		    if ((st.st_mode & S_IXGRP) != 0)
645 			dir_enable = true;
646 		} else if ((st.st_mode & S_IXOTH) != 0) {
647 		    dir_enable = true;
648 		}
649 		if (!dir_enable && !dir_ignore) {
650 		    _rtld_error("No execute permission for binary %s",
651 		        argv0);
652 		    rtld_die();
653 		}
654 
655 		/*
656 		 * For direct exec mode, argv[0] is the interpreter
657 		 * name, we must remove it and shift arguments left
658 		 * before invoking binary main.  Since stack layout
659 		 * places environment pointers and aux vectors right
660 		 * after the terminating NULL, we must shift
661 		 * environment and aux as well.
662 		 */
663 		main_argc = argc - rtld_argc;
664 		for (i = 0; i <= main_argc; i++)
665 		    argv[i] = argv[i + rtld_argc];
666 		*argcp -= rtld_argc;
667 		environ = env = envp = argv + main_argc + 1;
668 		dbg("move env from %p to %p", envp + rtld_argc, envp);
669 		do {
670 		    *envp = *(envp + rtld_argc);
671 		}  while (*envp++ != NULL);
672 		aux = auxp = (Elf_Auxinfo *)envp;
673 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
674 		dbg("move aux from %p to %p", auxpf, aux);
675 		/* XXXKIB insert place for AT_EXECPATH if not present */
676 		for (;; auxp++, auxpf++) {
677 		    *auxp = *auxpf;
678 		    if (auxp->a_type == AT_NULL)
679 			    break;
680 		}
681 		/* Since the auxiliary vector has moved, redigest it. */
682 		for (i = 0;  i < AT_COUNT;  i++)
683 		    aux_info[i] = NULL;
684 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
685 		    if (auxp->a_type < AT_COUNT)
686 			aux_info[auxp->a_type] = auxp;
687 		}
688 
689 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
690 		if (binpath == NULL) {
691 		    aux_info[AT_EXECPATH] = NULL;
692 		} else {
693 		    if (aux_info[AT_EXECPATH] == NULL) {
694 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
695 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
696 		    }
697 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
698 		      binpath);
699 		}
700 	    } else {
701 		_rtld_error("No binary");
702 		rtld_die();
703 	    }
704 	}
705     }
706 
707     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
708 
709     /*
710      * If the process is tainted, then we un-set the dangerous environment
711      * variables.  The process will be marked as tainted until setuid(2)
712      * is called.  If any child process calls setuid(2) we do not want any
713      * future processes to honor the potentially un-safe variables.
714      */
715     if (!trust) {
716 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
717 		    lvd = &ld_env_vars[i];
718 		    if (lvd->unsecure)
719 			    lvd->val = NULL;
720 	    }
721     }
722 
723     ld_debug = ld_get_env_var(LD_DEBUG);
724     if (ld_bind_now == NULL)
725 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
726     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
727     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
728     libmap_override = ld_get_env_var(LD_LIBMAP);
729     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
730     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
731     ld_preload = ld_get_env_var(LD_PRELOAD);
732     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
733     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
734     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
735     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
736     if (library_path_rpath != NULL) {
737 	    if (library_path_rpath[0] == 'y' ||
738 		library_path_rpath[0] == 'Y' ||
739 		library_path_rpath[0] == '1')
740 		    ld_library_path_rpath = true;
741 	    else
742 		    ld_library_path_rpath = false;
743     }
744     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
745     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
746 	sz = parse_integer(static_tls_extra);
747 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
748 	    ld_static_tls_extra = sz;
749     }
750     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
751 	ld_library_path != NULL || ld_preload != NULL ||
752 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
753 	static_tls_extra != NULL;
754     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
755     ld_utrace = ld_get_env_var(LD_UTRACE);
756 
757     set_ld_elf_hints_path();
758     if (ld_debug != NULL && *ld_debug != '\0')
759 	debug = 1;
760     dbg("%s is initialized, base address = %p", __progname,
761 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
762     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
763     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
764 
765     dbg("initializing thread locks");
766     lockdflt_init();
767 
768     /*
769      * Load the main program, or process its program header if it is
770      * already loaded.
771      */
772     if (fd != -1) {	/* Load the main program. */
773 	dbg("loading main program");
774 	obj_main = map_object(fd, argv0, NULL);
775 	close(fd);
776 	if (obj_main == NULL)
777 	    rtld_die();
778 	max_stack_flags = obj_main->stack_flags;
779     } else {				/* Main program already loaded. */
780 	dbg("processing main program's program header");
781 	assert(aux_info[AT_PHDR] != NULL);
782 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
783 	assert(aux_info[AT_PHNUM] != NULL);
784 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
785 	assert(aux_info[AT_PHENT] != NULL);
786 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
787 	assert(aux_info[AT_ENTRY] != NULL);
788 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
789 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
790 	    rtld_die();
791     }
792 
793     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
794 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
795 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
796 	    if (kexecpath[0] == '/')
797 		    obj_main->path = kexecpath;
798 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
799 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
800 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
801 		    obj_main->path = xstrdup(argv0);
802 	    else
803 		    obj_main->path = xstrdup(buf);
804     } else {
805 	    dbg("No AT_EXECPATH or direct exec");
806 	    obj_main->path = xstrdup(argv0);
807     }
808     dbg("obj_main path %s", obj_main->path);
809     obj_main->mainprog = true;
810 
811     if (aux_info[AT_STACKPROT] != NULL &&
812       aux_info[AT_STACKPROT]->a_un.a_val != 0)
813 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
814 
815 #ifndef COMPAT_libcompat
816     /*
817      * Get the actual dynamic linker pathname from the executable if
818      * possible.  (It should always be possible.)  That ensures that
819      * gdb will find the right dynamic linker even if a non-standard
820      * one is being used.
821      */
822     if (obj_main->interp != NULL &&
823       strcmp(obj_main->interp, obj_rtld.path) != 0) {
824 	free(obj_rtld.path);
825 	obj_rtld.path = xstrdup(obj_main->interp);
826         __progname = obj_rtld.path;
827     }
828 #endif
829 
830     if (!digest_dynamic(obj_main, 0))
831 	rtld_die();
832     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
833 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
834 	obj_main->dynsymcount);
835 
836     linkmap_add(obj_main);
837     linkmap_add(&obj_rtld);
838 
839     /* Link the main program into the list of objects. */
840     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
841     obj_count++;
842     obj_loads++;
843 
844     /* Initialize a fake symbol for resolving undefined weak references. */
845     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
846     sym_zero.st_shndx = SHN_UNDEF;
847     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
848 
849     if (!libmap_disable)
850         libmap_disable = (bool)lm_init(libmap_override);
851 
852     if (aux_info[AT_KPRELOAD] != NULL &&
853       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
854 	dbg("loading kernel vdso");
855 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
856 	    rtld_die();
857     }
858 
859     dbg("loading LD_PRELOAD_FDS libraries");
860     if (load_preload_objects(ld_preload_fds, true) == -1)
861 	rtld_die();
862 
863     dbg("loading LD_PRELOAD libraries");
864     if (load_preload_objects(ld_preload, false) == -1)
865 	rtld_die();
866     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
867 
868     dbg("loading needed objects");
869     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
870       0) == -1)
871 	rtld_die();
872 
873     /* Make a list of all objects loaded at startup. */
874     last_interposer = obj_main;
875     TAILQ_FOREACH(obj, &obj_list, next) {
876 	if (obj->marker)
877 	    continue;
878 	if (obj->z_interpose && obj != obj_main) {
879 	    objlist_put_after(&list_main, last_interposer, obj);
880 	    last_interposer = obj;
881 	} else {
882 	    objlist_push_tail(&list_main, obj);
883 	}
884     	obj->refcount++;
885     }
886 
887     dbg("checking for required versions");
888     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
889 	rtld_die();
890 
891     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
892        dump_auxv(aux_info);
893 
894     if (ld_tracing) {		/* We're done */
895 	trace_loaded_objects(obj_main, true);
896 	exit(0);
897     }
898 
899     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
900        dump_relocations(obj_main);
901        exit (0);
902     }
903 
904     /*
905      * Processing tls relocations requires having the tls offsets
906      * initialized.  Prepare offsets before starting initial
907      * relocation processing.
908      */
909     dbg("initializing initial thread local storage offsets");
910     STAILQ_FOREACH(entry, &list_main, link) {
911 	/*
912 	 * Allocate all the initial objects out of the static TLS
913 	 * block even if they didn't ask for it.
914 	 */
915 	allocate_tls_offset(entry->obj);
916     }
917 
918     if (relocate_objects(obj_main,
919       ld_bind_now != NULL && *ld_bind_now != '\0',
920       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
921 	rtld_die();
922 
923     dbg("doing copy relocations");
924     if (do_copy_relocations(obj_main) == -1)
925 	rtld_die();
926 
927     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
928        dump_relocations(obj_main);
929        exit (0);
930     }
931 
932     ifunc_init(aux);
933 
934     /*
935      * Setup TLS for main thread.  This must be done after the
936      * relocations are processed, since tls initialization section
937      * might be the subject for relocations.
938      */
939     dbg("initializing initial thread local storage");
940     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
941 
942     dbg("initializing key program variables");
943     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
944     set_program_var("environ", env);
945     set_program_var("__elf_aux_vector", aux);
946 
947     /* Make a list of init functions to call. */
948     objlist_init(&initlist);
949     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
950       preload_tail, &initlist);
951 
952     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
953 
954     map_stacks_exec(NULL);
955 
956     if (!obj_main->crt_no_init) {
957 	/*
958 	 * Make sure we don't call the main program's init and fini
959 	 * functions for binaries linked with old crt1 which calls
960 	 * _init itself.
961 	 */
962 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
963 	obj_main->preinit_array = obj_main->init_array =
964 	    obj_main->fini_array = (Elf_Addr)NULL;
965     }
966 
967     if (direct_exec) {
968 	/* Set osrel for direct-execed binary */
969 	mib[0] = CTL_KERN;
970 	mib[1] = KERN_PROC;
971 	mib[2] = KERN_PROC_OSREL;
972 	mib[3] = getpid();
973 	osrel = obj_main->osrel;
974 	sz = sizeof(old_osrel);
975 	dbg("setting osrel to %d", osrel);
976 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
977     }
978 
979     wlock_acquire(rtld_bind_lock, &lockstate);
980 
981     dbg("resolving ifuncs");
982     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
983       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
984 	rtld_die();
985 
986     rtld_exit_ptr = rtld_exit;
987     if (obj_main->crt_no_init)
988 	preinit_main();
989     objlist_call_init(&initlist, &lockstate);
990     _r_debug_postinit(&obj_main->linkmap);
991     objlist_clear(&initlist);
992     dbg("loading filtees");
993     TAILQ_FOREACH(obj, &obj_list, next) {
994 	if (obj->marker)
995 	    continue;
996 	if (ld_loadfltr || obj->z_loadfltr)
997 	    load_filtees(obj, 0, &lockstate);
998     }
999 
1000     dbg("enforcing main obj relro");
1001     if (obj_enforce_relro(obj_main) == -1)
1002 	rtld_die();
1003 
1004     lock_release(rtld_bind_lock, &lockstate);
1005 
1006     dbg("transferring control to program entry point = %p", obj_main->entry);
1007 
1008     /* Return the exit procedure and the program entry point. */
1009     *exit_proc = rtld_exit_ptr;
1010     *objp = obj_main;
1011     return ((func_ptr_type)obj_main->entry);
1012 }
1013 
1014 void *
1015 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1016 {
1017 	void *ptr;
1018 	Elf_Addr target;
1019 
1020 	ptr = (void *)make_function_pointer(def, obj);
1021 	target = call_ifunc_resolver(ptr);
1022 	return ((void *)target);
1023 }
1024 
1025 Elf_Addr
1026 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1027 {
1028     const Elf_Rel *rel;
1029     const Elf_Sym *def;
1030     const Obj_Entry *defobj;
1031     Elf_Addr *where;
1032     Elf_Addr target;
1033     RtldLockState lockstate;
1034 
1035     rlock_acquire(rtld_bind_lock, &lockstate);
1036     if (sigsetjmp(lockstate.env, 0) != 0)
1037 	    lock_upgrade(rtld_bind_lock, &lockstate);
1038     if (obj->pltrel)
1039 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1040     else
1041 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1042 
1043     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1044     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1045 	NULL, &lockstate);
1046     if (def == NULL)
1047 	rtld_die();
1048     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1049 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1050     else
1051 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1052 
1053     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1054       defobj->strtab + def->st_name,
1055       obj->path == NULL ? NULL : basename(obj->path),
1056       (void *)target,
1057       defobj->path == NULL ? NULL : basename(defobj->path));
1058 
1059     /*
1060      * Write the new contents for the jmpslot. Note that depending on
1061      * architecture, the value which we need to return back to the
1062      * lazy binding trampoline may or may not be the target
1063      * address. The value returned from reloc_jmpslot() is the value
1064      * that the trampoline needs.
1065      */
1066     target = reloc_jmpslot(where, target, defobj, obj, rel);
1067     lock_release(rtld_bind_lock, &lockstate);
1068     return (target);
1069 }
1070 
1071 /*
1072  * Error reporting function.  Use it like printf.  If formats the message
1073  * into a buffer, and sets things up so that the next call to dlerror()
1074  * will return the message.
1075  */
1076 void
1077 _rtld_error(const char *fmt, ...)
1078 {
1079 	va_list ap;
1080 
1081 	va_start(ap, fmt);
1082 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1083 	    fmt, ap);
1084 	va_end(ap);
1085 	*lockinfo.dlerror_seen() = 0;
1086 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1087 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1088 }
1089 
1090 /*
1091  * Return a dynamically-allocated copy of the current error message, if any.
1092  */
1093 static struct dlerror_save *
1094 errmsg_save(void)
1095 {
1096 	struct dlerror_save *res;
1097 
1098 	res = xmalloc(sizeof(*res));
1099 	res->seen = *lockinfo.dlerror_seen();
1100 	if (res->seen == 0)
1101 		res->msg = xstrdup(lockinfo.dlerror_loc());
1102 	return (res);
1103 }
1104 
1105 /*
1106  * Restore the current error message from a copy which was previously saved
1107  * by errmsg_save().  The copy is freed.
1108  */
1109 static void
1110 errmsg_restore(struct dlerror_save *saved_msg)
1111 {
1112 	if (saved_msg == NULL || saved_msg->seen == 1) {
1113 		*lockinfo.dlerror_seen() = 1;
1114 	} else {
1115 		*lockinfo.dlerror_seen() = 0;
1116 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1117 		    lockinfo.dlerror_loc_sz);
1118 		free(saved_msg->msg);
1119 	}
1120 	free(saved_msg);
1121 }
1122 
1123 static const char *
1124 basename(const char *name)
1125 {
1126 	const char *p;
1127 
1128 	p = strrchr(name, '/');
1129 	return (p != NULL ? p + 1 : name);
1130 }
1131 
1132 static struct utsname uts;
1133 
1134 static char *
1135 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1136     const char *subst, bool may_free)
1137 {
1138 	char *p, *p1, *res, *resp;
1139 	int subst_len, kw_len, subst_count, old_len, new_len;
1140 
1141 	kw_len = strlen(kw);
1142 
1143 	/*
1144 	 * First, count the number of the keyword occurrences, to
1145 	 * preallocate the final string.
1146 	 */
1147 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1148 		p1 = strstr(p, kw);
1149 		if (p1 == NULL)
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If the keyword is not found, just return.
1155 	 *
1156 	 * Return non-substituted string if resolution failed.  We
1157 	 * cannot do anything more reasonable, the failure mode of the
1158 	 * caller is unresolved library anyway.
1159 	 */
1160 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1161 		return (may_free ? real : xstrdup(real));
1162 	if (obj != NULL)
1163 		subst = obj->origin_path;
1164 
1165 	/*
1166 	 * There is indeed something to substitute.  Calculate the
1167 	 * length of the resulting string, and allocate it.
1168 	 */
1169 	subst_len = strlen(subst);
1170 	old_len = strlen(real);
1171 	new_len = old_len + (subst_len - kw_len) * subst_count;
1172 	res = xmalloc(new_len + 1);
1173 
1174 	/*
1175 	 * Now, execute the substitution loop.
1176 	 */
1177 	for (p = real, resp = res, *resp = '\0';;) {
1178 		p1 = strstr(p, kw);
1179 		if (p1 != NULL) {
1180 			/* Copy the prefix before keyword. */
1181 			memcpy(resp, p, p1 - p);
1182 			resp += p1 - p;
1183 			/* Keyword replacement. */
1184 			memcpy(resp, subst, subst_len);
1185 			resp += subst_len;
1186 			*resp = '\0';
1187 			p = p1 + kw_len;
1188 		} else
1189 			break;
1190 	}
1191 
1192 	/* Copy to the end of string and finish. */
1193 	strcat(resp, p);
1194 	if (may_free)
1195 		free(real);
1196 	return (res);
1197 }
1198 
1199 static const struct {
1200 	const char *kw;
1201 	bool pass_obj;
1202 	const char *subst;
1203 } tokens[] = {
1204 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1205 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1206 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1207 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1208 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1209 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1210 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1211 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1212 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1213 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1214 };
1215 
1216 static char *
1217 origin_subst(Obj_Entry *obj, const char *real)
1218 {
1219 	char *res;
1220 	int i;
1221 
1222 	if (obj == NULL || !trust)
1223 		return (xstrdup(real));
1224 	if (uts.sysname[0] == '\0') {
1225 		if (uname(&uts) != 0) {
1226 			_rtld_error("utsname failed: %d", errno);
1227 			return (NULL);
1228 		}
1229 	}
1230 
1231 	/* __DECONST is safe here since without may_free real is unchanged */
1232 	res = __DECONST(char *, real);
1233 	for (i = 0; i < (int)nitems(tokens); i++) {
1234 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1235 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1236 	}
1237 	return (res);
1238 }
1239 
1240 void
1241 rtld_die(void)
1242 {
1243     const char *msg = dlerror();
1244 
1245     if (msg == NULL)
1246 	msg = "Fatal error";
1247     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1248     rtld_fdputstr(STDERR_FILENO, msg);
1249     rtld_fdputchar(STDERR_FILENO, '\n');
1250     _exit(1);
1251 }
1252 
1253 /*
1254  * Process a shared object's DYNAMIC section, and save the important
1255  * information in its Obj_Entry structure.
1256  */
1257 static void
1258 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1259     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1260 {
1261     const Elf_Dyn *dynp;
1262     Needed_Entry **needed_tail = &obj->needed;
1263     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1264     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1265     const Elf_Hashelt *hashtab;
1266     const Elf32_Word *hashval;
1267     Elf32_Word bkt, nmaskwords;
1268     int bloom_size32;
1269     int plttype = DT_REL;
1270 
1271     *dyn_rpath = NULL;
1272     *dyn_soname = NULL;
1273     *dyn_runpath = NULL;
1274 
1275     obj->bind_now = false;
1276     dynp = obj->dynamic;
1277     if (dynp == NULL)
1278 	return;
1279     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1280 	switch (dynp->d_tag) {
1281 
1282 	case DT_REL:
1283 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1284 	    break;
1285 
1286 	case DT_RELSZ:
1287 	    obj->relsize = dynp->d_un.d_val;
1288 	    break;
1289 
1290 	case DT_RELENT:
1291 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1292 	    break;
1293 
1294 	case DT_JMPREL:
1295 	    obj->pltrel = (const Elf_Rel *)
1296 	      (obj->relocbase + dynp->d_un.d_ptr);
1297 	    break;
1298 
1299 	case DT_PLTRELSZ:
1300 	    obj->pltrelsize = dynp->d_un.d_val;
1301 	    break;
1302 
1303 	case DT_RELA:
1304 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1305 	    break;
1306 
1307 	case DT_RELASZ:
1308 	    obj->relasize = dynp->d_un.d_val;
1309 	    break;
1310 
1311 	case DT_RELAENT:
1312 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1313 	    break;
1314 
1315 	case DT_RELR:
1316 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1317 	    break;
1318 
1319 	case DT_RELRSZ:
1320 	    obj->relrsize = dynp->d_un.d_val;
1321 	    break;
1322 
1323 	case DT_RELRENT:
1324 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1325 	    break;
1326 
1327 	case DT_PLTREL:
1328 	    plttype = dynp->d_un.d_val;
1329 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1330 	    break;
1331 
1332 	case DT_SYMTAB:
1333 	    obj->symtab = (const Elf_Sym *)
1334 	      (obj->relocbase + dynp->d_un.d_ptr);
1335 	    break;
1336 
1337 	case DT_SYMENT:
1338 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1339 	    break;
1340 
1341 	case DT_STRTAB:
1342 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1343 	    break;
1344 
1345 	case DT_STRSZ:
1346 	    obj->strsize = dynp->d_un.d_val;
1347 	    break;
1348 
1349 	case DT_VERNEED:
1350 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1351 		dynp->d_un.d_val);
1352 	    break;
1353 
1354 	case DT_VERNEEDNUM:
1355 	    obj->verneednum = dynp->d_un.d_val;
1356 	    break;
1357 
1358 	case DT_VERDEF:
1359 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1360 		dynp->d_un.d_val);
1361 	    break;
1362 
1363 	case DT_VERDEFNUM:
1364 	    obj->verdefnum = dynp->d_un.d_val;
1365 	    break;
1366 
1367 	case DT_VERSYM:
1368 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1369 		dynp->d_un.d_val);
1370 	    break;
1371 
1372 	case DT_HASH:
1373 	    {
1374 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1375 		    dynp->d_un.d_ptr);
1376 		obj->nbuckets = hashtab[0];
1377 		obj->nchains = hashtab[1];
1378 		obj->buckets = hashtab + 2;
1379 		obj->chains = obj->buckets + obj->nbuckets;
1380 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1381 		  obj->buckets != NULL;
1382 	    }
1383 	    break;
1384 
1385 	case DT_GNU_HASH:
1386 	    {
1387 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1388 		    dynp->d_un.d_ptr);
1389 		obj->nbuckets_gnu = hashtab[0];
1390 		obj->symndx_gnu = hashtab[1];
1391 		nmaskwords = hashtab[2];
1392 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1393 		obj->maskwords_bm_gnu = nmaskwords - 1;
1394 		obj->shift2_gnu = hashtab[3];
1395 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1396 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1397 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1398 		  obj->symndx_gnu;
1399 		/* Number of bitmask words is required to be power of 2 */
1400 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1401 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1402 	    }
1403 	    break;
1404 
1405 	case DT_NEEDED:
1406 	    if (!obj->rtld) {
1407 		Needed_Entry *nep = NEW(Needed_Entry);
1408 		nep->name = dynp->d_un.d_val;
1409 		nep->obj = NULL;
1410 		nep->next = NULL;
1411 
1412 		*needed_tail = nep;
1413 		needed_tail = &nep->next;
1414 	    }
1415 	    break;
1416 
1417 	case DT_FILTER:
1418 	    if (!obj->rtld) {
1419 		Needed_Entry *nep = NEW(Needed_Entry);
1420 		nep->name = dynp->d_un.d_val;
1421 		nep->obj = NULL;
1422 		nep->next = NULL;
1423 
1424 		*needed_filtees_tail = nep;
1425 		needed_filtees_tail = &nep->next;
1426 
1427 		if (obj->linkmap.l_refname == NULL)
1428 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1429 	    }
1430 	    break;
1431 
1432 	case DT_AUXILIARY:
1433 	    if (!obj->rtld) {
1434 		Needed_Entry *nep = NEW(Needed_Entry);
1435 		nep->name = dynp->d_un.d_val;
1436 		nep->obj = NULL;
1437 		nep->next = NULL;
1438 
1439 		*needed_aux_filtees_tail = nep;
1440 		needed_aux_filtees_tail = &nep->next;
1441 	    }
1442 	    break;
1443 
1444 	case DT_PLTGOT:
1445 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1446 	    break;
1447 
1448 	case DT_TEXTREL:
1449 	    obj->textrel = true;
1450 	    break;
1451 
1452 	case DT_SYMBOLIC:
1453 	    obj->symbolic = true;
1454 	    break;
1455 
1456 	case DT_RPATH:
1457 	    /*
1458 	     * We have to wait until later to process this, because we
1459 	     * might not have gotten the address of the string table yet.
1460 	     */
1461 	    *dyn_rpath = dynp;
1462 	    break;
1463 
1464 	case DT_SONAME:
1465 	    *dyn_soname = dynp;
1466 	    break;
1467 
1468 	case DT_RUNPATH:
1469 	    *dyn_runpath = dynp;
1470 	    break;
1471 
1472 	case DT_INIT:
1473 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1474 	    break;
1475 
1476 	case DT_PREINIT_ARRAY:
1477 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1478 	    break;
1479 
1480 	case DT_PREINIT_ARRAYSZ:
1481 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1482 	    break;
1483 
1484 	case DT_INIT_ARRAY:
1485 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1486 	    break;
1487 
1488 	case DT_INIT_ARRAYSZ:
1489 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1490 	    break;
1491 
1492 	case DT_FINI:
1493 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1494 	    break;
1495 
1496 	case DT_FINI_ARRAY:
1497 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1498 	    break;
1499 
1500 	case DT_FINI_ARRAYSZ:
1501 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1502 	    break;
1503 
1504 	case DT_DEBUG:
1505 	    if (!early)
1506 		dbg("Filling in DT_DEBUG entry");
1507 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1508 	    break;
1509 
1510 	case DT_FLAGS:
1511 		if (dynp->d_un.d_val & DF_ORIGIN)
1512 		    obj->z_origin = true;
1513 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1514 		    obj->symbolic = true;
1515 		if (dynp->d_un.d_val & DF_TEXTREL)
1516 		    obj->textrel = true;
1517 		if (dynp->d_un.d_val & DF_BIND_NOW)
1518 		    obj->bind_now = true;
1519 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1520 		    obj->static_tls = true;
1521 	    break;
1522 
1523 #ifdef __powerpc__
1524 #ifdef __powerpc64__
1525 	case DT_PPC64_GLINK:
1526 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1527 		break;
1528 #else
1529 	case DT_PPC_GOT:
1530 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1531 		break;
1532 #endif
1533 #endif
1534 
1535 	case DT_FLAGS_1:
1536 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1537 		    obj->z_noopen = true;
1538 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1539 		    obj->z_origin = true;
1540 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1541 		    obj->z_global = true;
1542 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1543 		    obj->bind_now = true;
1544 		if (dynp->d_un.d_val & DF_1_NODELETE)
1545 		    obj->z_nodelete = true;
1546 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1547 		    obj->z_loadfltr = true;
1548 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1549 		    obj->z_interpose = true;
1550 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1551 		    obj->z_nodeflib = true;
1552 		if (dynp->d_un.d_val & DF_1_PIE)
1553 		    obj->z_pie = true;
1554 	    break;
1555 
1556 	default:
1557 	    if (!early) {
1558 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1559 		    (long)dynp->d_tag);
1560 	    }
1561 	    break;
1562 	}
1563     }
1564 
1565     obj->traced = false;
1566 
1567     if (plttype == DT_RELA) {
1568 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1569 	obj->pltrel = NULL;
1570 	obj->pltrelasize = obj->pltrelsize;
1571 	obj->pltrelsize = 0;
1572     }
1573 
1574     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1575     if (obj->valid_hash_sysv)
1576 	obj->dynsymcount = obj->nchains;
1577     else if (obj->valid_hash_gnu) {
1578 	obj->dynsymcount = 0;
1579 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1580 	    if (obj->buckets_gnu[bkt] == 0)
1581 		continue;
1582 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1583 	    do
1584 		obj->dynsymcount++;
1585 	    while ((*hashval++ & 1u) == 0);
1586 	}
1587 	obj->dynsymcount += obj->symndx_gnu;
1588     }
1589 
1590     if (obj->linkmap.l_refname != NULL)
1591 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1592 	  linkmap.l_refname;
1593 }
1594 
1595 static bool
1596 obj_resolve_origin(Obj_Entry *obj)
1597 {
1598 
1599 	if (obj->origin_path != NULL)
1600 		return (true);
1601 	obj->origin_path = xmalloc(PATH_MAX);
1602 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1603 }
1604 
1605 static bool
1606 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1607     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1608 {
1609 
1610 	if (obj->z_origin && !obj_resolve_origin(obj))
1611 		return (false);
1612 
1613 	if (dyn_runpath != NULL) {
1614 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1615 		obj->runpath = origin_subst(obj, obj->runpath);
1616 	} else if (dyn_rpath != NULL) {
1617 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1618 		obj->rpath = origin_subst(obj, obj->rpath);
1619 	}
1620 	if (dyn_soname != NULL)
1621 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1622 	return (true);
1623 }
1624 
1625 static bool
1626 digest_dynamic(Obj_Entry *obj, int early)
1627 {
1628 	const Elf_Dyn *dyn_rpath;
1629 	const Elf_Dyn *dyn_soname;
1630 	const Elf_Dyn *dyn_runpath;
1631 
1632 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1633 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1634 }
1635 
1636 /*
1637  * Process a shared object's program header.  This is used only for the
1638  * main program, when the kernel has already loaded the main program
1639  * into memory before calling the dynamic linker.  It creates and
1640  * returns an Obj_Entry structure.
1641  */
1642 static Obj_Entry *
1643 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1644 {
1645     Obj_Entry *obj;
1646     const Elf_Phdr *phlimit = phdr + phnum;
1647     const Elf_Phdr *ph;
1648     Elf_Addr note_start, note_end;
1649     int nsegs = 0;
1650 
1651     obj = obj_new();
1652     for (ph = phdr;  ph < phlimit;  ph++) {
1653 	if (ph->p_type != PT_PHDR)
1654 	    continue;
1655 
1656 	obj->phdr = phdr;
1657 	obj->phsize = ph->p_memsz;
1658 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1659 	break;
1660     }
1661 
1662     obj->stack_flags = PF_X | PF_R | PF_W;
1663 
1664     for (ph = phdr;  ph < phlimit;  ph++) {
1665 	switch (ph->p_type) {
1666 
1667 	case PT_INTERP:
1668 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1669 	    break;
1670 
1671 	case PT_LOAD:
1672 	    if (nsegs == 0) {	/* First load segment */
1673 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1674 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1675 	    } else {		/* Last load segment */
1676 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1677 		  obj->vaddrbase;
1678 	    }
1679 	    nsegs++;
1680 	    break;
1681 
1682 	case PT_DYNAMIC:
1683 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1684 	    break;
1685 
1686 	case PT_TLS:
1687 	    obj->tlsindex = 1;
1688 	    obj->tlssize = ph->p_memsz;
1689 	    obj->tlsalign = ph->p_align;
1690 	    obj->tlsinitsize = ph->p_filesz;
1691 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1692 	    obj->tlspoffset = ph->p_offset;
1693 	    break;
1694 
1695 	case PT_GNU_STACK:
1696 	    obj->stack_flags = ph->p_flags;
1697 	    break;
1698 
1699 	case PT_GNU_RELRO:
1700 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1701 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1702 	      rtld_trunc_page(ph->p_vaddr);
1703 	    break;
1704 
1705 	case PT_NOTE:
1706 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1707 	    note_end = note_start + ph->p_filesz;
1708 	    digest_notes(obj, note_start, note_end);
1709 	    break;
1710 	}
1711     }
1712     if (nsegs < 1) {
1713 	_rtld_error("%s: too few PT_LOAD segments", path);
1714 	return (NULL);
1715     }
1716 
1717     obj->entry = entry;
1718     return (obj);
1719 }
1720 
1721 void
1722 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1723 {
1724 	const Elf_Note *note;
1725 	const char *note_name;
1726 	uintptr_t p;
1727 
1728 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1729 	    note = (const Elf_Note *)((const char *)(note + 1) +
1730 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1731 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1732 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1733 		    note->n_descsz != sizeof(int32_t))
1734 			continue;
1735 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1736 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1737 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1738 			continue;
1739 		note_name = (const char *)(note + 1);
1740 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1741 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1742 			continue;
1743 		switch (note->n_type) {
1744 		case NT_FREEBSD_ABI_TAG:
1745 			/* FreeBSD osrel note */
1746 			p = (uintptr_t)(note + 1);
1747 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1748 			obj->osrel = *(const int32_t *)(p);
1749 			dbg("note osrel %d", obj->osrel);
1750 			break;
1751 		case NT_FREEBSD_FEATURE_CTL:
1752 			/* FreeBSD ABI feature control note */
1753 			p = (uintptr_t)(note + 1);
1754 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1755 			obj->fctl0 = *(const uint32_t *)(p);
1756 			dbg("note fctl0 %#x", obj->fctl0);
1757 			break;
1758 		case NT_FREEBSD_NOINIT_TAG:
1759 			/* FreeBSD 'crt does not call init' note */
1760 			obj->crt_no_init = true;
1761 			dbg("note crt_no_init");
1762 			break;
1763 		}
1764 	}
1765 }
1766 
1767 static Obj_Entry *
1768 dlcheck(void *handle)
1769 {
1770     Obj_Entry *obj;
1771 
1772     TAILQ_FOREACH(obj, &obj_list, next) {
1773 	if (obj == (Obj_Entry *) handle)
1774 	    break;
1775     }
1776 
1777     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1778 	_rtld_error("Invalid shared object handle %p", handle);
1779 	return (NULL);
1780     }
1781     return (obj);
1782 }
1783 
1784 /*
1785  * If the given object is already in the donelist, return true.  Otherwise
1786  * add the object to the list and return false.
1787  */
1788 static bool
1789 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1790 {
1791     unsigned int i;
1792 
1793     for (i = 0;  i < dlp->num_used;  i++)
1794 	if (dlp->objs[i] == obj)
1795 	    return (true);
1796     /*
1797      * Our donelist allocation should always be sufficient.  But if
1798      * our threads locking isn't working properly, more shared objects
1799      * could have been loaded since we allocated the list.  That should
1800      * never happen, but we'll handle it properly just in case it does.
1801      */
1802     if (dlp->num_used < dlp->num_alloc)
1803 	dlp->objs[dlp->num_used++] = obj;
1804     return (false);
1805 }
1806 
1807 /*
1808  * SysV hash function for symbol table lookup.  It is a slightly optimized
1809  * version of the hash specified by the System V ABI.
1810  */
1811 Elf32_Word
1812 elf_hash(const char *name)
1813 {
1814 	const unsigned char *p = (const unsigned char *)name;
1815 	Elf32_Word h = 0;
1816 
1817 	while (*p != '\0') {
1818 		h = (h << 4) + *p++;
1819 		h ^= (h >> 24) & 0xf0;
1820 	}
1821 	return (h & 0x0fffffff);
1822 }
1823 
1824 /*
1825  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1826  * unsigned in case it's implemented with a wider type.
1827  */
1828 static uint32_t
1829 gnu_hash(const char *s)
1830 {
1831 	uint32_t h;
1832 	unsigned char c;
1833 
1834 	h = 5381;
1835 	for (c = *s; c != '\0'; c = *++s)
1836 		h = h * 33 + c;
1837 	return (h & 0xffffffff);
1838 }
1839 
1840 
1841 /*
1842  * Find the library with the given name, and return its full pathname.
1843  * The returned string is dynamically allocated.  Generates an error
1844  * message and returns NULL if the library cannot be found.
1845  *
1846  * If the second argument is non-NULL, then it refers to an already-
1847  * loaded shared object, whose library search path will be searched.
1848  *
1849  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1850  * descriptor (which is close-on-exec) will be passed out via the third
1851  * argument.
1852  *
1853  * The search order is:
1854  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1855  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1856  *   LD_LIBRARY_PATH
1857  *   DT_RUNPATH in the referencing file
1858  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1859  *	 from list)
1860  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1861  *
1862  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1863  */
1864 static char *
1865 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1866 {
1867 	char *pathname, *refobj_path;
1868 	const char *name;
1869 	bool nodeflib, objgiven;
1870 
1871 	objgiven = refobj != NULL;
1872 
1873 	if (libmap_disable || !objgiven ||
1874 	    (name = lm_find(refobj->path, xname)) == NULL)
1875 		name = xname;
1876 
1877 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1878 		if (name[0] != '/' && !trust) {
1879 			_rtld_error("Absolute pathname required "
1880 			    "for shared object \"%s\"", name);
1881 			return (NULL);
1882 		}
1883 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1884 		    __DECONST(char *, name)));
1885 	}
1886 
1887 	dbg(" Searching for \"%s\"", name);
1888 	refobj_path = objgiven ? refobj->path : NULL;
1889 
1890 	/*
1891 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1892 	 * back to pre-conforming behaviour if user requested so with
1893 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1894 	 * nodeflib.
1895 	 */
1896 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1897 		pathname = search_library_path(name, ld_library_path,
1898 		    refobj_path, fdp);
1899 		if (pathname != NULL)
1900 			return (pathname);
1901 		if (refobj != NULL) {
1902 			pathname = search_library_path(name, refobj->rpath,
1903 			    refobj_path, fdp);
1904 			if (pathname != NULL)
1905 				return (pathname);
1906 		}
1907 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1908 		if (pathname != NULL)
1909 			return (pathname);
1910 		pathname = search_library_path(name, gethints(false),
1911 		    refobj_path, fdp);
1912 		if (pathname != NULL)
1913 			return (pathname);
1914 		pathname = search_library_path(name, ld_standard_library_path,
1915 		    refobj_path, fdp);
1916 		if (pathname != NULL)
1917 			return (pathname);
1918 	} else {
1919 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1920 		if (objgiven) {
1921 			pathname = search_library_path(name, refobj->rpath,
1922 			    refobj->path, fdp);
1923 			if (pathname != NULL)
1924 				return (pathname);
1925 		}
1926 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1927 			pathname = search_library_path(name, obj_main->rpath,
1928 			    refobj_path, fdp);
1929 			if (pathname != NULL)
1930 				return (pathname);
1931 		}
1932 		pathname = search_library_path(name, ld_library_path,
1933 		    refobj_path, fdp);
1934 		if (pathname != NULL)
1935 			return (pathname);
1936 		if (objgiven) {
1937 			pathname = search_library_path(name, refobj->runpath,
1938 			    refobj_path, fdp);
1939 			if (pathname != NULL)
1940 				return (pathname);
1941 		}
1942 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1943 		if (pathname != NULL)
1944 			return (pathname);
1945 		pathname = search_library_path(name, gethints(nodeflib),
1946 		    refobj_path, fdp);
1947 		if (pathname != NULL)
1948 			return (pathname);
1949 		if (objgiven && !nodeflib) {
1950 			pathname = search_library_path(name,
1951 			    ld_standard_library_path, refobj_path, fdp);
1952 			if (pathname != NULL)
1953 				return (pathname);
1954 		}
1955 	}
1956 
1957 	if (objgiven && refobj->path != NULL) {
1958 		_rtld_error("Shared object \"%s\" not found, "
1959 		    "required by \"%s\"", name, basename(refobj->path));
1960 	} else {
1961 		_rtld_error("Shared object \"%s\" not found", name);
1962 	}
1963 	return (NULL);
1964 }
1965 
1966 /*
1967  * Given a symbol number in a referencing object, find the corresponding
1968  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1969  * no definition was found.  Returns a pointer to the Obj_Entry of the
1970  * defining object via the reference parameter DEFOBJ_OUT.
1971  */
1972 const Elf_Sym *
1973 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1974     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1975     RtldLockState *lockstate)
1976 {
1977     const Elf_Sym *ref;
1978     const Elf_Sym *def;
1979     const Obj_Entry *defobj;
1980     const Ver_Entry *ve;
1981     SymLook req;
1982     const char *name;
1983     int res;
1984 
1985     /*
1986      * If we have already found this symbol, get the information from
1987      * the cache.
1988      */
1989     if (symnum >= refobj->dynsymcount)
1990 	return (NULL);	/* Bad object */
1991     if (cache != NULL && cache[symnum].sym != NULL) {
1992 	*defobj_out = cache[symnum].obj;
1993 	return (cache[symnum].sym);
1994     }
1995 
1996     ref = refobj->symtab + symnum;
1997     name = refobj->strtab + ref->st_name;
1998     def = NULL;
1999     defobj = NULL;
2000     ve = NULL;
2001 
2002     /*
2003      * We don't have to do a full scale lookup if the symbol is local.
2004      * We know it will bind to the instance in this load module; to
2005      * which we already have a pointer (ie ref). By not doing a lookup,
2006      * we not only improve performance, but it also avoids unresolvable
2007      * symbols when local symbols are not in the hash table. This has
2008      * been seen with the ia64 toolchain.
2009      */
2010     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2011 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2012 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2013 		symnum);
2014 	}
2015 	symlook_init(&req, name);
2016 	req.flags = flags;
2017 	ve = req.ventry = fetch_ventry(refobj, symnum);
2018 	req.lockstate = lockstate;
2019 	res = symlook_default(&req, refobj);
2020 	if (res == 0) {
2021 	    def = req.sym_out;
2022 	    defobj = req.defobj_out;
2023 	}
2024     } else {
2025 	def = ref;
2026 	defobj = refobj;
2027     }
2028 
2029     /*
2030      * If we found no definition and the reference is weak, treat the
2031      * symbol as having the value zero.
2032      */
2033     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2034 	def = &sym_zero;
2035 	defobj = obj_main;
2036     }
2037 
2038     if (def != NULL) {
2039 	*defobj_out = defobj;
2040 	/* Record the information in the cache to avoid subsequent lookups. */
2041 	if (cache != NULL) {
2042 	    cache[symnum].sym = def;
2043 	    cache[symnum].obj = defobj;
2044 	}
2045     } else {
2046 	if (refobj != &obj_rtld)
2047 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2048 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2049     }
2050     return (def);
2051 }
2052 
2053 /* Convert between native byte order and forced little resp. big endian. */
2054 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2055 
2056 /*
2057  * Return the search path from the ldconfig hints file, reading it if
2058  * necessary.  If nostdlib is true, then the default search paths are
2059  * not added to result.
2060  *
2061  * Returns NULL if there are problems with the hints file,
2062  * or if the search path there is empty.
2063  */
2064 static const char *
2065 gethints(bool nostdlib)
2066 {
2067 	static char *filtered_path;
2068 	static const char *hints;
2069 	static struct elfhints_hdr hdr;
2070 	struct fill_search_info_args sargs, hargs;
2071 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2072 	struct dl_serpath *SLPpath, *hintpath;
2073 	char *p;
2074 	struct stat hint_stat;
2075 	unsigned int SLPndx, hintndx, fndx, fcount;
2076 	int fd;
2077 	size_t flen;
2078 	uint32_t dl;
2079 	uint32_t magic;		/* Magic number */
2080 	uint32_t version;	/* File version (1) */
2081 	uint32_t strtab;	/* Offset of string table in file */
2082 	uint32_t dirlist;	/* Offset of directory list in string table */
2083 	uint32_t dirlistlen;	/* strlen(dirlist) */
2084 	bool is_le;		/* Does the hints file use little endian */
2085 	bool skip;
2086 
2087 	/* First call, read the hints file */
2088 	if (hints == NULL) {
2089 		/* Keep from trying again in case the hints file is bad. */
2090 		hints = "";
2091 
2092 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2093 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2094 			return (NULL);
2095 		}
2096 
2097 		/*
2098 		 * Check of hdr.dirlistlen value against type limit
2099 		 * intends to pacify static analyzers.  Further
2100 		 * paranoia leads to checks that dirlist is fully
2101 		 * contained in the file range.
2102 		 */
2103 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2104 			dbg("failed to read %lu bytes from hints file \"%s\"",
2105 			    (u_long)sizeof hdr, ld_elf_hints_path);
2106 cleanup1:
2107 			close(fd);
2108 			hdr.dirlistlen = 0;
2109 			return (NULL);
2110 		}
2111 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2112 		dbg("hints file byte-order: %s-endian",
2113 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2114 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2115 		magic = COND_SWAP(hdr.magic);
2116 		version = COND_SWAP(hdr.version);
2117 		strtab = COND_SWAP(hdr.strtab);
2118 		dirlist = COND_SWAP(hdr.dirlist);
2119 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2120 		if (magic != ELFHINTS_MAGIC) {
2121 			dbg("invalid magic number %#08x (expected: %#08x)",
2122 			    magic, ELFHINTS_MAGIC);
2123 			goto cleanup1;
2124 		}
2125 		if (version != 1) {
2126 			dbg("hints file version %d (expected: 1)", version);
2127 			goto cleanup1;
2128 		}
2129 		if (dirlistlen > UINT_MAX / 2) {
2130 			dbg("directory list is to long: %d > %d",
2131 			    dirlistlen, UINT_MAX / 2);
2132 			goto cleanup1;
2133 		}
2134 		if (fstat(fd, &hint_stat) == -1) {
2135 			dbg("failed to find length of hints file \"%s\"",
2136 			    ld_elf_hints_path);
2137 			goto cleanup1;
2138 		}
2139 		dl = strtab;
2140 		if (dl + dirlist < dl) {
2141 			dbg("invalid string table position %d", dl);
2142 			goto cleanup1;
2143 		}
2144 		dl += dirlist;
2145 		if (dl + dirlistlen < dl) {
2146 			dbg("invalid directory list offset %d", dirlist);
2147 			goto cleanup1;
2148 		}
2149 		dl += dirlistlen;
2150 		if (dl > hint_stat.st_size) {
2151 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2152 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2153 			goto cleanup1;
2154 		}
2155 		p = xmalloc(dirlistlen + 1);
2156 		if (pread(fd, p, dirlistlen + 1,
2157 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2158 		    p[dirlistlen] != '\0') {
2159 			free(p);
2160 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2161 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2162 			goto cleanup1;
2163 		}
2164 		hints = p;
2165 		close(fd);
2166 	}
2167 
2168 	/*
2169 	 * If caller agreed to receive list which includes the default
2170 	 * paths, we are done. Otherwise, if we still did not
2171 	 * calculated filtered result, do it now.
2172 	 */
2173 	if (!nostdlib)
2174 		return (hints[0] != '\0' ? hints : NULL);
2175 	if (filtered_path != NULL)
2176 		goto filt_ret;
2177 
2178 	/*
2179 	 * Obtain the list of all configured search paths, and the
2180 	 * list of the default paths.
2181 	 *
2182 	 * First estimate the size of the results.
2183 	 */
2184 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2185 	smeta.dls_cnt = 0;
2186 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2187 	hmeta.dls_cnt = 0;
2188 
2189 	sargs.request = RTLD_DI_SERINFOSIZE;
2190 	sargs.serinfo = &smeta;
2191 	hargs.request = RTLD_DI_SERINFOSIZE;
2192 	hargs.serinfo = &hmeta;
2193 
2194 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2195 	    &sargs);
2196 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2197 
2198 	SLPinfo = xmalloc(smeta.dls_size);
2199 	hintinfo = xmalloc(hmeta.dls_size);
2200 
2201 	/*
2202 	 * Next fetch both sets of paths.
2203 	 */
2204 	sargs.request = RTLD_DI_SERINFO;
2205 	sargs.serinfo = SLPinfo;
2206 	sargs.serpath = &SLPinfo->dls_serpath[0];
2207 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2208 
2209 	hargs.request = RTLD_DI_SERINFO;
2210 	hargs.serinfo = hintinfo;
2211 	hargs.serpath = &hintinfo->dls_serpath[0];
2212 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2213 
2214 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2215 	    &sargs);
2216 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2217 
2218 	/*
2219 	 * Now calculate the difference between two sets, by excluding
2220 	 * standard paths from the full set.
2221 	 */
2222 	fndx = 0;
2223 	fcount = 0;
2224 	filtered_path = xmalloc(dirlistlen + 1);
2225 	hintpath = &hintinfo->dls_serpath[0];
2226 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2227 		skip = false;
2228 		SLPpath = &SLPinfo->dls_serpath[0];
2229 		/*
2230 		 * Check each standard path against current.
2231 		 */
2232 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2233 			/* matched, skip the path */
2234 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2235 				skip = true;
2236 				break;
2237 			}
2238 		}
2239 		if (skip)
2240 			continue;
2241 		/*
2242 		 * Not matched against any standard path, add the path
2243 		 * to result. Separate consequtive paths with ':'.
2244 		 */
2245 		if (fcount > 0) {
2246 			filtered_path[fndx] = ':';
2247 			fndx++;
2248 		}
2249 		fcount++;
2250 		flen = strlen(hintpath->dls_name);
2251 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2252 		fndx += flen;
2253 	}
2254 	filtered_path[fndx] = '\0';
2255 
2256 	free(SLPinfo);
2257 	free(hintinfo);
2258 
2259 filt_ret:
2260 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2261 }
2262 
2263 static void
2264 init_dag(Obj_Entry *root)
2265 {
2266     const Needed_Entry *needed;
2267     const Objlist_Entry *elm;
2268     DoneList donelist;
2269 
2270     if (root->dag_inited)
2271 	return;
2272     donelist_init(&donelist);
2273 
2274     /* Root object belongs to own DAG. */
2275     objlist_push_tail(&root->dldags, root);
2276     objlist_push_tail(&root->dagmembers, root);
2277     donelist_check(&donelist, root);
2278 
2279     /*
2280      * Add dependencies of root object to DAG in breadth order
2281      * by exploiting the fact that each new object get added
2282      * to the tail of the dagmembers list.
2283      */
2284     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2285 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2286 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2287 		continue;
2288 	    objlist_push_tail(&needed->obj->dldags, root);
2289 	    objlist_push_tail(&root->dagmembers, needed->obj);
2290 	}
2291     }
2292     root->dag_inited = true;
2293 }
2294 
2295 static void
2296 init_marker(Obj_Entry *marker)
2297 {
2298 
2299 	bzero(marker, sizeof(*marker));
2300 	marker->marker = true;
2301 }
2302 
2303 Obj_Entry *
2304 globallist_curr(const Obj_Entry *obj)
2305 {
2306 
2307 	for (;;) {
2308 		if (obj == NULL)
2309 			return (NULL);
2310 		if (!obj->marker)
2311 			return (__DECONST(Obj_Entry *, obj));
2312 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2313 	}
2314 }
2315 
2316 Obj_Entry *
2317 globallist_next(const Obj_Entry *obj)
2318 {
2319 
2320 	for (;;) {
2321 		obj = TAILQ_NEXT(obj, next);
2322 		if (obj == NULL)
2323 			return (NULL);
2324 		if (!obj->marker)
2325 			return (__DECONST(Obj_Entry *, obj));
2326 	}
2327 }
2328 
2329 /* Prevent the object from being unmapped while the bind lock is dropped. */
2330 static void
2331 hold_object(Obj_Entry *obj)
2332 {
2333 
2334 	obj->holdcount++;
2335 }
2336 
2337 static void
2338 unhold_object(Obj_Entry *obj)
2339 {
2340 
2341 	assert(obj->holdcount > 0);
2342 	if (--obj->holdcount == 0 && obj->unholdfree)
2343 		release_object(obj);
2344 }
2345 
2346 static void
2347 process_z(Obj_Entry *root)
2348 {
2349 	const Objlist_Entry *elm;
2350 	Obj_Entry *obj;
2351 
2352 	/*
2353 	 * Walk over object DAG and process every dependent object
2354 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2355 	 * to grow their own DAG.
2356 	 *
2357 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2358 	 * symlook_global() to work.
2359 	 *
2360 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2361 	 */
2362 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2363 		obj = elm->obj;
2364 		if (obj == NULL)
2365 			continue;
2366 		if (obj->z_nodelete && !obj->ref_nodel) {
2367 			dbg("obj %s -z nodelete", obj->path);
2368 			init_dag(obj);
2369 			ref_dag(obj);
2370 			obj->ref_nodel = true;
2371 		}
2372 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2373 			dbg("obj %s -z global", obj->path);
2374 			objlist_push_tail(&list_global, obj);
2375 			init_dag(obj);
2376 		}
2377 	}
2378 }
2379 
2380 static void
2381 parse_rtld_phdr(Obj_Entry *obj)
2382 {
2383 	const Elf_Phdr *ph;
2384 	Elf_Addr note_start, note_end;
2385 
2386 	obj->stack_flags = PF_X | PF_R | PF_W;
2387 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2388 	    obj->phsize; ph++) {
2389 		switch (ph->p_type) {
2390 		case PT_GNU_STACK:
2391 			obj->stack_flags = ph->p_flags;
2392 			break;
2393 		case PT_GNU_RELRO:
2394 			obj->relro_page = obj->relocbase +
2395 			    rtld_trunc_page(ph->p_vaddr);
2396 			obj->relro_size = rtld_round_page(ph->p_memsz);
2397 			break;
2398 		case PT_NOTE:
2399 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2400 			note_end = note_start + ph->p_filesz;
2401 			digest_notes(obj, note_start, note_end);
2402 			break;
2403 		}
2404 	}
2405 }
2406 
2407 /*
2408  * Initialize the dynamic linker.  The argument is the address at which
2409  * the dynamic linker has been mapped into memory.  The primary task of
2410  * this function is to relocate the dynamic linker.
2411  */
2412 static void
2413 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2414 {
2415     Obj_Entry objtmp;	/* Temporary rtld object */
2416     const Elf_Ehdr *ehdr;
2417     const Elf_Dyn *dyn_rpath;
2418     const Elf_Dyn *dyn_soname;
2419     const Elf_Dyn *dyn_runpath;
2420 
2421 #ifdef RTLD_INIT_PAGESIZES_EARLY
2422     /* The page size is required by the dynamic memory allocator. */
2423     init_pagesizes(aux_info);
2424 #endif
2425 
2426     /*
2427      * Conjure up an Obj_Entry structure for the dynamic linker.
2428      *
2429      * The "path" member can't be initialized yet because string constants
2430      * cannot yet be accessed. Below we will set it correctly.
2431      */
2432     memset(&objtmp, 0, sizeof(objtmp));
2433     objtmp.path = NULL;
2434     objtmp.rtld = true;
2435     objtmp.mapbase = mapbase;
2436 #ifdef PIC
2437     objtmp.relocbase = mapbase;
2438 #endif
2439 
2440     objtmp.dynamic = rtld_dynamic(&objtmp);
2441     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2442     assert(objtmp.needed == NULL);
2443     assert(!objtmp.textrel);
2444     /*
2445      * Temporarily put the dynamic linker entry into the object list, so
2446      * that symbols can be found.
2447      */
2448     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2449 
2450     ehdr = (Elf_Ehdr *)mapbase;
2451     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2452     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2453 
2454     /* Initialize the object list. */
2455     TAILQ_INIT(&obj_list);
2456 
2457     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2458     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2459 
2460 #ifndef RTLD_INIT_PAGESIZES_EARLY
2461     /* The page size is required by the dynamic memory allocator. */
2462     init_pagesizes(aux_info);
2463 #endif
2464 
2465     if (aux_info[AT_OSRELDATE] != NULL)
2466 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2467 
2468     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2469 
2470     /* Replace the path with a dynamically allocated copy. */
2471     obj_rtld.path = xstrdup(ld_path_rtld);
2472 
2473     parse_rtld_phdr(&obj_rtld);
2474     if (obj_enforce_relro(&obj_rtld) == -1)
2475 	rtld_die();
2476 
2477     r_debug.r_version = R_DEBUG_VERSION;
2478     r_debug.r_brk = r_debug_state;
2479     r_debug.r_state = RT_CONSISTENT;
2480     r_debug.r_ldbase = obj_rtld.relocbase;
2481 }
2482 
2483 /*
2484  * Retrieve the array of supported page sizes.  The kernel provides the page
2485  * sizes in increasing order.
2486  */
2487 static void
2488 init_pagesizes(Elf_Auxinfo **aux_info)
2489 {
2490 	static size_t psa[MAXPAGESIZES];
2491 	int mib[2];
2492 	size_t len, size;
2493 
2494 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2495 	    NULL) {
2496 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2497 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2498 	} else {
2499 		len = 2;
2500 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2501 			size = sizeof(psa);
2502 		else {
2503 			/* As a fallback, retrieve the base page size. */
2504 			size = sizeof(psa[0]);
2505 			if (aux_info[AT_PAGESZ] != NULL) {
2506 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2507 				goto psa_filled;
2508 			} else {
2509 				mib[0] = CTL_HW;
2510 				mib[1] = HW_PAGESIZE;
2511 				len = 2;
2512 			}
2513 		}
2514 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2515 			_rtld_error("sysctl for hw.pagesize(s) failed");
2516 			rtld_die();
2517 		}
2518 psa_filled:
2519 		pagesizes = psa;
2520 	}
2521 	npagesizes = size / sizeof(pagesizes[0]);
2522 	/* Discard any invalid entries at the end of the array. */
2523 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2524 		npagesizes--;
2525 
2526 	page_size = pagesizes[0];
2527 }
2528 
2529 /*
2530  * Add the init functions from a needed object list (and its recursive
2531  * needed objects) to "list".  This is not used directly; it is a helper
2532  * function for initlist_add_objects().  The write lock must be held
2533  * when this function is called.
2534  */
2535 static void
2536 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2537 {
2538     /* Recursively process the successor needed objects. */
2539     if (needed->next != NULL)
2540 	initlist_add_neededs(needed->next, list);
2541 
2542     /* Process the current needed object. */
2543     if (needed->obj != NULL)
2544 	initlist_add_objects(needed->obj, needed->obj, list);
2545 }
2546 
2547 /*
2548  * Scan all of the DAGs rooted in the range of objects from "obj" to
2549  * "tail" and add their init functions to "list".  This recurses over
2550  * the DAGs and ensure the proper init ordering such that each object's
2551  * needed libraries are initialized before the object itself.  At the
2552  * same time, this function adds the objects to the global finalization
2553  * list "list_fini" in the opposite order.  The write lock must be
2554  * held when this function is called.
2555  */
2556 static void
2557 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2558 {
2559     Obj_Entry *nobj;
2560 
2561     if (obj->init_scanned || obj->init_done)
2562 	return;
2563     obj->init_scanned = true;
2564 
2565     /* Recursively process the successor objects. */
2566     nobj = globallist_next(obj);
2567     if (nobj != NULL && obj != tail)
2568 	initlist_add_objects(nobj, tail, list);
2569 
2570     /* Recursively process the needed objects. */
2571     if (obj->needed != NULL)
2572 	initlist_add_neededs(obj->needed, list);
2573     if (obj->needed_filtees != NULL)
2574 	initlist_add_neededs(obj->needed_filtees, list);
2575     if (obj->needed_aux_filtees != NULL)
2576 	initlist_add_neededs(obj->needed_aux_filtees, list);
2577 
2578     /* Add the object to the init list. */
2579     objlist_push_tail(list, obj);
2580 
2581     /* Add the object to the global fini list in the reverse order. */
2582     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2583       && !obj->on_fini_list) {
2584 	objlist_push_head(&list_fini, obj);
2585 	obj->on_fini_list = true;
2586     }
2587 }
2588 
2589 static void
2590 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2591 {
2592     Needed_Entry *needed, *needed1;
2593 
2594     for (needed = n; needed != NULL; needed = needed->next) {
2595 	if (needed->obj != NULL) {
2596 	    dlclose_locked(needed->obj, lockstate);
2597 	    needed->obj = NULL;
2598 	}
2599     }
2600     for (needed = n; needed != NULL; needed = needed1) {
2601 	needed1 = needed->next;
2602 	free(needed);
2603     }
2604 }
2605 
2606 static void
2607 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2608 {
2609 
2610 	free_needed_filtees(obj->needed_filtees, lockstate);
2611 	obj->needed_filtees = NULL;
2612 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2613 	obj->needed_aux_filtees = NULL;
2614 	obj->filtees_loaded = false;
2615 }
2616 
2617 static void
2618 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2619     RtldLockState *lockstate)
2620 {
2621 
2622     for (; needed != NULL; needed = needed->next) {
2623 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2624 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2625 	  RTLD_LOCAL, lockstate);
2626     }
2627 }
2628 
2629 static void
2630 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2631 {
2632 	if (obj->filtees_loaded || obj->filtees_loading)
2633 		return;
2634 	lock_restart_for_upgrade(lockstate);
2635 	obj->filtees_loading = true;
2636 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2637 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2638 	obj->filtees_loaded = true;
2639 	obj->filtees_loading = false;
2640 }
2641 
2642 static int
2643 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2644 {
2645     Obj_Entry *obj1;
2646 
2647     for (; needed != NULL; needed = needed->next) {
2648 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2649 	  flags & ~RTLD_LO_NOLOAD);
2650 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2651 	    return (-1);
2652     }
2653     return (0);
2654 }
2655 
2656 /*
2657  * Given a shared object, traverse its list of needed objects, and load
2658  * each of them.  Returns 0 on success.  Generates an error message and
2659  * returns -1 on failure.
2660  */
2661 static int
2662 load_needed_objects(Obj_Entry *first, int flags)
2663 {
2664     Obj_Entry *obj;
2665 
2666     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2667 	if (obj->marker)
2668 	    continue;
2669 	if (process_needed(obj, obj->needed, flags) == -1)
2670 	    return (-1);
2671     }
2672     return (0);
2673 }
2674 
2675 static int
2676 load_preload_objects(const char *penv, bool isfd)
2677 {
2678 	Obj_Entry *obj;
2679 	const char *name;
2680 	size_t len;
2681 	char savech, *p, *psave;
2682 	int fd;
2683 	static const char delim[] = " \t:;";
2684 
2685 	if (penv == NULL)
2686 		return (0);
2687 
2688 	p = psave = xstrdup(penv);
2689 	p += strspn(p, delim);
2690 	while (*p != '\0') {
2691 		len = strcspn(p, delim);
2692 
2693 		savech = p[len];
2694 		p[len] = '\0';
2695 		if (isfd) {
2696 			name = NULL;
2697 			fd = parse_integer(p);
2698 			if (fd == -1) {
2699 				free(psave);
2700 				return (-1);
2701 			}
2702 		} else {
2703 			name = p;
2704 			fd = -1;
2705 		}
2706 
2707 		obj = load_object(name, fd, NULL, 0);
2708 		if (obj == NULL) {
2709 			free(psave);
2710 			return (-1);	/* XXX - cleanup */
2711 		}
2712 		obj->z_interpose = true;
2713 		p[len] = savech;
2714 		p += len;
2715 		p += strspn(p, delim);
2716 	}
2717 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2718 
2719 	free(psave);
2720 	return (0);
2721 }
2722 
2723 static const char *
2724 printable_path(const char *path)
2725 {
2726 
2727 	return (path == NULL ? "<unknown>" : path);
2728 }
2729 
2730 /*
2731  * Load a shared object into memory, if it is not already loaded.  The
2732  * object may be specified by name or by user-supplied file descriptor
2733  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2734  * duplicate is.
2735  *
2736  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2737  * on failure.
2738  */
2739 static Obj_Entry *
2740 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2741 {
2742     Obj_Entry *obj;
2743     int fd;
2744     struct stat sb;
2745     char *path;
2746 
2747     fd = -1;
2748     if (name != NULL) {
2749 	TAILQ_FOREACH(obj, &obj_list, next) {
2750 	    if (obj->marker || obj->doomed)
2751 		continue;
2752 	    if (object_match_name(obj, name))
2753 		return (obj);
2754 	}
2755 
2756 	path = find_library(name, refobj, &fd);
2757 	if (path == NULL)
2758 	    return (NULL);
2759     } else
2760 	path = NULL;
2761 
2762     if (fd >= 0) {
2763 	/*
2764 	 * search_library_pathfds() opens a fresh file descriptor for the
2765 	 * library, so there is no need to dup().
2766 	 */
2767     } else if (fd_u == -1) {
2768 	/*
2769 	 * If we didn't find a match by pathname, or the name is not
2770 	 * supplied, open the file and check again by device and inode.
2771 	 * This avoids false mismatches caused by multiple links or ".."
2772 	 * in pathnames.
2773 	 *
2774 	 * To avoid a race, we open the file and use fstat() rather than
2775 	 * using stat().
2776 	 */
2777 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2778 	    _rtld_error("Cannot open \"%s\"", path);
2779 	    free(path);
2780 	    return (NULL);
2781 	}
2782     } else {
2783 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2784 	if (fd == -1) {
2785 	    _rtld_error("Cannot dup fd");
2786 	    free(path);
2787 	    return (NULL);
2788 	}
2789     }
2790     if (fstat(fd, &sb) == -1) {
2791 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2792 	close(fd);
2793 	free(path);
2794 	return (NULL);
2795     }
2796     TAILQ_FOREACH(obj, &obj_list, next) {
2797 	if (obj->marker || obj->doomed)
2798 	    continue;
2799 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2800 	    break;
2801     }
2802     if (obj != NULL) {
2803 	if (name != NULL)
2804 	    object_add_name(obj, name);
2805 	free(path);
2806 	close(fd);
2807 	return (obj);
2808     }
2809     if (flags & RTLD_LO_NOLOAD) {
2810 	free(path);
2811 	close(fd);
2812 	return (NULL);
2813     }
2814 
2815     /* First use of this object, so we must map it in */
2816     obj = do_load_object(fd, name, path, &sb, flags);
2817     if (obj == NULL)
2818 	free(path);
2819     close(fd);
2820 
2821     return (obj);
2822 }
2823 
2824 static Obj_Entry *
2825 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2826   int flags)
2827 {
2828     Obj_Entry *obj;
2829     struct statfs fs;
2830 
2831     /*
2832      * First, make sure that environment variables haven't been
2833      * used to circumvent the noexec flag on a filesystem.
2834      * We ignore fstatfs(2) failures, since fd might reference
2835      * not a file, e.g. shmfd.
2836      */
2837     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2838 	(fs.f_flags & MNT_NOEXEC) != 0) {
2839 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2840 	    return (NULL);
2841     }
2842 
2843     dbg("loading \"%s\"", printable_path(path));
2844     obj = map_object(fd, printable_path(path), sbp);
2845     if (obj == NULL)
2846         return (NULL);
2847 
2848     /*
2849      * If DT_SONAME is present in the object, digest_dynamic2 already
2850      * added it to the object names.
2851      */
2852     if (name != NULL)
2853 	object_add_name(obj, name);
2854     obj->path = path;
2855     if (!digest_dynamic(obj, 0))
2856 	goto errp;
2857     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2858 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2859     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2860 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2861 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2862 	goto errp;
2863     }
2864     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2865       RTLD_LO_DLOPEN) {
2866 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2867 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2868 	goto errp;
2869     }
2870 
2871     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2872     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2873     obj_count++;
2874     obj_loads++;
2875     linkmap_add(obj);	/* for GDB & dlinfo() */
2876     max_stack_flags |= obj->stack_flags;
2877 
2878     dbg("  %p .. %p: %s", obj->mapbase,
2879          obj->mapbase + obj->mapsize - 1, obj->path);
2880     if (obj->textrel)
2881 	dbg("  WARNING: %s has impure text", obj->path);
2882     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2883 	obj->path);
2884 
2885     return (obj);
2886 
2887 errp:
2888     munmap(obj->mapbase, obj->mapsize);
2889     obj_free(obj);
2890     return (NULL);
2891 }
2892 
2893 static int
2894 load_kpreload(const void *addr)
2895 {
2896 	Obj_Entry *obj;
2897 	const Elf_Ehdr *ehdr;
2898 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2899 	static const char kname[] = "[vdso]";
2900 
2901 	ehdr = addr;
2902 	if (!check_elf_headers(ehdr, "kpreload"))
2903 		return (-1);
2904 	obj = obj_new();
2905 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2906 	obj->phdr = phdr;
2907 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2908 	phlimit = phdr + ehdr->e_phnum;
2909 	seg0 = segn = NULL;
2910 
2911 	for (; phdr < phlimit; phdr++) {
2912 		switch (phdr->p_type) {
2913 		case PT_DYNAMIC:
2914 			phdyn = phdr;
2915 			break;
2916 		case PT_GNU_STACK:
2917 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2918 			obj->stack_flags = phdr->p_flags;
2919 			break;
2920 		case PT_LOAD:
2921 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2922 				seg0 = phdr;
2923 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2924 			    phdr->p_vaddr + phdr->p_memsz)
2925 				segn = phdr;
2926 			break;
2927 		}
2928 	}
2929 
2930 	obj->mapbase = __DECONST(caddr_t, addr);
2931 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2932 	obj->vaddrbase = 0;
2933 	obj->relocbase = obj->mapbase;
2934 
2935 	object_add_name(obj, kname);
2936 	obj->path = xstrdup(kname);
2937 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2938 
2939 	if (!digest_dynamic(obj, 0)) {
2940 		obj_free(obj);
2941 		return (-1);
2942 	}
2943 
2944 	/*
2945 	 * We assume that kernel-preloaded object does not need
2946 	 * relocation.  It is currently written into read-only page,
2947 	 * handling relocations would mean we need to allocate at
2948 	 * least one additional page per AS.
2949 	 */
2950 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2951 	    obj->path, obj->mapbase, obj->phdr, seg0,
2952 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2953 
2954 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2955 	obj_count++;
2956 	obj_loads++;
2957 	linkmap_add(obj);	/* for GDB & dlinfo() */
2958 	max_stack_flags |= obj->stack_flags;
2959 
2960 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2961 	return (0);
2962 }
2963 
2964 Obj_Entry *
2965 obj_from_addr(const void *addr)
2966 {
2967     Obj_Entry *obj;
2968 
2969     TAILQ_FOREACH(obj, &obj_list, next) {
2970 	if (obj->marker)
2971 	    continue;
2972 	if (addr < (void *) obj->mapbase)
2973 	    continue;
2974 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2975 	    return obj;
2976     }
2977     return (NULL);
2978 }
2979 
2980 static void
2981 preinit_main(void)
2982 {
2983     Elf_Addr *preinit_addr;
2984     int index;
2985 
2986     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2987     if (preinit_addr == NULL)
2988 	return;
2989 
2990     for (index = 0; index < obj_main->preinit_array_num; index++) {
2991 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2992 	    dbg("calling preinit function for %s at %p", obj_main->path,
2993 	      (void *)preinit_addr[index]);
2994 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2995 	      0, 0, obj_main->path);
2996 	    call_init_pointer(obj_main, preinit_addr[index]);
2997 	}
2998     }
2999 }
3000 
3001 /*
3002  * Call the finalization functions for each of the objects in "list"
3003  * belonging to the DAG of "root" and referenced once. If NULL "root"
3004  * is specified, every finalization function will be called regardless
3005  * of the reference count and the list elements won't be freed. All of
3006  * the objects are expected to have non-NULL fini functions.
3007  */
3008 static void
3009 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3010 {
3011     Objlist_Entry *elm;
3012     struct dlerror_save *saved_msg;
3013     Elf_Addr *fini_addr;
3014     int index;
3015 
3016     assert(root == NULL || root->refcount == 1);
3017 
3018     if (root != NULL)
3019 	root->doomed = true;
3020 
3021     /*
3022      * Preserve the current error message since a fini function might
3023      * call into the dynamic linker and overwrite it.
3024      */
3025     saved_msg = errmsg_save();
3026     do {
3027 	STAILQ_FOREACH(elm, list, link) {
3028 	    if (root != NULL && (elm->obj->refcount != 1 ||
3029 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
3030 		continue;
3031 	    /* Remove object from fini list to prevent recursive invocation. */
3032 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3033 	    /* Ensure that new references cannot be acquired. */
3034 	    elm->obj->doomed = true;
3035 
3036 	    hold_object(elm->obj);
3037 	    lock_release(rtld_bind_lock, lockstate);
3038 	    /*
3039 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3040 	     * When this happens, DT_FINI_ARRAY is processed first.
3041 	     */
3042 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3043 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3044 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3045 		  index--) {
3046 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3047 			dbg("calling fini function for %s at %p",
3048 			    elm->obj->path, (void *)fini_addr[index]);
3049 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3050 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3051 			call_initfini_pointer(elm->obj, fini_addr[index]);
3052 		    }
3053 		}
3054 	    }
3055 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3056 		dbg("calling fini function for %s at %p", elm->obj->path,
3057 		    (void *)elm->obj->fini);
3058 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3059 		    0, 0, elm->obj->path);
3060 		call_initfini_pointer(elm->obj, elm->obj->fini);
3061 	    }
3062 	    wlock_acquire(rtld_bind_lock, lockstate);
3063 	    unhold_object(elm->obj);
3064 	    /* No need to free anything if process is going down. */
3065 	    if (root != NULL)
3066 	    	free(elm);
3067 	    /*
3068 	     * We must restart the list traversal after every fini call
3069 	     * because a dlclose() call from the fini function or from
3070 	     * another thread might have modified the reference counts.
3071 	     */
3072 	    break;
3073 	}
3074     } while (elm != NULL);
3075     errmsg_restore(saved_msg);
3076 }
3077 
3078 /*
3079  * Call the initialization functions for each of the objects in
3080  * "list".  All of the objects are expected to have non-NULL init
3081  * functions.
3082  */
3083 static void
3084 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3085 {
3086     Objlist_Entry *elm;
3087     Obj_Entry *obj;
3088     struct dlerror_save *saved_msg;
3089     Elf_Addr *init_addr;
3090     void (*reg)(void (*)(void));
3091     int index;
3092 
3093     /*
3094      * Clean init_scanned flag so that objects can be rechecked and
3095      * possibly initialized earlier if any of vectors called below
3096      * cause the change by using dlopen.
3097      */
3098     TAILQ_FOREACH(obj, &obj_list, next) {
3099 	if (obj->marker)
3100 	    continue;
3101 	obj->init_scanned = false;
3102     }
3103 
3104     /*
3105      * Preserve the current error message since an init function might
3106      * call into the dynamic linker and overwrite it.
3107      */
3108     saved_msg = errmsg_save();
3109     STAILQ_FOREACH(elm, list, link) {
3110 	if (elm->obj->init_done) /* Initialized early. */
3111 	    continue;
3112 	/*
3113 	 * Race: other thread might try to use this object before current
3114 	 * one completes the initialization. Not much can be done here
3115 	 * without better locking.
3116 	 */
3117 	elm->obj->init_done = true;
3118 	hold_object(elm->obj);
3119 	reg = NULL;
3120 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3121 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3122 		    "__libc_atexit", lockstate);
3123 	}
3124 	lock_release(rtld_bind_lock, lockstate);
3125 	if (reg != NULL) {
3126 		reg(rtld_exit);
3127 		rtld_exit_ptr = rtld_nop_exit;
3128 	}
3129 
3130         /*
3131          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3132          * When this happens, DT_INIT is processed first.
3133          */
3134 	if (elm->obj->init != (Elf_Addr)NULL) {
3135 	    dbg("calling init function for %s at %p", elm->obj->path,
3136 	        (void *)elm->obj->init);
3137 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3138 	        0, 0, elm->obj->path);
3139 	    call_init_pointer(elm->obj, elm->obj->init);
3140 	}
3141 	init_addr = (Elf_Addr *)elm->obj->init_array;
3142 	if (init_addr != NULL) {
3143 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3144 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3145 		    dbg("calling init function for %s at %p", elm->obj->path,
3146 			(void *)init_addr[index]);
3147 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3148 			(void *)init_addr[index], 0, 0, elm->obj->path);
3149 		    call_init_pointer(elm->obj, init_addr[index]);
3150 		}
3151 	    }
3152 	}
3153 	wlock_acquire(rtld_bind_lock, lockstate);
3154 	unhold_object(elm->obj);
3155     }
3156     errmsg_restore(saved_msg);
3157 }
3158 
3159 static void
3160 objlist_clear(Objlist *list)
3161 {
3162     Objlist_Entry *elm;
3163 
3164     while (!STAILQ_EMPTY(list)) {
3165 	elm = STAILQ_FIRST(list);
3166 	STAILQ_REMOVE_HEAD(list, link);
3167 	free(elm);
3168     }
3169 }
3170 
3171 static Objlist_Entry *
3172 objlist_find(Objlist *list, const Obj_Entry *obj)
3173 {
3174     Objlist_Entry *elm;
3175 
3176     STAILQ_FOREACH(elm, list, link)
3177 	if (elm->obj == obj)
3178 	    return elm;
3179     return (NULL);
3180 }
3181 
3182 static void
3183 objlist_init(Objlist *list)
3184 {
3185     STAILQ_INIT(list);
3186 }
3187 
3188 static void
3189 objlist_push_head(Objlist *list, Obj_Entry *obj)
3190 {
3191     Objlist_Entry *elm;
3192 
3193     elm = NEW(Objlist_Entry);
3194     elm->obj = obj;
3195     STAILQ_INSERT_HEAD(list, elm, link);
3196 }
3197 
3198 static void
3199 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3200 {
3201     Objlist_Entry *elm;
3202 
3203     elm = NEW(Objlist_Entry);
3204     elm->obj = obj;
3205     STAILQ_INSERT_TAIL(list, elm, link);
3206 }
3207 
3208 static void
3209 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3210 {
3211 	Objlist_Entry *elm, *listelm;
3212 
3213 	STAILQ_FOREACH(listelm, list, link) {
3214 		if (listelm->obj == listobj)
3215 			break;
3216 	}
3217 	elm = NEW(Objlist_Entry);
3218 	elm->obj = obj;
3219 	if (listelm != NULL)
3220 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3221 	else
3222 		STAILQ_INSERT_TAIL(list, elm, link);
3223 }
3224 
3225 static void
3226 objlist_remove(Objlist *list, Obj_Entry *obj)
3227 {
3228     Objlist_Entry *elm;
3229 
3230     if ((elm = objlist_find(list, obj)) != NULL) {
3231 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3232 	free(elm);
3233     }
3234 }
3235 
3236 /*
3237  * Relocate dag rooted in the specified object.
3238  * Returns 0 on success, or -1 on failure.
3239  */
3240 
3241 static int
3242 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3243     int flags, RtldLockState *lockstate)
3244 {
3245 	Objlist_Entry *elm;
3246 	int error;
3247 
3248 	error = 0;
3249 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3250 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3251 		    lockstate);
3252 		if (error == -1)
3253 			break;
3254 	}
3255 	return (error);
3256 }
3257 
3258 /*
3259  * Prepare for, or clean after, relocating an object marked with
3260  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3261  * segments are remapped read-write.  After relocations are done, the
3262  * segment's permissions are returned back to the modes specified in
3263  * the phdrs.  If any relocation happened, or always for wired
3264  * program, COW is triggered.
3265  */
3266 static int
3267 reloc_textrel_prot(Obj_Entry *obj, bool before)
3268 {
3269 	const Elf_Phdr *ph;
3270 	void *base;
3271 	size_t l, sz;
3272 	int prot;
3273 
3274 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3275 	    l--, ph++) {
3276 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3277 			continue;
3278 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3279 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3280 		    rtld_trunc_page(ph->p_vaddr);
3281 		prot = before ? (PROT_READ | PROT_WRITE) :
3282 		    convert_prot(ph->p_flags);
3283 		if (mprotect(base, sz, prot) == -1) {
3284 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3285 			    obj->path, before ? "en" : "dis",
3286 			    rtld_strerror(errno));
3287 			return (-1);
3288 		}
3289 	}
3290 	return (0);
3291 }
3292 
3293 /* Process RELR relative relocations. */
3294 static void
3295 reloc_relr(Obj_Entry *obj)
3296 {
3297 	const Elf_Relr *relr, *relrlim;
3298 	Elf_Addr *where;
3299 
3300 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3301 	for (relr = obj->relr; relr < relrlim; relr++) {
3302 	    Elf_Relr entry = *relr;
3303 
3304 	    if ((entry & 1) == 0) {
3305 		where = (Elf_Addr *)(obj->relocbase + entry);
3306 		*where++ += (Elf_Addr)obj->relocbase;
3307 	    } else {
3308 		for (long i = 0; (entry >>= 1) != 0; i++)
3309 		    if ((entry & 1) != 0)
3310 			where[i] += (Elf_Addr)obj->relocbase;
3311 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3312 	    }
3313 	}
3314 }
3315 
3316 /*
3317  * Relocate single object.
3318  * Returns 0 on success, or -1 on failure.
3319  */
3320 static int
3321 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3322     int flags, RtldLockState *lockstate)
3323 {
3324 
3325 	if (obj->relocated)
3326 		return (0);
3327 	obj->relocated = true;
3328 	if (obj != rtldobj)
3329 		dbg("relocating \"%s\"", obj->path);
3330 
3331 	if (obj->symtab == NULL || obj->strtab == NULL ||
3332 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3333 		dbg("object %s has no run-time symbol table", obj->path);
3334 
3335 	/* There are relocations to the write-protected text segment. */
3336 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3337 		return (-1);
3338 
3339 	/* Process the non-PLT non-IFUNC relocations. */
3340 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3341 		return (-1);
3342 	reloc_relr(obj);
3343 
3344 	/* Re-protected the text segment. */
3345 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3346 		return (-1);
3347 
3348 	/* Set the special PLT or GOT entries. */
3349 	init_pltgot(obj);
3350 
3351 	/* Process the PLT relocations. */
3352 	if (reloc_plt(obj, flags, lockstate) == -1)
3353 		return (-1);
3354 	/* Relocate the jump slots if we are doing immediate binding. */
3355 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3356 	    lockstate) == -1)
3357 		return (-1);
3358 
3359 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3360 		return (-1);
3361 
3362 	/*
3363 	 * Set up the magic number and version in the Obj_Entry.  These
3364 	 * were checked in the crt1.o from the original ElfKit, so we
3365 	 * set them for backward compatibility.
3366 	 */
3367 	obj->magic = RTLD_MAGIC;
3368 	obj->version = RTLD_VERSION;
3369 
3370 	return (0);
3371 }
3372 
3373 /*
3374  * Relocate newly-loaded shared objects.  The argument is a pointer to
3375  * the Obj_Entry for the first such object.  All objects from the first
3376  * to the end of the list of objects are relocated.  Returns 0 on success,
3377  * or -1 on failure.
3378  */
3379 static int
3380 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3381     int flags, RtldLockState *lockstate)
3382 {
3383 	Obj_Entry *obj;
3384 	int error;
3385 
3386 	for (error = 0, obj = first;  obj != NULL;
3387 	    obj = TAILQ_NEXT(obj, next)) {
3388 		if (obj->marker)
3389 			continue;
3390 		error = relocate_object(obj, bind_now, rtldobj, flags,
3391 		    lockstate);
3392 		if (error == -1)
3393 			break;
3394 	}
3395 	return (error);
3396 }
3397 
3398 /*
3399  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3400  * referencing STT_GNU_IFUNC symbols is postponed till the other
3401  * relocations are done.  The indirect functions specified as
3402  * ifunc are allowed to call other symbols, so we need to have
3403  * objects relocated before asking for resolution from indirects.
3404  *
3405  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3406  * instead of the usual lazy handling of PLT slots.  It is
3407  * consistent with how GNU does it.
3408  */
3409 static int
3410 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3411     RtldLockState *lockstate)
3412 {
3413 
3414 	if (obj->ifuncs_resolved)
3415 		return (0);
3416 	obj->ifuncs_resolved = true;
3417 	if (!obj->irelative && !obj->irelative_nonplt &&
3418 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3419 	    !obj->non_plt_gnu_ifunc)
3420 		return (0);
3421 	if (obj_disable_relro(obj) == -1 ||
3422 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3423 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3424 	    lockstate) == -1) ||
3425 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3426 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3427 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3428 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3429 	    obj_enforce_relro(obj) == -1)
3430 		return (-1);
3431 	return (0);
3432 }
3433 
3434 static int
3435 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3436     RtldLockState *lockstate)
3437 {
3438 	Objlist_Entry *elm;
3439 	Obj_Entry *obj;
3440 
3441 	STAILQ_FOREACH(elm, list, link) {
3442 		obj = elm->obj;
3443 		if (obj->marker)
3444 			continue;
3445 		if (resolve_object_ifunc(obj, bind_now, flags,
3446 		    lockstate) == -1)
3447 			return (-1);
3448 	}
3449 	return (0);
3450 }
3451 
3452 /*
3453  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3454  * before the process exits.
3455  */
3456 static void
3457 rtld_exit(void)
3458 {
3459     RtldLockState lockstate;
3460 
3461     wlock_acquire(rtld_bind_lock, &lockstate);
3462     dbg("rtld_exit()");
3463     objlist_call_fini(&list_fini, NULL, &lockstate);
3464     /* No need to remove the items from the list, since we are exiting. */
3465     if (!libmap_disable)
3466         lm_fini();
3467     lock_release(rtld_bind_lock, &lockstate);
3468 }
3469 
3470 static void
3471 rtld_nop_exit(void)
3472 {
3473 }
3474 
3475 /*
3476  * Iterate over a search path, translate each element, and invoke the
3477  * callback on the result.
3478  */
3479 static void *
3480 path_enumerate(const char *path, path_enum_proc callback,
3481     const char *refobj_path, void *arg)
3482 {
3483     const char *trans;
3484     if (path == NULL)
3485 	return (NULL);
3486 
3487     path += strspn(path, ":;");
3488     while (*path != '\0') {
3489 	size_t len;
3490 	char  *res;
3491 
3492 	len = strcspn(path, ":;");
3493 	trans = lm_findn(refobj_path, path, len);
3494 	if (trans)
3495 	    res = callback(trans, strlen(trans), arg);
3496 	else
3497 	    res = callback(path, len, arg);
3498 
3499 	if (res != NULL)
3500 	    return (res);
3501 
3502 	path += len;
3503 	path += strspn(path, ":;");
3504     }
3505 
3506     return (NULL);
3507 }
3508 
3509 struct try_library_args {
3510     const char	*name;
3511     size_t	 namelen;
3512     char	*buffer;
3513     size_t	 buflen;
3514     int		 fd;
3515 };
3516 
3517 static void *
3518 try_library_path(const char *dir, size_t dirlen, void *param)
3519 {
3520     struct try_library_args *arg;
3521     int fd;
3522 
3523     arg = param;
3524     if (*dir == '/' || trust) {
3525 	char *pathname;
3526 
3527 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3528 		return (NULL);
3529 
3530 	pathname = arg->buffer;
3531 	strncpy(pathname, dir, dirlen);
3532 	pathname[dirlen] = '/';
3533 	strcpy(pathname + dirlen + 1, arg->name);
3534 
3535 	dbg("  Trying \"%s\"", pathname);
3536 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3537 	if (fd >= 0) {
3538 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3539 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3540 	    strcpy(pathname, arg->buffer);
3541 	    arg->fd = fd;
3542 	    return (pathname);
3543 	} else {
3544 	    dbg("  Failed to open \"%s\": %s",
3545 		pathname, rtld_strerror(errno));
3546 	}
3547     }
3548     return (NULL);
3549 }
3550 
3551 static char *
3552 search_library_path(const char *name, const char *path,
3553     const char *refobj_path, int *fdp)
3554 {
3555     char *p;
3556     struct try_library_args arg;
3557 
3558     if (path == NULL)
3559 	return (NULL);
3560 
3561     arg.name = name;
3562     arg.namelen = strlen(name);
3563     arg.buffer = xmalloc(PATH_MAX);
3564     arg.buflen = PATH_MAX;
3565     arg.fd = -1;
3566 
3567     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3568     *fdp = arg.fd;
3569 
3570     free(arg.buffer);
3571 
3572     return (p);
3573 }
3574 
3575 
3576 /*
3577  * Finds the library with the given name using the directory descriptors
3578  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3579  *
3580  * Returns a freshly-opened close-on-exec file descriptor for the library,
3581  * or -1 if the library cannot be found.
3582  */
3583 static char *
3584 search_library_pathfds(const char *name, const char *path, int *fdp)
3585 {
3586 	char *envcopy, *fdstr, *found, *last_token;
3587 	size_t len;
3588 	int dirfd, fd;
3589 
3590 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3591 
3592 	/* Don't load from user-specified libdirs into setuid binaries. */
3593 	if (!trust)
3594 		return (NULL);
3595 
3596 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3597 	if (path == NULL)
3598 		return (NULL);
3599 
3600 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3601 	if (name[0] == '/') {
3602 		dbg("Absolute path (%s) passed to %s", name, __func__);
3603 		return (NULL);
3604 	}
3605 
3606 	/*
3607 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3608 	 * copy of the path, as strtok_r rewrites separator tokens
3609 	 * with '\0'.
3610 	 */
3611 	found = NULL;
3612 	envcopy = xstrdup(path);
3613 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3614 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3615 		dirfd = parse_integer(fdstr);
3616 		if (dirfd < 0) {
3617 			_rtld_error("failed to parse directory FD: '%s'",
3618 				fdstr);
3619 			break;
3620 		}
3621 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3622 		if (fd >= 0) {
3623 			*fdp = fd;
3624 			len = strlen(fdstr) + strlen(name) + 3;
3625 			found = xmalloc(len);
3626 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3627 				_rtld_error("error generating '%d/%s'",
3628 				    dirfd, name);
3629 				rtld_die();
3630 			}
3631 			dbg("open('%s') => %d", found, fd);
3632 			break;
3633 		}
3634 	}
3635 	free(envcopy);
3636 
3637 	return (found);
3638 }
3639 
3640 
3641 int
3642 dlclose(void *handle)
3643 {
3644 	RtldLockState lockstate;
3645 	int error;
3646 
3647 	wlock_acquire(rtld_bind_lock, &lockstate);
3648 	error = dlclose_locked(handle, &lockstate);
3649 	lock_release(rtld_bind_lock, &lockstate);
3650 	return (error);
3651 }
3652 
3653 static int
3654 dlclose_locked(void *handle, RtldLockState *lockstate)
3655 {
3656     Obj_Entry *root;
3657 
3658     root = dlcheck(handle);
3659     if (root == NULL)
3660 	return (-1);
3661     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3662 	root->path);
3663 
3664     /* Unreference the object and its dependencies. */
3665     root->dl_refcount--;
3666 
3667     if (root->refcount == 1) {
3668 	/*
3669 	 * The object will be no longer referenced, so we must unload it.
3670 	 * First, call the fini functions.
3671 	 */
3672 	objlist_call_fini(&list_fini, root, lockstate);
3673 
3674 	unref_dag(root);
3675 
3676 	/* Finish cleaning up the newly-unreferenced objects. */
3677 	GDB_STATE(RT_DELETE,&root->linkmap);
3678 	unload_object(root, lockstate);
3679 	GDB_STATE(RT_CONSISTENT,NULL);
3680     } else
3681 	unref_dag(root);
3682 
3683     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3684     return (0);
3685 }
3686 
3687 char *
3688 dlerror(void)
3689 {
3690 	if (*(lockinfo.dlerror_seen()) != 0)
3691 		return (NULL);
3692 	*lockinfo.dlerror_seen() = 1;
3693 	return (lockinfo.dlerror_loc());
3694 }
3695 
3696 /*
3697  * This function is deprecated and has no effect.
3698  */
3699 void
3700 dllockinit(void *context,
3701     void *(*_lock_create)(void *context) __unused,
3702     void (*_rlock_acquire)(void *lock) __unused,
3703     void (*_wlock_acquire)(void *lock)  __unused,
3704     void (*_lock_release)(void *lock) __unused,
3705     void (*_lock_destroy)(void *lock) __unused,
3706     void (*context_destroy)(void *context))
3707 {
3708     static void *cur_context;
3709     static void (*cur_context_destroy)(void *);
3710 
3711     /* Just destroy the context from the previous call, if necessary. */
3712     if (cur_context_destroy != NULL)
3713 	cur_context_destroy(cur_context);
3714     cur_context = context;
3715     cur_context_destroy = context_destroy;
3716 }
3717 
3718 void *
3719 dlopen(const char *name, int mode)
3720 {
3721 
3722 	return (rtld_dlopen(name, -1, mode));
3723 }
3724 
3725 void *
3726 fdlopen(int fd, int mode)
3727 {
3728 
3729 	return (rtld_dlopen(NULL, fd, mode));
3730 }
3731 
3732 static void *
3733 rtld_dlopen(const char *name, int fd, int mode)
3734 {
3735     RtldLockState lockstate;
3736     int lo_flags;
3737 
3738     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3739     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3740     if (ld_tracing != NULL) {
3741 	rlock_acquire(rtld_bind_lock, &lockstate);
3742 	if (sigsetjmp(lockstate.env, 0) != 0)
3743 	    lock_upgrade(rtld_bind_lock, &lockstate);
3744 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3745 	lock_release(rtld_bind_lock, &lockstate);
3746     }
3747     lo_flags = RTLD_LO_DLOPEN;
3748     if (mode & RTLD_NODELETE)
3749 	    lo_flags |= RTLD_LO_NODELETE;
3750     if (mode & RTLD_NOLOAD)
3751 	    lo_flags |= RTLD_LO_NOLOAD;
3752     if (mode & RTLD_DEEPBIND)
3753 	    lo_flags |= RTLD_LO_DEEPBIND;
3754     if (ld_tracing != NULL)
3755 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3756 
3757     return (dlopen_object(name, fd, obj_main, lo_flags,
3758       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3759 }
3760 
3761 static void
3762 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3763 {
3764 
3765 	obj->dl_refcount--;
3766 	unref_dag(obj);
3767 	if (obj->refcount == 0)
3768 		unload_object(obj, lockstate);
3769 }
3770 
3771 static Obj_Entry *
3772 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3773     int mode, RtldLockState *lockstate)
3774 {
3775     Obj_Entry *obj;
3776     Objlist initlist;
3777     RtldLockState mlockstate;
3778     int result;
3779 
3780     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3781       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3782       refobj->path, lo_flags, mode);
3783     objlist_init(&initlist);
3784 
3785     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3786 	wlock_acquire(rtld_bind_lock, &mlockstate);
3787 	lockstate = &mlockstate;
3788     }
3789     GDB_STATE(RT_ADD,NULL);
3790 
3791     obj = NULL;
3792     if (name == NULL && fd == -1) {
3793 	obj = obj_main;
3794 	obj->refcount++;
3795     } else {
3796 	obj = load_object(name, fd, refobj, lo_flags);
3797     }
3798 
3799     if (obj) {
3800 	obj->dl_refcount++;
3801 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3802 	    objlist_push_tail(&list_global, obj);
3803 
3804 	if (!obj->init_done) {
3805 	    /* We loaded something new and have to init something. */
3806 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3807 		obj->deepbind = true;
3808 	    result = 0;
3809 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3810 	      obj->static_tls && !allocate_tls_offset(obj)) {
3811 		_rtld_error("%s: No space available "
3812 		  "for static Thread Local Storage", obj->path);
3813 		result = -1;
3814 	    }
3815 	    if (result != -1)
3816 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3817 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3818 	    init_dag(obj);
3819 	    ref_dag(obj);
3820 	    if (result != -1)
3821 		result = rtld_verify_versions(&obj->dagmembers);
3822 	    if (result != -1 && ld_tracing)
3823 		goto trace;
3824 	    if (result == -1 || relocate_object_dag(obj,
3825 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3826 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3827 	      lockstate) == -1) {
3828 		dlopen_cleanup(obj, lockstate);
3829 		obj = NULL;
3830 	    } else if (lo_flags & RTLD_LO_EARLY) {
3831 		/*
3832 		 * Do not call the init functions for early loaded
3833 		 * filtees.  The image is still not initialized enough
3834 		 * for them to work.
3835 		 *
3836 		 * Our object is found by the global object list and
3837 		 * will be ordered among all init calls done right
3838 		 * before transferring control to main.
3839 		 */
3840 	    } else {
3841 		/* Make list of init functions to call. */
3842 		initlist_add_objects(obj, obj, &initlist);
3843 	    }
3844 	    /*
3845 	     * Process all no_delete or global objects here, given
3846 	     * them own DAGs to prevent their dependencies from being
3847 	     * unloaded.  This has to be done after we have loaded all
3848 	     * of the dependencies, so that we do not miss any.
3849 	     */
3850 	    if (obj != NULL)
3851 		process_z(obj);
3852 	} else {
3853 	    /*
3854 	     * Bump the reference counts for objects on this DAG.  If
3855 	     * this is the first dlopen() call for the object that was
3856 	     * already loaded as a dependency, initialize the dag
3857 	     * starting at it.
3858 	     */
3859 	    init_dag(obj);
3860 	    ref_dag(obj);
3861 
3862 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3863 		goto trace;
3864 	}
3865 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3866 	  obj->z_nodelete) && !obj->ref_nodel) {
3867 	    dbg("obj %s nodelete", obj->path);
3868 	    ref_dag(obj);
3869 	    obj->z_nodelete = obj->ref_nodel = true;
3870 	}
3871     }
3872 
3873     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3874 	name);
3875     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3876 
3877     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3878 	map_stacks_exec(lockstate);
3879 	if (obj != NULL)
3880 	    distribute_static_tls(&initlist, lockstate);
3881     }
3882 
3883     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3884       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3885       lockstate) == -1) {
3886 	objlist_clear(&initlist);
3887 	dlopen_cleanup(obj, lockstate);
3888 	if (lockstate == &mlockstate)
3889 	    lock_release(rtld_bind_lock, lockstate);
3890 	return (NULL);
3891     }
3892 
3893     if (!(lo_flags & RTLD_LO_EARLY)) {
3894 	/* Call the init functions. */
3895 	objlist_call_init(&initlist, lockstate);
3896     }
3897     objlist_clear(&initlist);
3898     if (lockstate == &mlockstate)
3899 	lock_release(rtld_bind_lock, lockstate);
3900     return (obj);
3901 trace:
3902     trace_loaded_objects(obj, false);
3903     if (lockstate == &mlockstate)
3904 	lock_release(rtld_bind_lock, lockstate);
3905     exit(0);
3906 }
3907 
3908 static void *
3909 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3910     int flags)
3911 {
3912     DoneList donelist;
3913     const Obj_Entry *obj, *defobj;
3914     const Elf_Sym *def;
3915     SymLook req;
3916     RtldLockState lockstate;
3917     tls_index ti;
3918     void *sym;
3919     int res;
3920 
3921     def = NULL;
3922     defobj = NULL;
3923     symlook_init(&req, name);
3924     req.ventry = ve;
3925     req.flags = flags | SYMLOOK_IN_PLT;
3926     req.lockstate = &lockstate;
3927 
3928     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3929     rlock_acquire(rtld_bind_lock, &lockstate);
3930     if (sigsetjmp(lockstate.env, 0) != 0)
3931 	    lock_upgrade(rtld_bind_lock, &lockstate);
3932     if (handle == NULL || handle == RTLD_NEXT ||
3933 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3934 
3935 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3936 	    _rtld_error("Cannot determine caller's shared object");
3937 	    lock_release(rtld_bind_lock, &lockstate);
3938 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3939 	    return (NULL);
3940 	}
3941 	if (handle == NULL) {	/* Just the caller's shared object. */
3942 	    res = symlook_obj(&req, obj);
3943 	    if (res == 0) {
3944 		def = req.sym_out;
3945 		defobj = req.defobj_out;
3946 	    }
3947 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3948 		   handle == RTLD_SELF) { /* ... caller included */
3949 	    if (handle == RTLD_NEXT)
3950 		obj = globallist_next(obj);
3951 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3952 		if (obj->marker)
3953 		    continue;
3954 		res = symlook_obj(&req, obj);
3955 		if (res == 0) {
3956 		    if (def == NULL || (ld_dynamic_weak &&
3957                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3958 			def = req.sym_out;
3959 			defobj = req.defobj_out;
3960 			if (!ld_dynamic_weak ||
3961 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3962 			    break;
3963 		    }
3964 		}
3965 	    }
3966 	    /*
3967 	     * Search the dynamic linker itself, and possibly resolve the
3968 	     * symbol from there.  This is how the application links to
3969 	     * dynamic linker services such as dlopen.
3970 	     * Note that we ignore ld_dynamic_weak == false case,
3971 	     * always overriding weak symbols by rtld definitions.
3972 	     */
3973 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3974 		res = symlook_obj(&req, &obj_rtld);
3975 		if (res == 0) {
3976 		    def = req.sym_out;
3977 		    defobj = req.defobj_out;
3978 		}
3979 	    }
3980 	} else {
3981 	    assert(handle == RTLD_DEFAULT);
3982 	    res = symlook_default(&req, obj);
3983 	    if (res == 0) {
3984 		defobj = req.defobj_out;
3985 		def = req.sym_out;
3986 	    }
3987 	}
3988     } else {
3989 	if ((obj = dlcheck(handle)) == NULL) {
3990 	    lock_release(rtld_bind_lock, &lockstate);
3991 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3992 	    return (NULL);
3993 	}
3994 
3995 	donelist_init(&donelist);
3996 	if (obj->mainprog) {
3997             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3998 	    res = symlook_global(&req, &donelist);
3999 	    if (res == 0) {
4000 		def = req.sym_out;
4001 		defobj = req.defobj_out;
4002 	    }
4003 	    /*
4004 	     * Search the dynamic linker itself, and possibly resolve the
4005 	     * symbol from there.  This is how the application links to
4006 	     * dynamic linker services such as dlopen.
4007 	     */
4008 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
4009 		res = symlook_obj(&req, &obj_rtld);
4010 		if (res == 0) {
4011 		    def = req.sym_out;
4012 		    defobj = req.defobj_out;
4013 		}
4014 	    }
4015 	}
4016 	else {
4017 	    /* Search the whole DAG rooted at the given object. */
4018 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
4019 	    if (res == 0) {
4020 		def = req.sym_out;
4021 		defobj = req.defobj_out;
4022 	    }
4023 	}
4024     }
4025 
4026     if (def != NULL) {
4027 	lock_release(rtld_bind_lock, &lockstate);
4028 
4029 	/*
4030 	 * The value required by the caller is derived from the value
4031 	 * of the symbol. this is simply the relocated value of the
4032 	 * symbol.
4033 	 */
4034 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4035 	    sym = make_function_pointer(def, defobj);
4036 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4037 	    sym = rtld_resolve_ifunc(defobj, def);
4038 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4039 	    ti.ti_module = defobj->tlsindex;
4040 	    ti.ti_offset = def->st_value;
4041 	    sym = __tls_get_addr(&ti);
4042 	} else
4043 	    sym = defobj->relocbase + def->st_value;
4044 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4045 	return (sym);
4046     }
4047 
4048     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4049       ve != NULL ? ve->name : "");
4050     lock_release(rtld_bind_lock, &lockstate);
4051     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4052     return (NULL);
4053 }
4054 
4055 void *
4056 dlsym(void *handle, const char *name)
4057 {
4058 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4059 	    SYMLOOK_DLSYM));
4060 }
4061 
4062 dlfunc_t
4063 dlfunc(void *handle, const char *name)
4064 {
4065 	union {
4066 		void *d;
4067 		dlfunc_t f;
4068 	} rv;
4069 
4070 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4071 	    SYMLOOK_DLSYM);
4072 	return (rv.f);
4073 }
4074 
4075 void *
4076 dlvsym(void *handle, const char *name, const char *version)
4077 {
4078 	Ver_Entry ventry;
4079 
4080 	ventry.name = version;
4081 	ventry.file = NULL;
4082 	ventry.hash = elf_hash(version);
4083 	ventry.flags= 0;
4084 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4085 	    SYMLOOK_DLSYM));
4086 }
4087 
4088 int
4089 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4090 {
4091     const Obj_Entry *obj;
4092     RtldLockState lockstate;
4093 
4094     rlock_acquire(rtld_bind_lock, &lockstate);
4095     obj = obj_from_addr(addr);
4096     if (obj == NULL) {
4097         _rtld_error("No shared object contains address");
4098 	lock_release(rtld_bind_lock, &lockstate);
4099         return (0);
4100     }
4101     rtld_fill_dl_phdr_info(obj, phdr_info);
4102     lock_release(rtld_bind_lock, &lockstate);
4103     return (1);
4104 }
4105 
4106 int
4107 dladdr(const void *addr, Dl_info *info)
4108 {
4109     const Obj_Entry *obj;
4110     const Elf_Sym *def;
4111     void *symbol_addr;
4112     unsigned long symoffset;
4113     RtldLockState lockstate;
4114 
4115     rlock_acquire(rtld_bind_lock, &lockstate);
4116     obj = obj_from_addr(addr);
4117     if (obj == NULL) {
4118         _rtld_error("No shared object contains address");
4119 	lock_release(rtld_bind_lock, &lockstate);
4120         return (0);
4121     }
4122     info->dli_fname = obj->path;
4123     info->dli_fbase = obj->mapbase;
4124     info->dli_saddr = (void *)0;
4125     info->dli_sname = NULL;
4126 
4127     /*
4128      * Walk the symbol list looking for the symbol whose address is
4129      * closest to the address sent in.
4130      */
4131     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4132         def = obj->symtab + symoffset;
4133 
4134         /*
4135          * For skip the symbol if st_shndx is either SHN_UNDEF or
4136          * SHN_COMMON.
4137          */
4138         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4139             continue;
4140 
4141         /*
4142          * If the symbol is greater than the specified address, or if it
4143          * is further away from addr than the current nearest symbol,
4144          * then reject it.
4145          */
4146         symbol_addr = obj->relocbase + def->st_value;
4147         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4148             continue;
4149 
4150         /* Update our idea of the nearest symbol. */
4151         info->dli_sname = obj->strtab + def->st_name;
4152         info->dli_saddr = symbol_addr;
4153 
4154         /* Exact match? */
4155         if (info->dli_saddr == addr)
4156             break;
4157     }
4158     lock_release(rtld_bind_lock, &lockstate);
4159     return (1);
4160 }
4161 
4162 int
4163 dlinfo(void *handle, int request, void *p)
4164 {
4165     const Obj_Entry *obj;
4166     RtldLockState lockstate;
4167     int error;
4168 
4169     rlock_acquire(rtld_bind_lock, &lockstate);
4170 
4171     if (handle == NULL || handle == RTLD_SELF) {
4172 	void *retaddr;
4173 
4174 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4175 	if ((obj = obj_from_addr(retaddr)) == NULL)
4176 	    _rtld_error("Cannot determine caller's shared object");
4177     } else
4178 	obj = dlcheck(handle);
4179 
4180     if (obj == NULL) {
4181 	lock_release(rtld_bind_lock, &lockstate);
4182 	return (-1);
4183     }
4184 
4185     error = 0;
4186     switch (request) {
4187     case RTLD_DI_LINKMAP:
4188 	*((struct link_map const **)p) = &obj->linkmap;
4189 	break;
4190     case RTLD_DI_ORIGIN:
4191 	error = rtld_dirname(obj->path, p);
4192 	break;
4193 
4194     case RTLD_DI_SERINFOSIZE:
4195     case RTLD_DI_SERINFO:
4196 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4197 	break;
4198 
4199     default:
4200 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4201 	error = -1;
4202     }
4203 
4204     lock_release(rtld_bind_lock, &lockstate);
4205 
4206     return (error);
4207 }
4208 
4209 static void
4210 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4211 {
4212 	uintptr_t **dtvp;
4213 
4214 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4215 	phdr_info->dlpi_name = obj->path;
4216 	phdr_info->dlpi_phdr = obj->phdr;
4217 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4218 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4219 	dtvp = &_tcb_get()->tcb_dtv;
4220 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4221 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4222 	phdr_info->dlpi_adds = obj_loads;
4223 	phdr_info->dlpi_subs = obj_loads - obj_count;
4224 }
4225 
4226 int
4227 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4228 {
4229 	struct dl_phdr_info phdr_info;
4230 	Obj_Entry *obj, marker;
4231 	RtldLockState bind_lockstate, phdr_lockstate;
4232 	int error;
4233 
4234 	init_marker(&marker);
4235 	error = 0;
4236 
4237 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4238 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4239 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4240 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4241 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4242 		hold_object(obj);
4243 		lock_release(rtld_bind_lock, &bind_lockstate);
4244 
4245 		error = callback(&phdr_info, sizeof phdr_info, param);
4246 
4247 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4248 		unhold_object(obj);
4249 		obj = globallist_next(&marker);
4250 		TAILQ_REMOVE(&obj_list, &marker, next);
4251 		if (error != 0) {
4252 			lock_release(rtld_bind_lock, &bind_lockstate);
4253 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4254 			return (error);
4255 		}
4256 	}
4257 
4258 	if (error == 0) {
4259 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4260 		lock_release(rtld_bind_lock, &bind_lockstate);
4261 		error = callback(&phdr_info, sizeof(phdr_info), param);
4262 	}
4263 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4264 	return (error);
4265 }
4266 
4267 static void *
4268 fill_search_info(const char *dir, size_t dirlen, void *param)
4269 {
4270     struct fill_search_info_args *arg;
4271 
4272     arg = param;
4273 
4274     if (arg->request == RTLD_DI_SERINFOSIZE) {
4275 	arg->serinfo->dls_cnt ++;
4276 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4277     } else {
4278 	struct dl_serpath *s_entry;
4279 
4280 	s_entry = arg->serpath;
4281 	s_entry->dls_name  = arg->strspace;
4282 	s_entry->dls_flags = arg->flags;
4283 
4284 	strncpy(arg->strspace, dir, dirlen);
4285 	arg->strspace[dirlen] = '\0';
4286 
4287 	arg->strspace += dirlen + 1;
4288 	arg->serpath++;
4289     }
4290 
4291     return (NULL);
4292 }
4293 
4294 static int
4295 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4296 {
4297     struct dl_serinfo _info;
4298     struct fill_search_info_args args;
4299 
4300     args.request = RTLD_DI_SERINFOSIZE;
4301     args.serinfo = &_info;
4302 
4303     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4304     _info.dls_cnt  = 0;
4305 
4306     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4307     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4308     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4309     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4310     if (!obj->z_nodeflib)
4311       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4312 
4313 
4314     if (request == RTLD_DI_SERINFOSIZE) {
4315 	info->dls_size = _info.dls_size;
4316 	info->dls_cnt = _info.dls_cnt;
4317 	return (0);
4318     }
4319 
4320     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4321 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4322 	return (-1);
4323     }
4324 
4325     args.request  = RTLD_DI_SERINFO;
4326     args.serinfo  = info;
4327     args.serpath  = &info->dls_serpath[0];
4328     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4329 
4330     args.flags = LA_SER_RUNPATH;
4331     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4332 	return (-1);
4333 
4334     args.flags = LA_SER_LIBPATH;
4335     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4336 	return (-1);
4337 
4338     args.flags = LA_SER_RUNPATH;
4339     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4340 	return (-1);
4341 
4342     args.flags = LA_SER_CONFIG;
4343     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4344       != NULL)
4345 	return (-1);
4346 
4347     args.flags = LA_SER_DEFAULT;
4348     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4349       fill_search_info, NULL, &args) != NULL)
4350 	return (-1);
4351     return (0);
4352 }
4353 
4354 static int
4355 rtld_dirname(const char *path, char *bname)
4356 {
4357     const char *endp;
4358 
4359     /* Empty or NULL string gets treated as "." */
4360     if (path == NULL || *path == '\0') {
4361 	bname[0] = '.';
4362 	bname[1] = '\0';
4363 	return (0);
4364     }
4365 
4366     /* Strip trailing slashes */
4367     endp = path + strlen(path) - 1;
4368     while (endp > path && *endp == '/')
4369 	endp--;
4370 
4371     /* Find the start of the dir */
4372     while (endp > path && *endp != '/')
4373 	endp--;
4374 
4375     /* Either the dir is "/" or there are no slashes */
4376     if (endp == path) {
4377 	bname[0] = *endp == '/' ? '/' : '.';
4378 	bname[1] = '\0';
4379 	return (0);
4380     } else {
4381 	do {
4382 	    endp--;
4383 	} while (endp > path && *endp == '/');
4384     }
4385 
4386     if (endp - path + 2 > PATH_MAX)
4387     {
4388 	_rtld_error("Filename is too long: %s", path);
4389 	return(-1);
4390     }
4391 
4392     strncpy(bname, path, endp - path + 1);
4393     bname[endp - path + 1] = '\0';
4394     return (0);
4395 }
4396 
4397 static int
4398 rtld_dirname_abs(const char *path, char *base)
4399 {
4400 	char *last;
4401 
4402 	if (realpath(path, base) == NULL) {
4403 		_rtld_error("realpath \"%s\" failed (%s)", path,
4404 		    rtld_strerror(errno));
4405 		return (-1);
4406 	}
4407 	dbg("%s -> %s", path, base);
4408 	last = strrchr(base, '/');
4409 	if (last == NULL) {
4410 		_rtld_error("non-abs result from realpath \"%s\"", path);
4411 		return (-1);
4412 	}
4413 	if (last != base)
4414 		*last = '\0';
4415 	return (0);
4416 }
4417 
4418 static void
4419 linkmap_add(Obj_Entry *obj)
4420 {
4421 	struct link_map *l, *prev;
4422 
4423 	l = &obj->linkmap;
4424 	l->l_name = obj->path;
4425 	l->l_base = obj->mapbase;
4426 	l->l_ld = obj->dynamic;
4427 	l->l_addr = obj->relocbase;
4428 
4429 	if (r_debug.r_map == NULL) {
4430 		r_debug.r_map = l;
4431 		return;
4432 	}
4433 
4434 	/*
4435 	 * Scan to the end of the list, but not past the entry for the
4436 	 * dynamic linker, which we want to keep at the very end.
4437 	 */
4438 	for (prev = r_debug.r_map;
4439 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4440 	     prev = prev->l_next)
4441 		;
4442 
4443 	/* Link in the new entry. */
4444 	l->l_prev = prev;
4445 	l->l_next = prev->l_next;
4446 	if (l->l_next != NULL)
4447 		l->l_next->l_prev = l;
4448 	prev->l_next = l;
4449 }
4450 
4451 static void
4452 linkmap_delete(Obj_Entry *obj)
4453 {
4454 	struct link_map *l;
4455 
4456 	l = &obj->linkmap;
4457 	if (l->l_prev == NULL) {
4458 		if ((r_debug.r_map = l->l_next) != NULL)
4459 			l->l_next->l_prev = NULL;
4460 		return;
4461 	}
4462 
4463 	if ((l->l_prev->l_next = l->l_next) != NULL)
4464 		l->l_next->l_prev = l->l_prev;
4465 }
4466 
4467 /*
4468  * Function for the debugger to set a breakpoint on to gain control.
4469  *
4470  * The two parameters allow the debugger to easily find and determine
4471  * what the runtime loader is doing and to whom it is doing it.
4472  *
4473  * When the loadhook trap is hit (r_debug_state, set at program
4474  * initialization), the arguments can be found on the stack:
4475  *
4476  *  +8   struct link_map *m
4477  *  +4   struct r_debug  *rd
4478  *  +0   RetAddr
4479  */
4480 void
4481 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4482 {
4483     /*
4484      * The following is a hack to force the compiler to emit calls to
4485      * this function, even when optimizing.  If the function is empty,
4486      * the compiler is not obliged to emit any code for calls to it,
4487      * even when marked __noinline.  However, gdb depends on those
4488      * calls being made.
4489      */
4490     __compiler_membar();
4491 }
4492 
4493 /*
4494  * A function called after init routines have completed. This can be used to
4495  * break before a program's entry routine is called, and can be used when
4496  * main is not available in the symbol table.
4497  */
4498 void
4499 _r_debug_postinit(struct link_map *m __unused)
4500 {
4501 
4502 	/* See r_debug_state(). */
4503 	__compiler_membar();
4504 }
4505 
4506 static void
4507 release_object(Obj_Entry *obj)
4508 {
4509 
4510 	if (obj->holdcount > 0) {
4511 		obj->unholdfree = true;
4512 		return;
4513 	}
4514 	munmap(obj->mapbase, obj->mapsize);
4515 	linkmap_delete(obj);
4516 	obj_free(obj);
4517 }
4518 
4519 /*
4520  * Get address of the pointer variable in the main program.
4521  * Prefer non-weak symbol over the weak one.
4522  */
4523 static const void **
4524 get_program_var_addr(const char *name, RtldLockState *lockstate)
4525 {
4526     SymLook req;
4527     DoneList donelist;
4528 
4529     symlook_init(&req, name);
4530     req.lockstate = lockstate;
4531     donelist_init(&donelist);
4532     if (symlook_global(&req, &donelist) != 0)
4533 	return (NULL);
4534     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4535 	return ((const void **)make_function_pointer(req.sym_out,
4536 	  req.defobj_out));
4537     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4538 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4539     else
4540 	return ((const void **)(req.defobj_out->relocbase +
4541 	  req.sym_out->st_value));
4542 }
4543 
4544 /*
4545  * Set a pointer variable in the main program to the given value.  This
4546  * is used to set key variables such as "environ" before any of the
4547  * init functions are called.
4548  */
4549 static void
4550 set_program_var(const char *name, const void *value)
4551 {
4552     const void **addr;
4553 
4554     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4555 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4556 	*addr = value;
4557     }
4558 }
4559 
4560 /*
4561  * Search the global objects, including dependencies and main object,
4562  * for the given symbol.
4563  */
4564 static int
4565 symlook_global(SymLook *req, DoneList *donelist)
4566 {
4567     SymLook req1;
4568     const Objlist_Entry *elm;
4569     int res;
4570 
4571     symlook_init_from_req(&req1, req);
4572 
4573     /* Search all objects loaded at program start up. */
4574     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4575       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4576 	res = symlook_list(&req1, &list_main, donelist);
4577 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4578 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4579 	    req->sym_out = req1.sym_out;
4580 	    req->defobj_out = req1.defobj_out;
4581 	    assert(req->defobj_out != NULL);
4582 	}
4583     }
4584 
4585     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4586     STAILQ_FOREACH(elm, &list_global, link) {
4587 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4588           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4589 	    break;
4590 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4591 	if (res == 0 && (req->defobj_out == NULL ||
4592 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4593 	    req->sym_out = req1.sym_out;
4594 	    req->defobj_out = req1.defobj_out;
4595 	    assert(req->defobj_out != NULL);
4596 	}
4597     }
4598 
4599     return (req->sym_out != NULL ? 0 : ESRCH);
4600 }
4601 
4602 /*
4603  * Given a symbol name in a referencing object, find the corresponding
4604  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4605  * no definition was found.  Returns a pointer to the Obj_Entry of the
4606  * defining object via the reference parameter DEFOBJ_OUT.
4607  */
4608 static int
4609 symlook_default(SymLook *req, const Obj_Entry *refobj)
4610 {
4611     DoneList donelist;
4612     const Objlist_Entry *elm;
4613     SymLook req1;
4614     int res;
4615 
4616     donelist_init(&donelist);
4617     symlook_init_from_req(&req1, req);
4618 
4619     /*
4620      * Look first in the referencing object if linked symbolically,
4621      * and similarly handle protected symbols.
4622      */
4623     res = symlook_obj(&req1, refobj);
4624     if (res == 0 && (refobj->symbolic ||
4625       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4626 	req->sym_out = req1.sym_out;
4627 	req->defobj_out = req1.defobj_out;
4628 	assert(req->defobj_out != NULL);
4629     }
4630     if (refobj->symbolic || req->defobj_out != NULL)
4631 	donelist_check(&donelist, refobj);
4632 
4633     if (!refobj->deepbind)
4634         symlook_global(req, &donelist);
4635 
4636     /* Search all dlopened DAGs containing the referencing object. */
4637     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4638 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4639           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4640 	    break;
4641 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4642 	if (res == 0 && (req->sym_out == NULL ||
4643 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4644 	    req->sym_out = req1.sym_out;
4645 	    req->defobj_out = req1.defobj_out;
4646 	    assert(req->defobj_out != NULL);
4647 	}
4648     }
4649 
4650     if (refobj->deepbind)
4651         symlook_global(req, &donelist);
4652 
4653     /*
4654      * Search the dynamic linker itself, and possibly resolve the
4655      * symbol from there.  This is how the application links to
4656      * dynamic linker services such as dlopen.
4657      */
4658     if (req->sym_out == NULL ||
4659       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4660 	res = symlook_obj(&req1, &obj_rtld);
4661 	if (res == 0) {
4662 	    req->sym_out = req1.sym_out;
4663 	    req->defobj_out = req1.defobj_out;
4664 	    assert(req->defobj_out != NULL);
4665 	}
4666     }
4667 
4668     return (req->sym_out != NULL ? 0 : ESRCH);
4669 }
4670 
4671 static int
4672 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4673 {
4674     const Elf_Sym *def;
4675     const Obj_Entry *defobj;
4676     const Objlist_Entry *elm;
4677     SymLook req1;
4678     int res;
4679 
4680     def = NULL;
4681     defobj = NULL;
4682     STAILQ_FOREACH(elm, objlist, link) {
4683 	if (donelist_check(dlp, elm->obj))
4684 	    continue;
4685 	symlook_init_from_req(&req1, req);
4686 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4687 	    if (def == NULL || (ld_dynamic_weak &&
4688               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4689 		def = req1.sym_out;
4690 		defobj = req1.defobj_out;
4691 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4692 		    break;
4693 	    }
4694 	}
4695     }
4696     if (def != NULL) {
4697 	req->sym_out = def;
4698 	req->defobj_out = defobj;
4699 	return (0);
4700     }
4701     return (ESRCH);
4702 }
4703 
4704 /*
4705  * Search the chain of DAGS cointed to by the given Needed_Entry
4706  * for a symbol of the given name.  Each DAG is scanned completely
4707  * before advancing to the next one.  Returns a pointer to the symbol,
4708  * or NULL if no definition was found.
4709  */
4710 static int
4711 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4712 {
4713     const Elf_Sym *def;
4714     const Needed_Entry *n;
4715     const Obj_Entry *defobj;
4716     SymLook req1;
4717     int res;
4718 
4719     def = NULL;
4720     defobj = NULL;
4721     symlook_init_from_req(&req1, req);
4722     for (n = needed; n != NULL; n = n->next) {
4723 	if (n->obj == NULL ||
4724 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4725 	    continue;
4726 	if (def == NULL || (ld_dynamic_weak &&
4727           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4728 	    def = req1.sym_out;
4729 	    defobj = req1.defobj_out;
4730 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4731 		break;
4732 	}
4733     }
4734     if (def != NULL) {
4735 	req->sym_out = def;
4736 	req->defobj_out = defobj;
4737 	return (0);
4738     }
4739     return (ESRCH);
4740 }
4741 
4742 static int
4743 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4744     Needed_Entry *needed)
4745 {
4746 	DoneList donelist;
4747 	int flags;
4748 
4749 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4750 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4751 	donelist_init(&donelist);
4752 	symlook_init_from_req(req1, req);
4753 	return (symlook_needed(req1, needed, &donelist));
4754 }
4755 
4756 /*
4757  * Search the symbol table of a single shared object for a symbol of
4758  * the given name and version, if requested.  Returns a pointer to the
4759  * symbol, or NULL if no definition was found.  If the object is
4760  * filter, return filtered symbol from filtee.
4761  *
4762  * The symbol's hash value is passed in for efficiency reasons; that
4763  * eliminates many recomputations of the hash value.
4764  */
4765 int
4766 symlook_obj(SymLook *req, const Obj_Entry *obj)
4767 {
4768     SymLook req1;
4769     int res, mres;
4770 
4771     /*
4772      * If there is at least one valid hash at this point, we prefer to
4773      * use the faster GNU version if available.
4774      */
4775     if (obj->valid_hash_gnu)
4776 	mres = symlook_obj1_gnu(req, obj);
4777     else if (obj->valid_hash_sysv)
4778 	mres = symlook_obj1_sysv(req, obj);
4779     else
4780 	return (EINVAL);
4781 
4782     if (mres == 0) {
4783 	if (obj->needed_filtees != NULL) {
4784 	    res = symlook_obj_load_filtees(req, &req1, obj,
4785 		obj->needed_filtees);
4786 	    if (res == 0) {
4787 		req->sym_out = req1.sym_out;
4788 		req->defobj_out = req1.defobj_out;
4789 	    }
4790 	    return (res);
4791 	}
4792 	if (obj->needed_aux_filtees != NULL) {
4793 	    res = symlook_obj_load_filtees(req, &req1, obj,
4794 		obj->needed_aux_filtees);
4795 	    if (res == 0) {
4796 		req->sym_out = req1.sym_out;
4797 		req->defobj_out = req1.defobj_out;
4798 		return (res);
4799 	    }
4800 	}
4801     }
4802     return (mres);
4803 }
4804 
4805 /* Symbol match routine common to both hash functions */
4806 static bool
4807 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4808     const unsigned long symnum)
4809 {
4810 	Elf_Versym verndx;
4811 	const Elf_Sym *symp;
4812 	const char *strp;
4813 
4814 	symp = obj->symtab + symnum;
4815 	strp = obj->strtab + symp->st_name;
4816 
4817 	switch (ELF_ST_TYPE(symp->st_info)) {
4818 	case STT_FUNC:
4819 	case STT_NOTYPE:
4820 	case STT_OBJECT:
4821 	case STT_COMMON:
4822 	case STT_GNU_IFUNC:
4823 		if (symp->st_value == 0)
4824 			return (false);
4825 		/* fallthrough */
4826 	case STT_TLS:
4827 		if (symp->st_shndx != SHN_UNDEF)
4828 			break;
4829 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4830 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4831 			break;
4832 		/* fallthrough */
4833 	default:
4834 		return (false);
4835 	}
4836 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4837 		return (false);
4838 
4839 	if (req->ventry == NULL) {
4840 		if (obj->versyms != NULL) {
4841 			verndx = VER_NDX(obj->versyms[symnum]);
4842 			if (verndx > obj->vernum) {
4843 				_rtld_error(
4844 				    "%s: symbol %s references wrong version %d",
4845 				    obj->path, obj->strtab + symnum, verndx);
4846 				return (false);
4847 			}
4848 			/*
4849 			 * If we are not called from dlsym (i.e. this
4850 			 * is a normal relocation from unversioned
4851 			 * binary), accept the symbol immediately if
4852 			 * it happens to have first version after this
4853 			 * shared object became versioned.  Otherwise,
4854 			 * if symbol is versioned and not hidden,
4855 			 * remember it. If it is the only symbol with
4856 			 * this name exported by the shared object, it
4857 			 * will be returned as a match by the calling
4858 			 * function. If symbol is global (verndx < 2)
4859 			 * accept it unconditionally.
4860 			 */
4861 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4862 			    verndx == VER_NDX_GIVEN) {
4863 				result->sym_out = symp;
4864 				return (true);
4865 			}
4866 			else if (verndx >= VER_NDX_GIVEN) {
4867 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4868 				    == 0) {
4869 					if (result->vsymp == NULL)
4870 						result->vsymp = symp;
4871 					result->vcount++;
4872 				}
4873 				return (false);
4874 			}
4875 		}
4876 		result->sym_out = symp;
4877 		return (true);
4878 	}
4879 	if (obj->versyms == NULL) {
4880 		if (object_match_name(obj, req->ventry->name)) {
4881 			_rtld_error("%s: object %s should provide version %s "
4882 			    "for symbol %s", obj_rtld.path, obj->path,
4883 			    req->ventry->name, obj->strtab + symnum);
4884 			return (false);
4885 		}
4886 	} else {
4887 		verndx = VER_NDX(obj->versyms[symnum]);
4888 		if (verndx > obj->vernum) {
4889 			_rtld_error("%s: symbol %s references wrong version %d",
4890 			    obj->path, obj->strtab + symnum, verndx);
4891 			return (false);
4892 		}
4893 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4894 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4895 			/*
4896 			 * Version does not match. Look if this is a
4897 			 * global symbol and if it is not hidden. If
4898 			 * global symbol (verndx < 2) is available,
4899 			 * use it. Do not return symbol if we are
4900 			 * called by dlvsym, because dlvsym looks for
4901 			 * a specific version and default one is not
4902 			 * what dlvsym wants.
4903 			 */
4904 			if ((req->flags & SYMLOOK_DLSYM) ||
4905 			    (verndx >= VER_NDX_GIVEN) ||
4906 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4907 				return (false);
4908 		}
4909 	}
4910 	result->sym_out = symp;
4911 	return (true);
4912 }
4913 
4914 /*
4915  * Search for symbol using SysV hash function.
4916  * obj->buckets is known not to be NULL at this point; the test for this was
4917  * performed with the obj->valid_hash_sysv assignment.
4918  */
4919 static int
4920 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4921 {
4922 	unsigned long symnum;
4923 	Sym_Match_Result matchres;
4924 
4925 	matchres.sym_out = NULL;
4926 	matchres.vsymp = NULL;
4927 	matchres.vcount = 0;
4928 
4929 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4930 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4931 		if (symnum >= obj->nchains)
4932 			return (ESRCH);	/* Bad object */
4933 
4934 		if (matched_symbol(req, obj, &matchres, symnum)) {
4935 			req->sym_out = matchres.sym_out;
4936 			req->defobj_out = obj;
4937 			return (0);
4938 		}
4939 	}
4940 	if (matchres.vcount == 1) {
4941 		req->sym_out = matchres.vsymp;
4942 		req->defobj_out = obj;
4943 		return (0);
4944 	}
4945 	return (ESRCH);
4946 }
4947 
4948 /* Search for symbol using GNU hash function */
4949 static int
4950 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4951 {
4952 	Elf_Addr bloom_word;
4953 	const Elf32_Word *hashval;
4954 	Elf32_Word bucket;
4955 	Sym_Match_Result matchres;
4956 	unsigned int h1, h2;
4957 	unsigned long symnum;
4958 
4959 	matchres.sym_out = NULL;
4960 	matchres.vsymp = NULL;
4961 	matchres.vcount = 0;
4962 
4963 	/* Pick right bitmask word from Bloom filter array */
4964 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4965 	    obj->maskwords_bm_gnu];
4966 
4967 	/* Calculate modulus word size of gnu hash and its derivative */
4968 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4969 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4970 
4971 	/* Filter out the "definitely not in set" queries */
4972 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4973 		return (ESRCH);
4974 
4975 	/* Locate hash chain and corresponding value element*/
4976 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4977 	if (bucket == 0)
4978 		return (ESRCH);
4979 	hashval = &obj->chain_zero_gnu[bucket];
4980 	do {
4981 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4982 			symnum = hashval - obj->chain_zero_gnu;
4983 			if (matched_symbol(req, obj, &matchres, symnum)) {
4984 				req->sym_out = matchres.sym_out;
4985 				req->defobj_out = obj;
4986 				return (0);
4987 			}
4988 		}
4989 	} while ((*hashval++ & 1) == 0);
4990 	if (matchres.vcount == 1) {
4991 		req->sym_out = matchres.vsymp;
4992 		req->defobj_out = obj;
4993 		return (0);
4994 	}
4995 	return (ESRCH);
4996 }
4997 
4998 static void
4999 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5000 {
5001 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5002 	if (*main_local == NULL)
5003 		*main_local = "";
5004 
5005 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5006 	if (*fmt1 == NULL)
5007 		*fmt1 = "\t%o => %p (%x)\n";
5008 
5009 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5010 	if (*fmt2 == NULL)
5011 		*fmt2 = "\t%o (%x)\n";
5012 }
5013 
5014 static void
5015 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5016     const char *main_local, const char *fmt1, const char *fmt2)
5017 {
5018 	const char *fmt;
5019 	int c;
5020 
5021 	if (fmt1 == NULL)
5022 		fmt = fmt2;
5023 	else
5024 		/* XXX bogus */
5025 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5026 
5027 	while ((c = *fmt++) != '\0') {
5028 		switch (c) {
5029 		default:
5030 			rtld_putchar(c);
5031 			continue;
5032 		case '\\':
5033 			switch (c = *fmt) {
5034 			case '\0':
5035 				continue;
5036 			case 'n':
5037 				rtld_putchar('\n');
5038 				break;
5039 			case 't':
5040 				rtld_putchar('\t');
5041 				break;
5042 			}
5043 			break;
5044 		case '%':
5045 			switch (c = *fmt) {
5046 			case '\0':
5047 				continue;
5048 			case '%':
5049 			default:
5050 				rtld_putchar(c);
5051 				break;
5052 			case 'A':
5053 				rtld_putstr(main_local);
5054 				break;
5055 			case 'a':
5056 				rtld_putstr(obj_main->path);
5057 				break;
5058 			case 'o':
5059 				rtld_putstr(name);
5060 				break;
5061 			case 'p':
5062 				rtld_putstr(path);
5063 				break;
5064 			case 'x':
5065 				rtld_printf("%p", obj != NULL ?
5066 				    obj->mapbase : NULL);
5067 				break;
5068 			}
5069 			break;
5070 		}
5071 		++fmt;
5072 	}
5073 }
5074 
5075 static void
5076 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5077 {
5078 	const char *fmt1, *fmt2, *main_local;
5079 	const char *name, *path;
5080 	bool first_spurious, list_containers;
5081 
5082 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5083 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5084 
5085 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5086 		Needed_Entry *needed;
5087 
5088 		if (obj->marker)
5089 			continue;
5090 		if (list_containers && obj->needed != NULL)
5091 			rtld_printf("%s:\n", obj->path);
5092 		for (needed = obj->needed; needed; needed = needed->next) {
5093 			if (needed->obj != NULL) {
5094 				if (needed->obj->traced && !list_containers)
5095 					continue;
5096 				needed->obj->traced = true;
5097 				path = needed->obj->path;
5098 			} else
5099 				path = "not found";
5100 
5101 			name = obj->strtab + needed->name;
5102 			trace_print_obj(needed->obj, name, path, main_local,
5103 			    fmt1, fmt2);
5104 		}
5105 	}
5106 
5107 	if (show_preload) {
5108 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5109 			fmt2 = "\t%p (%x)\n";
5110 		first_spurious = true;
5111 
5112 		TAILQ_FOREACH(obj, &obj_list, next) {
5113 			if (obj->marker || obj == obj_main || obj->traced)
5114 				continue;
5115 
5116 			if (list_containers && first_spurious) {
5117 				rtld_printf("[preloaded]\n");
5118 				first_spurious = false;
5119 			}
5120 
5121 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5122 			name = fname == NULL ? "<unknown>" : fname->name;
5123 			trace_print_obj(obj, name, obj->path, main_local,
5124 			    NULL, fmt2);
5125 		}
5126 	}
5127 }
5128 
5129 /*
5130  * Unload a dlopened object and its dependencies from memory and from
5131  * our data structures.  It is assumed that the DAG rooted in the
5132  * object has already been unreferenced, and that the object has a
5133  * reference count of 0.
5134  */
5135 static void
5136 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5137 {
5138 	Obj_Entry marker, *obj, *next;
5139 
5140 	assert(root->refcount == 0);
5141 
5142 	/*
5143 	 * Pass over the DAG removing unreferenced objects from
5144 	 * appropriate lists.
5145 	 */
5146 	unlink_object(root);
5147 
5148 	/* Unmap all objects that are no longer referenced. */
5149 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5150 		next = TAILQ_NEXT(obj, next);
5151 		if (obj->marker || obj->refcount != 0)
5152 			continue;
5153 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5154 		    obj->mapsize, 0, obj->path);
5155 		dbg("unloading \"%s\"", obj->path);
5156 		/*
5157 		 * Unlink the object now to prevent new references from
5158 		 * being acquired while the bind lock is dropped in
5159 		 * recursive dlclose() invocations.
5160 		 */
5161 		TAILQ_REMOVE(&obj_list, obj, next);
5162 		obj_count--;
5163 
5164 		if (obj->filtees_loaded) {
5165 			if (next != NULL) {
5166 				init_marker(&marker);
5167 				TAILQ_INSERT_BEFORE(next, &marker, next);
5168 				unload_filtees(obj, lockstate);
5169 				next = TAILQ_NEXT(&marker, next);
5170 				TAILQ_REMOVE(&obj_list, &marker, next);
5171 			} else
5172 				unload_filtees(obj, lockstate);
5173 		}
5174 		release_object(obj);
5175 	}
5176 }
5177 
5178 static void
5179 unlink_object(Obj_Entry *root)
5180 {
5181     Objlist_Entry *elm;
5182 
5183     if (root->refcount == 0) {
5184 	/* Remove the object from the RTLD_GLOBAL list. */
5185 	objlist_remove(&list_global, root);
5186 
5187     	/* Remove the object from all objects' DAG lists. */
5188     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5189 	    objlist_remove(&elm->obj->dldags, root);
5190 	    if (elm->obj != root)
5191 		unlink_object(elm->obj);
5192 	}
5193     }
5194 }
5195 
5196 static void
5197 ref_dag(Obj_Entry *root)
5198 {
5199     Objlist_Entry *elm;
5200 
5201     assert(root->dag_inited);
5202     STAILQ_FOREACH(elm, &root->dagmembers, link)
5203 	elm->obj->refcount++;
5204 }
5205 
5206 static void
5207 unref_dag(Obj_Entry *root)
5208 {
5209     Objlist_Entry *elm;
5210 
5211     assert(root->dag_inited);
5212     STAILQ_FOREACH(elm, &root->dagmembers, link)
5213 	elm->obj->refcount--;
5214 }
5215 
5216 /*
5217  * Common code for MD __tls_get_addr().
5218  */
5219 static void *
5220 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5221 {
5222 	Elf_Addr *newdtv, *dtv;
5223 	RtldLockState lockstate;
5224 	int to_copy;
5225 
5226 	dtv = *dtvp;
5227 	/* Check dtv generation in case new modules have arrived */
5228 	if (dtv[0] != tls_dtv_generation) {
5229 		if (!locked)
5230 			wlock_acquire(rtld_bind_lock, &lockstate);
5231 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5232 		to_copy = dtv[1];
5233 		if (to_copy > tls_max_index)
5234 			to_copy = tls_max_index;
5235 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5236 		newdtv[0] = tls_dtv_generation;
5237 		newdtv[1] = tls_max_index;
5238 		free(dtv);
5239 		if (!locked)
5240 			lock_release(rtld_bind_lock, &lockstate);
5241 		dtv = *dtvp = newdtv;
5242 	}
5243 
5244 	/* Dynamically allocate module TLS if necessary */
5245 	if (dtv[index + 1] == 0) {
5246 		/* Signal safe, wlock will block out signals. */
5247 		if (!locked)
5248 			wlock_acquire(rtld_bind_lock, &lockstate);
5249 		if (!dtv[index + 1])
5250 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5251 		if (!locked)
5252 			lock_release(rtld_bind_lock, &lockstate);
5253 	}
5254 	return ((void *)(dtv[index + 1] + offset));
5255 }
5256 
5257 void *
5258 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5259 {
5260 	uintptr_t *dtv;
5261 
5262 	dtv = *dtvp;
5263 	/* Check dtv generation in case new modules have arrived */
5264 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5265 	    dtv[index + 1] != 0))
5266 		return ((void *)(dtv[index + 1] + offset));
5267 	return (tls_get_addr_slow(dtvp, index, offset, false));
5268 }
5269 
5270 #ifdef TLS_VARIANT_I
5271 
5272 /*
5273  * Return pointer to allocated TLS block
5274  */
5275 static void *
5276 get_tls_block_ptr(void *tcb, size_t tcbsize)
5277 {
5278     size_t extra_size, post_size, pre_size, tls_block_size;
5279     size_t tls_init_align;
5280 
5281     tls_init_align = MAX(obj_main->tlsalign, 1);
5282 
5283     /* Compute fragments sizes. */
5284     extra_size = tcbsize - TLS_TCB_SIZE;
5285     post_size = calculate_tls_post_size(tls_init_align);
5286     tls_block_size = tcbsize + post_size;
5287     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5288 
5289     return ((char *)tcb - pre_size - extra_size);
5290 }
5291 
5292 /*
5293  * Allocate Static TLS using the Variant I method.
5294  *
5295  * For details on the layout, see lib/libc/gen/tls.c.
5296  *
5297  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5298  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5299  *     offsets, whereas libc's tls_static_space is just the executable's static
5300  *     TLS segment.
5301  */
5302 void *
5303 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5304 {
5305     Obj_Entry *obj;
5306     char *tls_block;
5307     Elf_Addr *dtv, **tcb;
5308     Elf_Addr addr;
5309     Elf_Addr i;
5310     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5311     size_t tls_init_align, tls_init_offset;
5312 
5313     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5314 	return (oldtcb);
5315 
5316     assert(tcbsize >= TLS_TCB_SIZE);
5317     maxalign = MAX(tcbalign, tls_static_max_align);
5318     tls_init_align = MAX(obj_main->tlsalign, 1);
5319 
5320     /* Compute fragmets sizes. */
5321     extra_size = tcbsize - TLS_TCB_SIZE;
5322     post_size = calculate_tls_post_size(tls_init_align);
5323     tls_block_size = tcbsize + post_size;
5324     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5325     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5326 
5327     /* Allocate whole TLS block */
5328     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5329     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5330 
5331     if (oldtcb != NULL) {
5332 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5333 	    tls_static_space);
5334 	free(get_tls_block_ptr(oldtcb, tcbsize));
5335 
5336 	/* Adjust the DTV. */
5337 	dtv = tcb[0];
5338 	for (i = 0; i < dtv[1]; i++) {
5339 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5340 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5341 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5342 	    }
5343 	}
5344     } else {
5345 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5346 	tcb[0] = dtv;
5347 	dtv[0] = tls_dtv_generation;
5348 	dtv[1] = tls_max_index;
5349 
5350 	for (obj = globallist_curr(objs); obj != NULL;
5351 	  obj = globallist_next(obj)) {
5352 	    if (obj->tlsoffset == 0)
5353 		continue;
5354 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5355 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5356 	    if (tls_init_offset > 0)
5357 		memset((void *)addr, 0, tls_init_offset);
5358 	    if (obj->tlsinitsize > 0) {
5359 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5360 		    obj->tlsinitsize);
5361 	    }
5362 	    if (obj->tlssize > obj->tlsinitsize) {
5363 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5364 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5365 	    }
5366 	    dtv[obj->tlsindex + 1] = addr;
5367 	}
5368     }
5369 
5370     return (tcb);
5371 }
5372 
5373 void
5374 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5375 {
5376     Elf_Addr *dtv;
5377     Elf_Addr tlsstart, tlsend;
5378     size_t post_size;
5379     size_t dtvsize, i, tls_init_align __unused;
5380 
5381     assert(tcbsize >= TLS_TCB_SIZE);
5382     tls_init_align = MAX(obj_main->tlsalign, 1);
5383 
5384     /* Compute fragments sizes. */
5385     post_size = calculate_tls_post_size(tls_init_align);
5386 
5387     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5388     tlsend = (Elf_Addr)tcb + tls_static_space;
5389 
5390     dtv = *(Elf_Addr **)tcb;
5391     dtvsize = dtv[1];
5392     for (i = 0; i < dtvsize; i++) {
5393 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5394 	    free((void*)dtv[i+2]);
5395 	}
5396     }
5397     free(dtv);
5398     free(get_tls_block_ptr(tcb, tcbsize));
5399 }
5400 
5401 #endif	/* TLS_VARIANT_I */
5402 
5403 #ifdef TLS_VARIANT_II
5404 
5405 /*
5406  * Allocate Static TLS using the Variant II method.
5407  */
5408 void *
5409 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5410 {
5411     Obj_Entry *obj;
5412     size_t size, ralign;
5413     char *tls;
5414     Elf_Addr *dtv, *olddtv;
5415     Elf_Addr segbase, oldsegbase, addr;
5416     size_t i;
5417 
5418     ralign = tcbalign;
5419     if (tls_static_max_align > ralign)
5420 	    ralign = tls_static_max_align;
5421     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5422 
5423     assert(tcbsize >= 2*sizeof(Elf_Addr));
5424     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5425     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5426 
5427     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5428     ((Elf_Addr *)segbase)[0] = segbase;
5429     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5430 
5431     dtv[0] = tls_dtv_generation;
5432     dtv[1] = tls_max_index;
5433 
5434     if (oldtls) {
5435 	/*
5436 	 * Copy the static TLS block over whole.
5437 	 */
5438 	oldsegbase = (Elf_Addr) oldtls;
5439 	memcpy((void *)(segbase - tls_static_space),
5440 	   (const void *)(oldsegbase - tls_static_space),
5441 	   tls_static_space);
5442 
5443 	/*
5444 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5445 	 * move them over.
5446 	 */
5447 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5448 	for (i = 0; i < olddtv[1]; i++) {
5449 	    if (olddtv[i + 2] < oldsegbase - size ||
5450 		olddtv[i + 2] > oldsegbase) {
5451 		    dtv[i + 2] = olddtv[i + 2];
5452 		    olddtv[i + 2] = 0;
5453 	    }
5454 	}
5455 
5456 	/*
5457 	 * We assume that this block was the one we created with
5458 	 * allocate_initial_tls().
5459 	 */
5460 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5461     } else {
5462 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5463 		if (obj->marker || obj->tlsoffset == 0)
5464 			continue;
5465 		addr = segbase - obj->tlsoffset;
5466 		memset((void *)(addr + obj->tlsinitsize),
5467 		    0, obj->tlssize - obj->tlsinitsize);
5468 		if (obj->tlsinit) {
5469 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5470 			obj->static_tls_copied = true;
5471 		}
5472 		dtv[obj->tlsindex + 1] = addr;
5473 	}
5474     }
5475 
5476     return ((void *)segbase);
5477 }
5478 
5479 void
5480 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5481 {
5482     Elf_Addr* dtv;
5483     size_t size, ralign;
5484     int dtvsize, i;
5485     Elf_Addr tlsstart, tlsend;
5486 
5487     /*
5488      * Figure out the size of the initial TLS block so that we can
5489      * find stuff which ___tls_get_addr() allocated dynamically.
5490      */
5491     ralign = tcbalign;
5492     if (tls_static_max_align > ralign)
5493 	    ralign = tls_static_max_align;
5494     size = roundup(tls_static_space, ralign);
5495 
5496     dtv = ((Elf_Addr **)tls)[1];
5497     dtvsize = dtv[1];
5498     tlsend = (Elf_Addr)tls;
5499     tlsstart = tlsend - size;
5500     for (i = 0; i < dtvsize; i++) {
5501 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5502 	        dtv[i + 2] > tlsend)) {
5503 		    free((void *)dtv[i + 2]);
5504 	}
5505     }
5506 
5507     free((void *)tlsstart);
5508     free((void *)dtv);
5509 }
5510 
5511 #endif	/* TLS_VARIANT_II */
5512 
5513 /*
5514  * Allocate TLS block for module with given index.
5515  */
5516 void *
5517 allocate_module_tls(int index)
5518 {
5519 	Obj_Entry *obj;
5520 	char *p;
5521 
5522 	TAILQ_FOREACH(obj, &obj_list, next) {
5523 		if (obj->marker)
5524 			continue;
5525 		if (obj->tlsindex == index)
5526 			break;
5527 	}
5528 	if (obj == NULL) {
5529 		_rtld_error("Can't find module with TLS index %d", index);
5530 		rtld_die();
5531 	}
5532 
5533 	if (obj->tls_static) {
5534 #ifdef TLS_VARIANT_I
5535 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5536 #else
5537 		p = (char *)_tcb_get() - obj->tlsoffset;
5538 #endif
5539 		return (p);
5540 	}
5541 
5542 	obj->tls_dynamic = true;
5543 
5544 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5545 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5546 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5547 	return (p);
5548 }
5549 
5550 bool
5551 allocate_tls_offset(Obj_Entry *obj)
5552 {
5553     size_t off;
5554 
5555     if (obj->tls_dynamic)
5556 	return (false);
5557 
5558     if (obj->tls_static)
5559 	return (true);
5560 
5561     if (obj->tlssize == 0) {
5562 	obj->tls_static = true;
5563 	return (true);
5564     }
5565 
5566     if (tls_last_offset == 0)
5567 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5568 	  obj->tlspoffset);
5569     else
5570 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5571 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5572 
5573     obj->tlsoffset = off;
5574 #ifdef TLS_VARIANT_I
5575     off += obj->tlssize;
5576 #endif
5577 
5578     /*
5579      * If we have already fixed the size of the static TLS block, we
5580      * must stay within that size. When allocating the static TLS, we
5581      * leave a small amount of space spare to be used for dynamically
5582      * loading modules which use static TLS.
5583      */
5584     if (tls_static_space != 0) {
5585 	if (off > tls_static_space)
5586 	    return (false);
5587     } else if (obj->tlsalign > tls_static_max_align) {
5588 	    tls_static_max_align = obj->tlsalign;
5589     }
5590 
5591     tls_last_offset = off;
5592     tls_last_size = obj->tlssize;
5593     obj->tls_static = true;
5594 
5595     return (true);
5596 }
5597 
5598 void
5599 free_tls_offset(Obj_Entry *obj)
5600 {
5601 
5602     /*
5603      * If we were the last thing to allocate out of the static TLS
5604      * block, we give our space back to the 'allocator'. This is a
5605      * simplistic workaround to allow libGL.so.1 to be loaded and
5606      * unloaded multiple times.
5607      */
5608     size_t off = obj->tlsoffset;
5609 #ifdef TLS_VARIANT_I
5610     off += obj->tlssize;
5611 #endif
5612     if (off == tls_last_offset) {
5613 	tls_last_offset -= obj->tlssize;
5614 	tls_last_size = 0;
5615     }
5616 }
5617 
5618 void *
5619 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5620 {
5621     void *ret;
5622     RtldLockState lockstate;
5623 
5624     wlock_acquire(rtld_bind_lock, &lockstate);
5625     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5626       tcbsize, tcbalign);
5627     lock_release(rtld_bind_lock, &lockstate);
5628     return (ret);
5629 }
5630 
5631 void
5632 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5633 {
5634     RtldLockState lockstate;
5635 
5636     wlock_acquire(rtld_bind_lock, &lockstate);
5637     free_tls(tcb, tcbsize, tcbalign);
5638     lock_release(rtld_bind_lock, &lockstate);
5639 }
5640 
5641 static void
5642 object_add_name(Obj_Entry *obj, const char *name)
5643 {
5644     Name_Entry *entry;
5645     size_t len;
5646 
5647     len = strlen(name);
5648     entry = malloc(sizeof(Name_Entry) + len);
5649 
5650     if (entry != NULL) {
5651 	strcpy(entry->name, name);
5652 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5653     }
5654 }
5655 
5656 static int
5657 object_match_name(const Obj_Entry *obj, const char *name)
5658 {
5659     Name_Entry *entry;
5660 
5661     STAILQ_FOREACH(entry, &obj->names, link) {
5662 	if (strcmp(name, entry->name) == 0)
5663 	    return (1);
5664     }
5665     return (0);
5666 }
5667 
5668 static Obj_Entry *
5669 locate_dependency(const Obj_Entry *obj, const char *name)
5670 {
5671     const Objlist_Entry *entry;
5672     const Needed_Entry *needed;
5673 
5674     STAILQ_FOREACH(entry, &list_main, link) {
5675 	if (object_match_name(entry->obj, name))
5676 	    return (entry->obj);
5677     }
5678 
5679     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5680 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5681 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5682 	    /*
5683 	     * If there is DT_NEEDED for the name we are looking for,
5684 	     * we are all set.  Note that object might not be found if
5685 	     * dependency was not loaded yet, so the function can
5686 	     * return NULL here.  This is expected and handled
5687 	     * properly by the caller.
5688 	     */
5689 	    return (needed->obj);
5690 	}
5691     }
5692     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5693 	obj->path, name);
5694     rtld_die();
5695 }
5696 
5697 static int
5698 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5699     const Elf_Vernaux *vna)
5700 {
5701     const Elf_Verdef *vd;
5702     const char *vername;
5703 
5704     vername = refobj->strtab + vna->vna_name;
5705     vd = depobj->verdef;
5706     if (vd == NULL) {
5707 	_rtld_error("%s: version %s required by %s not defined",
5708 	    depobj->path, vername, refobj->path);
5709 	return (-1);
5710     }
5711     for (;;) {
5712 	if (vd->vd_version != VER_DEF_CURRENT) {
5713 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5714 		depobj->path, vd->vd_version);
5715 	    return (-1);
5716 	}
5717 	if (vna->vna_hash == vd->vd_hash) {
5718 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5719 		((const char *)vd + vd->vd_aux);
5720 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5721 		return (0);
5722 	}
5723 	if (vd->vd_next == 0)
5724 	    break;
5725 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5726     }
5727     if (vna->vna_flags & VER_FLG_WEAK)
5728 	return (0);
5729     _rtld_error("%s: version %s required by %s not found",
5730 	depobj->path, vername, refobj->path);
5731     return (-1);
5732 }
5733 
5734 static int
5735 rtld_verify_object_versions(Obj_Entry *obj)
5736 {
5737     const Elf_Verneed *vn;
5738     const Elf_Verdef  *vd;
5739     const Elf_Verdaux *vda;
5740     const Elf_Vernaux *vna;
5741     const Obj_Entry *depobj;
5742     int maxvernum, vernum;
5743 
5744     if (obj->ver_checked)
5745 	return (0);
5746     obj->ver_checked = true;
5747 
5748     maxvernum = 0;
5749     /*
5750      * Walk over defined and required version records and figure out
5751      * max index used by any of them. Do very basic sanity checking
5752      * while there.
5753      */
5754     vn = obj->verneed;
5755     while (vn != NULL) {
5756 	if (vn->vn_version != VER_NEED_CURRENT) {
5757 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5758 		obj->path, vn->vn_version);
5759 	    return (-1);
5760 	}
5761 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5762 	for (;;) {
5763 	    vernum = VER_NEED_IDX(vna->vna_other);
5764 	    if (vernum > maxvernum)
5765 		maxvernum = vernum;
5766 	    if (vna->vna_next == 0)
5767 		 break;
5768 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5769 	}
5770 	if (vn->vn_next == 0)
5771 	    break;
5772 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5773     }
5774 
5775     vd = obj->verdef;
5776     while (vd != NULL) {
5777 	if (vd->vd_version != VER_DEF_CURRENT) {
5778 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5779 		obj->path, vd->vd_version);
5780 	    return (-1);
5781 	}
5782 	vernum = VER_DEF_IDX(vd->vd_ndx);
5783 	if (vernum > maxvernum)
5784 		maxvernum = vernum;
5785 	if (vd->vd_next == 0)
5786 	    break;
5787 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5788     }
5789 
5790     if (maxvernum == 0)
5791 	return (0);
5792 
5793     /*
5794      * Store version information in array indexable by version index.
5795      * Verify that object version requirements are satisfied along the
5796      * way.
5797      */
5798     obj->vernum = maxvernum + 1;
5799     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5800 
5801     vd = obj->verdef;
5802     while (vd != NULL) {
5803 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5804 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5805 	    assert(vernum <= maxvernum);
5806 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5807 	    obj->vertab[vernum].hash = vd->vd_hash;
5808 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5809 	    obj->vertab[vernum].file = NULL;
5810 	    obj->vertab[vernum].flags = 0;
5811 	}
5812 	if (vd->vd_next == 0)
5813 	    break;
5814 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5815     }
5816 
5817     vn = obj->verneed;
5818     while (vn != NULL) {
5819 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5820 	if (depobj == NULL)
5821 	    return (-1);
5822 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5823 	for (;;) {
5824 	    if (check_object_provided_version(obj, depobj, vna))
5825 		return (-1);
5826 	    vernum = VER_NEED_IDX(vna->vna_other);
5827 	    assert(vernum <= maxvernum);
5828 	    obj->vertab[vernum].hash = vna->vna_hash;
5829 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5830 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5831 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5832 		VER_INFO_HIDDEN : 0;
5833 	    if (vna->vna_next == 0)
5834 		 break;
5835 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5836 	}
5837 	if (vn->vn_next == 0)
5838 	    break;
5839 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5840     }
5841     return (0);
5842 }
5843 
5844 static int
5845 rtld_verify_versions(const Objlist *objlist)
5846 {
5847     Objlist_Entry *entry;
5848     int rc;
5849 
5850     rc = 0;
5851     STAILQ_FOREACH(entry, objlist, link) {
5852 	/*
5853 	 * Skip dummy objects or objects that have their version requirements
5854 	 * already checked.
5855 	 */
5856 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5857 	    continue;
5858 	if (rtld_verify_object_versions(entry->obj) == -1) {
5859 	    rc = -1;
5860 	    if (ld_tracing == NULL)
5861 		break;
5862 	}
5863     }
5864     if (rc == 0 || ld_tracing != NULL)
5865     	rc = rtld_verify_object_versions(&obj_rtld);
5866     return (rc);
5867 }
5868 
5869 const Ver_Entry *
5870 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5871 {
5872     Elf_Versym vernum;
5873 
5874     if (obj->vertab) {
5875 	vernum = VER_NDX(obj->versyms[symnum]);
5876 	if (vernum >= obj->vernum) {
5877 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5878 		obj->path, obj->strtab + symnum, vernum);
5879 	} else if (obj->vertab[vernum].hash != 0) {
5880 	    return (&obj->vertab[vernum]);
5881 	}
5882     }
5883     return (NULL);
5884 }
5885 
5886 int
5887 _rtld_get_stack_prot(void)
5888 {
5889 
5890 	return (stack_prot);
5891 }
5892 
5893 int
5894 _rtld_is_dlopened(void *arg)
5895 {
5896 	Obj_Entry *obj;
5897 	RtldLockState lockstate;
5898 	int res;
5899 
5900 	rlock_acquire(rtld_bind_lock, &lockstate);
5901 	obj = dlcheck(arg);
5902 	if (obj == NULL)
5903 		obj = obj_from_addr(arg);
5904 	if (obj == NULL) {
5905 		_rtld_error("No shared object contains address");
5906 		lock_release(rtld_bind_lock, &lockstate);
5907 		return (-1);
5908 	}
5909 	res = obj->dlopened ? 1 : 0;
5910 	lock_release(rtld_bind_lock, &lockstate);
5911 	return (res);
5912 }
5913 
5914 static int
5915 obj_remap_relro(Obj_Entry *obj, int prot)
5916 {
5917 
5918 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5919 	    prot) == -1) {
5920 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5921 		    obj->path, prot, rtld_strerror(errno));
5922 		return (-1);
5923 	}
5924 	return (0);
5925 }
5926 
5927 static int
5928 obj_disable_relro(Obj_Entry *obj)
5929 {
5930 
5931 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5932 }
5933 
5934 static int
5935 obj_enforce_relro(Obj_Entry *obj)
5936 {
5937 
5938 	return (obj_remap_relro(obj, PROT_READ));
5939 }
5940 
5941 static void
5942 map_stacks_exec(RtldLockState *lockstate)
5943 {
5944 	void (*thr_map_stacks_exec)(void);
5945 
5946 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5947 		return;
5948 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5949 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5950 	if (thr_map_stacks_exec != NULL) {
5951 		stack_prot |= PROT_EXEC;
5952 		thr_map_stacks_exec();
5953 	}
5954 }
5955 
5956 static void
5957 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5958 {
5959 	Objlist_Entry *elm;
5960 	Obj_Entry *obj;
5961 	void (*distrib)(size_t, void *, size_t, size_t);
5962 
5963 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5964 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5965 	if (distrib == NULL)
5966 		return;
5967 	STAILQ_FOREACH(elm, list, link) {
5968 		obj = elm->obj;
5969 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5970 			continue;
5971 		lock_release(rtld_bind_lock, lockstate);
5972 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5973 		    obj->tlssize);
5974 		wlock_acquire(rtld_bind_lock, lockstate);
5975 		obj->static_tls_copied = true;
5976 	}
5977 }
5978 
5979 void
5980 symlook_init(SymLook *dst, const char *name)
5981 {
5982 
5983 	bzero(dst, sizeof(*dst));
5984 	dst->name = name;
5985 	dst->hash = elf_hash(name);
5986 	dst->hash_gnu = gnu_hash(name);
5987 }
5988 
5989 static void
5990 symlook_init_from_req(SymLook *dst, const SymLook *src)
5991 {
5992 
5993 	dst->name = src->name;
5994 	dst->hash = src->hash;
5995 	dst->hash_gnu = src->hash_gnu;
5996 	dst->ventry = src->ventry;
5997 	dst->flags = src->flags;
5998 	dst->defobj_out = NULL;
5999 	dst->sym_out = NULL;
6000 	dst->lockstate = src->lockstate;
6001 }
6002 
6003 static int
6004 open_binary_fd(const char *argv0, bool search_in_path,
6005     const char **binpath_res)
6006 {
6007 	char *binpath, *pathenv, *pe, *res1;
6008 	const char *res;
6009 	int fd;
6010 
6011 	binpath = NULL;
6012 	res = NULL;
6013 	if (search_in_path && strchr(argv0, '/') == NULL) {
6014 		binpath = xmalloc(PATH_MAX);
6015 		pathenv = getenv("PATH");
6016 		if (pathenv == NULL) {
6017 			_rtld_error("-p and no PATH environment variable");
6018 			rtld_die();
6019 		}
6020 		pathenv = strdup(pathenv);
6021 		if (pathenv == NULL) {
6022 			_rtld_error("Cannot allocate memory");
6023 			rtld_die();
6024 		}
6025 		fd = -1;
6026 		errno = ENOENT;
6027 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6028 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6029 				continue;
6030 			if (binpath[0] != '\0' &&
6031 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6032 				continue;
6033 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6034 				continue;
6035 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6036 			if (fd != -1 || errno != ENOENT) {
6037 				res = binpath;
6038 				break;
6039 			}
6040 		}
6041 		free(pathenv);
6042 	} else {
6043 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6044 		res = argv0;
6045 	}
6046 
6047 	if (fd == -1) {
6048 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6049 		rtld_die();
6050 	}
6051 	if (res != NULL && res[0] != '/') {
6052 		res1 = xmalloc(PATH_MAX);
6053 		if (realpath(res, res1) != NULL) {
6054 			if (res != argv0)
6055 				free(__DECONST(char *, res));
6056 			res = res1;
6057 		} else {
6058 			free(res1);
6059 		}
6060 	}
6061 	*binpath_res = res;
6062 	return (fd);
6063 }
6064 
6065 /*
6066  * Parse a set of command-line arguments.
6067  */
6068 static int
6069 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6070     const char **argv0, bool *dir_ignore)
6071 {
6072 	const char *arg;
6073 	char machine[64];
6074 	size_t sz;
6075 	int arglen, fd, i, j, mib[2];
6076 	char opt;
6077 	bool seen_b, seen_f;
6078 
6079 	dbg("Parsing command-line arguments");
6080 	*use_pathp = false;
6081 	*fdp = -1;
6082 	*dir_ignore = false;
6083 	seen_b = seen_f = false;
6084 
6085 	for (i = 1; i < argc; i++ ) {
6086 		arg = argv[i];
6087 		dbg("argv[%d]: '%s'", i, arg);
6088 
6089 		/*
6090 		 * rtld arguments end with an explicit "--" or with the first
6091 		 * non-prefixed argument.
6092 		 */
6093 		if (strcmp(arg, "--") == 0) {
6094 			i++;
6095 			break;
6096 		}
6097 		if (arg[0] != '-')
6098 			break;
6099 
6100 		/*
6101 		 * All other arguments are single-character options that can
6102 		 * be combined, so we need to search through `arg` for them.
6103 		 */
6104 		arglen = strlen(arg);
6105 		for (j = 1; j < arglen; j++) {
6106 			opt = arg[j];
6107 			if (opt == 'h') {
6108 				print_usage(argv[0]);
6109 				_exit(0);
6110 			} else if (opt == 'b') {
6111 				if (seen_f) {
6112 					_rtld_error("Both -b and -f specified");
6113 					rtld_die();
6114 				}
6115 				if (j != arglen - 1) {
6116 					_rtld_error("Invalid options: %s", arg);
6117 					rtld_die();
6118 				}
6119 				i++;
6120 				*argv0 = argv[i];
6121 				seen_b = true;
6122 				break;
6123 			} else if (opt == 'd') {
6124 				*dir_ignore = true;
6125 			} else if (opt == 'f') {
6126 				if (seen_b) {
6127 					_rtld_error("Both -b and -f specified");
6128 					rtld_die();
6129 				}
6130 
6131 				/*
6132 				 * -f XX can be used to specify a
6133 				 * descriptor for the binary named at
6134 				 * the command line (i.e., the later
6135 				 * argument will specify the process
6136 				 * name but the descriptor is what
6137 				 * will actually be executed).
6138 				 *
6139 				 * -f must be the last option in the
6140 				 * group, e.g., -abcf <fd>.
6141 				 */
6142 				if (j != arglen - 1) {
6143 					_rtld_error("Invalid options: %s", arg);
6144 					rtld_die();
6145 				}
6146 				i++;
6147 				fd = parse_integer(argv[i]);
6148 				if (fd == -1) {
6149 					_rtld_error(
6150 					    "Invalid file descriptor: '%s'",
6151 					    argv[i]);
6152 					rtld_die();
6153 				}
6154 				*fdp = fd;
6155 				seen_f = true;
6156 				break;
6157 			} else if (opt == 'p') {
6158 				*use_pathp = true;
6159 			} else if (opt == 'u') {
6160 				trust = false;
6161 			} else if (opt == 'v') {
6162 				machine[0] = '\0';
6163 				mib[0] = CTL_HW;
6164 				mib[1] = HW_MACHINE;
6165 				sz = sizeof(machine);
6166 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6167 				ld_elf_hints_path = ld_get_env_var(
6168 				    LD_ELF_HINTS_PATH);
6169 				set_ld_elf_hints_path();
6170 				rtld_printf(
6171 				    "FreeBSD ld-elf.so.1 %s\n"
6172 				    "FreeBSD_version %d\n"
6173 				    "Default lib path %s\n"
6174 				    "Hints lib path %s\n"
6175 				    "Env prefix %s\n"
6176 				    "Default hint file %s\n"
6177 				    "Hint file %s\n"
6178 				    "libmap file %s\n"
6179 				    "Optional static TLS size %zd bytes\n",
6180 				    machine,
6181 				    __FreeBSD_version, ld_standard_library_path,
6182 				    gethints(false),
6183 				    ld_env_prefix, ld_elf_hints_default,
6184 				    ld_elf_hints_path,
6185 				    ld_path_libmap_conf,
6186 				    ld_static_tls_extra);
6187 				_exit(0);
6188 			} else {
6189 				_rtld_error("Invalid argument: '%s'", arg);
6190 				print_usage(argv[0]);
6191 				rtld_die();
6192 			}
6193 		}
6194 	}
6195 
6196 	if (!seen_b)
6197 		*argv0 = argv[i];
6198 	return (i);
6199 }
6200 
6201 /*
6202  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6203  */
6204 static int
6205 parse_integer(const char *str)
6206 {
6207 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6208 	const char *orig;
6209 	int n;
6210 	char c;
6211 
6212 	orig = str;
6213 	n = 0;
6214 	for (c = *str; c != '\0'; c = *++str) {
6215 		if (c < '0' || c > '9')
6216 			return (-1);
6217 
6218 		n *= RADIX;
6219 		n += c - '0';
6220 	}
6221 
6222 	/* Make sure we actually parsed something. */
6223 	if (str == orig)
6224 		return (-1);
6225 	return (n);
6226 }
6227 
6228 static void
6229 print_usage(const char *argv0)
6230 {
6231 
6232 	rtld_printf(
6233 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6234 	    "\n"
6235 	    "Options:\n"
6236 	    "  -h        Display this help message\n"
6237 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6238 	    "  -d        Ignore lack of exec permissions for the binary\n"
6239 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6240 	    "  -p        Search in PATH for named binary\n"
6241 	    "  -u        Ignore LD_ environment variables\n"
6242 	    "  -v        Display identification information\n"
6243 	    "  --        End of RTLD options\n"
6244 	    "  <binary>  Name of process to execute\n"
6245 	    "  <args>    Arguments to the executed process\n", argv0);
6246 }
6247 
6248 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6249 static const struct auxfmt {
6250 	const char *name;
6251 	const char *fmt;
6252 } auxfmts[] = {
6253 	AUXFMT(AT_NULL, NULL),
6254 	AUXFMT(AT_IGNORE, NULL),
6255 	AUXFMT(AT_EXECFD, "%ld"),
6256 	AUXFMT(AT_PHDR, "%p"),
6257 	AUXFMT(AT_PHENT, "%lu"),
6258 	AUXFMT(AT_PHNUM, "%lu"),
6259 	AUXFMT(AT_PAGESZ, "%lu"),
6260 	AUXFMT(AT_BASE, "%#lx"),
6261 	AUXFMT(AT_FLAGS, "%#lx"),
6262 	AUXFMT(AT_ENTRY, "%p"),
6263 	AUXFMT(AT_NOTELF, NULL),
6264 	AUXFMT(AT_UID, "%ld"),
6265 	AUXFMT(AT_EUID, "%ld"),
6266 	AUXFMT(AT_GID, "%ld"),
6267 	AUXFMT(AT_EGID, "%ld"),
6268 	AUXFMT(AT_EXECPATH, "%s"),
6269 	AUXFMT(AT_CANARY, "%p"),
6270 	AUXFMT(AT_CANARYLEN, "%lu"),
6271 	AUXFMT(AT_OSRELDATE, "%lu"),
6272 	AUXFMT(AT_NCPUS, "%lu"),
6273 	AUXFMT(AT_PAGESIZES, "%p"),
6274 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6275 	AUXFMT(AT_TIMEKEEP, "%p"),
6276 	AUXFMT(AT_STACKPROT, "%#lx"),
6277 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6278 	AUXFMT(AT_HWCAP, "%#lx"),
6279 	AUXFMT(AT_HWCAP2, "%#lx"),
6280 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6281 	AUXFMT(AT_ARGC, "%lu"),
6282 	AUXFMT(AT_ARGV, "%p"),
6283 	AUXFMT(AT_ENVC, "%p"),
6284 	AUXFMT(AT_ENVV, "%p"),
6285 	AUXFMT(AT_PS_STRINGS, "%p"),
6286 	AUXFMT(AT_FXRNG, "%p"),
6287 	AUXFMT(AT_KPRELOAD, "%p"),
6288 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6289 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6290 };
6291 
6292 static bool
6293 is_ptr_fmt(const char *fmt)
6294 {
6295 	char last;
6296 
6297 	last = fmt[strlen(fmt) - 1];
6298 	return (last == 'p' || last == 's');
6299 }
6300 
6301 static void
6302 dump_auxv(Elf_Auxinfo **aux_info)
6303 {
6304 	Elf_Auxinfo *auxp;
6305 	const struct auxfmt *fmt;
6306 	int i;
6307 
6308 	for (i = 0; i < AT_COUNT; i++) {
6309 		auxp = aux_info[i];
6310 		if (auxp == NULL)
6311 			continue;
6312 		fmt = &auxfmts[i];
6313 		if (fmt->fmt == NULL)
6314 			continue;
6315 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6316 		if (is_ptr_fmt(fmt->fmt)) {
6317 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6318 			    auxp->a_un.a_ptr);
6319 		} else {
6320 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6321 			    auxp->a_un.a_val);
6322 		}
6323 		rtld_fdprintf(STDOUT_FILENO, "\n");
6324 	}
6325 }
6326 
6327 /*
6328  * Overrides for libc_pic-provided functions.
6329  */
6330 
6331 int
6332 __getosreldate(void)
6333 {
6334 	size_t len;
6335 	int oid[2];
6336 	int error, osrel;
6337 
6338 	if (osreldate != 0)
6339 		return (osreldate);
6340 
6341 	oid[0] = CTL_KERN;
6342 	oid[1] = KERN_OSRELDATE;
6343 	osrel = 0;
6344 	len = sizeof(osrel);
6345 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6346 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6347 		osreldate = osrel;
6348 	return (osreldate);
6349 }
6350 const char *
6351 rtld_strerror(int errnum)
6352 {
6353 
6354 	if (errnum < 0 || errnum >= sys_nerr)
6355 		return ("Unknown error");
6356 	return (sys_errlist[errnum]);
6357 }
6358 
6359 char *
6360 getenv(const char *name)
6361 {
6362 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6363 	    strlen(name))));
6364 }
6365 
6366 /* malloc */
6367 void *
6368 malloc(size_t nbytes)
6369 {
6370 
6371 	return (__crt_malloc(nbytes));
6372 }
6373 
6374 void *
6375 calloc(size_t num, size_t size)
6376 {
6377 
6378 	return (__crt_calloc(num, size));
6379 }
6380 
6381 void
6382 free(void *cp)
6383 {
6384 
6385 	__crt_free(cp);
6386 }
6387 
6388 void *
6389 realloc(void *cp, size_t nbytes)
6390 {
6391 
6392 	return (__crt_realloc(cp, nbytes));
6393 }
6394 
6395 extern int _rtld_version__FreeBSD_version __exported;
6396 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6397 
6398 extern char _rtld_version_laddr_offset __exported;
6399 char _rtld_version_laddr_offset;
6400 
6401 extern char _rtld_version_dlpi_tls_data __exported;
6402 char _rtld_version_dlpi_tls_data;
6403