xref: /freebsd/libexec/rtld-elf/rtld.c (revision a3557ef0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, phnum, rtld_argc;
388 #ifdef __powerpc__
389     int old_auxv_format = 1;
390 #endif
391     bool dir_enable, explicit_fd, search_in_path;
392 
393     /*
394      * On entry, the dynamic linker itself has not been relocated yet.
395      * Be very careful not to reference any global data until after
396      * init_rtld has returned.  It is OK to reference file-scope statics
397      * and string constants, and to call static and global functions.
398      */
399 
400     /* Find the auxiliary vector on the stack. */
401     argcp = sp;
402     argc = *sp++;
403     argv = (char **) sp;
404     sp += argc + 1;	/* Skip over arguments and NULL terminator */
405     env = (char **) sp;
406     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
407 	;
408     aux = (Elf_Auxinfo *) sp;
409 
410     /* Digest the auxiliary vector. */
411     for (i = 0;  i < AT_COUNT;  i++)
412 	aux_info[i] = NULL;
413     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
414 	if (auxp->a_type < AT_COUNT)
415 	    aux_info[auxp->a_type] = auxp;
416 #ifdef __powerpc__
417 	if (auxp->a_type == 23) /* AT_STACKPROT */
418 	    old_auxv_format = 0;
419 #endif
420     }
421 
422 #ifdef __powerpc__
423     if (old_auxv_format) {
424 	/* Remap from old-style auxv numbers. */
425 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
426 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
427 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
428 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
429 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
430 	aux_info[13] = NULL;		/* AT_GID */
431 
432 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
433 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
434 	aux_info[16] = aux_info[14];	/* AT_CANARY */
435 	aux_info[14] = NULL;		/* AT_EGID */
436     }
437 #endif
438 
439     /* Initialize and relocate ourselves. */
440     assert(aux_info[AT_BASE] != NULL);
441     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
442 
443     __progname = obj_rtld.path;
444     argv0 = argv[0] != NULL ? argv[0] : "(null)";
445     environ = env;
446     main_argc = argc;
447     main_argv = argv;
448 
449     if (aux_info[AT_BSDFLAGS] != NULL &&
450 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
451 	    ld_fast_sigblock = true;
452 
453     trust = !issetugid();
454 
455     md_abi_variant_hook(aux_info);
456 
457     fd = -1;
458     if (aux_info[AT_EXECFD] != NULL) {
459 	fd = aux_info[AT_EXECFD]->a_un.a_val;
460     } else {
461 	assert(aux_info[AT_PHDR] != NULL);
462 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
463 	if (phdr == obj_rtld.phdr) {
464 	    if (!trust) {
465 		_rtld_error("Tainted process refusing to run binary %s",
466 		    argv0);
467 		rtld_die();
468 	    }
469 	    dbg("opening main program in direct exec mode");
470 	    if (argc >= 2) {
471 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
472 		explicit_fd = (fd != -1);
473 		binpath = NULL;
474 		if (!explicit_fd)
475 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
476 		if (fstat(fd, &st) == -1) {
477 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
478 		      explicit_fd ? "user-provided descriptor" : argv0,
479 		      rtld_strerror(errno));
480 		    rtld_die();
481 		}
482 
483 		/*
484 		 * Rough emulation of the permission checks done by
485 		 * execve(2), only Unix DACs are checked, ACLs are
486 		 * ignored.  Preserve the semantic of disabling owner
487 		 * to execute if owner x bit is cleared, even if
488 		 * others x bit is enabled.
489 		 * mmap(2) does not allow to mmap with PROT_EXEC if
490 		 * binary' file comes from noexec mount.  We cannot
491 		 * set a text reference on the binary.
492 		 */
493 		dir_enable = false;
494 		if (st.st_uid == geteuid()) {
495 		    if ((st.st_mode & S_IXUSR) != 0)
496 			dir_enable = true;
497 		} else if (st.st_gid == getegid()) {
498 		    if ((st.st_mode & S_IXGRP) != 0)
499 			dir_enable = true;
500 		} else if ((st.st_mode & S_IXOTH) != 0) {
501 		    dir_enable = true;
502 		}
503 		if (!dir_enable) {
504 		    _rtld_error("No execute permission for binary %s",
505 		        argv0);
506 		    rtld_die();
507 		}
508 
509 		/*
510 		 * For direct exec mode, argv[0] is the interpreter
511 		 * name, we must remove it and shift arguments left
512 		 * before invoking binary main.  Since stack layout
513 		 * places environment pointers and aux vectors right
514 		 * after the terminating NULL, we must shift
515 		 * environment and aux as well.
516 		 */
517 		main_argc = argc - rtld_argc;
518 		for (i = 0; i <= main_argc; i++)
519 		    argv[i] = argv[i + rtld_argc];
520 		*argcp -= rtld_argc;
521 		environ = env = envp = argv + main_argc + 1;
522 		dbg("move env from %p to %p", envp + rtld_argc, envp);
523 		do {
524 		    *envp = *(envp + rtld_argc);
525 		}  while (*envp++ != NULL);
526 		aux = auxp = (Elf_Auxinfo *)envp;
527 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
528 		dbg("move aux from %p to %p", auxpf, aux);
529 		/* XXXKIB insert place for AT_EXECPATH if not present */
530 		for (;; auxp++, auxpf++) {
531 		    *auxp = *auxpf;
532 		    if (auxp->a_type == AT_NULL)
533 			    break;
534 		}
535 		/* Since the auxiliary vector has moved, redigest it. */
536 		for (i = 0;  i < AT_COUNT;  i++)
537 		    aux_info[i] = NULL;
538 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
539 		    if (auxp->a_type < AT_COUNT)
540 			aux_info[auxp->a_type] = auxp;
541 		}
542 
543 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
544 		if (binpath == NULL) {
545 		    aux_info[AT_EXECPATH] = NULL;
546 		} else {
547 		    if (aux_info[AT_EXECPATH] == NULL) {
548 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
549 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
550 		    }
551 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
552 		      binpath);
553 		}
554 	    } else {
555 		_rtld_error("No binary");
556 		rtld_die();
557 	    }
558 	}
559     }
560 
561     ld_bind_now = getenv(_LD("BIND_NOW"));
562 
563     /*
564      * If the process is tainted, then we un-set the dangerous environment
565      * variables.  The process will be marked as tainted until setuid(2)
566      * is called.  If any child process calls setuid(2) we do not want any
567      * future processes to honor the potentially un-safe variables.
568      */
569     if (!trust) {
570 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
571 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
572 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
573 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
574 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
575 		_rtld_error("environment corrupt; aborting");
576 		rtld_die();
577 	}
578     }
579     ld_debug = getenv(_LD("DEBUG"));
580     if (ld_bind_now == NULL)
581 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
582     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
583     libmap_override = getenv(_LD("LIBMAP"));
584     ld_library_path = getenv(_LD("LIBRARY_PATH"));
585     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
586     ld_preload = getenv(_LD("PRELOAD"));
587     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
588     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
589     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
590     if (library_path_rpath != NULL) {
591 	    if (library_path_rpath[0] == 'y' ||
592 		library_path_rpath[0] == 'Y' ||
593 		library_path_rpath[0] == '1')
594 		    ld_library_path_rpath = true;
595 	    else
596 		    ld_library_path_rpath = false;
597     }
598     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
599 	(ld_library_path != NULL) || (ld_preload != NULL) ||
600 	(ld_elf_hints_path != NULL) || ld_loadfltr;
601     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
602     ld_utrace = getenv(_LD("UTRACE"));
603 
604     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
605 	ld_elf_hints_path = ld_elf_hints_default;
606 
607     if (ld_debug != NULL && *ld_debug != '\0')
608 	debug = 1;
609     dbg("%s is initialized, base address = %p", __progname,
610 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
611     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
612     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
613 
614     dbg("initializing thread locks");
615     lockdflt_init();
616 
617     /*
618      * Load the main program, or process its program header if it is
619      * already loaded.
620      */
621     if (fd != -1) {	/* Load the main program. */
622 	dbg("loading main program");
623 	obj_main = map_object(fd, argv0, NULL);
624 	close(fd);
625 	if (obj_main == NULL)
626 	    rtld_die();
627 	max_stack_flags = obj_main->stack_flags;
628     } else {				/* Main program already loaded. */
629 	dbg("processing main program's program header");
630 	assert(aux_info[AT_PHDR] != NULL);
631 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
632 	assert(aux_info[AT_PHNUM] != NULL);
633 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
634 	assert(aux_info[AT_PHENT] != NULL);
635 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
636 	assert(aux_info[AT_ENTRY] != NULL);
637 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
638 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
639 	    rtld_die();
640     }
641 
642     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
643 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
644 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
645 	    if (kexecpath[0] == '/')
646 		    obj_main->path = kexecpath;
647 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
648 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
649 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
650 		    obj_main->path = xstrdup(argv0);
651 	    else
652 		    obj_main->path = xstrdup(buf);
653     } else {
654 	    dbg("No AT_EXECPATH or direct exec");
655 	    obj_main->path = xstrdup(argv0);
656     }
657     dbg("obj_main path %s", obj_main->path);
658     obj_main->mainprog = true;
659 
660     if (aux_info[AT_STACKPROT] != NULL &&
661       aux_info[AT_STACKPROT]->a_un.a_val != 0)
662 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
663 
664 #ifndef COMPAT_32BIT
665     /*
666      * Get the actual dynamic linker pathname from the executable if
667      * possible.  (It should always be possible.)  That ensures that
668      * gdb will find the right dynamic linker even if a non-standard
669      * one is being used.
670      */
671     if (obj_main->interp != NULL &&
672       strcmp(obj_main->interp, obj_rtld.path) != 0) {
673 	free(obj_rtld.path);
674 	obj_rtld.path = xstrdup(obj_main->interp);
675         __progname = obj_rtld.path;
676     }
677 #endif
678 
679     if (!digest_dynamic(obj_main, 0))
680 	rtld_die();
681     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
682 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
683 	obj_main->dynsymcount);
684 
685     linkmap_add(obj_main);
686     linkmap_add(&obj_rtld);
687 
688     /* Link the main program into the list of objects. */
689     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
690     obj_count++;
691     obj_loads++;
692 
693     /* Initialize a fake symbol for resolving undefined weak references. */
694     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
695     sym_zero.st_shndx = SHN_UNDEF;
696     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
697 
698     if (!libmap_disable)
699         libmap_disable = (bool)lm_init(libmap_override);
700 
701     dbg("loading LD_PRELOAD libraries");
702     if (load_preload_objects() == -1)
703 	rtld_die();
704     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
705 
706     dbg("loading needed objects");
707     if (load_needed_objects(obj_main, 0) == -1)
708 	rtld_die();
709 
710     /* Make a list of all objects loaded at startup. */
711     last_interposer = obj_main;
712     TAILQ_FOREACH(obj, &obj_list, next) {
713 	if (obj->marker)
714 	    continue;
715 	if (obj->z_interpose && obj != obj_main) {
716 	    objlist_put_after(&list_main, last_interposer, obj);
717 	    last_interposer = obj;
718 	} else {
719 	    objlist_push_tail(&list_main, obj);
720 	}
721     	obj->refcount++;
722     }
723 
724     dbg("checking for required versions");
725     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
726 	rtld_die();
727 
728     if (ld_tracing) {		/* We're done */
729 	trace_loaded_objects(obj_main);
730 	exit(0);
731     }
732 
733     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
734        dump_relocations(obj_main);
735        exit (0);
736     }
737 
738     /*
739      * Processing tls relocations requires having the tls offsets
740      * initialized.  Prepare offsets before starting initial
741      * relocation processing.
742      */
743     dbg("initializing initial thread local storage offsets");
744     STAILQ_FOREACH(entry, &list_main, link) {
745 	/*
746 	 * Allocate all the initial objects out of the static TLS
747 	 * block even if they didn't ask for it.
748 	 */
749 	allocate_tls_offset(entry->obj);
750     }
751 
752     if (relocate_objects(obj_main,
753       ld_bind_now != NULL && *ld_bind_now != '\0',
754       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
755 	rtld_die();
756 
757     dbg("doing copy relocations");
758     if (do_copy_relocations(obj_main) == -1)
759 	rtld_die();
760 
761     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
762        dump_relocations(obj_main);
763        exit (0);
764     }
765 
766     ifunc_init(aux);
767 
768     /*
769      * Setup TLS for main thread.  This must be done after the
770      * relocations are processed, since tls initialization section
771      * might be the subject for relocations.
772      */
773     dbg("initializing initial thread local storage");
774     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
775 
776     dbg("initializing key program variables");
777     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
778     set_program_var("environ", env);
779     set_program_var("__elf_aux_vector", aux);
780 
781     /* Make a list of init functions to call. */
782     objlist_init(&initlist);
783     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
784       preload_tail, &initlist);
785 
786     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
787 
788     map_stacks_exec(NULL);
789 
790     if (!obj_main->crt_no_init) {
791 	/*
792 	 * Make sure we don't call the main program's init and fini
793 	 * functions for binaries linked with old crt1 which calls
794 	 * _init itself.
795 	 */
796 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
797 	obj_main->preinit_array = obj_main->init_array =
798 	    obj_main->fini_array = (Elf_Addr)NULL;
799     }
800 
801     /*
802      * Execute MD initializers required before we call the objects'
803      * init functions.
804      */
805     pre_init();
806 
807     wlock_acquire(rtld_bind_lock, &lockstate);
808 
809     dbg("resolving ifuncs");
810     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
811       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
812 	rtld_die();
813 
814     rtld_exit_ptr = rtld_exit;
815     if (obj_main->crt_no_init)
816 	preinit_main();
817     objlist_call_init(&initlist, &lockstate);
818     _r_debug_postinit(&obj_main->linkmap);
819     objlist_clear(&initlist);
820     dbg("loading filtees");
821     TAILQ_FOREACH(obj, &obj_list, next) {
822 	if (obj->marker)
823 	    continue;
824 	if (ld_loadfltr || obj->z_loadfltr)
825 	    load_filtees(obj, 0, &lockstate);
826     }
827 
828     dbg("enforcing main obj relro");
829     if (obj_enforce_relro(obj_main) == -1)
830 	rtld_die();
831 
832     lock_release(rtld_bind_lock, &lockstate);
833 
834     dbg("transferring control to program entry point = %p", obj_main->entry);
835 
836     /* Return the exit procedure and the program entry point. */
837     *exit_proc = rtld_exit_ptr;
838     *objp = obj_main;
839     return (func_ptr_type) obj_main->entry;
840 }
841 
842 void *
843 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
844 {
845 	void *ptr;
846 	Elf_Addr target;
847 
848 	ptr = (void *)make_function_pointer(def, obj);
849 	target = call_ifunc_resolver(ptr);
850 	return ((void *)target);
851 }
852 
853 /*
854  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
855  * Changes to this function should be applied there as well.
856  */
857 Elf_Addr
858 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
859 {
860     const Elf_Rel *rel;
861     const Elf_Sym *def;
862     const Obj_Entry *defobj;
863     Elf_Addr *where;
864     Elf_Addr target;
865     RtldLockState lockstate;
866 
867     rlock_acquire(rtld_bind_lock, &lockstate);
868     if (sigsetjmp(lockstate.env, 0) != 0)
869 	    lock_upgrade(rtld_bind_lock, &lockstate);
870     if (obj->pltrel)
871 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
872     else
873 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
874 
875     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
876     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
877 	NULL, &lockstate);
878     if (def == NULL)
879 	rtld_die();
880     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
881 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
882     else
883 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
884 
885     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
886       defobj->strtab + def->st_name, basename(obj->path),
887       (void *)target, basename(defobj->path));
888 
889     /*
890      * Write the new contents for the jmpslot. Note that depending on
891      * architecture, the value which we need to return back to the
892      * lazy binding trampoline may or may not be the target
893      * address. The value returned from reloc_jmpslot() is the value
894      * that the trampoline needs.
895      */
896     target = reloc_jmpslot(where, target, defobj, obj, rel);
897     lock_release(rtld_bind_lock, &lockstate);
898     return target;
899 }
900 
901 /*
902  * Error reporting function.  Use it like printf.  If formats the message
903  * into a buffer, and sets things up so that the next call to dlerror()
904  * will return the message.
905  */
906 void
907 _rtld_error(const char *fmt, ...)
908 {
909     static char buf[512];
910     va_list ap;
911 
912     va_start(ap, fmt);
913     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
914     error_message = buf;
915     va_end(ap);
916     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
917 }
918 
919 /*
920  * Return a dynamically-allocated copy of the current error message, if any.
921  */
922 static char *
923 errmsg_save(void)
924 {
925     return error_message == NULL ? NULL : xstrdup(error_message);
926 }
927 
928 /*
929  * Restore the current error message from a copy which was previously saved
930  * by errmsg_save().  The copy is freed.
931  */
932 static void
933 errmsg_restore(char *saved_msg)
934 {
935     if (saved_msg == NULL)
936 	error_message = NULL;
937     else {
938 	_rtld_error("%s", saved_msg);
939 	free(saved_msg);
940     }
941 }
942 
943 static const char *
944 basename(const char *name)
945 {
946     const char *p = strrchr(name, '/');
947     return p != NULL ? p + 1 : name;
948 }
949 
950 static struct utsname uts;
951 
952 static char *
953 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
954     const char *subst, bool may_free)
955 {
956 	char *p, *p1, *res, *resp;
957 	int subst_len, kw_len, subst_count, old_len, new_len;
958 
959 	kw_len = strlen(kw);
960 
961 	/*
962 	 * First, count the number of the keyword occurrences, to
963 	 * preallocate the final string.
964 	 */
965 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
966 		p1 = strstr(p, kw);
967 		if (p1 == NULL)
968 			break;
969 	}
970 
971 	/*
972 	 * If the keyword is not found, just return.
973 	 *
974 	 * Return non-substituted string if resolution failed.  We
975 	 * cannot do anything more reasonable, the failure mode of the
976 	 * caller is unresolved library anyway.
977 	 */
978 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
979 		return (may_free ? real : xstrdup(real));
980 	if (obj != NULL)
981 		subst = obj->origin_path;
982 
983 	/*
984 	 * There is indeed something to substitute.  Calculate the
985 	 * length of the resulting string, and allocate it.
986 	 */
987 	subst_len = strlen(subst);
988 	old_len = strlen(real);
989 	new_len = old_len + (subst_len - kw_len) * subst_count;
990 	res = xmalloc(new_len + 1);
991 
992 	/*
993 	 * Now, execute the substitution loop.
994 	 */
995 	for (p = real, resp = res, *resp = '\0';;) {
996 		p1 = strstr(p, kw);
997 		if (p1 != NULL) {
998 			/* Copy the prefix before keyword. */
999 			memcpy(resp, p, p1 - p);
1000 			resp += p1 - p;
1001 			/* Keyword replacement. */
1002 			memcpy(resp, subst, subst_len);
1003 			resp += subst_len;
1004 			*resp = '\0';
1005 			p = p1 + kw_len;
1006 		} else
1007 			break;
1008 	}
1009 
1010 	/* Copy to the end of string and finish. */
1011 	strcat(resp, p);
1012 	if (may_free)
1013 		free(real);
1014 	return (res);
1015 }
1016 
1017 static char *
1018 origin_subst(Obj_Entry *obj, const char *real)
1019 {
1020 	char *res1, *res2, *res3, *res4;
1021 
1022 	if (obj == NULL || !trust)
1023 		return (xstrdup(real));
1024 	if (uts.sysname[0] == '\0') {
1025 		if (uname(&uts) != 0) {
1026 			_rtld_error("utsname failed: %d", errno);
1027 			return (NULL);
1028 		}
1029 	}
1030 	/* __DECONST is safe here since without may_free real is unchanged */
1031 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1032 	    false);
1033 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1034 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1035 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1036 	return (res4);
1037 }
1038 
1039 void
1040 rtld_die(void)
1041 {
1042     const char *msg = dlerror();
1043 
1044     if (msg == NULL)
1045 	msg = "Fatal error";
1046     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1047     rtld_fdputstr(STDERR_FILENO, msg);
1048     rtld_fdputchar(STDERR_FILENO, '\n');
1049     _exit(1);
1050 }
1051 
1052 /*
1053  * Process a shared object's DYNAMIC section, and save the important
1054  * information in its Obj_Entry structure.
1055  */
1056 static void
1057 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1058     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1059 {
1060     const Elf_Dyn *dynp;
1061     Needed_Entry **needed_tail = &obj->needed;
1062     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1063     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1064     const Elf_Hashelt *hashtab;
1065     const Elf32_Word *hashval;
1066     Elf32_Word bkt, nmaskwords;
1067     int bloom_size32;
1068     int plttype = DT_REL;
1069 
1070     *dyn_rpath = NULL;
1071     *dyn_soname = NULL;
1072     *dyn_runpath = NULL;
1073 
1074     obj->bind_now = false;
1075     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1076 	switch (dynp->d_tag) {
1077 
1078 	case DT_REL:
1079 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1080 	    break;
1081 
1082 	case DT_RELSZ:
1083 	    obj->relsize = dynp->d_un.d_val;
1084 	    break;
1085 
1086 	case DT_RELENT:
1087 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1088 	    break;
1089 
1090 	case DT_JMPREL:
1091 	    obj->pltrel = (const Elf_Rel *)
1092 	      (obj->relocbase + dynp->d_un.d_ptr);
1093 	    break;
1094 
1095 	case DT_PLTRELSZ:
1096 	    obj->pltrelsize = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_RELA:
1100 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1101 	    break;
1102 
1103 	case DT_RELASZ:
1104 	    obj->relasize = dynp->d_un.d_val;
1105 	    break;
1106 
1107 	case DT_RELAENT:
1108 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1109 	    break;
1110 
1111 	case DT_PLTREL:
1112 	    plttype = dynp->d_un.d_val;
1113 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1114 	    break;
1115 
1116 	case DT_SYMTAB:
1117 	    obj->symtab = (const Elf_Sym *)
1118 	      (obj->relocbase + dynp->d_un.d_ptr);
1119 	    break;
1120 
1121 	case DT_SYMENT:
1122 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1123 	    break;
1124 
1125 	case DT_STRTAB:
1126 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1127 	    break;
1128 
1129 	case DT_STRSZ:
1130 	    obj->strsize = dynp->d_un.d_val;
1131 	    break;
1132 
1133 	case DT_VERNEED:
1134 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1135 		dynp->d_un.d_val);
1136 	    break;
1137 
1138 	case DT_VERNEEDNUM:
1139 	    obj->verneednum = dynp->d_un.d_val;
1140 	    break;
1141 
1142 	case DT_VERDEF:
1143 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1144 		dynp->d_un.d_val);
1145 	    break;
1146 
1147 	case DT_VERDEFNUM:
1148 	    obj->verdefnum = dynp->d_un.d_val;
1149 	    break;
1150 
1151 	case DT_VERSYM:
1152 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1153 		dynp->d_un.d_val);
1154 	    break;
1155 
1156 	case DT_HASH:
1157 	    {
1158 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1159 		    dynp->d_un.d_ptr);
1160 		obj->nbuckets = hashtab[0];
1161 		obj->nchains = hashtab[1];
1162 		obj->buckets = hashtab + 2;
1163 		obj->chains = obj->buckets + obj->nbuckets;
1164 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1165 		  obj->buckets != NULL;
1166 	    }
1167 	    break;
1168 
1169 	case DT_GNU_HASH:
1170 	    {
1171 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1172 		    dynp->d_un.d_ptr);
1173 		obj->nbuckets_gnu = hashtab[0];
1174 		obj->symndx_gnu = hashtab[1];
1175 		nmaskwords = hashtab[2];
1176 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1177 		obj->maskwords_bm_gnu = nmaskwords - 1;
1178 		obj->shift2_gnu = hashtab[3];
1179 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1180 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1181 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1182 		  obj->symndx_gnu;
1183 		/* Number of bitmask words is required to be power of 2 */
1184 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1185 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1186 	    }
1187 	    break;
1188 
1189 	case DT_NEEDED:
1190 	    if (!obj->rtld) {
1191 		Needed_Entry *nep = NEW(Needed_Entry);
1192 		nep->name = dynp->d_un.d_val;
1193 		nep->obj = NULL;
1194 		nep->next = NULL;
1195 
1196 		*needed_tail = nep;
1197 		needed_tail = &nep->next;
1198 	    }
1199 	    break;
1200 
1201 	case DT_FILTER:
1202 	    if (!obj->rtld) {
1203 		Needed_Entry *nep = NEW(Needed_Entry);
1204 		nep->name = dynp->d_un.d_val;
1205 		nep->obj = NULL;
1206 		nep->next = NULL;
1207 
1208 		*needed_filtees_tail = nep;
1209 		needed_filtees_tail = &nep->next;
1210 
1211 		if (obj->linkmap.l_refname == NULL)
1212 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1213 	    }
1214 	    break;
1215 
1216 	case DT_AUXILIARY:
1217 	    if (!obj->rtld) {
1218 		Needed_Entry *nep = NEW(Needed_Entry);
1219 		nep->name = dynp->d_un.d_val;
1220 		nep->obj = NULL;
1221 		nep->next = NULL;
1222 
1223 		*needed_aux_filtees_tail = nep;
1224 		needed_aux_filtees_tail = &nep->next;
1225 	    }
1226 	    break;
1227 
1228 	case DT_PLTGOT:
1229 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1230 	    break;
1231 
1232 	case DT_TEXTREL:
1233 	    obj->textrel = true;
1234 	    break;
1235 
1236 	case DT_SYMBOLIC:
1237 	    obj->symbolic = true;
1238 	    break;
1239 
1240 	case DT_RPATH:
1241 	    /*
1242 	     * We have to wait until later to process this, because we
1243 	     * might not have gotten the address of the string table yet.
1244 	     */
1245 	    *dyn_rpath = dynp;
1246 	    break;
1247 
1248 	case DT_SONAME:
1249 	    *dyn_soname = dynp;
1250 	    break;
1251 
1252 	case DT_RUNPATH:
1253 	    *dyn_runpath = dynp;
1254 	    break;
1255 
1256 	case DT_INIT:
1257 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1258 	    break;
1259 
1260 	case DT_PREINIT_ARRAY:
1261 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1262 	    break;
1263 
1264 	case DT_PREINIT_ARRAYSZ:
1265 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1266 	    break;
1267 
1268 	case DT_INIT_ARRAY:
1269 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1270 	    break;
1271 
1272 	case DT_INIT_ARRAYSZ:
1273 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1274 	    break;
1275 
1276 	case DT_FINI:
1277 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1278 	    break;
1279 
1280 	case DT_FINI_ARRAY:
1281 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1282 	    break;
1283 
1284 	case DT_FINI_ARRAYSZ:
1285 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1286 	    break;
1287 
1288 	/*
1289 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1290 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1291 	 */
1292 
1293 #ifndef __mips__
1294 	case DT_DEBUG:
1295 	    if (!early)
1296 		dbg("Filling in DT_DEBUG entry");
1297 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1298 	    break;
1299 #endif
1300 
1301 	case DT_FLAGS:
1302 		if (dynp->d_un.d_val & DF_ORIGIN)
1303 		    obj->z_origin = true;
1304 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1305 		    obj->symbolic = true;
1306 		if (dynp->d_un.d_val & DF_TEXTREL)
1307 		    obj->textrel = true;
1308 		if (dynp->d_un.d_val & DF_BIND_NOW)
1309 		    obj->bind_now = true;
1310 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1311 		    obj->static_tls = true;
1312 	    break;
1313 #ifdef __mips__
1314 	case DT_MIPS_LOCAL_GOTNO:
1315 		obj->local_gotno = dynp->d_un.d_val;
1316 		break;
1317 
1318 	case DT_MIPS_SYMTABNO:
1319 		obj->symtabno = dynp->d_un.d_val;
1320 		break;
1321 
1322 	case DT_MIPS_GOTSYM:
1323 		obj->gotsym = dynp->d_un.d_val;
1324 		break;
1325 
1326 	case DT_MIPS_RLD_MAP:
1327 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1328 		break;
1329 
1330 	case DT_MIPS_RLD_MAP_REL:
1331 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1332 		// section relative to the address of the tag itself.
1333 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1334 		    (Elf_Addr) &r_debug;
1335 		break;
1336 
1337 	case DT_MIPS_PLTGOT:
1338 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1339 		    dynp->d_un.d_ptr);
1340 		break;
1341 
1342 #endif
1343 
1344 #ifdef __powerpc__
1345 #ifdef __powerpc64__
1346 	case DT_PPC64_GLINK:
1347 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1348 		break;
1349 #else
1350 	case DT_PPC_GOT:
1351 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1352 		break;
1353 #endif
1354 #endif
1355 
1356 	case DT_FLAGS_1:
1357 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1358 		    obj->z_noopen = true;
1359 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1360 		    obj->z_origin = true;
1361 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1362 		    obj->z_global = true;
1363 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1364 		    obj->bind_now = true;
1365 		if (dynp->d_un.d_val & DF_1_NODELETE)
1366 		    obj->z_nodelete = true;
1367 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1368 		    obj->z_loadfltr = true;
1369 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1370 		    obj->z_interpose = true;
1371 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1372 		    obj->z_nodeflib = true;
1373 		if (dynp->d_un.d_val & DF_1_PIE)
1374 		    obj->z_pie = true;
1375 	    break;
1376 
1377 	default:
1378 	    if (!early) {
1379 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1380 		    (long)dynp->d_tag);
1381 	    }
1382 	    break;
1383 	}
1384     }
1385 
1386     obj->traced = false;
1387 
1388     if (plttype == DT_RELA) {
1389 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1390 	obj->pltrel = NULL;
1391 	obj->pltrelasize = obj->pltrelsize;
1392 	obj->pltrelsize = 0;
1393     }
1394 
1395     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1396     if (obj->valid_hash_sysv)
1397 	obj->dynsymcount = obj->nchains;
1398     else if (obj->valid_hash_gnu) {
1399 	obj->dynsymcount = 0;
1400 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1401 	    if (obj->buckets_gnu[bkt] == 0)
1402 		continue;
1403 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1404 	    do
1405 		obj->dynsymcount++;
1406 	    while ((*hashval++ & 1u) == 0);
1407 	}
1408 	obj->dynsymcount += obj->symndx_gnu;
1409     }
1410 
1411     if (obj->linkmap.l_refname != NULL)
1412 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1413 	  linkmap.l_refname;
1414 }
1415 
1416 static bool
1417 obj_resolve_origin(Obj_Entry *obj)
1418 {
1419 
1420 	if (obj->origin_path != NULL)
1421 		return (true);
1422 	obj->origin_path = xmalloc(PATH_MAX);
1423 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1424 }
1425 
1426 static bool
1427 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1428     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1429 {
1430 
1431 	if (obj->z_origin && !obj_resolve_origin(obj))
1432 		return (false);
1433 
1434 	if (dyn_runpath != NULL) {
1435 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1436 		obj->runpath = origin_subst(obj, obj->runpath);
1437 	} else if (dyn_rpath != NULL) {
1438 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1439 		obj->rpath = origin_subst(obj, obj->rpath);
1440 	}
1441 	if (dyn_soname != NULL)
1442 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1443 	return (true);
1444 }
1445 
1446 static bool
1447 digest_dynamic(Obj_Entry *obj, int early)
1448 {
1449 	const Elf_Dyn *dyn_rpath;
1450 	const Elf_Dyn *dyn_soname;
1451 	const Elf_Dyn *dyn_runpath;
1452 
1453 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1454 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1455 }
1456 
1457 /*
1458  * Process a shared object's program header.  This is used only for the
1459  * main program, when the kernel has already loaded the main program
1460  * into memory before calling the dynamic linker.  It creates and
1461  * returns an Obj_Entry structure.
1462  */
1463 static Obj_Entry *
1464 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1465 {
1466     Obj_Entry *obj;
1467     const Elf_Phdr *phlimit = phdr + phnum;
1468     const Elf_Phdr *ph;
1469     Elf_Addr note_start, note_end;
1470     int nsegs = 0;
1471 
1472     obj = obj_new();
1473     for (ph = phdr;  ph < phlimit;  ph++) {
1474 	if (ph->p_type != PT_PHDR)
1475 	    continue;
1476 
1477 	obj->phdr = phdr;
1478 	obj->phsize = ph->p_memsz;
1479 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1480 	break;
1481     }
1482 
1483     obj->stack_flags = PF_X | PF_R | PF_W;
1484 
1485     for (ph = phdr;  ph < phlimit;  ph++) {
1486 	switch (ph->p_type) {
1487 
1488 	case PT_INTERP:
1489 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1490 	    break;
1491 
1492 	case PT_LOAD:
1493 	    if (nsegs == 0) {	/* First load segment */
1494 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1495 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1496 	    } else {		/* Last load segment */
1497 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1498 		  obj->vaddrbase;
1499 	    }
1500 	    nsegs++;
1501 	    break;
1502 
1503 	case PT_DYNAMIC:
1504 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1505 	    break;
1506 
1507 	case PT_TLS:
1508 	    obj->tlsindex = 1;
1509 	    obj->tlssize = ph->p_memsz;
1510 	    obj->tlsalign = ph->p_align;
1511 	    obj->tlsinitsize = ph->p_filesz;
1512 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1513 	    obj->tlspoffset = ph->p_offset;
1514 	    break;
1515 
1516 	case PT_GNU_STACK:
1517 	    obj->stack_flags = ph->p_flags;
1518 	    break;
1519 
1520 	case PT_GNU_RELRO:
1521 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1522 	    obj->relro_size = round_page(ph->p_memsz);
1523 	    break;
1524 
1525 	case PT_NOTE:
1526 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1527 	    note_end = note_start + ph->p_filesz;
1528 	    digest_notes(obj, note_start, note_end);
1529 	    break;
1530 	}
1531     }
1532     if (nsegs < 1) {
1533 	_rtld_error("%s: too few PT_LOAD segments", path);
1534 	return NULL;
1535     }
1536 
1537     obj->entry = entry;
1538     return obj;
1539 }
1540 
1541 void
1542 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1543 {
1544 	const Elf_Note *note;
1545 	const char *note_name;
1546 	uintptr_t p;
1547 
1548 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1549 	    note = (const Elf_Note *)((const char *)(note + 1) +
1550 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1551 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1552 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1553 		    note->n_descsz != sizeof(int32_t))
1554 			continue;
1555 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1556 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1557 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1558 			continue;
1559 		note_name = (const char *)(note + 1);
1560 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1561 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1562 			continue;
1563 		switch (note->n_type) {
1564 		case NT_FREEBSD_ABI_TAG:
1565 			/* FreeBSD osrel note */
1566 			p = (uintptr_t)(note + 1);
1567 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1568 			obj->osrel = *(const int32_t *)(p);
1569 			dbg("note osrel %d", obj->osrel);
1570 			break;
1571 		case NT_FREEBSD_FEATURE_CTL:
1572 			/* FreeBSD ABI feature control note */
1573 			p = (uintptr_t)(note + 1);
1574 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1575 			obj->fctl0 = *(const uint32_t *)(p);
1576 			dbg("note fctl0 %#x", obj->fctl0);
1577 			break;
1578 		case NT_FREEBSD_NOINIT_TAG:
1579 			/* FreeBSD 'crt does not call init' note */
1580 			obj->crt_no_init = true;
1581 			dbg("note crt_no_init");
1582 			break;
1583 		}
1584 	}
1585 }
1586 
1587 static Obj_Entry *
1588 dlcheck(void *handle)
1589 {
1590     Obj_Entry *obj;
1591 
1592     TAILQ_FOREACH(obj, &obj_list, next) {
1593 	if (obj == (Obj_Entry *) handle)
1594 	    break;
1595     }
1596 
1597     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1598 	_rtld_error("Invalid shared object handle %p", handle);
1599 	return NULL;
1600     }
1601     return obj;
1602 }
1603 
1604 /*
1605  * If the given object is already in the donelist, return true.  Otherwise
1606  * add the object to the list and return false.
1607  */
1608 static bool
1609 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1610 {
1611     unsigned int i;
1612 
1613     for (i = 0;  i < dlp->num_used;  i++)
1614 	if (dlp->objs[i] == obj)
1615 	    return true;
1616     /*
1617      * Our donelist allocation should always be sufficient.  But if
1618      * our threads locking isn't working properly, more shared objects
1619      * could have been loaded since we allocated the list.  That should
1620      * never happen, but we'll handle it properly just in case it does.
1621      */
1622     if (dlp->num_used < dlp->num_alloc)
1623 	dlp->objs[dlp->num_used++] = obj;
1624     return false;
1625 }
1626 
1627 /*
1628  * Hash function for symbol table lookup.  Don't even think about changing
1629  * this.  It is specified by the System V ABI.
1630  */
1631 unsigned long
1632 elf_hash(const char *name)
1633 {
1634     const unsigned char *p = (const unsigned char *) name;
1635     unsigned long h = 0;
1636     unsigned long g;
1637 
1638     while (*p != '\0') {
1639 	h = (h << 4) + *p++;
1640 	if ((g = h & 0xf0000000) != 0)
1641 	    h ^= g >> 24;
1642 	h &= ~g;
1643     }
1644     return h;
1645 }
1646 
1647 /*
1648  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1649  * unsigned in case it's implemented with a wider type.
1650  */
1651 static uint32_t
1652 gnu_hash(const char *s)
1653 {
1654 	uint32_t h;
1655 	unsigned char c;
1656 
1657 	h = 5381;
1658 	for (c = *s; c != '\0'; c = *++s)
1659 		h = h * 33 + c;
1660 	return (h & 0xffffffff);
1661 }
1662 
1663 
1664 /*
1665  * Find the library with the given name, and return its full pathname.
1666  * The returned string is dynamically allocated.  Generates an error
1667  * message and returns NULL if the library cannot be found.
1668  *
1669  * If the second argument is non-NULL, then it refers to an already-
1670  * loaded shared object, whose library search path will be searched.
1671  *
1672  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1673  * descriptor (which is close-on-exec) will be passed out via the third
1674  * argument.
1675  *
1676  * The search order is:
1677  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1678  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1679  *   LD_LIBRARY_PATH
1680  *   DT_RUNPATH in the referencing file
1681  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1682  *	 from list)
1683  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1684  *
1685  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1686  */
1687 static char *
1688 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1689 {
1690 	char *pathname, *refobj_path;
1691 	const char *name;
1692 	bool nodeflib, objgiven;
1693 
1694 	objgiven = refobj != NULL;
1695 
1696 	if (libmap_disable || !objgiven ||
1697 	    (name = lm_find(refobj->path, xname)) == NULL)
1698 		name = xname;
1699 
1700 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1701 		if (name[0] != '/' && !trust) {
1702 			_rtld_error("Absolute pathname required "
1703 			    "for shared object \"%s\"", name);
1704 			return (NULL);
1705 		}
1706 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1707 		    __DECONST(char *, name)));
1708 	}
1709 
1710 	dbg(" Searching for \"%s\"", name);
1711 	refobj_path = objgiven ? refobj->path : NULL;
1712 
1713 	/*
1714 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1715 	 * back to pre-conforming behaviour if user requested so with
1716 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1717 	 * nodeflib.
1718 	 */
1719 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1720 		pathname = search_library_path(name, ld_library_path,
1721 		    refobj_path, fdp);
1722 		if (pathname != NULL)
1723 			return (pathname);
1724 		if (refobj != NULL) {
1725 			pathname = search_library_path(name, refobj->rpath,
1726 			    refobj_path, fdp);
1727 			if (pathname != NULL)
1728 				return (pathname);
1729 		}
1730 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1731 		if (pathname != NULL)
1732 			return (pathname);
1733 		pathname = search_library_path(name, gethints(false),
1734 		    refobj_path, fdp);
1735 		if (pathname != NULL)
1736 			return (pathname);
1737 		pathname = search_library_path(name, ld_standard_library_path,
1738 		    refobj_path, fdp);
1739 		if (pathname != NULL)
1740 			return (pathname);
1741 	} else {
1742 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1743 		if (objgiven) {
1744 			pathname = search_library_path(name, refobj->rpath,
1745 			    refobj->path, fdp);
1746 			if (pathname != NULL)
1747 				return (pathname);
1748 		}
1749 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1750 			pathname = search_library_path(name, obj_main->rpath,
1751 			    refobj_path, fdp);
1752 			if (pathname != NULL)
1753 				return (pathname);
1754 		}
1755 		pathname = search_library_path(name, ld_library_path,
1756 		    refobj_path, fdp);
1757 		if (pathname != NULL)
1758 			return (pathname);
1759 		if (objgiven) {
1760 			pathname = search_library_path(name, refobj->runpath,
1761 			    refobj_path, fdp);
1762 			if (pathname != NULL)
1763 				return (pathname);
1764 		}
1765 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1766 		if (pathname != NULL)
1767 			return (pathname);
1768 		pathname = search_library_path(name, gethints(nodeflib),
1769 		    refobj_path, fdp);
1770 		if (pathname != NULL)
1771 			return (pathname);
1772 		if (objgiven && !nodeflib) {
1773 			pathname = search_library_path(name,
1774 			    ld_standard_library_path, refobj_path, fdp);
1775 			if (pathname != NULL)
1776 				return (pathname);
1777 		}
1778 	}
1779 
1780 	if (objgiven && refobj->path != NULL) {
1781 		_rtld_error("Shared object \"%s\" not found, "
1782 		    "required by \"%s\"", name, basename(refobj->path));
1783 	} else {
1784 		_rtld_error("Shared object \"%s\" not found", name);
1785 	}
1786 	return (NULL);
1787 }
1788 
1789 /*
1790  * Given a symbol number in a referencing object, find the corresponding
1791  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1792  * no definition was found.  Returns a pointer to the Obj_Entry of the
1793  * defining object via the reference parameter DEFOBJ_OUT.
1794  */
1795 const Elf_Sym *
1796 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1797     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1798     RtldLockState *lockstate)
1799 {
1800     const Elf_Sym *ref;
1801     const Elf_Sym *def;
1802     const Obj_Entry *defobj;
1803     const Ver_Entry *ve;
1804     SymLook req;
1805     const char *name;
1806     int res;
1807 
1808     /*
1809      * If we have already found this symbol, get the information from
1810      * the cache.
1811      */
1812     if (symnum >= refobj->dynsymcount)
1813 	return NULL;	/* Bad object */
1814     if (cache != NULL && cache[symnum].sym != NULL) {
1815 	*defobj_out = cache[symnum].obj;
1816 	return cache[symnum].sym;
1817     }
1818 
1819     ref = refobj->symtab + symnum;
1820     name = refobj->strtab + ref->st_name;
1821     def = NULL;
1822     defobj = NULL;
1823     ve = NULL;
1824 
1825     /*
1826      * We don't have to do a full scale lookup if the symbol is local.
1827      * We know it will bind to the instance in this load module; to
1828      * which we already have a pointer (ie ref). By not doing a lookup,
1829      * we not only improve performance, but it also avoids unresolvable
1830      * symbols when local symbols are not in the hash table. This has
1831      * been seen with the ia64 toolchain.
1832      */
1833     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1834 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1835 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1836 		symnum);
1837 	}
1838 	symlook_init(&req, name);
1839 	req.flags = flags;
1840 	ve = req.ventry = fetch_ventry(refobj, symnum);
1841 	req.lockstate = lockstate;
1842 	res = symlook_default(&req, refobj);
1843 	if (res == 0) {
1844 	    def = req.sym_out;
1845 	    defobj = req.defobj_out;
1846 	}
1847     } else {
1848 	def = ref;
1849 	defobj = refobj;
1850     }
1851 
1852     /*
1853      * If we found no definition and the reference is weak, treat the
1854      * symbol as having the value zero.
1855      */
1856     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1857 	def = &sym_zero;
1858 	defobj = obj_main;
1859     }
1860 
1861     if (def != NULL) {
1862 	*defobj_out = defobj;
1863 	/* Record the information in the cache to avoid subsequent lookups. */
1864 	if (cache != NULL) {
1865 	    cache[symnum].sym = def;
1866 	    cache[symnum].obj = defobj;
1867 	}
1868     } else {
1869 	if (refobj != &obj_rtld)
1870 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1871 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1872     }
1873     return def;
1874 }
1875 
1876 /*
1877  * Return the search path from the ldconfig hints file, reading it if
1878  * necessary.  If nostdlib is true, then the default search paths are
1879  * not added to result.
1880  *
1881  * Returns NULL if there are problems with the hints file,
1882  * or if the search path there is empty.
1883  */
1884 static const char *
1885 gethints(bool nostdlib)
1886 {
1887 	static char *filtered_path;
1888 	static const char *hints;
1889 	static struct elfhints_hdr hdr;
1890 	struct fill_search_info_args sargs, hargs;
1891 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1892 	struct dl_serpath *SLPpath, *hintpath;
1893 	char *p;
1894 	struct stat hint_stat;
1895 	unsigned int SLPndx, hintndx, fndx, fcount;
1896 	int fd;
1897 	size_t flen;
1898 	uint32_t dl;
1899 	bool skip;
1900 
1901 	/* First call, read the hints file */
1902 	if (hints == NULL) {
1903 		/* Keep from trying again in case the hints file is bad. */
1904 		hints = "";
1905 
1906 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1907 			return (NULL);
1908 
1909 		/*
1910 		 * Check of hdr.dirlistlen value against type limit
1911 		 * intends to pacify static analyzers.  Further
1912 		 * paranoia leads to checks that dirlist is fully
1913 		 * contained in the file range.
1914 		 */
1915 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1916 		    hdr.magic != ELFHINTS_MAGIC ||
1917 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1918 		    fstat(fd, &hint_stat) == -1) {
1919 cleanup1:
1920 			close(fd);
1921 			hdr.dirlistlen = 0;
1922 			return (NULL);
1923 		}
1924 		dl = hdr.strtab;
1925 		if (dl + hdr.dirlist < dl)
1926 			goto cleanup1;
1927 		dl += hdr.dirlist;
1928 		if (dl + hdr.dirlistlen < dl)
1929 			goto cleanup1;
1930 		dl += hdr.dirlistlen;
1931 		if (dl > hint_stat.st_size)
1932 			goto cleanup1;
1933 		p = xmalloc(hdr.dirlistlen + 1);
1934 		if (pread(fd, p, hdr.dirlistlen + 1,
1935 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1936 		    p[hdr.dirlistlen] != '\0') {
1937 			free(p);
1938 			goto cleanup1;
1939 		}
1940 		hints = p;
1941 		close(fd);
1942 	}
1943 
1944 	/*
1945 	 * If caller agreed to receive list which includes the default
1946 	 * paths, we are done. Otherwise, if we still did not
1947 	 * calculated filtered result, do it now.
1948 	 */
1949 	if (!nostdlib)
1950 		return (hints[0] != '\0' ? hints : NULL);
1951 	if (filtered_path != NULL)
1952 		goto filt_ret;
1953 
1954 	/*
1955 	 * Obtain the list of all configured search paths, and the
1956 	 * list of the default paths.
1957 	 *
1958 	 * First estimate the size of the results.
1959 	 */
1960 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1961 	smeta.dls_cnt = 0;
1962 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1963 	hmeta.dls_cnt = 0;
1964 
1965 	sargs.request = RTLD_DI_SERINFOSIZE;
1966 	sargs.serinfo = &smeta;
1967 	hargs.request = RTLD_DI_SERINFOSIZE;
1968 	hargs.serinfo = &hmeta;
1969 
1970 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1971 	    &sargs);
1972 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1973 
1974 	SLPinfo = xmalloc(smeta.dls_size);
1975 	hintinfo = xmalloc(hmeta.dls_size);
1976 
1977 	/*
1978 	 * Next fetch both sets of paths.
1979 	 */
1980 	sargs.request = RTLD_DI_SERINFO;
1981 	sargs.serinfo = SLPinfo;
1982 	sargs.serpath = &SLPinfo->dls_serpath[0];
1983 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1984 
1985 	hargs.request = RTLD_DI_SERINFO;
1986 	hargs.serinfo = hintinfo;
1987 	hargs.serpath = &hintinfo->dls_serpath[0];
1988 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1989 
1990 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1991 	    &sargs);
1992 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1993 
1994 	/*
1995 	 * Now calculate the difference between two sets, by excluding
1996 	 * standard paths from the full set.
1997 	 */
1998 	fndx = 0;
1999 	fcount = 0;
2000 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2001 	hintpath = &hintinfo->dls_serpath[0];
2002 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2003 		skip = false;
2004 		SLPpath = &SLPinfo->dls_serpath[0];
2005 		/*
2006 		 * Check each standard path against current.
2007 		 */
2008 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2009 			/* matched, skip the path */
2010 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2011 				skip = true;
2012 				break;
2013 			}
2014 		}
2015 		if (skip)
2016 			continue;
2017 		/*
2018 		 * Not matched against any standard path, add the path
2019 		 * to result. Separate consequtive paths with ':'.
2020 		 */
2021 		if (fcount > 0) {
2022 			filtered_path[fndx] = ':';
2023 			fndx++;
2024 		}
2025 		fcount++;
2026 		flen = strlen(hintpath->dls_name);
2027 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2028 		fndx += flen;
2029 	}
2030 	filtered_path[fndx] = '\0';
2031 
2032 	free(SLPinfo);
2033 	free(hintinfo);
2034 
2035 filt_ret:
2036 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2037 }
2038 
2039 static void
2040 init_dag(Obj_Entry *root)
2041 {
2042     const Needed_Entry *needed;
2043     const Objlist_Entry *elm;
2044     DoneList donelist;
2045 
2046     if (root->dag_inited)
2047 	return;
2048     donelist_init(&donelist);
2049 
2050     /* Root object belongs to own DAG. */
2051     objlist_push_tail(&root->dldags, root);
2052     objlist_push_tail(&root->dagmembers, root);
2053     donelist_check(&donelist, root);
2054 
2055     /*
2056      * Add dependencies of root object to DAG in breadth order
2057      * by exploiting the fact that each new object get added
2058      * to the tail of the dagmembers list.
2059      */
2060     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2061 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2062 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2063 		continue;
2064 	    objlist_push_tail(&needed->obj->dldags, root);
2065 	    objlist_push_tail(&root->dagmembers, needed->obj);
2066 	}
2067     }
2068     root->dag_inited = true;
2069 }
2070 
2071 static void
2072 init_marker(Obj_Entry *marker)
2073 {
2074 
2075 	bzero(marker, sizeof(*marker));
2076 	marker->marker = true;
2077 }
2078 
2079 Obj_Entry *
2080 globallist_curr(const Obj_Entry *obj)
2081 {
2082 
2083 	for (;;) {
2084 		if (obj == NULL)
2085 			return (NULL);
2086 		if (!obj->marker)
2087 			return (__DECONST(Obj_Entry *, obj));
2088 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2089 	}
2090 }
2091 
2092 Obj_Entry *
2093 globallist_next(const Obj_Entry *obj)
2094 {
2095 
2096 	for (;;) {
2097 		obj = TAILQ_NEXT(obj, next);
2098 		if (obj == NULL)
2099 			return (NULL);
2100 		if (!obj->marker)
2101 			return (__DECONST(Obj_Entry *, obj));
2102 	}
2103 }
2104 
2105 /* Prevent the object from being unmapped while the bind lock is dropped. */
2106 static void
2107 hold_object(Obj_Entry *obj)
2108 {
2109 
2110 	obj->holdcount++;
2111 }
2112 
2113 static void
2114 unhold_object(Obj_Entry *obj)
2115 {
2116 
2117 	assert(obj->holdcount > 0);
2118 	if (--obj->holdcount == 0 && obj->unholdfree)
2119 		release_object(obj);
2120 }
2121 
2122 static void
2123 process_z(Obj_Entry *root)
2124 {
2125 	const Objlist_Entry *elm;
2126 	Obj_Entry *obj;
2127 
2128 	/*
2129 	 * Walk over object DAG and process every dependent object
2130 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2131 	 * to grow their own DAG.
2132 	 *
2133 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2134 	 * symlook_global() to work.
2135 	 *
2136 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2137 	 */
2138 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2139 		obj = elm->obj;
2140 		if (obj == NULL)
2141 			continue;
2142 		if (obj->z_nodelete && !obj->ref_nodel) {
2143 			dbg("obj %s -z nodelete", obj->path);
2144 			init_dag(obj);
2145 			ref_dag(obj);
2146 			obj->ref_nodel = true;
2147 		}
2148 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2149 			dbg("obj %s -z global", obj->path);
2150 			objlist_push_tail(&list_global, obj);
2151 			init_dag(obj);
2152 		}
2153 	}
2154 }
2155 /*
2156  * Initialize the dynamic linker.  The argument is the address at which
2157  * the dynamic linker has been mapped into memory.  The primary task of
2158  * this function is to relocate the dynamic linker.
2159  */
2160 static void
2161 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2162 {
2163     Obj_Entry objtmp;	/* Temporary rtld object */
2164     const Elf_Ehdr *ehdr;
2165     const Elf_Dyn *dyn_rpath;
2166     const Elf_Dyn *dyn_soname;
2167     const Elf_Dyn *dyn_runpath;
2168 
2169 #ifdef RTLD_INIT_PAGESIZES_EARLY
2170     /* The page size is required by the dynamic memory allocator. */
2171     init_pagesizes(aux_info);
2172 #endif
2173 
2174     /*
2175      * Conjure up an Obj_Entry structure for the dynamic linker.
2176      *
2177      * The "path" member can't be initialized yet because string constants
2178      * cannot yet be accessed. Below we will set it correctly.
2179      */
2180     memset(&objtmp, 0, sizeof(objtmp));
2181     objtmp.path = NULL;
2182     objtmp.rtld = true;
2183     objtmp.mapbase = mapbase;
2184 #ifdef PIC
2185     objtmp.relocbase = mapbase;
2186 #endif
2187 
2188     objtmp.dynamic = rtld_dynamic(&objtmp);
2189     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2190     assert(objtmp.needed == NULL);
2191 #if !defined(__mips__)
2192     /* MIPS has a bogus DT_TEXTREL. */
2193     assert(!objtmp.textrel);
2194 #endif
2195     /*
2196      * Temporarily put the dynamic linker entry into the object list, so
2197      * that symbols can be found.
2198      */
2199     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2200 
2201     ehdr = (Elf_Ehdr *)mapbase;
2202     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2203     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2204 
2205     /* Initialize the object list. */
2206     TAILQ_INIT(&obj_list);
2207 
2208     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2209     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2210 
2211 #ifndef RTLD_INIT_PAGESIZES_EARLY
2212     /* The page size is required by the dynamic memory allocator. */
2213     init_pagesizes(aux_info);
2214 #endif
2215 
2216     if (aux_info[AT_OSRELDATE] != NULL)
2217 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2218 
2219     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2220 
2221     /* Replace the path with a dynamically allocated copy. */
2222     obj_rtld.path = xstrdup(ld_path_rtld);
2223 
2224     r_debug.r_brk = r_debug_state;
2225     r_debug.r_state = RT_CONSISTENT;
2226 }
2227 
2228 /*
2229  * Retrieve the array of supported page sizes.  The kernel provides the page
2230  * sizes in increasing order.
2231  */
2232 static void
2233 init_pagesizes(Elf_Auxinfo **aux_info)
2234 {
2235 	static size_t psa[MAXPAGESIZES];
2236 	int mib[2];
2237 	size_t len, size;
2238 
2239 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2240 	    NULL) {
2241 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2242 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2243 	} else {
2244 		len = 2;
2245 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2246 			size = sizeof(psa);
2247 		else {
2248 			/* As a fallback, retrieve the base page size. */
2249 			size = sizeof(psa[0]);
2250 			if (aux_info[AT_PAGESZ] != NULL) {
2251 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2252 				goto psa_filled;
2253 			} else {
2254 				mib[0] = CTL_HW;
2255 				mib[1] = HW_PAGESIZE;
2256 				len = 2;
2257 			}
2258 		}
2259 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2260 			_rtld_error("sysctl for hw.pagesize(s) failed");
2261 			rtld_die();
2262 		}
2263 psa_filled:
2264 		pagesizes = psa;
2265 	}
2266 	npagesizes = size / sizeof(pagesizes[0]);
2267 	/* Discard any invalid entries at the end of the array. */
2268 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2269 		npagesizes--;
2270 }
2271 
2272 /*
2273  * Add the init functions from a needed object list (and its recursive
2274  * needed objects) to "list".  This is not used directly; it is a helper
2275  * function for initlist_add_objects().  The write lock must be held
2276  * when this function is called.
2277  */
2278 static void
2279 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2280 {
2281     /* Recursively process the successor needed objects. */
2282     if (needed->next != NULL)
2283 	initlist_add_neededs(needed->next, list);
2284 
2285     /* Process the current needed object. */
2286     if (needed->obj != NULL)
2287 	initlist_add_objects(needed->obj, needed->obj, list);
2288 }
2289 
2290 /*
2291  * Scan all of the DAGs rooted in the range of objects from "obj" to
2292  * "tail" and add their init functions to "list".  This recurses over
2293  * the DAGs and ensure the proper init ordering such that each object's
2294  * needed libraries are initialized before the object itself.  At the
2295  * same time, this function adds the objects to the global finalization
2296  * list "list_fini" in the opposite order.  The write lock must be
2297  * held when this function is called.
2298  */
2299 static void
2300 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2301 {
2302     Obj_Entry *nobj;
2303 
2304     if (obj->init_scanned || obj->init_done)
2305 	return;
2306     obj->init_scanned = true;
2307 
2308     /* Recursively process the successor objects. */
2309     nobj = globallist_next(obj);
2310     if (nobj != NULL && obj != tail)
2311 	initlist_add_objects(nobj, tail, list);
2312 
2313     /* Recursively process the needed objects. */
2314     if (obj->needed != NULL)
2315 	initlist_add_neededs(obj->needed, list);
2316     if (obj->needed_filtees != NULL)
2317 	initlist_add_neededs(obj->needed_filtees, list);
2318     if (obj->needed_aux_filtees != NULL)
2319 	initlist_add_neededs(obj->needed_aux_filtees, list);
2320 
2321     /* Add the object to the init list. */
2322     objlist_push_tail(list, obj);
2323 
2324     /* Add the object to the global fini list in the reverse order. */
2325     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2326       && !obj->on_fini_list) {
2327 	objlist_push_head(&list_fini, obj);
2328 	obj->on_fini_list = true;
2329     }
2330 }
2331 
2332 #ifndef FPTR_TARGET
2333 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2334 #endif
2335 
2336 static void
2337 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2338 {
2339     Needed_Entry *needed, *needed1;
2340 
2341     for (needed = n; needed != NULL; needed = needed->next) {
2342 	if (needed->obj != NULL) {
2343 	    dlclose_locked(needed->obj, lockstate);
2344 	    needed->obj = NULL;
2345 	}
2346     }
2347     for (needed = n; needed != NULL; needed = needed1) {
2348 	needed1 = needed->next;
2349 	free(needed);
2350     }
2351 }
2352 
2353 static void
2354 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2355 {
2356 
2357 	free_needed_filtees(obj->needed_filtees, lockstate);
2358 	obj->needed_filtees = NULL;
2359 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2360 	obj->needed_aux_filtees = NULL;
2361 	obj->filtees_loaded = false;
2362 }
2363 
2364 static void
2365 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2366     RtldLockState *lockstate)
2367 {
2368 
2369     for (; needed != NULL; needed = needed->next) {
2370 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2371 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2372 	  RTLD_LOCAL, lockstate);
2373     }
2374 }
2375 
2376 static void
2377 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2378 {
2379 
2380     lock_restart_for_upgrade(lockstate);
2381     if (!obj->filtees_loaded) {
2382 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2383 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2384 	obj->filtees_loaded = true;
2385     }
2386 }
2387 
2388 static int
2389 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2390 {
2391     Obj_Entry *obj1;
2392 
2393     for (; needed != NULL; needed = needed->next) {
2394 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2395 	  flags & ~RTLD_LO_NOLOAD);
2396 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2397 	    return (-1);
2398     }
2399     return (0);
2400 }
2401 
2402 /*
2403  * Given a shared object, traverse its list of needed objects, and load
2404  * each of them.  Returns 0 on success.  Generates an error message and
2405  * returns -1 on failure.
2406  */
2407 static int
2408 load_needed_objects(Obj_Entry *first, int flags)
2409 {
2410     Obj_Entry *obj;
2411 
2412     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2413 	if (obj->marker)
2414 	    continue;
2415 	if (process_needed(obj, obj->needed, flags) == -1)
2416 	    return (-1);
2417     }
2418     return (0);
2419 }
2420 
2421 static int
2422 load_preload_objects(void)
2423 {
2424     char *p = ld_preload;
2425     Obj_Entry *obj;
2426     static const char delim[] = " \t:;";
2427 
2428     if (p == NULL)
2429 	return 0;
2430 
2431     p += strspn(p, delim);
2432     while (*p != '\0') {
2433 	size_t len = strcspn(p, delim);
2434 	char savech;
2435 
2436 	savech = p[len];
2437 	p[len] = '\0';
2438 	obj = load_object(p, -1, NULL, 0);
2439 	if (obj == NULL)
2440 	    return -1;	/* XXX - cleanup */
2441 	obj->z_interpose = true;
2442 	p[len] = savech;
2443 	p += len;
2444 	p += strspn(p, delim);
2445     }
2446     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2447     return 0;
2448 }
2449 
2450 static const char *
2451 printable_path(const char *path)
2452 {
2453 
2454 	return (path == NULL ? "<unknown>" : path);
2455 }
2456 
2457 /*
2458  * Load a shared object into memory, if it is not already loaded.  The
2459  * object may be specified by name or by user-supplied file descriptor
2460  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2461  * duplicate is.
2462  *
2463  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2464  * on failure.
2465  */
2466 static Obj_Entry *
2467 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2468 {
2469     Obj_Entry *obj;
2470     int fd;
2471     struct stat sb;
2472     char *path;
2473 
2474     fd = -1;
2475     if (name != NULL) {
2476 	TAILQ_FOREACH(obj, &obj_list, next) {
2477 	    if (obj->marker || obj->doomed)
2478 		continue;
2479 	    if (object_match_name(obj, name))
2480 		return (obj);
2481 	}
2482 
2483 	path = find_library(name, refobj, &fd);
2484 	if (path == NULL)
2485 	    return (NULL);
2486     } else
2487 	path = NULL;
2488 
2489     if (fd >= 0) {
2490 	/*
2491 	 * search_library_pathfds() opens a fresh file descriptor for the
2492 	 * library, so there is no need to dup().
2493 	 */
2494     } else if (fd_u == -1) {
2495 	/*
2496 	 * If we didn't find a match by pathname, or the name is not
2497 	 * supplied, open the file and check again by device and inode.
2498 	 * This avoids false mismatches caused by multiple links or ".."
2499 	 * in pathnames.
2500 	 *
2501 	 * To avoid a race, we open the file and use fstat() rather than
2502 	 * using stat().
2503 	 */
2504 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2505 	    _rtld_error("Cannot open \"%s\"", path);
2506 	    free(path);
2507 	    return (NULL);
2508 	}
2509     } else {
2510 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2511 	if (fd == -1) {
2512 	    _rtld_error("Cannot dup fd");
2513 	    free(path);
2514 	    return (NULL);
2515 	}
2516     }
2517     if (fstat(fd, &sb) == -1) {
2518 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2519 	close(fd);
2520 	free(path);
2521 	return NULL;
2522     }
2523     TAILQ_FOREACH(obj, &obj_list, next) {
2524 	if (obj->marker || obj->doomed)
2525 	    continue;
2526 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2527 	    break;
2528     }
2529     if (obj != NULL && name != NULL) {
2530 	object_add_name(obj, name);
2531 	free(path);
2532 	close(fd);
2533 	return obj;
2534     }
2535     if (flags & RTLD_LO_NOLOAD) {
2536 	free(path);
2537 	close(fd);
2538 	return (NULL);
2539     }
2540 
2541     /* First use of this object, so we must map it in */
2542     obj = do_load_object(fd, name, path, &sb, flags);
2543     if (obj == NULL)
2544 	free(path);
2545     close(fd);
2546 
2547     return obj;
2548 }
2549 
2550 static Obj_Entry *
2551 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2552   int flags)
2553 {
2554     Obj_Entry *obj;
2555     struct statfs fs;
2556 
2557     /*
2558      * but first, make sure that environment variables haven't been
2559      * used to circumvent the noexec flag on a filesystem.
2560      */
2561     if (dangerous_ld_env) {
2562 	if (fstatfs(fd, &fs) != 0) {
2563 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2564 	    return NULL;
2565 	}
2566 	if (fs.f_flags & MNT_NOEXEC) {
2567 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2568 	    return NULL;
2569 	}
2570     }
2571     dbg("loading \"%s\"", printable_path(path));
2572     obj = map_object(fd, printable_path(path), sbp);
2573     if (obj == NULL)
2574         return NULL;
2575 
2576     /*
2577      * If DT_SONAME is present in the object, digest_dynamic2 already
2578      * added it to the object names.
2579      */
2580     if (name != NULL)
2581 	object_add_name(obj, name);
2582     obj->path = path;
2583     if (!digest_dynamic(obj, 0))
2584 	goto errp;
2585     if (obj->z_pie) {
2586 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2587 	goto errp;
2588     }
2589     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2590 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2591     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2592       RTLD_LO_DLOPEN) {
2593 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2594 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2595 	goto errp;
2596     }
2597 
2598     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2599     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2600     obj_count++;
2601     obj_loads++;
2602     linkmap_add(obj);	/* for GDB & dlinfo() */
2603     max_stack_flags |= obj->stack_flags;
2604 
2605     dbg("  %p .. %p: %s", obj->mapbase,
2606          obj->mapbase + obj->mapsize - 1, obj->path);
2607     if (obj->textrel)
2608 	dbg("  WARNING: %s has impure text", obj->path);
2609     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2610 	obj->path);
2611 
2612     return (obj);
2613 
2614 errp:
2615     munmap(obj->mapbase, obj->mapsize);
2616     obj_free(obj);
2617     return (NULL);
2618 }
2619 
2620 static Obj_Entry *
2621 obj_from_addr(const void *addr)
2622 {
2623     Obj_Entry *obj;
2624 
2625     TAILQ_FOREACH(obj, &obj_list, next) {
2626 	if (obj->marker)
2627 	    continue;
2628 	if (addr < (void *) obj->mapbase)
2629 	    continue;
2630 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2631 	    return obj;
2632     }
2633     return NULL;
2634 }
2635 
2636 static void
2637 preinit_main(void)
2638 {
2639     Elf_Addr *preinit_addr;
2640     int index;
2641 
2642     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2643     if (preinit_addr == NULL)
2644 	return;
2645 
2646     for (index = 0; index < obj_main->preinit_array_num; index++) {
2647 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2648 	    dbg("calling preinit function for %s at %p", obj_main->path,
2649 	      (void *)preinit_addr[index]);
2650 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2651 	      0, 0, obj_main->path);
2652 	    call_init_pointer(obj_main, preinit_addr[index]);
2653 	}
2654     }
2655 }
2656 
2657 /*
2658  * Call the finalization functions for each of the objects in "list"
2659  * belonging to the DAG of "root" and referenced once. If NULL "root"
2660  * is specified, every finalization function will be called regardless
2661  * of the reference count and the list elements won't be freed. All of
2662  * the objects are expected to have non-NULL fini functions.
2663  */
2664 static void
2665 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2666 {
2667     Objlist_Entry *elm;
2668     char *saved_msg;
2669     Elf_Addr *fini_addr;
2670     int index;
2671 
2672     assert(root == NULL || root->refcount == 1);
2673 
2674     if (root != NULL)
2675 	root->doomed = true;
2676 
2677     /*
2678      * Preserve the current error message since a fini function might
2679      * call into the dynamic linker and overwrite it.
2680      */
2681     saved_msg = errmsg_save();
2682     do {
2683 	STAILQ_FOREACH(elm, list, link) {
2684 	    if (root != NULL && (elm->obj->refcount != 1 ||
2685 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2686 		continue;
2687 	    /* Remove object from fini list to prevent recursive invocation. */
2688 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2689 	    /* Ensure that new references cannot be acquired. */
2690 	    elm->obj->doomed = true;
2691 
2692 	    hold_object(elm->obj);
2693 	    lock_release(rtld_bind_lock, lockstate);
2694 	    /*
2695 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2696 	     * When this happens, DT_FINI_ARRAY is processed first.
2697 	     */
2698 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2699 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2700 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2701 		  index--) {
2702 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2703 			dbg("calling fini function for %s at %p",
2704 			    elm->obj->path, (void *)fini_addr[index]);
2705 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2706 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2707 			call_initfini_pointer(elm->obj, fini_addr[index]);
2708 		    }
2709 		}
2710 	    }
2711 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2712 		dbg("calling fini function for %s at %p", elm->obj->path,
2713 		    (void *)elm->obj->fini);
2714 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2715 		    0, 0, elm->obj->path);
2716 		call_initfini_pointer(elm->obj, elm->obj->fini);
2717 	    }
2718 	    wlock_acquire(rtld_bind_lock, lockstate);
2719 	    unhold_object(elm->obj);
2720 	    /* No need to free anything if process is going down. */
2721 	    if (root != NULL)
2722 	    	free(elm);
2723 	    /*
2724 	     * We must restart the list traversal after every fini call
2725 	     * because a dlclose() call from the fini function or from
2726 	     * another thread might have modified the reference counts.
2727 	     */
2728 	    break;
2729 	}
2730     } while (elm != NULL);
2731     errmsg_restore(saved_msg);
2732 }
2733 
2734 /*
2735  * Call the initialization functions for each of the objects in
2736  * "list".  All of the objects are expected to have non-NULL init
2737  * functions.
2738  */
2739 static void
2740 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2741 {
2742     Objlist_Entry *elm;
2743     Obj_Entry *obj;
2744     char *saved_msg;
2745     Elf_Addr *init_addr;
2746     void (*reg)(void (*)(void));
2747     int index;
2748 
2749     /*
2750      * Clean init_scanned flag so that objects can be rechecked and
2751      * possibly initialized earlier if any of vectors called below
2752      * cause the change by using dlopen.
2753      */
2754     TAILQ_FOREACH(obj, &obj_list, next) {
2755 	if (obj->marker)
2756 	    continue;
2757 	obj->init_scanned = false;
2758     }
2759 
2760     /*
2761      * Preserve the current error message since an init function might
2762      * call into the dynamic linker and overwrite it.
2763      */
2764     saved_msg = errmsg_save();
2765     STAILQ_FOREACH(elm, list, link) {
2766 	if (elm->obj->init_done) /* Initialized early. */
2767 	    continue;
2768 	/*
2769 	 * Race: other thread might try to use this object before current
2770 	 * one completes the initialization. Not much can be done here
2771 	 * without better locking.
2772 	 */
2773 	elm->obj->init_done = true;
2774 	hold_object(elm->obj);
2775 	reg = NULL;
2776 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2777 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2778 		    "__libc_atexit", lockstate);
2779 	}
2780 	lock_release(rtld_bind_lock, lockstate);
2781 	if (reg != NULL) {
2782 		reg(rtld_exit);
2783 		rtld_exit_ptr = rtld_nop_exit;
2784 	}
2785 
2786         /*
2787          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2788          * When this happens, DT_INIT is processed first.
2789          */
2790 	if (elm->obj->init != (Elf_Addr)NULL) {
2791 	    dbg("calling init function for %s at %p", elm->obj->path,
2792 	        (void *)elm->obj->init);
2793 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2794 	        0, 0, elm->obj->path);
2795 	    call_initfini_pointer(elm->obj, elm->obj->init);
2796 	}
2797 	init_addr = (Elf_Addr *)elm->obj->init_array;
2798 	if (init_addr != NULL) {
2799 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2800 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2801 		    dbg("calling init function for %s at %p", elm->obj->path,
2802 			(void *)init_addr[index]);
2803 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2804 			(void *)init_addr[index], 0, 0, elm->obj->path);
2805 		    call_init_pointer(elm->obj, init_addr[index]);
2806 		}
2807 	    }
2808 	}
2809 	wlock_acquire(rtld_bind_lock, lockstate);
2810 	unhold_object(elm->obj);
2811     }
2812     errmsg_restore(saved_msg);
2813 }
2814 
2815 static void
2816 objlist_clear(Objlist *list)
2817 {
2818     Objlist_Entry *elm;
2819 
2820     while (!STAILQ_EMPTY(list)) {
2821 	elm = STAILQ_FIRST(list);
2822 	STAILQ_REMOVE_HEAD(list, link);
2823 	free(elm);
2824     }
2825 }
2826 
2827 static Objlist_Entry *
2828 objlist_find(Objlist *list, const Obj_Entry *obj)
2829 {
2830     Objlist_Entry *elm;
2831 
2832     STAILQ_FOREACH(elm, list, link)
2833 	if (elm->obj == obj)
2834 	    return elm;
2835     return NULL;
2836 }
2837 
2838 static void
2839 objlist_init(Objlist *list)
2840 {
2841     STAILQ_INIT(list);
2842 }
2843 
2844 static void
2845 objlist_push_head(Objlist *list, Obj_Entry *obj)
2846 {
2847     Objlist_Entry *elm;
2848 
2849     elm = NEW(Objlist_Entry);
2850     elm->obj = obj;
2851     STAILQ_INSERT_HEAD(list, elm, link);
2852 }
2853 
2854 static void
2855 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2856 {
2857     Objlist_Entry *elm;
2858 
2859     elm = NEW(Objlist_Entry);
2860     elm->obj = obj;
2861     STAILQ_INSERT_TAIL(list, elm, link);
2862 }
2863 
2864 static void
2865 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2866 {
2867 	Objlist_Entry *elm, *listelm;
2868 
2869 	STAILQ_FOREACH(listelm, list, link) {
2870 		if (listelm->obj == listobj)
2871 			break;
2872 	}
2873 	elm = NEW(Objlist_Entry);
2874 	elm->obj = obj;
2875 	if (listelm != NULL)
2876 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2877 	else
2878 		STAILQ_INSERT_TAIL(list, elm, link);
2879 }
2880 
2881 static void
2882 objlist_remove(Objlist *list, Obj_Entry *obj)
2883 {
2884     Objlist_Entry *elm;
2885 
2886     if ((elm = objlist_find(list, obj)) != NULL) {
2887 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2888 	free(elm);
2889     }
2890 }
2891 
2892 /*
2893  * Relocate dag rooted in the specified object.
2894  * Returns 0 on success, or -1 on failure.
2895  */
2896 
2897 static int
2898 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2899     int flags, RtldLockState *lockstate)
2900 {
2901 	Objlist_Entry *elm;
2902 	int error;
2903 
2904 	error = 0;
2905 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2906 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2907 		    lockstate);
2908 		if (error == -1)
2909 			break;
2910 	}
2911 	return (error);
2912 }
2913 
2914 /*
2915  * Prepare for, or clean after, relocating an object marked with
2916  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2917  * segments are remapped read-write.  After relocations are done, the
2918  * segment's permissions are returned back to the modes specified in
2919  * the phdrs.  If any relocation happened, or always for wired
2920  * program, COW is triggered.
2921  */
2922 static int
2923 reloc_textrel_prot(Obj_Entry *obj, bool before)
2924 {
2925 	const Elf_Phdr *ph;
2926 	void *base;
2927 	size_t l, sz;
2928 	int prot;
2929 
2930 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2931 	    l--, ph++) {
2932 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2933 			continue;
2934 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2935 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2936 		    trunc_page(ph->p_vaddr);
2937 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2938 		if (mprotect(base, sz, prot) == -1) {
2939 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2940 			    obj->path, before ? "en" : "dis",
2941 			    rtld_strerror(errno));
2942 			return (-1);
2943 		}
2944 	}
2945 	return (0);
2946 }
2947 
2948 /*
2949  * Relocate single object.
2950  * Returns 0 on success, or -1 on failure.
2951  */
2952 static int
2953 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2954     int flags, RtldLockState *lockstate)
2955 {
2956 
2957 	if (obj->relocated)
2958 		return (0);
2959 	obj->relocated = true;
2960 	if (obj != rtldobj)
2961 		dbg("relocating \"%s\"", obj->path);
2962 
2963 	if (obj->symtab == NULL || obj->strtab == NULL ||
2964 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2965 		_rtld_error("%s: Shared object has no run-time symbol table",
2966 			    obj->path);
2967 		return (-1);
2968 	}
2969 
2970 	/* There are relocations to the write-protected text segment. */
2971 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2972 		return (-1);
2973 
2974 	/* Process the non-PLT non-IFUNC relocations. */
2975 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2976 		return (-1);
2977 
2978 	/* Re-protected the text segment. */
2979 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2980 		return (-1);
2981 
2982 	/* Set the special PLT or GOT entries. */
2983 	init_pltgot(obj);
2984 
2985 	/* Process the PLT relocations. */
2986 	if (reloc_plt(obj, flags, lockstate) == -1)
2987 		return (-1);
2988 	/* Relocate the jump slots if we are doing immediate binding. */
2989 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2990 	    lockstate) == -1)
2991 		return (-1);
2992 
2993 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2994 		return (-1);
2995 
2996 	/*
2997 	 * Set up the magic number and version in the Obj_Entry.  These
2998 	 * were checked in the crt1.o from the original ElfKit, so we
2999 	 * set them for backward compatibility.
3000 	 */
3001 	obj->magic = RTLD_MAGIC;
3002 	obj->version = RTLD_VERSION;
3003 
3004 	return (0);
3005 }
3006 
3007 /*
3008  * Relocate newly-loaded shared objects.  The argument is a pointer to
3009  * the Obj_Entry for the first such object.  All objects from the first
3010  * to the end of the list of objects are relocated.  Returns 0 on success,
3011  * or -1 on failure.
3012  */
3013 static int
3014 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3015     int flags, RtldLockState *lockstate)
3016 {
3017 	Obj_Entry *obj;
3018 	int error;
3019 
3020 	for (error = 0, obj = first;  obj != NULL;
3021 	    obj = TAILQ_NEXT(obj, next)) {
3022 		if (obj->marker)
3023 			continue;
3024 		error = relocate_object(obj, bind_now, rtldobj, flags,
3025 		    lockstate);
3026 		if (error == -1)
3027 			break;
3028 	}
3029 	return (error);
3030 }
3031 
3032 /*
3033  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3034  * referencing STT_GNU_IFUNC symbols is postponed till the other
3035  * relocations are done.  The indirect functions specified as
3036  * ifunc are allowed to call other symbols, so we need to have
3037  * objects relocated before asking for resolution from indirects.
3038  *
3039  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3040  * instead of the usual lazy handling of PLT slots.  It is
3041  * consistent with how GNU does it.
3042  */
3043 static int
3044 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3045     RtldLockState *lockstate)
3046 {
3047 
3048 	if (obj->ifuncs_resolved)
3049 		return (0);
3050 	obj->ifuncs_resolved = true;
3051 	if (!obj->irelative && !obj->irelative_nonplt &&
3052 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3053 		return (0);
3054 	if (obj_disable_relro(obj) == -1 ||
3055 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3056 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3057 	    lockstate) == -1) ||
3058 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3059 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3060 	    obj_enforce_relro(obj) == -1)
3061 		return (-1);
3062 	return (0);
3063 }
3064 
3065 static int
3066 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3067     RtldLockState *lockstate)
3068 {
3069 	Objlist_Entry *elm;
3070 	Obj_Entry *obj;
3071 
3072 	STAILQ_FOREACH(elm, list, link) {
3073 		obj = elm->obj;
3074 		if (obj->marker)
3075 			continue;
3076 		if (resolve_object_ifunc(obj, bind_now, flags,
3077 		    lockstate) == -1)
3078 			return (-1);
3079 	}
3080 	return (0);
3081 }
3082 
3083 /*
3084  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3085  * before the process exits.
3086  */
3087 static void
3088 rtld_exit(void)
3089 {
3090     RtldLockState lockstate;
3091 
3092     wlock_acquire(rtld_bind_lock, &lockstate);
3093     dbg("rtld_exit()");
3094     objlist_call_fini(&list_fini, NULL, &lockstate);
3095     /* No need to remove the items from the list, since we are exiting. */
3096     if (!libmap_disable)
3097         lm_fini();
3098     lock_release(rtld_bind_lock, &lockstate);
3099 }
3100 
3101 static void
3102 rtld_nop_exit(void)
3103 {
3104 }
3105 
3106 /*
3107  * Iterate over a search path, translate each element, and invoke the
3108  * callback on the result.
3109  */
3110 static void *
3111 path_enumerate(const char *path, path_enum_proc callback,
3112     const char *refobj_path, void *arg)
3113 {
3114     const char *trans;
3115     if (path == NULL)
3116 	return (NULL);
3117 
3118     path += strspn(path, ":;");
3119     while (*path != '\0') {
3120 	size_t len;
3121 	char  *res;
3122 
3123 	len = strcspn(path, ":;");
3124 	trans = lm_findn(refobj_path, path, len);
3125 	if (trans)
3126 	    res = callback(trans, strlen(trans), arg);
3127 	else
3128 	    res = callback(path, len, arg);
3129 
3130 	if (res != NULL)
3131 	    return (res);
3132 
3133 	path += len;
3134 	path += strspn(path, ":;");
3135     }
3136 
3137     return (NULL);
3138 }
3139 
3140 struct try_library_args {
3141     const char	*name;
3142     size_t	 namelen;
3143     char	*buffer;
3144     size_t	 buflen;
3145     int		 fd;
3146 };
3147 
3148 static void *
3149 try_library_path(const char *dir, size_t dirlen, void *param)
3150 {
3151     struct try_library_args *arg;
3152     int fd;
3153 
3154     arg = param;
3155     if (*dir == '/' || trust) {
3156 	char *pathname;
3157 
3158 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3159 		return (NULL);
3160 
3161 	pathname = arg->buffer;
3162 	strncpy(pathname, dir, dirlen);
3163 	pathname[dirlen] = '/';
3164 	strcpy(pathname + dirlen + 1, arg->name);
3165 
3166 	dbg("  Trying \"%s\"", pathname);
3167 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3168 	if (fd >= 0) {
3169 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3170 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3171 	    strcpy(pathname, arg->buffer);
3172 	    arg->fd = fd;
3173 	    return (pathname);
3174 	} else {
3175 	    dbg("  Failed to open \"%s\": %s",
3176 		pathname, rtld_strerror(errno));
3177 	}
3178     }
3179     return (NULL);
3180 }
3181 
3182 static char *
3183 search_library_path(const char *name, const char *path,
3184     const char *refobj_path, int *fdp)
3185 {
3186     char *p;
3187     struct try_library_args arg;
3188 
3189     if (path == NULL)
3190 	return NULL;
3191 
3192     arg.name = name;
3193     arg.namelen = strlen(name);
3194     arg.buffer = xmalloc(PATH_MAX);
3195     arg.buflen = PATH_MAX;
3196     arg.fd = -1;
3197 
3198     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3199     *fdp = arg.fd;
3200 
3201     free(arg.buffer);
3202 
3203     return (p);
3204 }
3205 
3206 
3207 /*
3208  * Finds the library with the given name using the directory descriptors
3209  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3210  *
3211  * Returns a freshly-opened close-on-exec file descriptor for the library,
3212  * or -1 if the library cannot be found.
3213  */
3214 static char *
3215 search_library_pathfds(const char *name, const char *path, int *fdp)
3216 {
3217 	char *envcopy, *fdstr, *found, *last_token;
3218 	size_t len;
3219 	int dirfd, fd;
3220 
3221 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3222 
3223 	/* Don't load from user-specified libdirs into setuid binaries. */
3224 	if (!trust)
3225 		return (NULL);
3226 
3227 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3228 	if (path == NULL)
3229 		return (NULL);
3230 
3231 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3232 	if (name[0] == '/') {
3233 		dbg("Absolute path (%s) passed to %s", name, __func__);
3234 		return (NULL);
3235 	}
3236 
3237 	/*
3238 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3239 	 * copy of the path, as strtok_r rewrites separator tokens
3240 	 * with '\0'.
3241 	 */
3242 	found = NULL;
3243 	envcopy = xstrdup(path);
3244 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3245 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3246 		dirfd = parse_integer(fdstr);
3247 		if (dirfd < 0) {
3248 			_rtld_error("failed to parse directory FD: '%s'",
3249 				fdstr);
3250 			break;
3251 		}
3252 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3253 		if (fd >= 0) {
3254 			*fdp = fd;
3255 			len = strlen(fdstr) + strlen(name) + 3;
3256 			found = xmalloc(len);
3257 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3258 				_rtld_error("error generating '%d/%s'",
3259 				    dirfd, name);
3260 				rtld_die();
3261 			}
3262 			dbg("open('%s') => %d", found, fd);
3263 			break;
3264 		}
3265 	}
3266 	free(envcopy);
3267 
3268 	return (found);
3269 }
3270 
3271 
3272 int
3273 dlclose(void *handle)
3274 {
3275 	RtldLockState lockstate;
3276 	int error;
3277 
3278 	wlock_acquire(rtld_bind_lock, &lockstate);
3279 	error = dlclose_locked(handle, &lockstate);
3280 	lock_release(rtld_bind_lock, &lockstate);
3281 	return (error);
3282 }
3283 
3284 static int
3285 dlclose_locked(void *handle, RtldLockState *lockstate)
3286 {
3287     Obj_Entry *root;
3288 
3289     root = dlcheck(handle);
3290     if (root == NULL)
3291 	return -1;
3292     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3293 	root->path);
3294 
3295     /* Unreference the object and its dependencies. */
3296     root->dl_refcount--;
3297 
3298     if (root->refcount == 1) {
3299 	/*
3300 	 * The object will be no longer referenced, so we must unload it.
3301 	 * First, call the fini functions.
3302 	 */
3303 	objlist_call_fini(&list_fini, root, lockstate);
3304 
3305 	unref_dag(root);
3306 
3307 	/* Finish cleaning up the newly-unreferenced objects. */
3308 	GDB_STATE(RT_DELETE,&root->linkmap);
3309 	unload_object(root, lockstate);
3310 	GDB_STATE(RT_CONSISTENT,NULL);
3311     } else
3312 	unref_dag(root);
3313 
3314     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3315     return 0;
3316 }
3317 
3318 char *
3319 dlerror(void)
3320 {
3321     char *msg = error_message;
3322     error_message = NULL;
3323     return msg;
3324 }
3325 
3326 /*
3327  * This function is deprecated and has no effect.
3328  */
3329 void
3330 dllockinit(void *context,
3331     void *(*_lock_create)(void *context) __unused,
3332     void (*_rlock_acquire)(void *lock) __unused,
3333     void (*_wlock_acquire)(void *lock)  __unused,
3334     void (*_lock_release)(void *lock) __unused,
3335     void (*_lock_destroy)(void *lock) __unused,
3336     void (*context_destroy)(void *context))
3337 {
3338     static void *cur_context;
3339     static void (*cur_context_destroy)(void *);
3340 
3341     /* Just destroy the context from the previous call, if necessary. */
3342     if (cur_context_destroy != NULL)
3343 	cur_context_destroy(cur_context);
3344     cur_context = context;
3345     cur_context_destroy = context_destroy;
3346 }
3347 
3348 void *
3349 dlopen(const char *name, int mode)
3350 {
3351 
3352 	return (rtld_dlopen(name, -1, mode));
3353 }
3354 
3355 void *
3356 fdlopen(int fd, int mode)
3357 {
3358 
3359 	return (rtld_dlopen(NULL, fd, mode));
3360 }
3361 
3362 static void *
3363 rtld_dlopen(const char *name, int fd, int mode)
3364 {
3365     RtldLockState lockstate;
3366     int lo_flags;
3367 
3368     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3369     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3370     if (ld_tracing != NULL) {
3371 	rlock_acquire(rtld_bind_lock, &lockstate);
3372 	if (sigsetjmp(lockstate.env, 0) != 0)
3373 	    lock_upgrade(rtld_bind_lock, &lockstate);
3374 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3375 	lock_release(rtld_bind_lock, &lockstate);
3376     }
3377     lo_flags = RTLD_LO_DLOPEN;
3378     if (mode & RTLD_NODELETE)
3379 	    lo_flags |= RTLD_LO_NODELETE;
3380     if (mode & RTLD_NOLOAD)
3381 	    lo_flags |= RTLD_LO_NOLOAD;
3382     if (mode & RTLD_DEEPBIND)
3383 	    lo_flags |= RTLD_LO_DEEPBIND;
3384     if (ld_tracing != NULL)
3385 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3386 
3387     return (dlopen_object(name, fd, obj_main, lo_flags,
3388       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3389 }
3390 
3391 static void
3392 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3393 {
3394 
3395 	obj->dl_refcount--;
3396 	unref_dag(obj);
3397 	if (obj->refcount == 0)
3398 		unload_object(obj, lockstate);
3399 }
3400 
3401 static Obj_Entry *
3402 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3403     int mode, RtldLockState *lockstate)
3404 {
3405     Obj_Entry *old_obj_tail;
3406     Obj_Entry *obj;
3407     Objlist initlist;
3408     RtldLockState mlockstate;
3409     int result;
3410 
3411     objlist_init(&initlist);
3412 
3413     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3414 	wlock_acquire(rtld_bind_lock, &mlockstate);
3415 	lockstate = &mlockstate;
3416     }
3417     GDB_STATE(RT_ADD,NULL);
3418 
3419     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3420     obj = NULL;
3421     if (name == NULL && fd == -1) {
3422 	obj = obj_main;
3423 	obj->refcount++;
3424     } else {
3425 	obj = load_object(name, fd, refobj, lo_flags);
3426     }
3427 
3428     if (obj) {
3429 	obj->dl_refcount++;
3430 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3431 	    objlist_push_tail(&list_global, obj);
3432 	if (globallist_next(old_obj_tail) != NULL) {
3433 	    /* We loaded something new. */
3434 	    assert(globallist_next(old_obj_tail) == obj);
3435 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3436 		obj->symbolic = true;
3437 	    result = 0;
3438 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3439 	      obj->static_tls && !allocate_tls_offset(obj)) {
3440 		_rtld_error("%s: No space available "
3441 		  "for static Thread Local Storage", obj->path);
3442 		result = -1;
3443 	    }
3444 	    if (result != -1)
3445 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3446 		    RTLD_LO_EARLY | RTLD_LO_IGNSTLS));
3447 	    init_dag(obj);
3448 	    ref_dag(obj);
3449 	    if (result != -1)
3450 		result = rtld_verify_versions(&obj->dagmembers);
3451 	    if (result != -1 && ld_tracing)
3452 		goto trace;
3453 	    if (result == -1 || relocate_object_dag(obj,
3454 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3455 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3456 	      lockstate) == -1) {
3457 		dlopen_cleanup(obj, lockstate);
3458 		obj = NULL;
3459 	    } else if (lo_flags & RTLD_LO_EARLY) {
3460 		/*
3461 		 * Do not call the init functions for early loaded
3462 		 * filtees.  The image is still not initialized enough
3463 		 * for them to work.
3464 		 *
3465 		 * Our object is found by the global object list and
3466 		 * will be ordered among all init calls done right
3467 		 * before transferring control to main.
3468 		 */
3469 	    } else {
3470 		/* Make list of init functions to call. */
3471 		initlist_add_objects(obj, obj, &initlist);
3472 	    }
3473 	    /*
3474 	     * Process all no_delete or global objects here, given
3475 	     * them own DAGs to prevent their dependencies from being
3476 	     * unloaded.  This has to be done after we have loaded all
3477 	     * of the dependencies, so that we do not miss any.
3478 	     */
3479 	    if (obj != NULL)
3480 		process_z(obj);
3481 	} else {
3482 	    /*
3483 	     * Bump the reference counts for objects on this DAG.  If
3484 	     * this is the first dlopen() call for the object that was
3485 	     * already loaded as a dependency, initialize the dag
3486 	     * starting at it.
3487 	     */
3488 	    init_dag(obj);
3489 	    ref_dag(obj);
3490 
3491 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3492 		goto trace;
3493 	}
3494 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3495 	  obj->z_nodelete) && !obj->ref_nodel) {
3496 	    dbg("obj %s nodelete", obj->path);
3497 	    ref_dag(obj);
3498 	    obj->z_nodelete = obj->ref_nodel = true;
3499 	}
3500     }
3501 
3502     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3503 	name);
3504     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3505 
3506     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3507 	map_stacks_exec(lockstate);
3508 	if (obj != NULL)
3509 	    distribute_static_tls(&initlist, lockstate);
3510     }
3511 
3512     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3513       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3514       lockstate) == -1) {
3515 	objlist_clear(&initlist);
3516 	dlopen_cleanup(obj, lockstate);
3517 	if (lockstate == &mlockstate)
3518 	    lock_release(rtld_bind_lock, lockstate);
3519 	return (NULL);
3520     }
3521 
3522     if (!(lo_flags & RTLD_LO_EARLY)) {
3523 	/* Call the init functions. */
3524 	objlist_call_init(&initlist, lockstate);
3525     }
3526     objlist_clear(&initlist);
3527     if (lockstate == &mlockstate)
3528 	lock_release(rtld_bind_lock, lockstate);
3529     return obj;
3530 trace:
3531     trace_loaded_objects(obj);
3532     if (lockstate == &mlockstate)
3533 	lock_release(rtld_bind_lock, lockstate);
3534     exit(0);
3535 }
3536 
3537 static void *
3538 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3539     int flags)
3540 {
3541     DoneList donelist;
3542     const Obj_Entry *obj, *defobj;
3543     const Elf_Sym *def;
3544     SymLook req;
3545     RtldLockState lockstate;
3546     tls_index ti;
3547     void *sym;
3548     int res;
3549 
3550     def = NULL;
3551     defobj = NULL;
3552     symlook_init(&req, name);
3553     req.ventry = ve;
3554     req.flags = flags | SYMLOOK_IN_PLT;
3555     req.lockstate = &lockstate;
3556 
3557     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3558     rlock_acquire(rtld_bind_lock, &lockstate);
3559     if (sigsetjmp(lockstate.env, 0) != 0)
3560 	    lock_upgrade(rtld_bind_lock, &lockstate);
3561     if (handle == NULL || handle == RTLD_NEXT ||
3562 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3563 
3564 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3565 	    _rtld_error("Cannot determine caller's shared object");
3566 	    lock_release(rtld_bind_lock, &lockstate);
3567 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3568 	    return NULL;
3569 	}
3570 	if (handle == NULL) {	/* Just the caller's shared object. */
3571 	    res = symlook_obj(&req, obj);
3572 	    if (res == 0) {
3573 		def = req.sym_out;
3574 		defobj = req.defobj_out;
3575 	    }
3576 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3577 		   handle == RTLD_SELF) { /* ... caller included */
3578 	    if (handle == RTLD_NEXT)
3579 		obj = globallist_next(obj);
3580 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3581 		if (obj->marker)
3582 		    continue;
3583 		res = symlook_obj(&req, obj);
3584 		if (res == 0) {
3585 		    if (def == NULL ||
3586 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3587 			def = req.sym_out;
3588 			defobj = req.defobj_out;
3589 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3590 			    break;
3591 		    }
3592 		}
3593 	    }
3594 	    /*
3595 	     * Search the dynamic linker itself, and possibly resolve the
3596 	     * symbol from there.  This is how the application links to
3597 	     * dynamic linker services such as dlopen.
3598 	     */
3599 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3600 		res = symlook_obj(&req, &obj_rtld);
3601 		if (res == 0) {
3602 		    def = req.sym_out;
3603 		    defobj = req.defobj_out;
3604 		}
3605 	    }
3606 	} else {
3607 	    assert(handle == RTLD_DEFAULT);
3608 	    res = symlook_default(&req, obj);
3609 	    if (res == 0) {
3610 		defobj = req.defobj_out;
3611 		def = req.sym_out;
3612 	    }
3613 	}
3614     } else {
3615 	if ((obj = dlcheck(handle)) == NULL) {
3616 	    lock_release(rtld_bind_lock, &lockstate);
3617 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3618 	    return NULL;
3619 	}
3620 
3621 	donelist_init(&donelist);
3622 	if (obj->mainprog) {
3623             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3624 	    res = symlook_global(&req, &donelist);
3625 	    if (res == 0) {
3626 		def = req.sym_out;
3627 		defobj = req.defobj_out;
3628 	    }
3629 	    /*
3630 	     * Search the dynamic linker itself, and possibly resolve the
3631 	     * symbol from there.  This is how the application links to
3632 	     * dynamic linker services such as dlopen.
3633 	     */
3634 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3635 		res = symlook_obj(&req, &obj_rtld);
3636 		if (res == 0) {
3637 		    def = req.sym_out;
3638 		    defobj = req.defobj_out;
3639 		}
3640 	    }
3641 	}
3642 	else {
3643 	    /* Search the whole DAG rooted at the given object. */
3644 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3645 	    if (res == 0) {
3646 		def = req.sym_out;
3647 		defobj = req.defobj_out;
3648 	    }
3649 	}
3650     }
3651 
3652     if (def != NULL) {
3653 	lock_release(rtld_bind_lock, &lockstate);
3654 
3655 	/*
3656 	 * The value required by the caller is derived from the value
3657 	 * of the symbol. this is simply the relocated value of the
3658 	 * symbol.
3659 	 */
3660 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3661 	    sym = make_function_pointer(def, defobj);
3662 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3663 	    sym = rtld_resolve_ifunc(defobj, def);
3664 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3665 	    ti.ti_module = defobj->tlsindex;
3666 	    ti.ti_offset = def->st_value;
3667 	    sym = __tls_get_addr(&ti);
3668 	} else
3669 	    sym = defobj->relocbase + def->st_value;
3670 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3671 	return (sym);
3672     }
3673 
3674     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3675       ve != NULL ? ve->name : "");
3676     lock_release(rtld_bind_lock, &lockstate);
3677     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3678     return NULL;
3679 }
3680 
3681 void *
3682 dlsym(void *handle, const char *name)
3683 {
3684 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3685 	    SYMLOOK_DLSYM);
3686 }
3687 
3688 dlfunc_t
3689 dlfunc(void *handle, const char *name)
3690 {
3691 	union {
3692 		void *d;
3693 		dlfunc_t f;
3694 	} rv;
3695 
3696 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3697 	    SYMLOOK_DLSYM);
3698 	return (rv.f);
3699 }
3700 
3701 void *
3702 dlvsym(void *handle, const char *name, const char *version)
3703 {
3704 	Ver_Entry ventry;
3705 
3706 	ventry.name = version;
3707 	ventry.file = NULL;
3708 	ventry.hash = elf_hash(version);
3709 	ventry.flags= 0;
3710 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3711 	    SYMLOOK_DLSYM);
3712 }
3713 
3714 int
3715 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3716 {
3717     const Obj_Entry *obj;
3718     RtldLockState lockstate;
3719 
3720     rlock_acquire(rtld_bind_lock, &lockstate);
3721     obj = obj_from_addr(addr);
3722     if (obj == NULL) {
3723         _rtld_error("No shared object contains address");
3724 	lock_release(rtld_bind_lock, &lockstate);
3725         return (0);
3726     }
3727     rtld_fill_dl_phdr_info(obj, phdr_info);
3728     lock_release(rtld_bind_lock, &lockstate);
3729     return (1);
3730 }
3731 
3732 int
3733 dladdr(const void *addr, Dl_info *info)
3734 {
3735     const Obj_Entry *obj;
3736     const Elf_Sym *def;
3737     void *symbol_addr;
3738     unsigned long symoffset;
3739     RtldLockState lockstate;
3740 
3741     rlock_acquire(rtld_bind_lock, &lockstate);
3742     obj = obj_from_addr(addr);
3743     if (obj == NULL) {
3744         _rtld_error("No shared object contains address");
3745 	lock_release(rtld_bind_lock, &lockstate);
3746         return 0;
3747     }
3748     info->dli_fname = obj->path;
3749     info->dli_fbase = obj->mapbase;
3750     info->dli_saddr = (void *)0;
3751     info->dli_sname = NULL;
3752 
3753     /*
3754      * Walk the symbol list looking for the symbol whose address is
3755      * closest to the address sent in.
3756      */
3757     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3758         def = obj->symtab + symoffset;
3759 
3760         /*
3761          * For skip the symbol if st_shndx is either SHN_UNDEF or
3762          * SHN_COMMON.
3763          */
3764         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3765             continue;
3766 
3767         /*
3768          * If the symbol is greater than the specified address, or if it
3769          * is further away from addr than the current nearest symbol,
3770          * then reject it.
3771          */
3772         symbol_addr = obj->relocbase + def->st_value;
3773         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3774             continue;
3775 
3776         /* Update our idea of the nearest symbol. */
3777         info->dli_sname = obj->strtab + def->st_name;
3778         info->dli_saddr = symbol_addr;
3779 
3780         /* Exact match? */
3781         if (info->dli_saddr == addr)
3782             break;
3783     }
3784     lock_release(rtld_bind_lock, &lockstate);
3785     return 1;
3786 }
3787 
3788 int
3789 dlinfo(void *handle, int request, void *p)
3790 {
3791     const Obj_Entry *obj;
3792     RtldLockState lockstate;
3793     int error;
3794 
3795     rlock_acquire(rtld_bind_lock, &lockstate);
3796 
3797     if (handle == NULL || handle == RTLD_SELF) {
3798 	void *retaddr;
3799 
3800 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3801 	if ((obj = obj_from_addr(retaddr)) == NULL)
3802 	    _rtld_error("Cannot determine caller's shared object");
3803     } else
3804 	obj = dlcheck(handle);
3805 
3806     if (obj == NULL) {
3807 	lock_release(rtld_bind_lock, &lockstate);
3808 	return (-1);
3809     }
3810 
3811     error = 0;
3812     switch (request) {
3813     case RTLD_DI_LINKMAP:
3814 	*((struct link_map const **)p) = &obj->linkmap;
3815 	break;
3816     case RTLD_DI_ORIGIN:
3817 	error = rtld_dirname(obj->path, p);
3818 	break;
3819 
3820     case RTLD_DI_SERINFOSIZE:
3821     case RTLD_DI_SERINFO:
3822 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3823 	break;
3824 
3825     default:
3826 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3827 	error = -1;
3828     }
3829 
3830     lock_release(rtld_bind_lock, &lockstate);
3831 
3832     return (error);
3833 }
3834 
3835 static void
3836 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3837 {
3838 
3839 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3840 	phdr_info->dlpi_name = obj->path;
3841 	phdr_info->dlpi_phdr = obj->phdr;
3842 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3843 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3844 	phdr_info->dlpi_tls_data = obj->tlsinit;
3845 	phdr_info->dlpi_adds = obj_loads;
3846 	phdr_info->dlpi_subs = obj_loads - obj_count;
3847 }
3848 
3849 int
3850 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3851 {
3852 	struct dl_phdr_info phdr_info;
3853 	Obj_Entry *obj, marker;
3854 	RtldLockState bind_lockstate, phdr_lockstate;
3855 	int error;
3856 
3857 	init_marker(&marker);
3858 	error = 0;
3859 
3860 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3861 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3862 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3863 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3864 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3865 		hold_object(obj);
3866 		lock_release(rtld_bind_lock, &bind_lockstate);
3867 
3868 		error = callback(&phdr_info, sizeof phdr_info, param);
3869 
3870 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3871 		unhold_object(obj);
3872 		obj = globallist_next(&marker);
3873 		TAILQ_REMOVE(&obj_list, &marker, next);
3874 		if (error != 0) {
3875 			lock_release(rtld_bind_lock, &bind_lockstate);
3876 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3877 			return (error);
3878 		}
3879 	}
3880 
3881 	if (error == 0) {
3882 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3883 		lock_release(rtld_bind_lock, &bind_lockstate);
3884 		error = callback(&phdr_info, sizeof(phdr_info), param);
3885 	}
3886 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3887 	return (error);
3888 }
3889 
3890 static void *
3891 fill_search_info(const char *dir, size_t dirlen, void *param)
3892 {
3893     struct fill_search_info_args *arg;
3894 
3895     arg = param;
3896 
3897     if (arg->request == RTLD_DI_SERINFOSIZE) {
3898 	arg->serinfo->dls_cnt ++;
3899 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3900     } else {
3901 	struct dl_serpath *s_entry;
3902 
3903 	s_entry = arg->serpath;
3904 	s_entry->dls_name  = arg->strspace;
3905 	s_entry->dls_flags = arg->flags;
3906 
3907 	strncpy(arg->strspace, dir, dirlen);
3908 	arg->strspace[dirlen] = '\0';
3909 
3910 	arg->strspace += dirlen + 1;
3911 	arg->serpath++;
3912     }
3913 
3914     return (NULL);
3915 }
3916 
3917 static int
3918 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3919 {
3920     struct dl_serinfo _info;
3921     struct fill_search_info_args args;
3922 
3923     args.request = RTLD_DI_SERINFOSIZE;
3924     args.serinfo = &_info;
3925 
3926     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3927     _info.dls_cnt  = 0;
3928 
3929     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3930     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3931     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3932     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3933     if (!obj->z_nodeflib)
3934       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3935 
3936 
3937     if (request == RTLD_DI_SERINFOSIZE) {
3938 	info->dls_size = _info.dls_size;
3939 	info->dls_cnt = _info.dls_cnt;
3940 	return (0);
3941     }
3942 
3943     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3944 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3945 	return (-1);
3946     }
3947 
3948     args.request  = RTLD_DI_SERINFO;
3949     args.serinfo  = info;
3950     args.serpath  = &info->dls_serpath[0];
3951     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3952 
3953     args.flags = LA_SER_RUNPATH;
3954     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3955 	return (-1);
3956 
3957     args.flags = LA_SER_LIBPATH;
3958     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3959 	return (-1);
3960 
3961     args.flags = LA_SER_RUNPATH;
3962     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3963 	return (-1);
3964 
3965     args.flags = LA_SER_CONFIG;
3966     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3967       != NULL)
3968 	return (-1);
3969 
3970     args.flags = LA_SER_DEFAULT;
3971     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3972       fill_search_info, NULL, &args) != NULL)
3973 	return (-1);
3974     return (0);
3975 }
3976 
3977 static int
3978 rtld_dirname(const char *path, char *bname)
3979 {
3980     const char *endp;
3981 
3982     /* Empty or NULL string gets treated as "." */
3983     if (path == NULL || *path == '\0') {
3984 	bname[0] = '.';
3985 	bname[1] = '\0';
3986 	return (0);
3987     }
3988 
3989     /* Strip trailing slashes */
3990     endp = path + strlen(path) - 1;
3991     while (endp > path && *endp == '/')
3992 	endp--;
3993 
3994     /* Find the start of the dir */
3995     while (endp > path && *endp != '/')
3996 	endp--;
3997 
3998     /* Either the dir is "/" or there are no slashes */
3999     if (endp == path) {
4000 	bname[0] = *endp == '/' ? '/' : '.';
4001 	bname[1] = '\0';
4002 	return (0);
4003     } else {
4004 	do {
4005 	    endp--;
4006 	} while (endp > path && *endp == '/');
4007     }
4008 
4009     if (endp - path + 2 > PATH_MAX)
4010     {
4011 	_rtld_error("Filename is too long: %s", path);
4012 	return(-1);
4013     }
4014 
4015     strncpy(bname, path, endp - path + 1);
4016     bname[endp - path + 1] = '\0';
4017     return (0);
4018 }
4019 
4020 static int
4021 rtld_dirname_abs(const char *path, char *base)
4022 {
4023 	char *last;
4024 
4025 	if (realpath(path, base) == NULL) {
4026 		_rtld_error("realpath \"%s\" failed (%s)", path,
4027 		    rtld_strerror(errno));
4028 		return (-1);
4029 	}
4030 	dbg("%s -> %s", path, base);
4031 	last = strrchr(base, '/');
4032 	if (last == NULL) {
4033 		_rtld_error("non-abs result from realpath \"%s\"", path);
4034 		return (-1);
4035 	}
4036 	if (last != base)
4037 		*last = '\0';
4038 	return (0);
4039 }
4040 
4041 static void
4042 linkmap_add(Obj_Entry *obj)
4043 {
4044 	struct link_map *l, *prev;
4045 
4046 	l = &obj->linkmap;
4047 	l->l_name = obj->path;
4048 	l->l_base = obj->mapbase;
4049 	l->l_ld = obj->dynamic;
4050 	l->l_addr = obj->relocbase;
4051 
4052 	if (r_debug.r_map == NULL) {
4053 		r_debug.r_map = l;
4054 		return;
4055 	}
4056 
4057 	/*
4058 	 * Scan to the end of the list, but not past the entry for the
4059 	 * dynamic linker, which we want to keep at the very end.
4060 	 */
4061 	for (prev = r_debug.r_map;
4062 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4063 	     prev = prev->l_next)
4064 		;
4065 
4066 	/* Link in the new entry. */
4067 	l->l_prev = prev;
4068 	l->l_next = prev->l_next;
4069 	if (l->l_next != NULL)
4070 		l->l_next->l_prev = l;
4071 	prev->l_next = l;
4072 }
4073 
4074 static void
4075 linkmap_delete(Obj_Entry *obj)
4076 {
4077 	struct link_map *l;
4078 
4079 	l = &obj->linkmap;
4080 	if (l->l_prev == NULL) {
4081 		if ((r_debug.r_map = l->l_next) != NULL)
4082 			l->l_next->l_prev = NULL;
4083 		return;
4084 	}
4085 
4086 	if ((l->l_prev->l_next = l->l_next) != NULL)
4087 		l->l_next->l_prev = l->l_prev;
4088 }
4089 
4090 /*
4091  * Function for the debugger to set a breakpoint on to gain control.
4092  *
4093  * The two parameters allow the debugger to easily find and determine
4094  * what the runtime loader is doing and to whom it is doing it.
4095  *
4096  * When the loadhook trap is hit (r_debug_state, set at program
4097  * initialization), the arguments can be found on the stack:
4098  *
4099  *  +8   struct link_map *m
4100  *  +4   struct r_debug  *rd
4101  *  +0   RetAddr
4102  */
4103 void
4104 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4105 {
4106     /*
4107      * The following is a hack to force the compiler to emit calls to
4108      * this function, even when optimizing.  If the function is empty,
4109      * the compiler is not obliged to emit any code for calls to it,
4110      * even when marked __noinline.  However, gdb depends on those
4111      * calls being made.
4112      */
4113     __compiler_membar();
4114 }
4115 
4116 /*
4117  * A function called after init routines have completed. This can be used to
4118  * break before a program's entry routine is called, and can be used when
4119  * main is not available in the symbol table.
4120  */
4121 void
4122 _r_debug_postinit(struct link_map *m __unused)
4123 {
4124 
4125 	/* See r_debug_state(). */
4126 	__compiler_membar();
4127 }
4128 
4129 static void
4130 release_object(Obj_Entry *obj)
4131 {
4132 
4133 	if (obj->holdcount > 0) {
4134 		obj->unholdfree = true;
4135 		return;
4136 	}
4137 	munmap(obj->mapbase, obj->mapsize);
4138 	linkmap_delete(obj);
4139 	obj_free(obj);
4140 }
4141 
4142 /*
4143  * Get address of the pointer variable in the main program.
4144  * Prefer non-weak symbol over the weak one.
4145  */
4146 static const void **
4147 get_program_var_addr(const char *name, RtldLockState *lockstate)
4148 {
4149     SymLook req;
4150     DoneList donelist;
4151 
4152     symlook_init(&req, name);
4153     req.lockstate = lockstate;
4154     donelist_init(&donelist);
4155     if (symlook_global(&req, &donelist) != 0)
4156 	return (NULL);
4157     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4158 	return ((const void **)make_function_pointer(req.sym_out,
4159 	  req.defobj_out));
4160     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4161 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4162     else
4163 	return ((const void **)(req.defobj_out->relocbase +
4164 	  req.sym_out->st_value));
4165 }
4166 
4167 /*
4168  * Set a pointer variable in the main program to the given value.  This
4169  * is used to set key variables such as "environ" before any of the
4170  * init functions are called.
4171  */
4172 static void
4173 set_program_var(const char *name, const void *value)
4174 {
4175     const void **addr;
4176 
4177     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4178 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4179 	*addr = value;
4180     }
4181 }
4182 
4183 /*
4184  * Search the global objects, including dependencies and main object,
4185  * for the given symbol.
4186  */
4187 static int
4188 symlook_global(SymLook *req, DoneList *donelist)
4189 {
4190     SymLook req1;
4191     const Objlist_Entry *elm;
4192     int res;
4193 
4194     symlook_init_from_req(&req1, req);
4195 
4196     /* Search all objects loaded at program start up. */
4197     if (req->defobj_out == NULL ||
4198       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4199 	res = symlook_list(&req1, &list_main, donelist);
4200 	if (res == 0 && (req->defobj_out == NULL ||
4201 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4202 	    req->sym_out = req1.sym_out;
4203 	    req->defobj_out = req1.defobj_out;
4204 	    assert(req->defobj_out != NULL);
4205 	}
4206     }
4207 
4208     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4209     STAILQ_FOREACH(elm, &list_global, link) {
4210 	if (req->defobj_out != NULL &&
4211 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4212 	    break;
4213 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4214 	if (res == 0 && (req->defobj_out == NULL ||
4215 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4216 	    req->sym_out = req1.sym_out;
4217 	    req->defobj_out = req1.defobj_out;
4218 	    assert(req->defobj_out != NULL);
4219 	}
4220     }
4221 
4222     return (req->sym_out != NULL ? 0 : ESRCH);
4223 }
4224 
4225 /*
4226  * Given a symbol name in a referencing object, find the corresponding
4227  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4228  * no definition was found.  Returns a pointer to the Obj_Entry of the
4229  * defining object via the reference parameter DEFOBJ_OUT.
4230  */
4231 static int
4232 symlook_default(SymLook *req, const Obj_Entry *refobj)
4233 {
4234     DoneList donelist;
4235     const Objlist_Entry *elm;
4236     SymLook req1;
4237     int res;
4238 
4239     donelist_init(&donelist);
4240     symlook_init_from_req(&req1, req);
4241 
4242     /*
4243      * Look first in the referencing object if linked symbolically,
4244      * and similarly handle protected symbols.
4245      */
4246     res = symlook_obj(&req1, refobj);
4247     if (res == 0 && (refobj->symbolic ||
4248       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4249 	req->sym_out = req1.sym_out;
4250 	req->defobj_out = req1.defobj_out;
4251 	assert(req->defobj_out != NULL);
4252     }
4253     if (refobj->symbolic || req->defobj_out != NULL)
4254 	donelist_check(&donelist, refobj);
4255 
4256     symlook_global(req, &donelist);
4257 
4258     /* Search all dlopened DAGs containing the referencing object. */
4259     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4260 	if (req->sym_out != NULL &&
4261 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4262 	    break;
4263 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4264 	if (res == 0 && (req->sym_out == NULL ||
4265 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4266 	    req->sym_out = req1.sym_out;
4267 	    req->defobj_out = req1.defobj_out;
4268 	    assert(req->defobj_out != NULL);
4269 	}
4270     }
4271 
4272     /*
4273      * Search the dynamic linker itself, and possibly resolve the
4274      * symbol from there.  This is how the application links to
4275      * dynamic linker services such as dlopen.
4276      */
4277     if (req->sym_out == NULL ||
4278       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4279 	res = symlook_obj(&req1, &obj_rtld);
4280 	if (res == 0) {
4281 	    req->sym_out = req1.sym_out;
4282 	    req->defobj_out = req1.defobj_out;
4283 	    assert(req->defobj_out != NULL);
4284 	}
4285     }
4286 
4287     return (req->sym_out != NULL ? 0 : ESRCH);
4288 }
4289 
4290 static int
4291 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4292 {
4293     const Elf_Sym *def;
4294     const Obj_Entry *defobj;
4295     const Objlist_Entry *elm;
4296     SymLook req1;
4297     int res;
4298 
4299     def = NULL;
4300     defobj = NULL;
4301     STAILQ_FOREACH(elm, objlist, link) {
4302 	if (donelist_check(dlp, elm->obj))
4303 	    continue;
4304 	symlook_init_from_req(&req1, req);
4305 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4306 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4307 		def = req1.sym_out;
4308 		defobj = req1.defobj_out;
4309 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4310 		    break;
4311 	    }
4312 	}
4313     }
4314     if (def != NULL) {
4315 	req->sym_out = def;
4316 	req->defobj_out = defobj;
4317 	return (0);
4318     }
4319     return (ESRCH);
4320 }
4321 
4322 /*
4323  * Search the chain of DAGS cointed to by the given Needed_Entry
4324  * for a symbol of the given name.  Each DAG is scanned completely
4325  * before advancing to the next one.  Returns a pointer to the symbol,
4326  * or NULL if no definition was found.
4327  */
4328 static int
4329 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4330 {
4331     const Elf_Sym *def;
4332     const Needed_Entry *n;
4333     const Obj_Entry *defobj;
4334     SymLook req1;
4335     int res;
4336 
4337     def = NULL;
4338     defobj = NULL;
4339     symlook_init_from_req(&req1, req);
4340     for (n = needed; n != NULL; n = n->next) {
4341 	if (n->obj == NULL ||
4342 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4343 	    continue;
4344 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4345 	    def = req1.sym_out;
4346 	    defobj = req1.defobj_out;
4347 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4348 		break;
4349 	}
4350     }
4351     if (def != NULL) {
4352 	req->sym_out = def;
4353 	req->defobj_out = defobj;
4354 	return (0);
4355     }
4356     return (ESRCH);
4357 }
4358 
4359 /*
4360  * Search the symbol table of a single shared object for a symbol of
4361  * the given name and version, if requested.  Returns a pointer to the
4362  * symbol, or NULL if no definition was found.  If the object is
4363  * filter, return filtered symbol from filtee.
4364  *
4365  * The symbol's hash value is passed in for efficiency reasons; that
4366  * eliminates many recomputations of the hash value.
4367  */
4368 int
4369 symlook_obj(SymLook *req, const Obj_Entry *obj)
4370 {
4371     DoneList donelist;
4372     SymLook req1;
4373     int flags, res, mres;
4374 
4375     /*
4376      * If there is at least one valid hash at this point, we prefer to
4377      * use the faster GNU version if available.
4378      */
4379     if (obj->valid_hash_gnu)
4380 	mres = symlook_obj1_gnu(req, obj);
4381     else if (obj->valid_hash_sysv)
4382 	mres = symlook_obj1_sysv(req, obj);
4383     else
4384 	return (EINVAL);
4385 
4386     if (mres == 0) {
4387 	if (obj->needed_filtees != NULL) {
4388 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4389 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4390 	    donelist_init(&donelist);
4391 	    symlook_init_from_req(&req1, req);
4392 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4393 	    if (res == 0) {
4394 		req->sym_out = req1.sym_out;
4395 		req->defobj_out = req1.defobj_out;
4396 	    }
4397 	    return (res);
4398 	}
4399 	if (obj->needed_aux_filtees != NULL) {
4400 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4401 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4402 	    donelist_init(&donelist);
4403 	    symlook_init_from_req(&req1, req);
4404 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4405 	    if (res == 0) {
4406 		req->sym_out = req1.sym_out;
4407 		req->defobj_out = req1.defobj_out;
4408 		return (res);
4409 	    }
4410 	}
4411     }
4412     return (mres);
4413 }
4414 
4415 /* Symbol match routine common to both hash functions */
4416 static bool
4417 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4418     const unsigned long symnum)
4419 {
4420 	Elf_Versym verndx;
4421 	const Elf_Sym *symp;
4422 	const char *strp;
4423 
4424 	symp = obj->symtab + symnum;
4425 	strp = obj->strtab + symp->st_name;
4426 
4427 	switch (ELF_ST_TYPE(symp->st_info)) {
4428 	case STT_FUNC:
4429 	case STT_NOTYPE:
4430 	case STT_OBJECT:
4431 	case STT_COMMON:
4432 	case STT_GNU_IFUNC:
4433 		if (symp->st_value == 0)
4434 			return (false);
4435 		/* fallthrough */
4436 	case STT_TLS:
4437 		if (symp->st_shndx != SHN_UNDEF)
4438 			break;
4439 #ifndef __mips__
4440 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4441 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4442 			break;
4443 #endif
4444 		/* fallthrough */
4445 	default:
4446 		return (false);
4447 	}
4448 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4449 		return (false);
4450 
4451 	if (req->ventry == NULL) {
4452 		if (obj->versyms != NULL) {
4453 			verndx = VER_NDX(obj->versyms[symnum]);
4454 			if (verndx > obj->vernum) {
4455 				_rtld_error(
4456 				    "%s: symbol %s references wrong version %d",
4457 				    obj->path, obj->strtab + symnum, verndx);
4458 				return (false);
4459 			}
4460 			/*
4461 			 * If we are not called from dlsym (i.e. this
4462 			 * is a normal relocation from unversioned
4463 			 * binary), accept the symbol immediately if
4464 			 * it happens to have first version after this
4465 			 * shared object became versioned.  Otherwise,
4466 			 * if symbol is versioned and not hidden,
4467 			 * remember it. If it is the only symbol with
4468 			 * this name exported by the shared object, it
4469 			 * will be returned as a match by the calling
4470 			 * function. If symbol is global (verndx < 2)
4471 			 * accept it unconditionally.
4472 			 */
4473 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4474 			    verndx == VER_NDX_GIVEN) {
4475 				result->sym_out = symp;
4476 				return (true);
4477 			}
4478 			else if (verndx >= VER_NDX_GIVEN) {
4479 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4480 				    == 0) {
4481 					if (result->vsymp == NULL)
4482 						result->vsymp = symp;
4483 					result->vcount++;
4484 				}
4485 				return (false);
4486 			}
4487 		}
4488 		result->sym_out = symp;
4489 		return (true);
4490 	}
4491 	if (obj->versyms == NULL) {
4492 		if (object_match_name(obj, req->ventry->name)) {
4493 			_rtld_error("%s: object %s should provide version %s "
4494 			    "for symbol %s", obj_rtld.path, obj->path,
4495 			    req->ventry->name, obj->strtab + symnum);
4496 			return (false);
4497 		}
4498 	} else {
4499 		verndx = VER_NDX(obj->versyms[symnum]);
4500 		if (verndx > obj->vernum) {
4501 			_rtld_error("%s: symbol %s references wrong version %d",
4502 			    obj->path, obj->strtab + symnum, verndx);
4503 			return (false);
4504 		}
4505 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4506 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4507 			/*
4508 			 * Version does not match. Look if this is a
4509 			 * global symbol and if it is not hidden. If
4510 			 * global symbol (verndx < 2) is available,
4511 			 * use it. Do not return symbol if we are
4512 			 * called by dlvsym, because dlvsym looks for
4513 			 * a specific version and default one is not
4514 			 * what dlvsym wants.
4515 			 */
4516 			if ((req->flags & SYMLOOK_DLSYM) ||
4517 			    (verndx >= VER_NDX_GIVEN) ||
4518 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4519 				return (false);
4520 		}
4521 	}
4522 	result->sym_out = symp;
4523 	return (true);
4524 }
4525 
4526 /*
4527  * Search for symbol using SysV hash function.
4528  * obj->buckets is known not to be NULL at this point; the test for this was
4529  * performed with the obj->valid_hash_sysv assignment.
4530  */
4531 static int
4532 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4533 {
4534 	unsigned long symnum;
4535 	Sym_Match_Result matchres;
4536 
4537 	matchres.sym_out = NULL;
4538 	matchres.vsymp = NULL;
4539 	matchres.vcount = 0;
4540 
4541 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4542 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4543 		if (symnum >= obj->nchains)
4544 			return (ESRCH);	/* Bad object */
4545 
4546 		if (matched_symbol(req, obj, &matchres, symnum)) {
4547 			req->sym_out = matchres.sym_out;
4548 			req->defobj_out = obj;
4549 			return (0);
4550 		}
4551 	}
4552 	if (matchres.vcount == 1) {
4553 		req->sym_out = matchres.vsymp;
4554 		req->defobj_out = obj;
4555 		return (0);
4556 	}
4557 	return (ESRCH);
4558 }
4559 
4560 /* Search for symbol using GNU hash function */
4561 static int
4562 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4563 {
4564 	Elf_Addr bloom_word;
4565 	const Elf32_Word *hashval;
4566 	Elf32_Word bucket;
4567 	Sym_Match_Result matchres;
4568 	unsigned int h1, h2;
4569 	unsigned long symnum;
4570 
4571 	matchres.sym_out = NULL;
4572 	matchres.vsymp = NULL;
4573 	matchres.vcount = 0;
4574 
4575 	/* Pick right bitmask word from Bloom filter array */
4576 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4577 	    obj->maskwords_bm_gnu];
4578 
4579 	/* Calculate modulus word size of gnu hash and its derivative */
4580 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4581 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4582 
4583 	/* Filter out the "definitely not in set" queries */
4584 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4585 		return (ESRCH);
4586 
4587 	/* Locate hash chain and corresponding value element*/
4588 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4589 	if (bucket == 0)
4590 		return (ESRCH);
4591 	hashval = &obj->chain_zero_gnu[bucket];
4592 	do {
4593 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4594 			symnum = hashval - obj->chain_zero_gnu;
4595 			if (matched_symbol(req, obj, &matchres, symnum)) {
4596 				req->sym_out = matchres.sym_out;
4597 				req->defobj_out = obj;
4598 				return (0);
4599 			}
4600 		}
4601 	} while ((*hashval++ & 1) == 0);
4602 	if (matchres.vcount == 1) {
4603 		req->sym_out = matchres.vsymp;
4604 		req->defobj_out = obj;
4605 		return (0);
4606 	}
4607 	return (ESRCH);
4608 }
4609 
4610 static void
4611 trace_loaded_objects(Obj_Entry *obj)
4612 {
4613     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4614     int c;
4615 
4616     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4617 	main_local = "";
4618 
4619     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4620 	fmt1 = "\t%o => %p (%x)\n";
4621 
4622     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4623 	fmt2 = "\t%o (%x)\n";
4624 
4625     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4626 
4627     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4628 	Needed_Entry *needed;
4629 	const char *name, *path;
4630 	bool is_lib;
4631 
4632 	if (obj->marker)
4633 	    continue;
4634 	if (list_containers && obj->needed != NULL)
4635 	    rtld_printf("%s:\n", obj->path);
4636 	for (needed = obj->needed; needed; needed = needed->next) {
4637 	    if (needed->obj != NULL) {
4638 		if (needed->obj->traced && !list_containers)
4639 		    continue;
4640 		needed->obj->traced = true;
4641 		path = needed->obj->path;
4642 	    } else
4643 		path = "not found";
4644 
4645 	    name = obj->strtab + needed->name;
4646 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4647 
4648 	    fmt = is_lib ? fmt1 : fmt2;
4649 	    while ((c = *fmt++) != '\0') {
4650 		switch (c) {
4651 		default:
4652 		    rtld_putchar(c);
4653 		    continue;
4654 		case '\\':
4655 		    switch (c = *fmt) {
4656 		    case '\0':
4657 			continue;
4658 		    case 'n':
4659 			rtld_putchar('\n');
4660 			break;
4661 		    case 't':
4662 			rtld_putchar('\t');
4663 			break;
4664 		    }
4665 		    break;
4666 		case '%':
4667 		    switch (c = *fmt) {
4668 		    case '\0':
4669 			continue;
4670 		    case '%':
4671 		    default:
4672 			rtld_putchar(c);
4673 			break;
4674 		    case 'A':
4675 			rtld_putstr(main_local);
4676 			break;
4677 		    case 'a':
4678 			rtld_putstr(obj_main->path);
4679 			break;
4680 		    case 'o':
4681 			rtld_putstr(name);
4682 			break;
4683 #if 0
4684 		    case 'm':
4685 			rtld_printf("%d", sodp->sod_major);
4686 			break;
4687 		    case 'n':
4688 			rtld_printf("%d", sodp->sod_minor);
4689 			break;
4690 #endif
4691 		    case 'p':
4692 			rtld_putstr(path);
4693 			break;
4694 		    case 'x':
4695 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4696 			  0);
4697 			break;
4698 		    }
4699 		    break;
4700 		}
4701 		++fmt;
4702 	    }
4703 	}
4704     }
4705 }
4706 
4707 /*
4708  * Unload a dlopened object and its dependencies from memory and from
4709  * our data structures.  It is assumed that the DAG rooted in the
4710  * object has already been unreferenced, and that the object has a
4711  * reference count of 0.
4712  */
4713 static void
4714 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4715 {
4716 	Obj_Entry marker, *obj, *next;
4717 
4718 	assert(root->refcount == 0);
4719 
4720 	/*
4721 	 * Pass over the DAG removing unreferenced objects from
4722 	 * appropriate lists.
4723 	 */
4724 	unlink_object(root);
4725 
4726 	/* Unmap all objects that are no longer referenced. */
4727 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4728 		next = TAILQ_NEXT(obj, next);
4729 		if (obj->marker || obj->refcount != 0)
4730 			continue;
4731 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4732 		    obj->mapsize, 0, obj->path);
4733 		dbg("unloading \"%s\"", obj->path);
4734 		/*
4735 		 * Unlink the object now to prevent new references from
4736 		 * being acquired while the bind lock is dropped in
4737 		 * recursive dlclose() invocations.
4738 		 */
4739 		TAILQ_REMOVE(&obj_list, obj, next);
4740 		obj_count--;
4741 
4742 		if (obj->filtees_loaded) {
4743 			if (next != NULL) {
4744 				init_marker(&marker);
4745 				TAILQ_INSERT_BEFORE(next, &marker, next);
4746 				unload_filtees(obj, lockstate);
4747 				next = TAILQ_NEXT(&marker, next);
4748 				TAILQ_REMOVE(&obj_list, &marker, next);
4749 			} else
4750 				unload_filtees(obj, lockstate);
4751 		}
4752 		release_object(obj);
4753 	}
4754 }
4755 
4756 static void
4757 unlink_object(Obj_Entry *root)
4758 {
4759     Objlist_Entry *elm;
4760 
4761     if (root->refcount == 0) {
4762 	/* Remove the object from the RTLD_GLOBAL list. */
4763 	objlist_remove(&list_global, root);
4764 
4765     	/* Remove the object from all objects' DAG lists. */
4766     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4767 	    objlist_remove(&elm->obj->dldags, root);
4768 	    if (elm->obj != root)
4769 		unlink_object(elm->obj);
4770 	}
4771     }
4772 }
4773 
4774 static void
4775 ref_dag(Obj_Entry *root)
4776 {
4777     Objlist_Entry *elm;
4778 
4779     assert(root->dag_inited);
4780     STAILQ_FOREACH(elm, &root->dagmembers, link)
4781 	elm->obj->refcount++;
4782 }
4783 
4784 static void
4785 unref_dag(Obj_Entry *root)
4786 {
4787     Objlist_Entry *elm;
4788 
4789     assert(root->dag_inited);
4790     STAILQ_FOREACH(elm, &root->dagmembers, link)
4791 	elm->obj->refcount--;
4792 }
4793 
4794 /*
4795  * Common code for MD __tls_get_addr().
4796  */
4797 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4798 static void *
4799 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4800 {
4801     Elf_Addr *newdtv, *dtv;
4802     RtldLockState lockstate;
4803     int to_copy;
4804 
4805     dtv = *dtvp;
4806     /* Check dtv generation in case new modules have arrived */
4807     if (dtv[0] != tls_dtv_generation) {
4808 	wlock_acquire(rtld_bind_lock, &lockstate);
4809 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4810 	to_copy = dtv[1];
4811 	if (to_copy > tls_max_index)
4812 	    to_copy = tls_max_index;
4813 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4814 	newdtv[0] = tls_dtv_generation;
4815 	newdtv[1] = tls_max_index;
4816 	free(dtv);
4817 	lock_release(rtld_bind_lock, &lockstate);
4818 	dtv = *dtvp = newdtv;
4819     }
4820 
4821     /* Dynamically allocate module TLS if necessary */
4822     if (dtv[index + 1] == 0) {
4823 	/* Signal safe, wlock will block out signals. */
4824 	wlock_acquire(rtld_bind_lock, &lockstate);
4825 	if (!dtv[index + 1])
4826 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4827 	lock_release(rtld_bind_lock, &lockstate);
4828     }
4829     return ((void *)(dtv[index + 1] + offset));
4830 }
4831 
4832 void *
4833 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4834 {
4835 	Elf_Addr *dtv;
4836 
4837 	dtv = *dtvp;
4838 	/* Check dtv generation in case new modules have arrived */
4839 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4840 	    dtv[index + 1] != 0))
4841 		return ((void *)(dtv[index + 1] + offset));
4842 	return (tls_get_addr_slow(dtvp, index, offset));
4843 }
4844 
4845 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4846     defined(__powerpc__) || defined(__riscv)
4847 
4848 /*
4849  * Return pointer to allocated TLS block
4850  */
4851 static void *
4852 get_tls_block_ptr(void *tcb, size_t tcbsize)
4853 {
4854     size_t extra_size, post_size, pre_size, tls_block_size;
4855     size_t tls_init_align;
4856 
4857     tls_init_align = MAX(obj_main->tlsalign, 1);
4858 
4859     /* Compute fragments sizes. */
4860     extra_size = tcbsize - TLS_TCB_SIZE;
4861     post_size = calculate_tls_post_size(tls_init_align);
4862     tls_block_size = tcbsize + post_size;
4863     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4864 
4865     return ((char *)tcb - pre_size - extra_size);
4866 }
4867 
4868 /*
4869  * Allocate Static TLS using the Variant I method.
4870  *
4871  * For details on the layout, see lib/libc/gen/tls.c.
4872  *
4873  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4874  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4875  *     offsets, whereas libc's tls_static_space is just the executable's static
4876  *     TLS segment.
4877  */
4878 void *
4879 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4880 {
4881     Obj_Entry *obj;
4882     char *tls_block;
4883     Elf_Addr *dtv, **tcb;
4884     Elf_Addr addr;
4885     Elf_Addr i;
4886     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4887     size_t tls_init_align, tls_init_offset;
4888 
4889     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4890 	return (oldtcb);
4891 
4892     assert(tcbsize >= TLS_TCB_SIZE);
4893     maxalign = MAX(tcbalign, tls_static_max_align);
4894     tls_init_align = MAX(obj_main->tlsalign, 1);
4895 
4896     /* Compute fragmets sizes. */
4897     extra_size = tcbsize - TLS_TCB_SIZE;
4898     post_size = calculate_tls_post_size(tls_init_align);
4899     tls_block_size = tcbsize + post_size;
4900     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4901     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4902 
4903     /* Allocate whole TLS block */
4904     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4905     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4906 
4907     if (oldtcb != NULL) {
4908 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4909 	    tls_static_space);
4910 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4911 
4912 	/* Adjust the DTV. */
4913 	dtv = tcb[0];
4914 	for (i = 0; i < dtv[1]; i++) {
4915 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4916 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4917 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4918 	    }
4919 	}
4920     } else {
4921 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4922 	tcb[0] = dtv;
4923 	dtv[0] = tls_dtv_generation;
4924 	dtv[1] = tls_max_index;
4925 
4926 	for (obj = globallist_curr(objs); obj != NULL;
4927 	  obj = globallist_next(obj)) {
4928 	    if (obj->tlsoffset == 0)
4929 		continue;
4930 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4931 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4932 	    if (tls_init_offset > 0)
4933 		memset((void *)addr, 0, tls_init_offset);
4934 	    if (obj->tlsinitsize > 0) {
4935 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4936 		    obj->tlsinitsize);
4937 	    }
4938 	    if (obj->tlssize > obj->tlsinitsize) {
4939 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4940 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4941 	    }
4942 	    dtv[obj->tlsindex + 1] = addr;
4943 	}
4944     }
4945 
4946     return (tcb);
4947 }
4948 
4949 void
4950 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4951 {
4952     Elf_Addr *dtv;
4953     Elf_Addr tlsstart, tlsend;
4954     size_t post_size;
4955     size_t dtvsize, i, tls_init_align;
4956 
4957     assert(tcbsize >= TLS_TCB_SIZE);
4958     tls_init_align = MAX(obj_main->tlsalign, 1);
4959 
4960     /* Compute fragments sizes. */
4961     post_size = calculate_tls_post_size(tls_init_align);
4962 
4963     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4964     tlsend = (Elf_Addr)tcb + tls_static_space;
4965 
4966     dtv = *(Elf_Addr **)tcb;
4967     dtvsize = dtv[1];
4968     for (i = 0; i < dtvsize; i++) {
4969 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4970 	    free((void*)dtv[i+2]);
4971 	}
4972     }
4973     free(dtv);
4974     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4975 }
4976 
4977 #endif
4978 
4979 #if defined(__i386__) || defined(__amd64__)
4980 
4981 /*
4982  * Allocate Static TLS using the Variant II method.
4983  */
4984 void *
4985 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4986 {
4987     Obj_Entry *obj;
4988     size_t size, ralign;
4989     char *tls;
4990     Elf_Addr *dtv, *olddtv;
4991     Elf_Addr segbase, oldsegbase, addr;
4992     size_t i;
4993 
4994     ralign = tcbalign;
4995     if (tls_static_max_align > ralign)
4996 	    ralign = tls_static_max_align;
4997     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
4998 
4999     assert(tcbsize >= 2*sizeof(Elf_Addr));
5000     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5001     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5002 
5003     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5004     ((Elf_Addr*)segbase)[0] = segbase;
5005     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5006 
5007     dtv[0] = tls_dtv_generation;
5008     dtv[1] = tls_max_index;
5009 
5010     if (oldtls) {
5011 	/*
5012 	 * Copy the static TLS block over whole.
5013 	 */
5014 	oldsegbase = (Elf_Addr) oldtls;
5015 	memcpy((void *)(segbase - tls_static_space),
5016 	       (const void *)(oldsegbase - tls_static_space),
5017 	       tls_static_space);
5018 
5019 	/*
5020 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5021 	 * move them over.
5022 	 */
5023 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5024 	for (i = 0; i < olddtv[1]; i++) {
5025 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5026 		dtv[i+2] = olddtv[i+2];
5027 		olddtv[i+2] = 0;
5028 	    }
5029 	}
5030 
5031 	/*
5032 	 * We assume that this block was the one we created with
5033 	 * allocate_initial_tls().
5034 	 */
5035 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5036     } else {
5037 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5038 		if (obj->marker || obj->tlsoffset == 0)
5039 			continue;
5040 		addr = segbase - obj->tlsoffset;
5041 		memset((void*)(addr + obj->tlsinitsize),
5042 		       0, obj->tlssize - obj->tlsinitsize);
5043 		if (obj->tlsinit) {
5044 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5045 		    obj->static_tls_copied = true;
5046 		}
5047 		dtv[obj->tlsindex + 1] = addr;
5048 	}
5049     }
5050 
5051     return (void*) segbase;
5052 }
5053 
5054 void
5055 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5056 {
5057     Elf_Addr* dtv;
5058     size_t size, ralign;
5059     int dtvsize, i;
5060     Elf_Addr tlsstart, tlsend;
5061 
5062     /*
5063      * Figure out the size of the initial TLS block so that we can
5064      * find stuff which ___tls_get_addr() allocated dynamically.
5065      */
5066     ralign = tcbalign;
5067     if (tls_static_max_align > ralign)
5068 	    ralign = tls_static_max_align;
5069     size = roundup(tls_static_space, ralign);
5070 
5071     dtv = ((Elf_Addr**)tls)[1];
5072     dtvsize = dtv[1];
5073     tlsend = (Elf_Addr) tls;
5074     tlsstart = tlsend - size;
5075     for (i = 0; i < dtvsize; i++) {
5076 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5077 		free_aligned((void *)dtv[i + 2]);
5078 	}
5079     }
5080 
5081     free_aligned((void *)tlsstart);
5082     free((void*) dtv);
5083 }
5084 
5085 #endif
5086 
5087 /*
5088  * Allocate TLS block for module with given index.
5089  */
5090 void *
5091 allocate_module_tls(int index)
5092 {
5093 	Obj_Entry *obj;
5094 	char *p;
5095 
5096 	TAILQ_FOREACH(obj, &obj_list, next) {
5097 		if (obj->marker)
5098 			continue;
5099 		if (obj->tlsindex == index)
5100 			break;
5101 	}
5102 	if (obj == NULL) {
5103 		_rtld_error("Can't find module with TLS index %d", index);
5104 		rtld_die();
5105 	}
5106 
5107 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5108 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5109 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5110 	return (p);
5111 }
5112 
5113 bool
5114 allocate_tls_offset(Obj_Entry *obj)
5115 {
5116     size_t off;
5117 
5118     if (obj->tls_done)
5119 	return true;
5120 
5121     if (obj->tlssize == 0) {
5122 	obj->tls_done = true;
5123 	return true;
5124     }
5125 
5126     if (tls_last_offset == 0)
5127 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5128 	  obj->tlspoffset);
5129     else
5130 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5131 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5132 
5133     /*
5134      * If we have already fixed the size of the static TLS block, we
5135      * must stay within that size. When allocating the static TLS, we
5136      * leave a small amount of space spare to be used for dynamically
5137      * loading modules which use static TLS.
5138      */
5139     if (tls_static_space != 0) {
5140 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5141 	    return false;
5142     } else if (obj->tlsalign > tls_static_max_align) {
5143 	    tls_static_max_align = obj->tlsalign;
5144     }
5145 
5146     tls_last_offset = obj->tlsoffset = off;
5147     tls_last_size = obj->tlssize;
5148     obj->tls_done = true;
5149 
5150     return true;
5151 }
5152 
5153 void
5154 free_tls_offset(Obj_Entry *obj)
5155 {
5156 
5157     /*
5158      * If we were the last thing to allocate out of the static TLS
5159      * block, we give our space back to the 'allocator'. This is a
5160      * simplistic workaround to allow libGL.so.1 to be loaded and
5161      * unloaded multiple times.
5162      */
5163     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5164 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5165 	tls_last_offset -= obj->tlssize;
5166 	tls_last_size = 0;
5167     }
5168 }
5169 
5170 void *
5171 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5172 {
5173     void *ret;
5174     RtldLockState lockstate;
5175 
5176     wlock_acquire(rtld_bind_lock, &lockstate);
5177     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5178       tcbsize, tcbalign);
5179     lock_release(rtld_bind_lock, &lockstate);
5180     return (ret);
5181 }
5182 
5183 void
5184 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5185 {
5186     RtldLockState lockstate;
5187 
5188     wlock_acquire(rtld_bind_lock, &lockstate);
5189     free_tls(tcb, tcbsize, tcbalign);
5190     lock_release(rtld_bind_lock, &lockstate);
5191 }
5192 
5193 static void
5194 object_add_name(Obj_Entry *obj, const char *name)
5195 {
5196     Name_Entry *entry;
5197     size_t len;
5198 
5199     len = strlen(name);
5200     entry = malloc(sizeof(Name_Entry) + len);
5201 
5202     if (entry != NULL) {
5203 	strcpy(entry->name, name);
5204 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5205     }
5206 }
5207 
5208 static int
5209 object_match_name(const Obj_Entry *obj, const char *name)
5210 {
5211     Name_Entry *entry;
5212 
5213     STAILQ_FOREACH(entry, &obj->names, link) {
5214 	if (strcmp(name, entry->name) == 0)
5215 	    return (1);
5216     }
5217     return (0);
5218 }
5219 
5220 static Obj_Entry *
5221 locate_dependency(const Obj_Entry *obj, const char *name)
5222 {
5223     const Objlist_Entry *entry;
5224     const Needed_Entry *needed;
5225 
5226     STAILQ_FOREACH(entry, &list_main, link) {
5227 	if (object_match_name(entry->obj, name))
5228 	    return entry->obj;
5229     }
5230 
5231     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5232 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5233 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5234 	    /*
5235 	     * If there is DT_NEEDED for the name we are looking for,
5236 	     * we are all set.  Note that object might not be found if
5237 	     * dependency was not loaded yet, so the function can
5238 	     * return NULL here.  This is expected and handled
5239 	     * properly by the caller.
5240 	     */
5241 	    return (needed->obj);
5242 	}
5243     }
5244     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5245 	obj->path, name);
5246     rtld_die();
5247 }
5248 
5249 static int
5250 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5251     const Elf_Vernaux *vna)
5252 {
5253     const Elf_Verdef *vd;
5254     const char *vername;
5255 
5256     vername = refobj->strtab + vna->vna_name;
5257     vd = depobj->verdef;
5258     if (vd == NULL) {
5259 	_rtld_error("%s: version %s required by %s not defined",
5260 	    depobj->path, vername, refobj->path);
5261 	return (-1);
5262     }
5263     for (;;) {
5264 	if (vd->vd_version != VER_DEF_CURRENT) {
5265 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5266 		depobj->path, vd->vd_version);
5267 	    return (-1);
5268 	}
5269 	if (vna->vna_hash == vd->vd_hash) {
5270 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5271 		((const char *)vd + vd->vd_aux);
5272 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5273 		return (0);
5274 	}
5275 	if (vd->vd_next == 0)
5276 	    break;
5277 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5278     }
5279     if (vna->vna_flags & VER_FLG_WEAK)
5280 	return (0);
5281     _rtld_error("%s: version %s required by %s not found",
5282 	depobj->path, vername, refobj->path);
5283     return (-1);
5284 }
5285 
5286 static int
5287 rtld_verify_object_versions(Obj_Entry *obj)
5288 {
5289     const Elf_Verneed *vn;
5290     const Elf_Verdef  *vd;
5291     const Elf_Verdaux *vda;
5292     const Elf_Vernaux *vna;
5293     const Obj_Entry *depobj;
5294     int maxvernum, vernum;
5295 
5296     if (obj->ver_checked)
5297 	return (0);
5298     obj->ver_checked = true;
5299 
5300     maxvernum = 0;
5301     /*
5302      * Walk over defined and required version records and figure out
5303      * max index used by any of them. Do very basic sanity checking
5304      * while there.
5305      */
5306     vn = obj->verneed;
5307     while (vn != NULL) {
5308 	if (vn->vn_version != VER_NEED_CURRENT) {
5309 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5310 		obj->path, vn->vn_version);
5311 	    return (-1);
5312 	}
5313 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5314 	for (;;) {
5315 	    vernum = VER_NEED_IDX(vna->vna_other);
5316 	    if (vernum > maxvernum)
5317 		maxvernum = vernum;
5318 	    if (vna->vna_next == 0)
5319 		 break;
5320 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5321 	}
5322 	if (vn->vn_next == 0)
5323 	    break;
5324 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5325     }
5326 
5327     vd = obj->verdef;
5328     while (vd != NULL) {
5329 	if (vd->vd_version != VER_DEF_CURRENT) {
5330 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5331 		obj->path, vd->vd_version);
5332 	    return (-1);
5333 	}
5334 	vernum = VER_DEF_IDX(vd->vd_ndx);
5335 	if (vernum > maxvernum)
5336 		maxvernum = vernum;
5337 	if (vd->vd_next == 0)
5338 	    break;
5339 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5340     }
5341 
5342     if (maxvernum == 0)
5343 	return (0);
5344 
5345     /*
5346      * Store version information in array indexable by version index.
5347      * Verify that object version requirements are satisfied along the
5348      * way.
5349      */
5350     obj->vernum = maxvernum + 1;
5351     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5352 
5353     vd = obj->verdef;
5354     while (vd != NULL) {
5355 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5356 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5357 	    assert(vernum <= maxvernum);
5358 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5359 	    obj->vertab[vernum].hash = vd->vd_hash;
5360 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5361 	    obj->vertab[vernum].file = NULL;
5362 	    obj->vertab[vernum].flags = 0;
5363 	}
5364 	if (vd->vd_next == 0)
5365 	    break;
5366 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5367     }
5368 
5369     vn = obj->verneed;
5370     while (vn != NULL) {
5371 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5372 	if (depobj == NULL)
5373 	    return (-1);
5374 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5375 	for (;;) {
5376 	    if (check_object_provided_version(obj, depobj, vna))
5377 		return (-1);
5378 	    vernum = VER_NEED_IDX(vna->vna_other);
5379 	    assert(vernum <= maxvernum);
5380 	    obj->vertab[vernum].hash = vna->vna_hash;
5381 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5382 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5383 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5384 		VER_INFO_HIDDEN : 0;
5385 	    if (vna->vna_next == 0)
5386 		 break;
5387 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5388 	}
5389 	if (vn->vn_next == 0)
5390 	    break;
5391 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5392     }
5393     return 0;
5394 }
5395 
5396 static int
5397 rtld_verify_versions(const Objlist *objlist)
5398 {
5399     Objlist_Entry *entry;
5400     int rc;
5401 
5402     rc = 0;
5403     STAILQ_FOREACH(entry, objlist, link) {
5404 	/*
5405 	 * Skip dummy objects or objects that have their version requirements
5406 	 * already checked.
5407 	 */
5408 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5409 	    continue;
5410 	if (rtld_verify_object_versions(entry->obj) == -1) {
5411 	    rc = -1;
5412 	    if (ld_tracing == NULL)
5413 		break;
5414 	}
5415     }
5416     if (rc == 0 || ld_tracing != NULL)
5417     	rc = rtld_verify_object_versions(&obj_rtld);
5418     return rc;
5419 }
5420 
5421 const Ver_Entry *
5422 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5423 {
5424     Elf_Versym vernum;
5425 
5426     if (obj->vertab) {
5427 	vernum = VER_NDX(obj->versyms[symnum]);
5428 	if (vernum >= obj->vernum) {
5429 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5430 		obj->path, obj->strtab + symnum, vernum);
5431 	} else if (obj->vertab[vernum].hash != 0) {
5432 	    return &obj->vertab[vernum];
5433 	}
5434     }
5435     return NULL;
5436 }
5437 
5438 int
5439 _rtld_get_stack_prot(void)
5440 {
5441 
5442 	return (stack_prot);
5443 }
5444 
5445 int
5446 _rtld_is_dlopened(void *arg)
5447 {
5448 	Obj_Entry *obj;
5449 	RtldLockState lockstate;
5450 	int res;
5451 
5452 	rlock_acquire(rtld_bind_lock, &lockstate);
5453 	obj = dlcheck(arg);
5454 	if (obj == NULL)
5455 		obj = obj_from_addr(arg);
5456 	if (obj == NULL) {
5457 		_rtld_error("No shared object contains address");
5458 		lock_release(rtld_bind_lock, &lockstate);
5459 		return (-1);
5460 	}
5461 	res = obj->dlopened ? 1 : 0;
5462 	lock_release(rtld_bind_lock, &lockstate);
5463 	return (res);
5464 }
5465 
5466 static int
5467 obj_remap_relro(Obj_Entry *obj, int prot)
5468 {
5469 
5470 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5471 	    prot) == -1) {
5472 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5473 		    obj->path, prot, rtld_strerror(errno));
5474 		return (-1);
5475 	}
5476 	return (0);
5477 }
5478 
5479 static int
5480 obj_disable_relro(Obj_Entry *obj)
5481 {
5482 
5483 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5484 }
5485 
5486 static int
5487 obj_enforce_relro(Obj_Entry *obj)
5488 {
5489 
5490 	return (obj_remap_relro(obj, PROT_READ));
5491 }
5492 
5493 static void
5494 map_stacks_exec(RtldLockState *lockstate)
5495 {
5496 	void (*thr_map_stacks_exec)(void);
5497 
5498 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5499 		return;
5500 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5501 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5502 	if (thr_map_stacks_exec != NULL) {
5503 		stack_prot |= PROT_EXEC;
5504 		thr_map_stacks_exec();
5505 	}
5506 }
5507 
5508 static void
5509 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5510 {
5511 	Objlist_Entry *elm;
5512 	Obj_Entry *obj;
5513 	void (*distrib)(size_t, void *, size_t, size_t);
5514 
5515 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5516 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5517 	if (distrib == NULL)
5518 		return;
5519 	STAILQ_FOREACH(elm, list, link) {
5520 		obj = elm->obj;
5521 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5522 			continue;
5523 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5524 		    obj->tlssize);
5525 		obj->static_tls_copied = true;
5526 	}
5527 }
5528 
5529 void
5530 symlook_init(SymLook *dst, const char *name)
5531 {
5532 
5533 	bzero(dst, sizeof(*dst));
5534 	dst->name = name;
5535 	dst->hash = elf_hash(name);
5536 	dst->hash_gnu = gnu_hash(name);
5537 }
5538 
5539 static void
5540 symlook_init_from_req(SymLook *dst, const SymLook *src)
5541 {
5542 
5543 	dst->name = src->name;
5544 	dst->hash = src->hash;
5545 	dst->hash_gnu = src->hash_gnu;
5546 	dst->ventry = src->ventry;
5547 	dst->flags = src->flags;
5548 	dst->defobj_out = NULL;
5549 	dst->sym_out = NULL;
5550 	dst->lockstate = src->lockstate;
5551 }
5552 
5553 static int
5554 open_binary_fd(const char *argv0, bool search_in_path,
5555     const char **binpath_res)
5556 {
5557 	char *binpath, *pathenv, *pe, *res1;
5558 	const char *res;
5559 	int fd;
5560 
5561 	binpath = NULL;
5562 	res = NULL;
5563 	if (search_in_path && strchr(argv0, '/') == NULL) {
5564 		binpath = xmalloc(PATH_MAX);
5565 		pathenv = getenv("PATH");
5566 		if (pathenv == NULL) {
5567 			_rtld_error("-p and no PATH environment variable");
5568 			rtld_die();
5569 		}
5570 		pathenv = strdup(pathenv);
5571 		if (pathenv == NULL) {
5572 			_rtld_error("Cannot allocate memory");
5573 			rtld_die();
5574 		}
5575 		fd = -1;
5576 		errno = ENOENT;
5577 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5578 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5579 				continue;
5580 			if (binpath[0] != '\0' &&
5581 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5582 				continue;
5583 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5584 				continue;
5585 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5586 			if (fd != -1 || errno != ENOENT) {
5587 				res = binpath;
5588 				break;
5589 			}
5590 		}
5591 		free(pathenv);
5592 	} else {
5593 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5594 		res = argv0;
5595 	}
5596 
5597 	if (fd == -1) {
5598 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5599 		rtld_die();
5600 	}
5601 	if (res != NULL && res[0] != '/') {
5602 		res1 = xmalloc(PATH_MAX);
5603 		if (realpath(res, res1) != NULL) {
5604 			if (res != argv0)
5605 				free(__DECONST(char *, res));
5606 			res = res1;
5607 		} else {
5608 			free(res1);
5609 		}
5610 	}
5611 	*binpath_res = res;
5612 	return (fd);
5613 }
5614 
5615 /*
5616  * Parse a set of command-line arguments.
5617  */
5618 static int
5619 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5620     const char **argv0)
5621 {
5622 	const char *arg;
5623 	char machine[64];
5624 	size_t sz;
5625 	int arglen, fd, i, j, mib[2];
5626 	char opt;
5627 	bool seen_b, seen_f;
5628 
5629 	dbg("Parsing command-line arguments");
5630 	*use_pathp = false;
5631 	*fdp = -1;
5632 	seen_b = seen_f = false;
5633 
5634 	for (i = 1; i < argc; i++ ) {
5635 		arg = argv[i];
5636 		dbg("argv[%d]: '%s'", i, arg);
5637 
5638 		/*
5639 		 * rtld arguments end with an explicit "--" or with the first
5640 		 * non-prefixed argument.
5641 		 */
5642 		if (strcmp(arg, "--") == 0) {
5643 			i++;
5644 			break;
5645 		}
5646 		if (arg[0] != '-')
5647 			break;
5648 
5649 		/*
5650 		 * All other arguments are single-character options that can
5651 		 * be combined, so we need to search through `arg` for them.
5652 		 */
5653 		arglen = strlen(arg);
5654 		for (j = 1; j < arglen; j++) {
5655 			opt = arg[j];
5656 			if (opt == 'h') {
5657 				print_usage(argv[0]);
5658 				_exit(0);
5659 			} else if (opt == 'b') {
5660 				if (seen_f) {
5661 					_rtld_error("Both -b and -f specified");
5662 					rtld_die();
5663 				}
5664 				i++;
5665 				*argv0 = argv[i];
5666 				seen_b = true;
5667 				break;
5668 			} else if (opt == 'f') {
5669 				if (seen_b) {
5670 					_rtld_error("Both -b and -f specified");
5671 					rtld_die();
5672 				}
5673 
5674 				/*
5675 				 * -f XX can be used to specify a
5676 				 * descriptor for the binary named at
5677 				 * the command line (i.e., the later
5678 				 * argument will specify the process
5679 				 * name but the descriptor is what
5680 				 * will actually be executed).
5681 				 *
5682 				 * -f must be the last option in, e.g., -abcf.
5683 				 */
5684 				if (j != arglen - 1) {
5685 					_rtld_error("Invalid options: %s", arg);
5686 					rtld_die();
5687 				}
5688 				i++;
5689 				fd = parse_integer(argv[i]);
5690 				if (fd == -1) {
5691 					_rtld_error(
5692 					    "Invalid file descriptor: '%s'",
5693 					    argv[i]);
5694 					rtld_die();
5695 				}
5696 				*fdp = fd;
5697 				seen_f = true;
5698 				break;
5699 			} else if (opt == 'p') {
5700 				*use_pathp = true;
5701 			} else if (opt == 'v') {
5702 				machine[0] = '\0';
5703 				mib[0] = CTL_HW;
5704 				mib[1] = HW_MACHINE;
5705 				sz = sizeof(machine);
5706 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5707 				rtld_printf(
5708 				    "FreeBSD ld-elf.so.1 %s\n"
5709 				    "FreeBSD_version %d\n"
5710 				    "Default lib path %s\n"
5711 				    "Env prefix %s\n"
5712 				    "Hint file %s\n"
5713 				    "libmap file %s\n",
5714 				    machine,
5715 				    __FreeBSD_version, ld_standard_library_path,
5716 				    ld_env_prefix, ld_elf_hints_default,
5717 				    ld_path_libmap_conf);
5718 				_exit(0);
5719 			} else {
5720 				_rtld_error("Invalid argument: '%s'", arg);
5721 				print_usage(argv[0]);
5722 				rtld_die();
5723 			}
5724 		}
5725 	}
5726 
5727 	if (!seen_b)
5728 		*argv0 = argv[i];
5729 	return (i);
5730 }
5731 
5732 /*
5733  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5734  */
5735 static int
5736 parse_integer(const char *str)
5737 {
5738 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5739 	const char *orig;
5740 	int n;
5741 	char c;
5742 
5743 	orig = str;
5744 	n = 0;
5745 	for (c = *str; c != '\0'; c = *++str) {
5746 		if (c < '0' || c > '9')
5747 			return (-1);
5748 
5749 		n *= RADIX;
5750 		n += c - '0';
5751 	}
5752 
5753 	/* Make sure we actually parsed something. */
5754 	if (str == orig)
5755 		return (-1);
5756 	return (n);
5757 }
5758 
5759 static void
5760 print_usage(const char *argv0)
5761 {
5762 
5763 	rtld_printf(
5764 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5765 	    "\n"
5766 	    "Options:\n"
5767 	    "  -h        Display this help message\n"
5768 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5769 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5770 	    "  -p        Search in PATH for named binary\n"
5771 	    "  -v        Display identification information\n"
5772 	    "  --        End of RTLD options\n"
5773 	    "  <binary>  Name of process to execute\n"
5774 	    "  <args>    Arguments to the executed process\n", argv0);
5775 }
5776 
5777 /*
5778  * Overrides for libc_pic-provided functions.
5779  */
5780 
5781 int
5782 __getosreldate(void)
5783 {
5784 	size_t len;
5785 	int oid[2];
5786 	int error, osrel;
5787 
5788 	if (osreldate != 0)
5789 		return (osreldate);
5790 
5791 	oid[0] = CTL_KERN;
5792 	oid[1] = KERN_OSRELDATE;
5793 	osrel = 0;
5794 	len = sizeof(osrel);
5795 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5796 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5797 		osreldate = osrel;
5798 	return (osreldate);
5799 }
5800 const char *
5801 rtld_strerror(int errnum)
5802 {
5803 
5804 	if (errnum < 0 || errnum >= sys_nerr)
5805 		return ("Unknown error");
5806 	return (sys_errlist[errnum]);
5807 }
5808 
5809 /* malloc */
5810 void *
5811 malloc(size_t nbytes)
5812 {
5813 
5814 	return (__crt_malloc(nbytes));
5815 }
5816 
5817 void *
5818 calloc(size_t num, size_t size)
5819 {
5820 
5821 	return (__crt_calloc(num, size));
5822 }
5823 
5824 void
5825 free(void *cp)
5826 {
5827 
5828 	__crt_free(cp);
5829 }
5830 
5831 void *
5832 realloc(void *cp, size_t nbytes)
5833 {
5834 
5835 	return (__crt_realloc(cp, nbytes));
5836 }
5837 
5838 extern int _rtld_version__FreeBSD_version __exported;
5839 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5840 
5841 extern char _rtld_version_laddr_offset __exported;
5842 char _rtld_version_laddr_offset;
5843