xref: /freebsd/libexec/rtld-elf/rtld.c (revision c7046f76)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143     const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145     const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153     int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155     RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163     int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *, bool);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181     const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int  rtld_verify_versions(const Objlist *);
186 static int  rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int  object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191     struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194     const unsigned long);
195 
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198 
199 int __sys_openat(int, const char *, int, ...);
200 
201 /*
202  * Data declarations.
203  */
204 struct r_debug r_debug __exported;	/* for GDB; */
205 static bool libmap_disable;	/* Disable libmap */
206 static bool ld_loadfltr;	/* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust;		/* False for setuid and setgid programs */
209 static bool dangerous_ld_env;	/* True if environment variables have been
210 				   used to affect the libraries loaded */
211 bool ld_bind_not;		/* Disable PLT update */
212 static const char *ld_bind_now;	/* Environment variable for immediate binding */
213 static const char *ld_debug;	/* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 				       weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload;	/* Environment variable for libraries to
219 				   load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 				   descriptors */
222 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
223 static const char *ld_tracing;	/* Called from ldd to print libs */
224 static const char *ld_utrace;	/* Use utrace() to log events. */
225 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
226 static Obj_Entry *obj_main;	/* The main program shared object */
227 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
228 static unsigned int obj_count;	/* Number of objects in obj_list */
229 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 int npagesizes;
268 static int osreldate;
269 size_t *pagesizes;
270 size_t page_size;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 enum {
348 	LD_BIND_NOW = 0,
349 	LD_PRELOAD,
350 	LD_LIBMAP,
351 	LD_LIBRARY_PATH,
352 	LD_LIBRARY_PATH_FDS,
353 	LD_LIBMAP_DISABLE,
354 	LD_BIND_NOT,
355 	LD_DEBUG,
356 	LD_ELF_HINTS_PATH,
357 	LD_LOADFLTR,
358 	LD_LIBRARY_PATH_RPATH,
359 	LD_PRELOAD_FDS,
360 	LD_DYNAMIC_WEAK,
361 	LD_TRACE_LOADED_OBJECTS,
362 	LD_UTRACE,
363 	LD_DUMP_REL_PRE,
364 	LD_DUMP_REL_POST,
365 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 	LD_TRACE_LOADED_OBJECTS_FMT1,
367 	LD_TRACE_LOADED_OBJECTS_FMT2,
368 	LD_TRACE_LOADED_OBJECTS_ALL,
369 	LD_SHOW_AUXV,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 };
404 
405 static const char *
406 ld_get_env_var(int idx)
407 {
408 	return (ld_env_vars[idx].val);
409 }
410 
411 static const char *
412 rtld_get_env_val(char **env, const char *name, size_t name_len)
413 {
414 	char **m, *n, *v;
415 
416 	for (m = env; *m != NULL; m++) {
417 		n = *m;
418 		v = strchr(n, '=');
419 		if (v == NULL) {
420 			/* corrupt environment? */
421 			continue;
422 		}
423 		if (v - n == (ptrdiff_t)name_len &&
424 		    strncmp(name, n, name_len) == 0)
425 			return (v + 1);
426 	}
427 	return (NULL);
428 }
429 
430 static void
431 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
432 {
433 	struct ld_env_var_desc *lvd;
434 	size_t prefix_len, nlen;
435 	char **m, *n, *v;
436 	int i;
437 
438 	prefix_len = strlen(env_prefix);
439 	for (m = env; *m != NULL; m++) {
440 		n = *m;
441 		if (strncmp(env_prefix, n, prefix_len) != 0) {
442 			/* Not a rtld environment variable. */
443 			continue;
444 		}
445 		n += prefix_len;
446 		v = strchr(n, '=');
447 		if (v == NULL) {
448 			/* corrupt environment? */
449 			continue;
450 		}
451 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
452 			lvd = &ld_env_vars[i];
453 			if (lvd->val != NULL) {
454 				/* Saw higher-priority variable name already. */
455 				continue;
456 			}
457 			nlen = strlen(lvd->n);
458 			if (v - n == (ptrdiff_t)nlen &&
459 			    strncmp(lvd->n, n, nlen) == 0) {
460 				lvd->val = v + 1;
461 				break;
462 			}
463 		}
464 	}
465 }
466 
467 static void
468 rtld_init_env_vars(char **env)
469 {
470 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
471 }
472 
473 static void
474 set_ld_elf_hints_path(void)
475 {
476 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
477 		ld_elf_hints_path = ld_elf_hints_default;
478 }
479 
480 uintptr_t
481 rtld_round_page(uintptr_t x)
482 {
483 	return (roundup2(x, page_size));
484 }
485 
486 uintptr_t
487 rtld_trunc_page(uintptr_t x)
488 {
489 	return (rounddown2(x, page_size));
490 }
491 
492 /*
493  * Main entry point for dynamic linking.  The first argument is the
494  * stack pointer.  The stack is expected to be laid out as described
495  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
496  * Specifically, the stack pointer points to a word containing
497  * ARGC.  Following that in the stack is a null-terminated sequence
498  * of pointers to argument strings.  Then comes a null-terminated
499  * sequence of pointers to environment strings.  Finally, there is a
500  * sequence of "auxiliary vector" entries.
501  *
502  * The second argument points to a place to store the dynamic linker's
503  * exit procedure pointer and the third to a place to store the main
504  * program's object.
505  *
506  * The return value is the main program's entry point.
507  */
508 func_ptr_type
509 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
510 {
511     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
512     Objlist_Entry *entry;
513     Obj_Entry *last_interposer, *obj, *preload_tail;
514     const Elf_Phdr *phdr;
515     Objlist initlist;
516     RtldLockState lockstate;
517     struct stat st;
518     Elf_Addr *argcp;
519     char **argv, **env, **envp, *kexecpath;
520     const char *argv0, *binpath, *library_path_rpath;
521     struct ld_env_var_desc *lvd;
522     caddr_t imgentry;
523     char buf[MAXPATHLEN];
524     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
525     size_t sz;
526 #ifdef __powerpc__
527     int old_auxv_format = 1;
528 #endif
529     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
530 
531     /*
532      * On entry, the dynamic linker itself has not been relocated yet.
533      * Be very careful not to reference any global data until after
534      * init_rtld has returned.  It is OK to reference file-scope statics
535      * and string constants, and to call static and global functions.
536      */
537 
538     /* Find the auxiliary vector on the stack. */
539     argcp = sp;
540     argc = *sp++;
541     argv = (char **) sp;
542     sp += argc + 1;	/* Skip over arguments and NULL terminator */
543     env = (char **) sp;
544     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
545 	;
546     aux = (Elf_Auxinfo *) sp;
547 
548     /* Digest the auxiliary vector. */
549     for (i = 0;  i < AT_COUNT;  i++)
550 	aux_info[i] = NULL;
551     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
552 	if (auxp->a_type < AT_COUNT)
553 	    aux_info[auxp->a_type] = auxp;
554 #ifdef __powerpc__
555 	if (auxp->a_type == 23) /* AT_STACKPROT */
556 	    old_auxv_format = 0;
557 #endif
558     }
559 
560 #ifdef __powerpc__
561     if (old_auxv_format) {
562 	/* Remap from old-style auxv numbers. */
563 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
564 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
565 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
566 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
567 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
568 	aux_info[13] = NULL;		/* AT_GID */
569 
570 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
571 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
572 	aux_info[16] = aux_info[14];	/* AT_CANARY */
573 	aux_info[14] = NULL;		/* AT_EGID */
574     }
575 #endif
576 
577     /* Initialize and relocate ourselves. */
578     assert(aux_info[AT_BASE] != NULL);
579     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
580 
581     dlerror_dflt_init();
582 
583     __progname = obj_rtld.path;
584     argv0 = argv[0] != NULL ? argv[0] : "(null)";
585     environ = env;
586     main_argc = argc;
587     main_argv = argv;
588 
589     if (aux_info[AT_BSDFLAGS] != NULL &&
590 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
591 	    ld_fast_sigblock = true;
592 
593     trust = !issetugid();
594     direct_exec = false;
595 
596     md_abi_variant_hook(aux_info);
597     rtld_init_env_vars(env);
598 
599     fd = -1;
600     if (aux_info[AT_EXECFD] != NULL) {
601 	fd = aux_info[AT_EXECFD]->a_un.a_val;
602     } else {
603 	assert(aux_info[AT_PHDR] != NULL);
604 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
605 	if (phdr == obj_rtld.phdr) {
606 	    if (!trust) {
607 		_rtld_error("Tainted process refusing to run binary %s",
608 		    argv0);
609 		rtld_die();
610 	    }
611 	    direct_exec = true;
612 
613 	    dbg("opening main program in direct exec mode");
614 	    if (argc >= 2) {
615 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
616 		  &argv0, &dir_ignore);
617 		explicit_fd = (fd != -1);
618 		binpath = NULL;
619 		if (!explicit_fd)
620 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
621 		if (fstat(fd, &st) == -1) {
622 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
623 		      explicit_fd ? "user-provided descriptor" : argv0,
624 		      rtld_strerror(errno));
625 		    rtld_die();
626 		}
627 
628 		/*
629 		 * Rough emulation of the permission checks done by
630 		 * execve(2), only Unix DACs are checked, ACLs are
631 		 * ignored.  Preserve the semantic of disabling owner
632 		 * to execute if owner x bit is cleared, even if
633 		 * others x bit is enabled.
634 		 * mmap(2) does not allow to mmap with PROT_EXEC if
635 		 * binary' file comes from noexec mount.  We cannot
636 		 * set a text reference on the binary.
637 		 */
638 		dir_enable = false;
639 		if (st.st_uid == geteuid()) {
640 		    if ((st.st_mode & S_IXUSR) != 0)
641 			dir_enable = true;
642 		} else if (st.st_gid == getegid()) {
643 		    if ((st.st_mode & S_IXGRP) != 0)
644 			dir_enable = true;
645 		} else if ((st.st_mode & S_IXOTH) != 0) {
646 		    dir_enable = true;
647 		}
648 		if (!dir_enable && !dir_ignore) {
649 		    _rtld_error("No execute permission for binary %s",
650 		        argv0);
651 		    rtld_die();
652 		}
653 
654 		/*
655 		 * For direct exec mode, argv[0] is the interpreter
656 		 * name, we must remove it and shift arguments left
657 		 * before invoking binary main.  Since stack layout
658 		 * places environment pointers and aux vectors right
659 		 * after the terminating NULL, we must shift
660 		 * environment and aux as well.
661 		 */
662 		main_argc = argc - rtld_argc;
663 		for (i = 0; i <= main_argc; i++)
664 		    argv[i] = argv[i + rtld_argc];
665 		*argcp -= rtld_argc;
666 		environ = env = envp = argv + main_argc + 1;
667 		dbg("move env from %p to %p", envp + rtld_argc, envp);
668 		do {
669 		    *envp = *(envp + rtld_argc);
670 		}  while (*envp++ != NULL);
671 		aux = auxp = (Elf_Auxinfo *)envp;
672 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
673 		dbg("move aux from %p to %p", auxpf, aux);
674 		/* XXXKIB insert place for AT_EXECPATH if not present */
675 		for (;; auxp++, auxpf++) {
676 		    *auxp = *auxpf;
677 		    if (auxp->a_type == AT_NULL)
678 			    break;
679 		}
680 		/* Since the auxiliary vector has moved, redigest it. */
681 		for (i = 0;  i < AT_COUNT;  i++)
682 		    aux_info[i] = NULL;
683 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
684 		    if (auxp->a_type < AT_COUNT)
685 			aux_info[auxp->a_type] = auxp;
686 		}
687 
688 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
689 		if (binpath == NULL) {
690 		    aux_info[AT_EXECPATH] = NULL;
691 		} else {
692 		    if (aux_info[AT_EXECPATH] == NULL) {
693 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
694 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
695 		    }
696 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
697 		      binpath);
698 		}
699 	    } else {
700 		_rtld_error("No binary");
701 		rtld_die();
702 	    }
703 	}
704     }
705 
706     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
707 
708     /*
709      * If the process is tainted, then we un-set the dangerous environment
710      * variables.  The process will be marked as tainted until setuid(2)
711      * is called.  If any child process calls setuid(2) we do not want any
712      * future processes to honor the potentially un-safe variables.
713      */
714     if (!trust) {
715 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
716 		    lvd = &ld_env_vars[i];
717 		    if (lvd->unsecure)
718 			    lvd->val = NULL;
719 	    }
720     }
721 
722     ld_debug = ld_get_env_var(LD_DEBUG);
723     if (ld_bind_now == NULL)
724 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
725     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
726     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
727     libmap_override = ld_get_env_var(LD_LIBMAP);
728     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
729     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
730     ld_preload = ld_get_env_var(LD_PRELOAD);
731     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
732     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
733     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
734     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
735     if (library_path_rpath != NULL) {
736 	    if (library_path_rpath[0] == 'y' ||
737 		library_path_rpath[0] == 'Y' ||
738 		library_path_rpath[0] == '1')
739 		    ld_library_path_rpath = true;
740 	    else
741 		    ld_library_path_rpath = false;
742     }
743     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
744 	ld_library_path != NULL || ld_preload != NULL ||
745 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
746     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
747     ld_utrace = ld_get_env_var(LD_UTRACE);
748 
749     set_ld_elf_hints_path();
750     if (ld_debug != NULL && *ld_debug != '\0')
751 	debug = 1;
752     dbg("%s is initialized, base address = %p", __progname,
753 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
754     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
755     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
756 
757     dbg("initializing thread locks");
758     lockdflt_init();
759 
760     /*
761      * Load the main program, or process its program header if it is
762      * already loaded.
763      */
764     if (fd != -1) {	/* Load the main program. */
765 	dbg("loading main program");
766 	obj_main = map_object(fd, argv0, NULL);
767 	close(fd);
768 	if (obj_main == NULL)
769 	    rtld_die();
770 	max_stack_flags = obj_main->stack_flags;
771     } else {				/* Main program already loaded. */
772 	dbg("processing main program's program header");
773 	assert(aux_info[AT_PHDR] != NULL);
774 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
775 	assert(aux_info[AT_PHNUM] != NULL);
776 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
777 	assert(aux_info[AT_PHENT] != NULL);
778 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
779 	assert(aux_info[AT_ENTRY] != NULL);
780 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
781 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
782 	    rtld_die();
783     }
784 
785     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
786 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
787 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
788 	    if (kexecpath[0] == '/')
789 		    obj_main->path = kexecpath;
790 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
791 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
792 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
793 		    obj_main->path = xstrdup(argv0);
794 	    else
795 		    obj_main->path = xstrdup(buf);
796     } else {
797 	    dbg("No AT_EXECPATH or direct exec");
798 	    obj_main->path = xstrdup(argv0);
799     }
800     dbg("obj_main path %s", obj_main->path);
801     obj_main->mainprog = true;
802 
803     if (aux_info[AT_STACKPROT] != NULL &&
804       aux_info[AT_STACKPROT]->a_un.a_val != 0)
805 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
806 
807 #ifndef COMPAT_32BIT
808     /*
809      * Get the actual dynamic linker pathname from the executable if
810      * possible.  (It should always be possible.)  That ensures that
811      * gdb will find the right dynamic linker even if a non-standard
812      * one is being used.
813      */
814     if (obj_main->interp != NULL &&
815       strcmp(obj_main->interp, obj_rtld.path) != 0) {
816 	free(obj_rtld.path);
817 	obj_rtld.path = xstrdup(obj_main->interp);
818         __progname = obj_rtld.path;
819     }
820 #endif
821 
822     if (!digest_dynamic(obj_main, 0))
823 	rtld_die();
824     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
825 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
826 	obj_main->dynsymcount);
827 
828     linkmap_add(obj_main);
829     linkmap_add(&obj_rtld);
830 
831     /* Link the main program into the list of objects. */
832     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
833     obj_count++;
834     obj_loads++;
835 
836     /* Initialize a fake symbol for resolving undefined weak references. */
837     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
838     sym_zero.st_shndx = SHN_UNDEF;
839     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
840 
841     if (!libmap_disable)
842         libmap_disable = (bool)lm_init(libmap_override);
843 
844     if (aux_info[AT_KPRELOAD] != NULL &&
845       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
846 	dbg("loading kernel vdso");
847 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
848 	    rtld_die();
849     }
850 
851     dbg("loading LD_PRELOAD_FDS libraries");
852     if (load_preload_objects(ld_preload_fds, true) == -1)
853 	rtld_die();
854 
855     dbg("loading LD_PRELOAD libraries");
856     if (load_preload_objects(ld_preload, false) == -1)
857 	rtld_die();
858     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
859 
860     dbg("loading needed objects");
861     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
862       0) == -1)
863 	rtld_die();
864 
865     /* Make a list of all objects loaded at startup. */
866     last_interposer = obj_main;
867     TAILQ_FOREACH(obj, &obj_list, next) {
868 	if (obj->marker)
869 	    continue;
870 	if (obj->z_interpose && obj != obj_main) {
871 	    objlist_put_after(&list_main, last_interposer, obj);
872 	    last_interposer = obj;
873 	} else {
874 	    objlist_push_tail(&list_main, obj);
875 	}
876     	obj->refcount++;
877     }
878 
879     dbg("checking for required versions");
880     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
881 	rtld_die();
882 
883     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
884        dump_auxv(aux_info);
885 
886     if (ld_tracing) {		/* We're done */
887 	trace_loaded_objects(obj_main, true);
888 	exit(0);
889     }
890 
891     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
892        dump_relocations(obj_main);
893        exit (0);
894     }
895 
896     /*
897      * Processing tls relocations requires having the tls offsets
898      * initialized.  Prepare offsets before starting initial
899      * relocation processing.
900      */
901     dbg("initializing initial thread local storage offsets");
902     STAILQ_FOREACH(entry, &list_main, link) {
903 	/*
904 	 * Allocate all the initial objects out of the static TLS
905 	 * block even if they didn't ask for it.
906 	 */
907 	allocate_tls_offset(entry->obj);
908     }
909 
910     if (relocate_objects(obj_main,
911       ld_bind_now != NULL && *ld_bind_now != '\0',
912       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
913 	rtld_die();
914 
915     dbg("doing copy relocations");
916     if (do_copy_relocations(obj_main) == -1)
917 	rtld_die();
918 
919     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
920        dump_relocations(obj_main);
921        exit (0);
922     }
923 
924     ifunc_init(aux);
925 
926     /*
927      * Setup TLS for main thread.  This must be done after the
928      * relocations are processed, since tls initialization section
929      * might be the subject for relocations.
930      */
931     dbg("initializing initial thread local storage");
932     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
933 
934     dbg("initializing key program variables");
935     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
936     set_program_var("environ", env);
937     set_program_var("__elf_aux_vector", aux);
938 
939     /* Make a list of init functions to call. */
940     objlist_init(&initlist);
941     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
942       preload_tail, &initlist);
943 
944     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
945 
946     map_stacks_exec(NULL);
947 
948     if (!obj_main->crt_no_init) {
949 	/*
950 	 * Make sure we don't call the main program's init and fini
951 	 * functions for binaries linked with old crt1 which calls
952 	 * _init itself.
953 	 */
954 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
955 	obj_main->preinit_array = obj_main->init_array =
956 	    obj_main->fini_array = (Elf_Addr)NULL;
957     }
958 
959     if (direct_exec) {
960 	/* Set osrel for direct-execed binary */
961 	mib[0] = CTL_KERN;
962 	mib[1] = KERN_PROC;
963 	mib[2] = KERN_PROC_OSREL;
964 	mib[3] = getpid();
965 	osrel = obj_main->osrel;
966 	sz = sizeof(old_osrel);
967 	dbg("setting osrel to %d", osrel);
968 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
969     }
970 
971     wlock_acquire(rtld_bind_lock, &lockstate);
972 
973     dbg("resolving ifuncs");
974     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
975       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
976 	rtld_die();
977 
978     rtld_exit_ptr = rtld_exit;
979     if (obj_main->crt_no_init)
980 	preinit_main();
981     objlist_call_init(&initlist, &lockstate);
982     _r_debug_postinit(&obj_main->linkmap);
983     objlist_clear(&initlist);
984     dbg("loading filtees");
985     TAILQ_FOREACH(obj, &obj_list, next) {
986 	if (obj->marker)
987 	    continue;
988 	if (ld_loadfltr || obj->z_loadfltr)
989 	    load_filtees(obj, 0, &lockstate);
990     }
991 
992     dbg("enforcing main obj relro");
993     if (obj_enforce_relro(obj_main) == -1)
994 	rtld_die();
995 
996     lock_release(rtld_bind_lock, &lockstate);
997 
998     dbg("transferring control to program entry point = %p", obj_main->entry);
999 
1000     /* Return the exit procedure and the program entry point. */
1001     *exit_proc = rtld_exit_ptr;
1002     *objp = obj_main;
1003     return ((func_ptr_type)obj_main->entry);
1004 }
1005 
1006 void *
1007 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1008 {
1009 	void *ptr;
1010 	Elf_Addr target;
1011 
1012 	ptr = (void *)make_function_pointer(def, obj);
1013 	target = call_ifunc_resolver(ptr);
1014 	return ((void *)target);
1015 }
1016 
1017 Elf_Addr
1018 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1019 {
1020     const Elf_Rel *rel;
1021     const Elf_Sym *def;
1022     const Obj_Entry *defobj;
1023     Elf_Addr *where;
1024     Elf_Addr target;
1025     RtldLockState lockstate;
1026 
1027     rlock_acquire(rtld_bind_lock, &lockstate);
1028     if (sigsetjmp(lockstate.env, 0) != 0)
1029 	    lock_upgrade(rtld_bind_lock, &lockstate);
1030     if (obj->pltrel)
1031 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1032     else
1033 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1034 
1035     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1036     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1037 	NULL, &lockstate);
1038     if (def == NULL)
1039 	rtld_die();
1040     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1041 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1042     else
1043 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1044 
1045     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1046       defobj->strtab + def->st_name,
1047       obj->path == NULL ? NULL : basename(obj->path),
1048       (void *)target,
1049       defobj->path == NULL ? NULL : basename(defobj->path));
1050 
1051     /*
1052      * Write the new contents for the jmpslot. Note that depending on
1053      * architecture, the value which we need to return back to the
1054      * lazy binding trampoline may or may not be the target
1055      * address. The value returned from reloc_jmpslot() is the value
1056      * that the trampoline needs.
1057      */
1058     target = reloc_jmpslot(where, target, defobj, obj, rel);
1059     lock_release(rtld_bind_lock, &lockstate);
1060     return (target);
1061 }
1062 
1063 /*
1064  * Error reporting function.  Use it like printf.  If formats the message
1065  * into a buffer, and sets things up so that the next call to dlerror()
1066  * will return the message.
1067  */
1068 void
1069 _rtld_error(const char *fmt, ...)
1070 {
1071 	va_list ap;
1072 
1073 	va_start(ap, fmt);
1074 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1075 	    fmt, ap);
1076 	va_end(ap);
1077 	*lockinfo.dlerror_seen() = 0;
1078 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1079 }
1080 
1081 /*
1082  * Return a dynamically-allocated copy of the current error message, if any.
1083  */
1084 static struct dlerror_save *
1085 errmsg_save(void)
1086 {
1087 	struct dlerror_save *res;
1088 
1089 	res = xmalloc(sizeof(*res));
1090 	res->seen = *lockinfo.dlerror_seen();
1091 	if (res->seen == 0)
1092 		res->msg = xstrdup(lockinfo.dlerror_loc());
1093 	return (res);
1094 }
1095 
1096 /*
1097  * Restore the current error message from a copy which was previously saved
1098  * by errmsg_save().  The copy is freed.
1099  */
1100 static void
1101 errmsg_restore(struct dlerror_save *saved_msg)
1102 {
1103 	if (saved_msg == NULL || saved_msg->seen == 1) {
1104 		*lockinfo.dlerror_seen() = 1;
1105 	} else {
1106 		*lockinfo.dlerror_seen() = 0;
1107 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1108 		    lockinfo.dlerror_loc_sz);
1109 		free(saved_msg->msg);
1110 	}
1111 	free(saved_msg);
1112 }
1113 
1114 static const char *
1115 basename(const char *name)
1116 {
1117 	const char *p;
1118 
1119 	p = strrchr(name, '/');
1120 	return (p != NULL ? p + 1 : name);
1121 }
1122 
1123 static struct utsname uts;
1124 
1125 static char *
1126 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1127     const char *subst, bool may_free)
1128 {
1129 	char *p, *p1, *res, *resp;
1130 	int subst_len, kw_len, subst_count, old_len, new_len;
1131 
1132 	kw_len = strlen(kw);
1133 
1134 	/*
1135 	 * First, count the number of the keyword occurrences, to
1136 	 * preallocate the final string.
1137 	 */
1138 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1139 		p1 = strstr(p, kw);
1140 		if (p1 == NULL)
1141 			break;
1142 	}
1143 
1144 	/*
1145 	 * If the keyword is not found, just return.
1146 	 *
1147 	 * Return non-substituted string if resolution failed.  We
1148 	 * cannot do anything more reasonable, the failure mode of the
1149 	 * caller is unresolved library anyway.
1150 	 */
1151 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1152 		return (may_free ? real : xstrdup(real));
1153 	if (obj != NULL)
1154 		subst = obj->origin_path;
1155 
1156 	/*
1157 	 * There is indeed something to substitute.  Calculate the
1158 	 * length of the resulting string, and allocate it.
1159 	 */
1160 	subst_len = strlen(subst);
1161 	old_len = strlen(real);
1162 	new_len = old_len + (subst_len - kw_len) * subst_count;
1163 	res = xmalloc(new_len + 1);
1164 
1165 	/*
1166 	 * Now, execute the substitution loop.
1167 	 */
1168 	for (p = real, resp = res, *resp = '\0';;) {
1169 		p1 = strstr(p, kw);
1170 		if (p1 != NULL) {
1171 			/* Copy the prefix before keyword. */
1172 			memcpy(resp, p, p1 - p);
1173 			resp += p1 - p;
1174 			/* Keyword replacement. */
1175 			memcpy(resp, subst, subst_len);
1176 			resp += subst_len;
1177 			*resp = '\0';
1178 			p = p1 + kw_len;
1179 		} else
1180 			break;
1181 	}
1182 
1183 	/* Copy to the end of string and finish. */
1184 	strcat(resp, p);
1185 	if (may_free)
1186 		free(real);
1187 	return (res);
1188 }
1189 
1190 static const struct {
1191 	const char *kw;
1192 	bool pass_obj;
1193 	const char *subst;
1194 } tokens[] = {
1195 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1196 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1197 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1198 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1199 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1200 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1201 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1202 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1203 };
1204 
1205 static char *
1206 origin_subst(Obj_Entry *obj, const char *real)
1207 {
1208 	char *res;
1209 	int i;
1210 
1211 	if (obj == NULL || !trust)
1212 		return (xstrdup(real));
1213 	if (uts.sysname[0] == '\0') {
1214 		if (uname(&uts) != 0) {
1215 			_rtld_error("utsname failed: %d", errno);
1216 			return (NULL);
1217 		}
1218 	}
1219 
1220 	/* __DECONST is safe here since without may_free real is unchanged */
1221 	res = __DECONST(char *, real);
1222 	for (i = 0; i < (int)nitems(tokens); i++) {
1223 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1224 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1225 	}
1226 	return (res);
1227 }
1228 
1229 void
1230 rtld_die(void)
1231 {
1232     const char *msg = dlerror();
1233 
1234     if (msg == NULL)
1235 	msg = "Fatal error";
1236     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1237     rtld_fdputstr(STDERR_FILENO, msg);
1238     rtld_fdputchar(STDERR_FILENO, '\n');
1239     _exit(1);
1240 }
1241 
1242 /*
1243  * Process a shared object's DYNAMIC section, and save the important
1244  * information in its Obj_Entry structure.
1245  */
1246 static void
1247 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1248     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1249 {
1250     const Elf_Dyn *dynp;
1251     Needed_Entry **needed_tail = &obj->needed;
1252     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1253     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1254     const Elf_Hashelt *hashtab;
1255     const Elf32_Word *hashval;
1256     Elf32_Word bkt, nmaskwords;
1257     int bloom_size32;
1258     int plttype = DT_REL;
1259 
1260     *dyn_rpath = NULL;
1261     *dyn_soname = NULL;
1262     *dyn_runpath = NULL;
1263 
1264     obj->bind_now = false;
1265     dynp = obj->dynamic;
1266     if (dynp == NULL)
1267 	return;
1268     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1269 	switch (dynp->d_tag) {
1270 
1271 	case DT_REL:
1272 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1273 	    break;
1274 
1275 	case DT_RELSZ:
1276 	    obj->relsize = dynp->d_un.d_val;
1277 	    break;
1278 
1279 	case DT_RELENT:
1280 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1281 	    break;
1282 
1283 	case DT_JMPREL:
1284 	    obj->pltrel = (const Elf_Rel *)
1285 	      (obj->relocbase + dynp->d_un.d_ptr);
1286 	    break;
1287 
1288 	case DT_PLTRELSZ:
1289 	    obj->pltrelsize = dynp->d_un.d_val;
1290 	    break;
1291 
1292 	case DT_RELA:
1293 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1294 	    break;
1295 
1296 	case DT_RELASZ:
1297 	    obj->relasize = dynp->d_un.d_val;
1298 	    break;
1299 
1300 	case DT_RELAENT:
1301 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1302 	    break;
1303 
1304 	case DT_RELR:
1305 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1306 	    break;
1307 
1308 	case DT_RELRSZ:
1309 	    obj->relrsize = dynp->d_un.d_val;
1310 	    break;
1311 
1312 	case DT_RELRENT:
1313 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1314 	    break;
1315 
1316 	case DT_PLTREL:
1317 	    plttype = dynp->d_un.d_val;
1318 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1319 	    break;
1320 
1321 	case DT_SYMTAB:
1322 	    obj->symtab = (const Elf_Sym *)
1323 	      (obj->relocbase + dynp->d_un.d_ptr);
1324 	    break;
1325 
1326 	case DT_SYMENT:
1327 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1328 	    break;
1329 
1330 	case DT_STRTAB:
1331 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1332 	    break;
1333 
1334 	case DT_STRSZ:
1335 	    obj->strsize = dynp->d_un.d_val;
1336 	    break;
1337 
1338 	case DT_VERNEED:
1339 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1340 		dynp->d_un.d_val);
1341 	    break;
1342 
1343 	case DT_VERNEEDNUM:
1344 	    obj->verneednum = dynp->d_un.d_val;
1345 	    break;
1346 
1347 	case DT_VERDEF:
1348 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1349 		dynp->d_un.d_val);
1350 	    break;
1351 
1352 	case DT_VERDEFNUM:
1353 	    obj->verdefnum = dynp->d_un.d_val;
1354 	    break;
1355 
1356 	case DT_VERSYM:
1357 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1358 		dynp->d_un.d_val);
1359 	    break;
1360 
1361 	case DT_HASH:
1362 	    {
1363 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1364 		    dynp->d_un.d_ptr);
1365 		obj->nbuckets = hashtab[0];
1366 		obj->nchains = hashtab[1];
1367 		obj->buckets = hashtab + 2;
1368 		obj->chains = obj->buckets + obj->nbuckets;
1369 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1370 		  obj->buckets != NULL;
1371 	    }
1372 	    break;
1373 
1374 	case DT_GNU_HASH:
1375 	    {
1376 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1377 		    dynp->d_un.d_ptr);
1378 		obj->nbuckets_gnu = hashtab[0];
1379 		obj->symndx_gnu = hashtab[1];
1380 		nmaskwords = hashtab[2];
1381 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1382 		obj->maskwords_bm_gnu = nmaskwords - 1;
1383 		obj->shift2_gnu = hashtab[3];
1384 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1385 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1386 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1387 		  obj->symndx_gnu;
1388 		/* Number of bitmask words is required to be power of 2 */
1389 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1390 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1391 	    }
1392 	    break;
1393 
1394 	case DT_NEEDED:
1395 	    if (!obj->rtld) {
1396 		Needed_Entry *nep = NEW(Needed_Entry);
1397 		nep->name = dynp->d_un.d_val;
1398 		nep->obj = NULL;
1399 		nep->next = NULL;
1400 
1401 		*needed_tail = nep;
1402 		needed_tail = &nep->next;
1403 	    }
1404 	    break;
1405 
1406 	case DT_FILTER:
1407 	    if (!obj->rtld) {
1408 		Needed_Entry *nep = NEW(Needed_Entry);
1409 		nep->name = dynp->d_un.d_val;
1410 		nep->obj = NULL;
1411 		nep->next = NULL;
1412 
1413 		*needed_filtees_tail = nep;
1414 		needed_filtees_tail = &nep->next;
1415 
1416 		if (obj->linkmap.l_refname == NULL)
1417 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1418 	    }
1419 	    break;
1420 
1421 	case DT_AUXILIARY:
1422 	    if (!obj->rtld) {
1423 		Needed_Entry *nep = NEW(Needed_Entry);
1424 		nep->name = dynp->d_un.d_val;
1425 		nep->obj = NULL;
1426 		nep->next = NULL;
1427 
1428 		*needed_aux_filtees_tail = nep;
1429 		needed_aux_filtees_tail = &nep->next;
1430 	    }
1431 	    break;
1432 
1433 	case DT_PLTGOT:
1434 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1435 	    break;
1436 
1437 	case DT_TEXTREL:
1438 	    obj->textrel = true;
1439 	    break;
1440 
1441 	case DT_SYMBOLIC:
1442 	    obj->symbolic = true;
1443 	    break;
1444 
1445 	case DT_RPATH:
1446 	    /*
1447 	     * We have to wait until later to process this, because we
1448 	     * might not have gotten the address of the string table yet.
1449 	     */
1450 	    *dyn_rpath = dynp;
1451 	    break;
1452 
1453 	case DT_SONAME:
1454 	    *dyn_soname = dynp;
1455 	    break;
1456 
1457 	case DT_RUNPATH:
1458 	    *dyn_runpath = dynp;
1459 	    break;
1460 
1461 	case DT_INIT:
1462 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1463 	    break;
1464 
1465 	case DT_PREINIT_ARRAY:
1466 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1467 	    break;
1468 
1469 	case DT_PREINIT_ARRAYSZ:
1470 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1471 	    break;
1472 
1473 	case DT_INIT_ARRAY:
1474 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1475 	    break;
1476 
1477 	case DT_INIT_ARRAYSZ:
1478 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1479 	    break;
1480 
1481 	case DT_FINI:
1482 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1483 	    break;
1484 
1485 	case DT_FINI_ARRAY:
1486 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1487 	    break;
1488 
1489 	case DT_FINI_ARRAYSZ:
1490 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1491 	    break;
1492 
1493 	case DT_DEBUG:
1494 	    if (!early)
1495 		dbg("Filling in DT_DEBUG entry");
1496 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1497 	    break;
1498 
1499 	case DT_FLAGS:
1500 		if (dynp->d_un.d_val & DF_ORIGIN)
1501 		    obj->z_origin = true;
1502 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1503 		    obj->symbolic = true;
1504 		if (dynp->d_un.d_val & DF_TEXTREL)
1505 		    obj->textrel = true;
1506 		if (dynp->d_un.d_val & DF_BIND_NOW)
1507 		    obj->bind_now = true;
1508 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1509 		    obj->static_tls = true;
1510 	    break;
1511 
1512 #ifdef __powerpc__
1513 #ifdef __powerpc64__
1514 	case DT_PPC64_GLINK:
1515 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1516 		break;
1517 #else
1518 	case DT_PPC_GOT:
1519 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1520 		break;
1521 #endif
1522 #endif
1523 
1524 	case DT_FLAGS_1:
1525 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1526 		    obj->z_noopen = true;
1527 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1528 		    obj->z_origin = true;
1529 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1530 		    obj->z_global = true;
1531 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1532 		    obj->bind_now = true;
1533 		if (dynp->d_un.d_val & DF_1_NODELETE)
1534 		    obj->z_nodelete = true;
1535 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1536 		    obj->z_loadfltr = true;
1537 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1538 		    obj->z_interpose = true;
1539 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1540 		    obj->z_nodeflib = true;
1541 		if (dynp->d_un.d_val & DF_1_PIE)
1542 		    obj->z_pie = true;
1543 	    break;
1544 
1545 	default:
1546 	    if (!early) {
1547 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1548 		    (long)dynp->d_tag);
1549 	    }
1550 	    break;
1551 	}
1552     }
1553 
1554     obj->traced = false;
1555 
1556     if (plttype == DT_RELA) {
1557 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1558 	obj->pltrel = NULL;
1559 	obj->pltrelasize = obj->pltrelsize;
1560 	obj->pltrelsize = 0;
1561     }
1562 
1563     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1564     if (obj->valid_hash_sysv)
1565 	obj->dynsymcount = obj->nchains;
1566     else if (obj->valid_hash_gnu) {
1567 	obj->dynsymcount = 0;
1568 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1569 	    if (obj->buckets_gnu[bkt] == 0)
1570 		continue;
1571 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1572 	    do
1573 		obj->dynsymcount++;
1574 	    while ((*hashval++ & 1u) == 0);
1575 	}
1576 	obj->dynsymcount += obj->symndx_gnu;
1577     }
1578 
1579     if (obj->linkmap.l_refname != NULL)
1580 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1581 	  linkmap.l_refname;
1582 }
1583 
1584 static bool
1585 obj_resolve_origin(Obj_Entry *obj)
1586 {
1587 
1588 	if (obj->origin_path != NULL)
1589 		return (true);
1590 	obj->origin_path = xmalloc(PATH_MAX);
1591 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1592 }
1593 
1594 static bool
1595 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1596     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1597 {
1598 
1599 	if (obj->z_origin && !obj_resolve_origin(obj))
1600 		return (false);
1601 
1602 	if (dyn_runpath != NULL) {
1603 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1604 		obj->runpath = origin_subst(obj, obj->runpath);
1605 	} else if (dyn_rpath != NULL) {
1606 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1607 		obj->rpath = origin_subst(obj, obj->rpath);
1608 	}
1609 	if (dyn_soname != NULL)
1610 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1611 	return (true);
1612 }
1613 
1614 static bool
1615 digest_dynamic(Obj_Entry *obj, int early)
1616 {
1617 	const Elf_Dyn *dyn_rpath;
1618 	const Elf_Dyn *dyn_soname;
1619 	const Elf_Dyn *dyn_runpath;
1620 
1621 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1622 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1623 }
1624 
1625 /*
1626  * Process a shared object's program header.  This is used only for the
1627  * main program, when the kernel has already loaded the main program
1628  * into memory before calling the dynamic linker.  It creates and
1629  * returns an Obj_Entry structure.
1630  */
1631 static Obj_Entry *
1632 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1633 {
1634     Obj_Entry *obj;
1635     const Elf_Phdr *phlimit = phdr + phnum;
1636     const Elf_Phdr *ph;
1637     Elf_Addr note_start, note_end;
1638     int nsegs = 0;
1639 
1640     obj = obj_new();
1641     for (ph = phdr;  ph < phlimit;  ph++) {
1642 	if (ph->p_type != PT_PHDR)
1643 	    continue;
1644 
1645 	obj->phdr = phdr;
1646 	obj->phsize = ph->p_memsz;
1647 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1648 	break;
1649     }
1650 
1651     obj->stack_flags = PF_X | PF_R | PF_W;
1652 
1653     for (ph = phdr;  ph < phlimit;  ph++) {
1654 	switch (ph->p_type) {
1655 
1656 	case PT_INTERP:
1657 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1658 	    break;
1659 
1660 	case PT_LOAD:
1661 	    if (nsegs == 0) {	/* First load segment */
1662 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1663 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1664 	    } else {		/* Last load segment */
1665 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1666 		  obj->vaddrbase;
1667 	    }
1668 	    nsegs++;
1669 	    break;
1670 
1671 	case PT_DYNAMIC:
1672 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1673 	    break;
1674 
1675 	case PT_TLS:
1676 	    obj->tlsindex = 1;
1677 	    obj->tlssize = ph->p_memsz;
1678 	    obj->tlsalign = ph->p_align;
1679 	    obj->tlsinitsize = ph->p_filesz;
1680 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1681 	    obj->tlspoffset = ph->p_offset;
1682 	    break;
1683 
1684 	case PT_GNU_STACK:
1685 	    obj->stack_flags = ph->p_flags;
1686 	    break;
1687 
1688 	case PT_GNU_RELRO:
1689 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1690 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1691 	      rtld_trunc_page(ph->p_vaddr);
1692 	    break;
1693 
1694 	case PT_NOTE:
1695 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1696 	    note_end = note_start + ph->p_filesz;
1697 	    digest_notes(obj, note_start, note_end);
1698 	    break;
1699 	}
1700     }
1701     if (nsegs < 1) {
1702 	_rtld_error("%s: too few PT_LOAD segments", path);
1703 	return (NULL);
1704     }
1705 
1706     obj->entry = entry;
1707     return (obj);
1708 }
1709 
1710 void
1711 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1712 {
1713 	const Elf_Note *note;
1714 	const char *note_name;
1715 	uintptr_t p;
1716 
1717 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1718 	    note = (const Elf_Note *)((const char *)(note + 1) +
1719 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1720 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1721 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1722 		    note->n_descsz != sizeof(int32_t))
1723 			continue;
1724 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1725 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1726 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1727 			continue;
1728 		note_name = (const char *)(note + 1);
1729 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1730 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1731 			continue;
1732 		switch (note->n_type) {
1733 		case NT_FREEBSD_ABI_TAG:
1734 			/* FreeBSD osrel note */
1735 			p = (uintptr_t)(note + 1);
1736 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1737 			obj->osrel = *(const int32_t *)(p);
1738 			dbg("note osrel %d", obj->osrel);
1739 			break;
1740 		case NT_FREEBSD_FEATURE_CTL:
1741 			/* FreeBSD ABI feature control note */
1742 			p = (uintptr_t)(note + 1);
1743 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1744 			obj->fctl0 = *(const uint32_t *)(p);
1745 			dbg("note fctl0 %#x", obj->fctl0);
1746 			break;
1747 		case NT_FREEBSD_NOINIT_TAG:
1748 			/* FreeBSD 'crt does not call init' note */
1749 			obj->crt_no_init = true;
1750 			dbg("note crt_no_init");
1751 			break;
1752 		}
1753 	}
1754 }
1755 
1756 static Obj_Entry *
1757 dlcheck(void *handle)
1758 {
1759     Obj_Entry *obj;
1760 
1761     TAILQ_FOREACH(obj, &obj_list, next) {
1762 	if (obj == (Obj_Entry *) handle)
1763 	    break;
1764     }
1765 
1766     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1767 	_rtld_error("Invalid shared object handle %p", handle);
1768 	return (NULL);
1769     }
1770     return (obj);
1771 }
1772 
1773 /*
1774  * If the given object is already in the donelist, return true.  Otherwise
1775  * add the object to the list and return false.
1776  */
1777 static bool
1778 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1779 {
1780     unsigned int i;
1781 
1782     for (i = 0;  i < dlp->num_used;  i++)
1783 	if (dlp->objs[i] == obj)
1784 	    return (true);
1785     /*
1786      * Our donelist allocation should always be sufficient.  But if
1787      * our threads locking isn't working properly, more shared objects
1788      * could have been loaded since we allocated the list.  That should
1789      * never happen, but we'll handle it properly just in case it does.
1790      */
1791     if (dlp->num_used < dlp->num_alloc)
1792 	dlp->objs[dlp->num_used++] = obj;
1793     return (false);
1794 }
1795 
1796 /*
1797  * Hash function for symbol table lookup.  Don't even think about changing
1798  * this.  It is specified by the System V ABI.
1799  */
1800 unsigned long
1801 elf_hash(const char *name)
1802 {
1803     const unsigned char *p = (const unsigned char *) name;
1804     unsigned long h = 0;
1805     unsigned long g;
1806 
1807     while (*p != '\0') {
1808 	h = (h << 4) + *p++;
1809 	if ((g = h & 0xf0000000) != 0)
1810 	    h ^= g >> 24;
1811 	h &= ~g;
1812     }
1813     return (h);
1814 }
1815 
1816 /*
1817  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1818  * unsigned in case it's implemented with a wider type.
1819  */
1820 static uint32_t
1821 gnu_hash(const char *s)
1822 {
1823 	uint32_t h;
1824 	unsigned char c;
1825 
1826 	h = 5381;
1827 	for (c = *s; c != '\0'; c = *++s)
1828 		h = h * 33 + c;
1829 	return (h & 0xffffffff);
1830 }
1831 
1832 
1833 /*
1834  * Find the library with the given name, and return its full pathname.
1835  * The returned string is dynamically allocated.  Generates an error
1836  * message and returns NULL if the library cannot be found.
1837  *
1838  * If the second argument is non-NULL, then it refers to an already-
1839  * loaded shared object, whose library search path will be searched.
1840  *
1841  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1842  * descriptor (which is close-on-exec) will be passed out via the third
1843  * argument.
1844  *
1845  * The search order is:
1846  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1847  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1848  *   LD_LIBRARY_PATH
1849  *   DT_RUNPATH in the referencing file
1850  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1851  *	 from list)
1852  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1853  *
1854  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1855  */
1856 static char *
1857 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1858 {
1859 	char *pathname, *refobj_path;
1860 	const char *name;
1861 	bool nodeflib, objgiven;
1862 
1863 	objgiven = refobj != NULL;
1864 
1865 	if (libmap_disable || !objgiven ||
1866 	    (name = lm_find(refobj->path, xname)) == NULL)
1867 		name = xname;
1868 
1869 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1870 		if (name[0] != '/' && !trust) {
1871 			_rtld_error("Absolute pathname required "
1872 			    "for shared object \"%s\"", name);
1873 			return (NULL);
1874 		}
1875 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1876 		    __DECONST(char *, name)));
1877 	}
1878 
1879 	dbg(" Searching for \"%s\"", name);
1880 	refobj_path = objgiven ? refobj->path : NULL;
1881 
1882 	/*
1883 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1884 	 * back to pre-conforming behaviour if user requested so with
1885 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1886 	 * nodeflib.
1887 	 */
1888 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1889 		pathname = search_library_path(name, ld_library_path,
1890 		    refobj_path, fdp);
1891 		if (pathname != NULL)
1892 			return (pathname);
1893 		if (refobj != NULL) {
1894 			pathname = search_library_path(name, refobj->rpath,
1895 			    refobj_path, fdp);
1896 			if (pathname != NULL)
1897 				return (pathname);
1898 		}
1899 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1900 		if (pathname != NULL)
1901 			return (pathname);
1902 		pathname = search_library_path(name, gethints(false),
1903 		    refobj_path, fdp);
1904 		if (pathname != NULL)
1905 			return (pathname);
1906 		pathname = search_library_path(name, ld_standard_library_path,
1907 		    refobj_path, fdp);
1908 		if (pathname != NULL)
1909 			return (pathname);
1910 	} else {
1911 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1912 		if (objgiven) {
1913 			pathname = search_library_path(name, refobj->rpath,
1914 			    refobj->path, fdp);
1915 			if (pathname != NULL)
1916 				return (pathname);
1917 		}
1918 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1919 			pathname = search_library_path(name, obj_main->rpath,
1920 			    refobj_path, fdp);
1921 			if (pathname != NULL)
1922 				return (pathname);
1923 		}
1924 		pathname = search_library_path(name, ld_library_path,
1925 		    refobj_path, fdp);
1926 		if (pathname != NULL)
1927 			return (pathname);
1928 		if (objgiven) {
1929 			pathname = search_library_path(name, refobj->runpath,
1930 			    refobj_path, fdp);
1931 			if (pathname != NULL)
1932 				return (pathname);
1933 		}
1934 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1935 		if (pathname != NULL)
1936 			return (pathname);
1937 		pathname = search_library_path(name, gethints(nodeflib),
1938 		    refobj_path, fdp);
1939 		if (pathname != NULL)
1940 			return (pathname);
1941 		if (objgiven && !nodeflib) {
1942 			pathname = search_library_path(name,
1943 			    ld_standard_library_path, refobj_path, fdp);
1944 			if (pathname != NULL)
1945 				return (pathname);
1946 		}
1947 	}
1948 
1949 	if (objgiven && refobj->path != NULL) {
1950 		_rtld_error("Shared object \"%s\" not found, "
1951 		    "required by \"%s\"", name, basename(refobj->path));
1952 	} else {
1953 		_rtld_error("Shared object \"%s\" not found", name);
1954 	}
1955 	return (NULL);
1956 }
1957 
1958 /*
1959  * Given a symbol number in a referencing object, find the corresponding
1960  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1961  * no definition was found.  Returns a pointer to the Obj_Entry of the
1962  * defining object via the reference parameter DEFOBJ_OUT.
1963  */
1964 const Elf_Sym *
1965 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1966     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1967     RtldLockState *lockstate)
1968 {
1969     const Elf_Sym *ref;
1970     const Elf_Sym *def;
1971     const Obj_Entry *defobj;
1972     const Ver_Entry *ve;
1973     SymLook req;
1974     const char *name;
1975     int res;
1976 
1977     /*
1978      * If we have already found this symbol, get the information from
1979      * the cache.
1980      */
1981     if (symnum >= refobj->dynsymcount)
1982 	return (NULL);	/* Bad object */
1983     if (cache != NULL && cache[symnum].sym != NULL) {
1984 	*defobj_out = cache[symnum].obj;
1985 	return (cache[symnum].sym);
1986     }
1987 
1988     ref = refobj->symtab + symnum;
1989     name = refobj->strtab + ref->st_name;
1990     def = NULL;
1991     defobj = NULL;
1992     ve = NULL;
1993 
1994     /*
1995      * We don't have to do a full scale lookup if the symbol is local.
1996      * We know it will bind to the instance in this load module; to
1997      * which we already have a pointer (ie ref). By not doing a lookup,
1998      * we not only improve performance, but it also avoids unresolvable
1999      * symbols when local symbols are not in the hash table. This has
2000      * been seen with the ia64 toolchain.
2001      */
2002     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2003 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2004 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2005 		symnum);
2006 	}
2007 	symlook_init(&req, name);
2008 	req.flags = flags;
2009 	ve = req.ventry = fetch_ventry(refobj, symnum);
2010 	req.lockstate = lockstate;
2011 	res = symlook_default(&req, refobj);
2012 	if (res == 0) {
2013 	    def = req.sym_out;
2014 	    defobj = req.defobj_out;
2015 	}
2016     } else {
2017 	def = ref;
2018 	defobj = refobj;
2019     }
2020 
2021     /*
2022      * If we found no definition and the reference is weak, treat the
2023      * symbol as having the value zero.
2024      */
2025     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2026 	def = &sym_zero;
2027 	defobj = obj_main;
2028     }
2029 
2030     if (def != NULL) {
2031 	*defobj_out = defobj;
2032 	/* Record the information in the cache to avoid subsequent lookups. */
2033 	if (cache != NULL) {
2034 	    cache[symnum].sym = def;
2035 	    cache[symnum].obj = defobj;
2036 	}
2037     } else {
2038 	if (refobj != &obj_rtld)
2039 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2040 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2041     }
2042     return (def);
2043 }
2044 
2045 /*
2046  * Return the search path from the ldconfig hints file, reading it if
2047  * necessary.  If nostdlib is true, then the default search paths are
2048  * not added to result.
2049  *
2050  * Returns NULL if there are problems with the hints file,
2051  * or if the search path there is empty.
2052  */
2053 static const char *
2054 gethints(bool nostdlib)
2055 {
2056 	static char *filtered_path;
2057 	static const char *hints;
2058 	static struct elfhints_hdr hdr;
2059 	struct fill_search_info_args sargs, hargs;
2060 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2061 	struct dl_serpath *SLPpath, *hintpath;
2062 	char *p;
2063 	struct stat hint_stat;
2064 	unsigned int SLPndx, hintndx, fndx, fcount;
2065 	int fd;
2066 	size_t flen;
2067 	uint32_t dl;
2068 	bool skip;
2069 
2070 	/* First call, read the hints file */
2071 	if (hints == NULL) {
2072 		/* Keep from trying again in case the hints file is bad. */
2073 		hints = "";
2074 
2075 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2076 			return (NULL);
2077 
2078 		/*
2079 		 * Check of hdr.dirlistlen value against type limit
2080 		 * intends to pacify static analyzers.  Further
2081 		 * paranoia leads to checks that dirlist is fully
2082 		 * contained in the file range.
2083 		 */
2084 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2085 		    hdr.magic != ELFHINTS_MAGIC ||
2086 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2087 		    fstat(fd, &hint_stat) == -1) {
2088 cleanup1:
2089 			close(fd);
2090 			hdr.dirlistlen = 0;
2091 			return (NULL);
2092 		}
2093 		dl = hdr.strtab;
2094 		if (dl + hdr.dirlist < dl)
2095 			goto cleanup1;
2096 		dl += hdr.dirlist;
2097 		if (dl + hdr.dirlistlen < dl)
2098 			goto cleanup1;
2099 		dl += hdr.dirlistlen;
2100 		if (dl > hint_stat.st_size)
2101 			goto cleanup1;
2102 		p = xmalloc(hdr.dirlistlen + 1);
2103 		if (pread(fd, p, hdr.dirlistlen + 1,
2104 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2105 		    p[hdr.dirlistlen] != '\0') {
2106 			free(p);
2107 			goto cleanup1;
2108 		}
2109 		hints = p;
2110 		close(fd);
2111 	}
2112 
2113 	/*
2114 	 * If caller agreed to receive list which includes the default
2115 	 * paths, we are done. Otherwise, if we still did not
2116 	 * calculated filtered result, do it now.
2117 	 */
2118 	if (!nostdlib)
2119 		return (hints[0] != '\0' ? hints : NULL);
2120 	if (filtered_path != NULL)
2121 		goto filt_ret;
2122 
2123 	/*
2124 	 * Obtain the list of all configured search paths, and the
2125 	 * list of the default paths.
2126 	 *
2127 	 * First estimate the size of the results.
2128 	 */
2129 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2130 	smeta.dls_cnt = 0;
2131 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2132 	hmeta.dls_cnt = 0;
2133 
2134 	sargs.request = RTLD_DI_SERINFOSIZE;
2135 	sargs.serinfo = &smeta;
2136 	hargs.request = RTLD_DI_SERINFOSIZE;
2137 	hargs.serinfo = &hmeta;
2138 
2139 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2140 	    &sargs);
2141 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2142 
2143 	SLPinfo = xmalloc(smeta.dls_size);
2144 	hintinfo = xmalloc(hmeta.dls_size);
2145 
2146 	/*
2147 	 * Next fetch both sets of paths.
2148 	 */
2149 	sargs.request = RTLD_DI_SERINFO;
2150 	sargs.serinfo = SLPinfo;
2151 	sargs.serpath = &SLPinfo->dls_serpath[0];
2152 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2153 
2154 	hargs.request = RTLD_DI_SERINFO;
2155 	hargs.serinfo = hintinfo;
2156 	hargs.serpath = &hintinfo->dls_serpath[0];
2157 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2158 
2159 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2160 	    &sargs);
2161 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2162 
2163 	/*
2164 	 * Now calculate the difference between two sets, by excluding
2165 	 * standard paths from the full set.
2166 	 */
2167 	fndx = 0;
2168 	fcount = 0;
2169 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2170 	hintpath = &hintinfo->dls_serpath[0];
2171 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2172 		skip = false;
2173 		SLPpath = &SLPinfo->dls_serpath[0];
2174 		/*
2175 		 * Check each standard path against current.
2176 		 */
2177 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2178 			/* matched, skip the path */
2179 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2180 				skip = true;
2181 				break;
2182 			}
2183 		}
2184 		if (skip)
2185 			continue;
2186 		/*
2187 		 * Not matched against any standard path, add the path
2188 		 * to result. Separate consequtive paths with ':'.
2189 		 */
2190 		if (fcount > 0) {
2191 			filtered_path[fndx] = ':';
2192 			fndx++;
2193 		}
2194 		fcount++;
2195 		flen = strlen(hintpath->dls_name);
2196 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2197 		fndx += flen;
2198 	}
2199 	filtered_path[fndx] = '\0';
2200 
2201 	free(SLPinfo);
2202 	free(hintinfo);
2203 
2204 filt_ret:
2205 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2206 }
2207 
2208 static void
2209 init_dag(Obj_Entry *root)
2210 {
2211     const Needed_Entry *needed;
2212     const Objlist_Entry *elm;
2213     DoneList donelist;
2214 
2215     if (root->dag_inited)
2216 	return;
2217     donelist_init(&donelist);
2218 
2219     /* Root object belongs to own DAG. */
2220     objlist_push_tail(&root->dldags, root);
2221     objlist_push_tail(&root->dagmembers, root);
2222     donelist_check(&donelist, root);
2223 
2224     /*
2225      * Add dependencies of root object to DAG in breadth order
2226      * by exploiting the fact that each new object get added
2227      * to the tail of the dagmembers list.
2228      */
2229     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2230 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2231 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2232 		continue;
2233 	    objlist_push_tail(&needed->obj->dldags, root);
2234 	    objlist_push_tail(&root->dagmembers, needed->obj);
2235 	}
2236     }
2237     root->dag_inited = true;
2238 }
2239 
2240 static void
2241 init_marker(Obj_Entry *marker)
2242 {
2243 
2244 	bzero(marker, sizeof(*marker));
2245 	marker->marker = true;
2246 }
2247 
2248 Obj_Entry *
2249 globallist_curr(const Obj_Entry *obj)
2250 {
2251 
2252 	for (;;) {
2253 		if (obj == NULL)
2254 			return (NULL);
2255 		if (!obj->marker)
2256 			return (__DECONST(Obj_Entry *, obj));
2257 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2258 	}
2259 }
2260 
2261 Obj_Entry *
2262 globallist_next(const Obj_Entry *obj)
2263 {
2264 
2265 	for (;;) {
2266 		obj = TAILQ_NEXT(obj, next);
2267 		if (obj == NULL)
2268 			return (NULL);
2269 		if (!obj->marker)
2270 			return (__DECONST(Obj_Entry *, obj));
2271 	}
2272 }
2273 
2274 /* Prevent the object from being unmapped while the bind lock is dropped. */
2275 static void
2276 hold_object(Obj_Entry *obj)
2277 {
2278 
2279 	obj->holdcount++;
2280 }
2281 
2282 static void
2283 unhold_object(Obj_Entry *obj)
2284 {
2285 
2286 	assert(obj->holdcount > 0);
2287 	if (--obj->holdcount == 0 && obj->unholdfree)
2288 		release_object(obj);
2289 }
2290 
2291 static void
2292 process_z(Obj_Entry *root)
2293 {
2294 	const Objlist_Entry *elm;
2295 	Obj_Entry *obj;
2296 
2297 	/*
2298 	 * Walk over object DAG and process every dependent object
2299 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2300 	 * to grow their own DAG.
2301 	 *
2302 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2303 	 * symlook_global() to work.
2304 	 *
2305 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2306 	 */
2307 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2308 		obj = elm->obj;
2309 		if (obj == NULL)
2310 			continue;
2311 		if (obj->z_nodelete && !obj->ref_nodel) {
2312 			dbg("obj %s -z nodelete", obj->path);
2313 			init_dag(obj);
2314 			ref_dag(obj);
2315 			obj->ref_nodel = true;
2316 		}
2317 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2318 			dbg("obj %s -z global", obj->path);
2319 			objlist_push_tail(&list_global, obj);
2320 			init_dag(obj);
2321 		}
2322 	}
2323 }
2324 
2325 static void
2326 parse_rtld_phdr(Obj_Entry *obj)
2327 {
2328 	const Elf_Phdr *ph;
2329 	Elf_Addr note_start, note_end;
2330 
2331 	obj->stack_flags = PF_X | PF_R | PF_W;
2332 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2333 	    obj->phsize; ph++) {
2334 		switch (ph->p_type) {
2335 		case PT_GNU_STACK:
2336 			obj->stack_flags = ph->p_flags;
2337 			break;
2338 		case PT_GNU_RELRO:
2339 			obj->relro_page = obj->relocbase +
2340 			    rtld_trunc_page(ph->p_vaddr);
2341 			obj->relro_size = rtld_round_page(ph->p_memsz);
2342 			break;
2343 		case PT_NOTE:
2344 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2345 			note_end = note_start + ph->p_filesz;
2346 			digest_notes(obj, note_start, note_end);
2347 			break;
2348 		}
2349 	}
2350 }
2351 
2352 /*
2353  * Initialize the dynamic linker.  The argument is the address at which
2354  * the dynamic linker has been mapped into memory.  The primary task of
2355  * this function is to relocate the dynamic linker.
2356  */
2357 static void
2358 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2359 {
2360     Obj_Entry objtmp;	/* Temporary rtld object */
2361     const Elf_Ehdr *ehdr;
2362     const Elf_Dyn *dyn_rpath;
2363     const Elf_Dyn *dyn_soname;
2364     const Elf_Dyn *dyn_runpath;
2365 
2366 #ifdef RTLD_INIT_PAGESIZES_EARLY
2367     /* The page size is required by the dynamic memory allocator. */
2368     init_pagesizes(aux_info);
2369 #endif
2370 
2371     /*
2372      * Conjure up an Obj_Entry structure for the dynamic linker.
2373      *
2374      * The "path" member can't be initialized yet because string constants
2375      * cannot yet be accessed. Below we will set it correctly.
2376      */
2377     memset(&objtmp, 0, sizeof(objtmp));
2378     objtmp.path = NULL;
2379     objtmp.rtld = true;
2380     objtmp.mapbase = mapbase;
2381 #ifdef PIC
2382     objtmp.relocbase = mapbase;
2383 #endif
2384 
2385     objtmp.dynamic = rtld_dynamic(&objtmp);
2386     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2387     assert(objtmp.needed == NULL);
2388     assert(!objtmp.textrel);
2389     /*
2390      * Temporarily put the dynamic linker entry into the object list, so
2391      * that symbols can be found.
2392      */
2393     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2394 
2395     ehdr = (Elf_Ehdr *)mapbase;
2396     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2397     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2398 
2399     /* Initialize the object list. */
2400     TAILQ_INIT(&obj_list);
2401 
2402     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2403     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2404 
2405 #ifndef RTLD_INIT_PAGESIZES_EARLY
2406     /* The page size is required by the dynamic memory allocator. */
2407     init_pagesizes(aux_info);
2408 #endif
2409 
2410     if (aux_info[AT_OSRELDATE] != NULL)
2411 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2412 
2413     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2414 
2415     /* Replace the path with a dynamically allocated copy. */
2416     obj_rtld.path = xstrdup(ld_path_rtld);
2417 
2418     parse_rtld_phdr(&obj_rtld);
2419     if (obj_enforce_relro(&obj_rtld) == -1)
2420 	rtld_die();
2421 
2422     r_debug.r_version = R_DEBUG_VERSION;
2423     r_debug.r_brk = r_debug_state;
2424     r_debug.r_state = RT_CONSISTENT;
2425     r_debug.r_ldbase = obj_rtld.relocbase;
2426 }
2427 
2428 /*
2429  * Retrieve the array of supported page sizes.  The kernel provides the page
2430  * sizes in increasing order.
2431  */
2432 static void
2433 init_pagesizes(Elf_Auxinfo **aux_info)
2434 {
2435 	static size_t psa[MAXPAGESIZES];
2436 	int mib[2];
2437 	size_t len, size;
2438 
2439 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2440 	    NULL) {
2441 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2442 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2443 	} else {
2444 		len = 2;
2445 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2446 			size = sizeof(psa);
2447 		else {
2448 			/* As a fallback, retrieve the base page size. */
2449 			size = sizeof(psa[0]);
2450 			if (aux_info[AT_PAGESZ] != NULL) {
2451 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2452 				goto psa_filled;
2453 			} else {
2454 				mib[0] = CTL_HW;
2455 				mib[1] = HW_PAGESIZE;
2456 				len = 2;
2457 			}
2458 		}
2459 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2460 			_rtld_error("sysctl for hw.pagesize(s) failed");
2461 			rtld_die();
2462 		}
2463 psa_filled:
2464 		pagesizes = psa;
2465 	}
2466 	npagesizes = size / sizeof(pagesizes[0]);
2467 	/* Discard any invalid entries at the end of the array. */
2468 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2469 		npagesizes--;
2470 
2471 	page_size = pagesizes[0];
2472 }
2473 
2474 /*
2475  * Add the init functions from a needed object list (and its recursive
2476  * needed objects) to "list".  This is not used directly; it is a helper
2477  * function for initlist_add_objects().  The write lock must be held
2478  * when this function is called.
2479  */
2480 static void
2481 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2482 {
2483     /* Recursively process the successor needed objects. */
2484     if (needed->next != NULL)
2485 	initlist_add_neededs(needed->next, list);
2486 
2487     /* Process the current needed object. */
2488     if (needed->obj != NULL)
2489 	initlist_add_objects(needed->obj, needed->obj, list);
2490 }
2491 
2492 /*
2493  * Scan all of the DAGs rooted in the range of objects from "obj" to
2494  * "tail" and add their init functions to "list".  This recurses over
2495  * the DAGs and ensure the proper init ordering such that each object's
2496  * needed libraries are initialized before the object itself.  At the
2497  * same time, this function adds the objects to the global finalization
2498  * list "list_fini" in the opposite order.  The write lock must be
2499  * held when this function is called.
2500  */
2501 static void
2502 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2503 {
2504     Obj_Entry *nobj;
2505 
2506     if (obj->init_scanned || obj->init_done)
2507 	return;
2508     obj->init_scanned = true;
2509 
2510     /* Recursively process the successor objects. */
2511     nobj = globallist_next(obj);
2512     if (nobj != NULL && obj != tail)
2513 	initlist_add_objects(nobj, tail, list);
2514 
2515     /* Recursively process the needed objects. */
2516     if (obj->needed != NULL)
2517 	initlist_add_neededs(obj->needed, list);
2518     if (obj->needed_filtees != NULL)
2519 	initlist_add_neededs(obj->needed_filtees, list);
2520     if (obj->needed_aux_filtees != NULL)
2521 	initlist_add_neededs(obj->needed_aux_filtees, list);
2522 
2523     /* Add the object to the init list. */
2524     objlist_push_tail(list, obj);
2525 
2526     /* Add the object to the global fini list in the reverse order. */
2527     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2528       && !obj->on_fini_list) {
2529 	objlist_push_head(&list_fini, obj);
2530 	obj->on_fini_list = true;
2531     }
2532 }
2533 
2534 #ifndef FPTR_TARGET
2535 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2536 #endif
2537 
2538 static void
2539 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2540 {
2541     Needed_Entry *needed, *needed1;
2542 
2543     for (needed = n; needed != NULL; needed = needed->next) {
2544 	if (needed->obj != NULL) {
2545 	    dlclose_locked(needed->obj, lockstate);
2546 	    needed->obj = NULL;
2547 	}
2548     }
2549     for (needed = n; needed != NULL; needed = needed1) {
2550 	needed1 = needed->next;
2551 	free(needed);
2552     }
2553 }
2554 
2555 static void
2556 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2557 {
2558 
2559 	free_needed_filtees(obj->needed_filtees, lockstate);
2560 	obj->needed_filtees = NULL;
2561 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2562 	obj->needed_aux_filtees = NULL;
2563 	obj->filtees_loaded = false;
2564 }
2565 
2566 static void
2567 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2568     RtldLockState *lockstate)
2569 {
2570 
2571     for (; needed != NULL; needed = needed->next) {
2572 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2573 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2574 	  RTLD_LOCAL, lockstate);
2575     }
2576 }
2577 
2578 static void
2579 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2580 {
2581 
2582     lock_restart_for_upgrade(lockstate);
2583     if (!obj->filtees_loaded) {
2584 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2585 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2586 	obj->filtees_loaded = true;
2587     }
2588 }
2589 
2590 static int
2591 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2592 {
2593     Obj_Entry *obj1;
2594 
2595     for (; needed != NULL; needed = needed->next) {
2596 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2597 	  flags & ~RTLD_LO_NOLOAD);
2598 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2599 	    return (-1);
2600     }
2601     return (0);
2602 }
2603 
2604 /*
2605  * Given a shared object, traverse its list of needed objects, and load
2606  * each of them.  Returns 0 on success.  Generates an error message and
2607  * returns -1 on failure.
2608  */
2609 static int
2610 load_needed_objects(Obj_Entry *first, int flags)
2611 {
2612     Obj_Entry *obj;
2613 
2614     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2615 	if (obj->marker)
2616 	    continue;
2617 	if (process_needed(obj, obj->needed, flags) == -1)
2618 	    return (-1);
2619     }
2620     return (0);
2621 }
2622 
2623 static int
2624 load_preload_objects(const char *penv, bool isfd)
2625 {
2626 	Obj_Entry *obj;
2627 	const char *name;
2628 	size_t len;
2629 	char savech, *p, *psave;
2630 	int fd;
2631 	static const char delim[] = " \t:;";
2632 
2633 	if (penv == NULL)
2634 		return (0);
2635 
2636 	p = psave = xstrdup(penv);
2637 	p += strspn(p, delim);
2638 	while (*p != '\0') {
2639 		len = strcspn(p, delim);
2640 
2641 		savech = p[len];
2642 		p[len] = '\0';
2643 		if (isfd) {
2644 			name = NULL;
2645 			fd = parse_integer(p);
2646 			if (fd == -1) {
2647 				free(psave);
2648 				return (-1);
2649 			}
2650 		} else {
2651 			name = p;
2652 			fd = -1;
2653 		}
2654 
2655 		obj = load_object(name, fd, NULL, 0);
2656 		if (obj == NULL) {
2657 			free(psave);
2658 			return (-1);	/* XXX - cleanup */
2659 		}
2660 		obj->z_interpose = true;
2661 		p[len] = savech;
2662 		p += len;
2663 		p += strspn(p, delim);
2664 	}
2665 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2666 
2667 	free(psave);
2668 	return (0);
2669 }
2670 
2671 static const char *
2672 printable_path(const char *path)
2673 {
2674 
2675 	return (path == NULL ? "<unknown>" : path);
2676 }
2677 
2678 /*
2679  * Load a shared object into memory, if it is not already loaded.  The
2680  * object may be specified by name or by user-supplied file descriptor
2681  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2682  * duplicate is.
2683  *
2684  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2685  * on failure.
2686  */
2687 static Obj_Entry *
2688 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2689 {
2690     Obj_Entry *obj;
2691     int fd;
2692     struct stat sb;
2693     char *path;
2694 
2695     fd = -1;
2696     if (name != NULL) {
2697 	TAILQ_FOREACH(obj, &obj_list, next) {
2698 	    if (obj->marker || obj->doomed)
2699 		continue;
2700 	    if (object_match_name(obj, name))
2701 		return (obj);
2702 	}
2703 
2704 	path = find_library(name, refobj, &fd);
2705 	if (path == NULL)
2706 	    return (NULL);
2707     } else
2708 	path = NULL;
2709 
2710     if (fd >= 0) {
2711 	/*
2712 	 * search_library_pathfds() opens a fresh file descriptor for the
2713 	 * library, so there is no need to dup().
2714 	 */
2715     } else if (fd_u == -1) {
2716 	/*
2717 	 * If we didn't find a match by pathname, or the name is not
2718 	 * supplied, open the file and check again by device and inode.
2719 	 * This avoids false mismatches caused by multiple links or ".."
2720 	 * in pathnames.
2721 	 *
2722 	 * To avoid a race, we open the file and use fstat() rather than
2723 	 * using stat().
2724 	 */
2725 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2726 	    _rtld_error("Cannot open \"%s\"", path);
2727 	    free(path);
2728 	    return (NULL);
2729 	}
2730     } else {
2731 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2732 	if (fd == -1) {
2733 	    _rtld_error("Cannot dup fd");
2734 	    free(path);
2735 	    return (NULL);
2736 	}
2737     }
2738     if (fstat(fd, &sb) == -1) {
2739 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2740 	close(fd);
2741 	free(path);
2742 	return (NULL);
2743     }
2744     TAILQ_FOREACH(obj, &obj_list, next) {
2745 	if (obj->marker || obj->doomed)
2746 	    continue;
2747 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2748 	    break;
2749     }
2750     if (obj != NULL && name != NULL) {
2751 	object_add_name(obj, name);
2752 	free(path);
2753 	close(fd);
2754 	return (obj);
2755     }
2756     if (flags & RTLD_LO_NOLOAD) {
2757 	free(path);
2758 	close(fd);
2759 	return (NULL);
2760     }
2761 
2762     /* First use of this object, so we must map it in */
2763     obj = do_load_object(fd, name, path, &sb, flags);
2764     if (obj == NULL)
2765 	free(path);
2766     close(fd);
2767 
2768     return (obj);
2769 }
2770 
2771 static Obj_Entry *
2772 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2773   int flags)
2774 {
2775     Obj_Entry *obj;
2776     struct statfs fs;
2777 
2778     /*
2779      * First, make sure that environment variables haven't been
2780      * used to circumvent the noexec flag on a filesystem.
2781      * We ignore fstatfs(2) failures, since fd might reference
2782      * not a file, e.g. shmfd.
2783      */
2784     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2785 	(fs.f_flags & MNT_NOEXEC) != 0) {
2786 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2787 	    return (NULL);
2788     }
2789 
2790     dbg("loading \"%s\"", printable_path(path));
2791     obj = map_object(fd, printable_path(path), sbp);
2792     if (obj == NULL)
2793         return (NULL);
2794 
2795     /*
2796      * If DT_SONAME is present in the object, digest_dynamic2 already
2797      * added it to the object names.
2798      */
2799     if (name != NULL)
2800 	object_add_name(obj, name);
2801     obj->path = path;
2802     if (!digest_dynamic(obj, 0))
2803 	goto errp;
2804     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2805 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2806     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2807 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2808 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2809 	goto errp;
2810     }
2811     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2812       RTLD_LO_DLOPEN) {
2813 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2814 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2815 	goto errp;
2816     }
2817 
2818     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2819     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2820     obj_count++;
2821     obj_loads++;
2822     linkmap_add(obj);	/* for GDB & dlinfo() */
2823     max_stack_flags |= obj->stack_flags;
2824 
2825     dbg("  %p .. %p: %s", obj->mapbase,
2826          obj->mapbase + obj->mapsize - 1, obj->path);
2827     if (obj->textrel)
2828 	dbg("  WARNING: %s has impure text", obj->path);
2829     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2830 	obj->path);
2831 
2832     return (obj);
2833 
2834 errp:
2835     munmap(obj->mapbase, obj->mapsize);
2836     obj_free(obj);
2837     return (NULL);
2838 }
2839 
2840 static int
2841 load_kpreload(const void *addr)
2842 {
2843 	Obj_Entry *obj;
2844 	const Elf_Ehdr *ehdr;
2845 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2846 	static const char kname[] = "[vdso]";
2847 
2848 	ehdr = addr;
2849 	if (!check_elf_headers(ehdr, "kpreload"))
2850 		return (-1);
2851 	obj = obj_new();
2852 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2853 	obj->phdr = phdr;
2854 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2855 	phlimit = phdr + ehdr->e_phnum;
2856 	seg0 = segn = NULL;
2857 
2858 	for (; phdr < phlimit; phdr++) {
2859 		switch (phdr->p_type) {
2860 		case PT_DYNAMIC:
2861 			phdyn = phdr;
2862 			break;
2863 		case PT_GNU_STACK:
2864 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2865 			obj->stack_flags = phdr->p_flags;
2866 			break;
2867 		case PT_LOAD:
2868 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2869 				seg0 = phdr;
2870 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2871 			    phdr->p_vaddr + phdr->p_memsz)
2872 				segn = phdr;
2873 			break;
2874 		}
2875 	}
2876 
2877 	obj->mapbase = __DECONST(caddr_t, addr);
2878 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2879 	obj->vaddrbase = 0;
2880 	obj->relocbase = obj->mapbase;
2881 
2882 	object_add_name(obj, kname);
2883 	obj->path = xstrdup(kname);
2884 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2885 
2886 	if (!digest_dynamic(obj, 0)) {
2887 		obj_free(obj);
2888 		return (-1);
2889 	}
2890 
2891 	/*
2892 	 * We assume that kernel-preloaded object does not need
2893 	 * relocation.  It is currently written into read-only page,
2894 	 * handling relocations would mean we need to allocate at
2895 	 * least one additional page per AS.
2896 	 */
2897 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2898 	    obj->path, obj->mapbase, obj->phdr, seg0,
2899 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2900 
2901 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2902 	obj_count++;
2903 	obj_loads++;
2904 	linkmap_add(obj);	/* for GDB & dlinfo() */
2905 	max_stack_flags |= obj->stack_flags;
2906 
2907 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2908 	return (0);
2909 }
2910 
2911 Obj_Entry *
2912 obj_from_addr(const void *addr)
2913 {
2914     Obj_Entry *obj;
2915 
2916     TAILQ_FOREACH(obj, &obj_list, next) {
2917 	if (obj->marker)
2918 	    continue;
2919 	if (addr < (void *) obj->mapbase)
2920 	    continue;
2921 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2922 	    return obj;
2923     }
2924     return (NULL);
2925 }
2926 
2927 static void
2928 preinit_main(void)
2929 {
2930     Elf_Addr *preinit_addr;
2931     int index;
2932 
2933     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2934     if (preinit_addr == NULL)
2935 	return;
2936 
2937     for (index = 0; index < obj_main->preinit_array_num; index++) {
2938 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2939 	    dbg("calling preinit function for %s at %p", obj_main->path,
2940 	      (void *)preinit_addr[index]);
2941 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2942 	      0, 0, obj_main->path);
2943 	    call_init_pointer(obj_main, preinit_addr[index]);
2944 	}
2945     }
2946 }
2947 
2948 /*
2949  * Call the finalization functions for each of the objects in "list"
2950  * belonging to the DAG of "root" and referenced once. If NULL "root"
2951  * is specified, every finalization function will be called regardless
2952  * of the reference count and the list elements won't be freed. All of
2953  * the objects are expected to have non-NULL fini functions.
2954  */
2955 static void
2956 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2957 {
2958     Objlist_Entry *elm;
2959     struct dlerror_save *saved_msg;
2960     Elf_Addr *fini_addr;
2961     int index;
2962 
2963     assert(root == NULL || root->refcount == 1);
2964 
2965     if (root != NULL)
2966 	root->doomed = true;
2967 
2968     /*
2969      * Preserve the current error message since a fini function might
2970      * call into the dynamic linker and overwrite it.
2971      */
2972     saved_msg = errmsg_save();
2973     do {
2974 	STAILQ_FOREACH(elm, list, link) {
2975 	    if (root != NULL && (elm->obj->refcount != 1 ||
2976 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2977 		continue;
2978 	    /* Remove object from fini list to prevent recursive invocation. */
2979 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2980 	    /* Ensure that new references cannot be acquired. */
2981 	    elm->obj->doomed = true;
2982 
2983 	    hold_object(elm->obj);
2984 	    lock_release(rtld_bind_lock, lockstate);
2985 	    /*
2986 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2987 	     * When this happens, DT_FINI_ARRAY is processed first.
2988 	     */
2989 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2990 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2991 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2992 		  index--) {
2993 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2994 			dbg("calling fini function for %s at %p",
2995 			    elm->obj->path, (void *)fini_addr[index]);
2996 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2997 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2998 			call_initfini_pointer(elm->obj, fini_addr[index]);
2999 		    }
3000 		}
3001 	    }
3002 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3003 		dbg("calling fini function for %s at %p", elm->obj->path,
3004 		    (void *)elm->obj->fini);
3005 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3006 		    0, 0, elm->obj->path);
3007 		call_initfini_pointer(elm->obj, elm->obj->fini);
3008 	    }
3009 	    wlock_acquire(rtld_bind_lock, lockstate);
3010 	    unhold_object(elm->obj);
3011 	    /* No need to free anything if process is going down. */
3012 	    if (root != NULL)
3013 	    	free(elm);
3014 	    /*
3015 	     * We must restart the list traversal after every fini call
3016 	     * because a dlclose() call from the fini function or from
3017 	     * another thread might have modified the reference counts.
3018 	     */
3019 	    break;
3020 	}
3021     } while (elm != NULL);
3022     errmsg_restore(saved_msg);
3023 }
3024 
3025 /*
3026  * Call the initialization functions for each of the objects in
3027  * "list".  All of the objects are expected to have non-NULL init
3028  * functions.
3029  */
3030 static void
3031 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3032 {
3033     Objlist_Entry *elm;
3034     Obj_Entry *obj;
3035     struct dlerror_save *saved_msg;
3036     Elf_Addr *init_addr;
3037     void (*reg)(void (*)(void));
3038     int index;
3039 
3040     /*
3041      * Clean init_scanned flag so that objects can be rechecked and
3042      * possibly initialized earlier if any of vectors called below
3043      * cause the change by using dlopen.
3044      */
3045     TAILQ_FOREACH(obj, &obj_list, next) {
3046 	if (obj->marker)
3047 	    continue;
3048 	obj->init_scanned = false;
3049     }
3050 
3051     /*
3052      * Preserve the current error message since an init function might
3053      * call into the dynamic linker and overwrite it.
3054      */
3055     saved_msg = errmsg_save();
3056     STAILQ_FOREACH(elm, list, link) {
3057 	if (elm->obj->init_done) /* Initialized early. */
3058 	    continue;
3059 	/*
3060 	 * Race: other thread might try to use this object before current
3061 	 * one completes the initialization. Not much can be done here
3062 	 * without better locking.
3063 	 */
3064 	elm->obj->init_done = true;
3065 	hold_object(elm->obj);
3066 	reg = NULL;
3067 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3068 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3069 		    "__libc_atexit", lockstate);
3070 	}
3071 	lock_release(rtld_bind_lock, lockstate);
3072 	if (reg != NULL) {
3073 		reg(rtld_exit);
3074 		rtld_exit_ptr = rtld_nop_exit;
3075 	}
3076 
3077         /*
3078          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3079          * When this happens, DT_INIT is processed first.
3080          */
3081 	if (elm->obj->init != (Elf_Addr)NULL) {
3082 	    dbg("calling init function for %s at %p", elm->obj->path,
3083 	        (void *)elm->obj->init);
3084 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3085 	        0, 0, elm->obj->path);
3086 	    call_init_pointer(elm->obj, elm->obj->init);
3087 	}
3088 	init_addr = (Elf_Addr *)elm->obj->init_array;
3089 	if (init_addr != NULL) {
3090 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3091 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3092 		    dbg("calling init function for %s at %p", elm->obj->path,
3093 			(void *)init_addr[index]);
3094 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3095 			(void *)init_addr[index], 0, 0, elm->obj->path);
3096 		    call_init_pointer(elm->obj, init_addr[index]);
3097 		}
3098 	    }
3099 	}
3100 	wlock_acquire(rtld_bind_lock, lockstate);
3101 	unhold_object(elm->obj);
3102     }
3103     errmsg_restore(saved_msg);
3104 }
3105 
3106 static void
3107 objlist_clear(Objlist *list)
3108 {
3109     Objlist_Entry *elm;
3110 
3111     while (!STAILQ_EMPTY(list)) {
3112 	elm = STAILQ_FIRST(list);
3113 	STAILQ_REMOVE_HEAD(list, link);
3114 	free(elm);
3115     }
3116 }
3117 
3118 static Objlist_Entry *
3119 objlist_find(Objlist *list, const Obj_Entry *obj)
3120 {
3121     Objlist_Entry *elm;
3122 
3123     STAILQ_FOREACH(elm, list, link)
3124 	if (elm->obj == obj)
3125 	    return elm;
3126     return (NULL);
3127 }
3128 
3129 static void
3130 objlist_init(Objlist *list)
3131 {
3132     STAILQ_INIT(list);
3133 }
3134 
3135 static void
3136 objlist_push_head(Objlist *list, Obj_Entry *obj)
3137 {
3138     Objlist_Entry *elm;
3139 
3140     elm = NEW(Objlist_Entry);
3141     elm->obj = obj;
3142     STAILQ_INSERT_HEAD(list, elm, link);
3143 }
3144 
3145 static void
3146 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3147 {
3148     Objlist_Entry *elm;
3149 
3150     elm = NEW(Objlist_Entry);
3151     elm->obj = obj;
3152     STAILQ_INSERT_TAIL(list, elm, link);
3153 }
3154 
3155 static void
3156 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3157 {
3158 	Objlist_Entry *elm, *listelm;
3159 
3160 	STAILQ_FOREACH(listelm, list, link) {
3161 		if (listelm->obj == listobj)
3162 			break;
3163 	}
3164 	elm = NEW(Objlist_Entry);
3165 	elm->obj = obj;
3166 	if (listelm != NULL)
3167 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3168 	else
3169 		STAILQ_INSERT_TAIL(list, elm, link);
3170 }
3171 
3172 static void
3173 objlist_remove(Objlist *list, Obj_Entry *obj)
3174 {
3175     Objlist_Entry *elm;
3176 
3177     if ((elm = objlist_find(list, obj)) != NULL) {
3178 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3179 	free(elm);
3180     }
3181 }
3182 
3183 /*
3184  * Relocate dag rooted in the specified object.
3185  * Returns 0 on success, or -1 on failure.
3186  */
3187 
3188 static int
3189 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3190     int flags, RtldLockState *lockstate)
3191 {
3192 	Objlist_Entry *elm;
3193 	int error;
3194 
3195 	error = 0;
3196 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3197 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3198 		    lockstate);
3199 		if (error == -1)
3200 			break;
3201 	}
3202 	return (error);
3203 }
3204 
3205 /*
3206  * Prepare for, or clean after, relocating an object marked with
3207  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3208  * segments are remapped read-write.  After relocations are done, the
3209  * segment's permissions are returned back to the modes specified in
3210  * the phdrs.  If any relocation happened, or always for wired
3211  * program, COW is triggered.
3212  */
3213 static int
3214 reloc_textrel_prot(Obj_Entry *obj, bool before)
3215 {
3216 	const Elf_Phdr *ph;
3217 	void *base;
3218 	size_t l, sz;
3219 	int prot;
3220 
3221 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3222 	    l--, ph++) {
3223 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3224 			continue;
3225 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3226 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3227 		    rtld_trunc_page(ph->p_vaddr);
3228 		prot = before ? (PROT_READ | PROT_WRITE) :
3229 		    convert_prot(ph->p_flags);
3230 		if (mprotect(base, sz, prot) == -1) {
3231 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3232 			    obj->path, before ? "en" : "dis",
3233 			    rtld_strerror(errno));
3234 			return (-1);
3235 		}
3236 	}
3237 	return (0);
3238 }
3239 
3240 /* Process RELR relative relocations. */
3241 static void
3242 reloc_relr(Obj_Entry *obj)
3243 {
3244 	const Elf_Relr *relr, *relrlim;
3245 	Elf_Addr *where;
3246 
3247 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3248 	for (relr = obj->relr; relr < relrlim; relr++) {
3249 	    Elf_Relr entry = *relr;
3250 
3251 	    if ((entry & 1) == 0) {
3252 		where = (Elf_Addr *)(obj->relocbase + entry);
3253 		*where++ += (Elf_Addr)obj->relocbase;
3254 	    } else {
3255 		for (long i = 0; (entry >>= 1) != 0; i++)
3256 		    if ((entry & 1) != 0)
3257 			where[i] += (Elf_Addr)obj->relocbase;
3258 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3259 	    }
3260 	}
3261 }
3262 
3263 /*
3264  * Relocate single object.
3265  * Returns 0 on success, or -1 on failure.
3266  */
3267 static int
3268 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3269     int flags, RtldLockState *lockstate)
3270 {
3271 
3272 	if (obj->relocated)
3273 		return (0);
3274 	obj->relocated = true;
3275 	if (obj != rtldobj)
3276 		dbg("relocating \"%s\"", obj->path);
3277 
3278 	if (obj->symtab == NULL || obj->strtab == NULL ||
3279 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3280 		dbg("object %s has no run-time symbol table", obj->path);
3281 
3282 	/* There are relocations to the write-protected text segment. */
3283 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3284 		return (-1);
3285 
3286 	/* Process the non-PLT non-IFUNC relocations. */
3287 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3288 		return (-1);
3289 	reloc_relr(obj);
3290 
3291 	/* Re-protected the text segment. */
3292 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3293 		return (-1);
3294 
3295 	/* Set the special PLT or GOT entries. */
3296 	init_pltgot(obj);
3297 
3298 	/* Process the PLT relocations. */
3299 	if (reloc_plt(obj, flags, lockstate) == -1)
3300 		return (-1);
3301 	/* Relocate the jump slots if we are doing immediate binding. */
3302 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3303 	    lockstate) == -1)
3304 		return (-1);
3305 
3306 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3307 		return (-1);
3308 
3309 	/*
3310 	 * Set up the magic number and version in the Obj_Entry.  These
3311 	 * were checked in the crt1.o from the original ElfKit, so we
3312 	 * set them for backward compatibility.
3313 	 */
3314 	obj->magic = RTLD_MAGIC;
3315 	obj->version = RTLD_VERSION;
3316 
3317 	return (0);
3318 }
3319 
3320 /*
3321  * Relocate newly-loaded shared objects.  The argument is a pointer to
3322  * the Obj_Entry for the first such object.  All objects from the first
3323  * to the end of the list of objects are relocated.  Returns 0 on success,
3324  * or -1 on failure.
3325  */
3326 static int
3327 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3328     int flags, RtldLockState *lockstate)
3329 {
3330 	Obj_Entry *obj;
3331 	int error;
3332 
3333 	for (error = 0, obj = first;  obj != NULL;
3334 	    obj = TAILQ_NEXT(obj, next)) {
3335 		if (obj->marker)
3336 			continue;
3337 		error = relocate_object(obj, bind_now, rtldobj, flags,
3338 		    lockstate);
3339 		if (error == -1)
3340 			break;
3341 	}
3342 	return (error);
3343 }
3344 
3345 /*
3346  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3347  * referencing STT_GNU_IFUNC symbols is postponed till the other
3348  * relocations are done.  The indirect functions specified as
3349  * ifunc are allowed to call other symbols, so we need to have
3350  * objects relocated before asking for resolution from indirects.
3351  *
3352  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3353  * instead of the usual lazy handling of PLT slots.  It is
3354  * consistent with how GNU does it.
3355  */
3356 static int
3357 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3358     RtldLockState *lockstate)
3359 {
3360 
3361 	if (obj->ifuncs_resolved)
3362 		return (0);
3363 	obj->ifuncs_resolved = true;
3364 	if (!obj->irelative && !obj->irelative_nonplt &&
3365 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3366 	    !obj->non_plt_gnu_ifunc)
3367 		return (0);
3368 	if (obj_disable_relro(obj) == -1 ||
3369 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3370 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3371 	    lockstate) == -1) ||
3372 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3373 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3374 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3375 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3376 	    obj_enforce_relro(obj) == -1)
3377 		return (-1);
3378 	return (0);
3379 }
3380 
3381 static int
3382 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3383     RtldLockState *lockstate)
3384 {
3385 	Objlist_Entry *elm;
3386 	Obj_Entry *obj;
3387 
3388 	STAILQ_FOREACH(elm, list, link) {
3389 		obj = elm->obj;
3390 		if (obj->marker)
3391 			continue;
3392 		if (resolve_object_ifunc(obj, bind_now, flags,
3393 		    lockstate) == -1)
3394 			return (-1);
3395 	}
3396 	return (0);
3397 }
3398 
3399 /*
3400  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3401  * before the process exits.
3402  */
3403 static void
3404 rtld_exit(void)
3405 {
3406     RtldLockState lockstate;
3407 
3408     wlock_acquire(rtld_bind_lock, &lockstate);
3409     dbg("rtld_exit()");
3410     objlist_call_fini(&list_fini, NULL, &lockstate);
3411     /* No need to remove the items from the list, since we are exiting. */
3412     if (!libmap_disable)
3413         lm_fini();
3414     lock_release(rtld_bind_lock, &lockstate);
3415 }
3416 
3417 static void
3418 rtld_nop_exit(void)
3419 {
3420 }
3421 
3422 /*
3423  * Iterate over a search path, translate each element, and invoke the
3424  * callback on the result.
3425  */
3426 static void *
3427 path_enumerate(const char *path, path_enum_proc callback,
3428     const char *refobj_path, void *arg)
3429 {
3430     const char *trans;
3431     if (path == NULL)
3432 	return (NULL);
3433 
3434     path += strspn(path, ":;");
3435     while (*path != '\0') {
3436 	size_t len;
3437 	char  *res;
3438 
3439 	len = strcspn(path, ":;");
3440 	trans = lm_findn(refobj_path, path, len);
3441 	if (trans)
3442 	    res = callback(trans, strlen(trans), arg);
3443 	else
3444 	    res = callback(path, len, arg);
3445 
3446 	if (res != NULL)
3447 	    return (res);
3448 
3449 	path += len;
3450 	path += strspn(path, ":;");
3451     }
3452 
3453     return (NULL);
3454 }
3455 
3456 struct try_library_args {
3457     const char	*name;
3458     size_t	 namelen;
3459     char	*buffer;
3460     size_t	 buflen;
3461     int		 fd;
3462 };
3463 
3464 static void *
3465 try_library_path(const char *dir, size_t dirlen, void *param)
3466 {
3467     struct try_library_args *arg;
3468     int fd;
3469 
3470     arg = param;
3471     if (*dir == '/' || trust) {
3472 	char *pathname;
3473 
3474 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3475 		return (NULL);
3476 
3477 	pathname = arg->buffer;
3478 	strncpy(pathname, dir, dirlen);
3479 	pathname[dirlen] = '/';
3480 	strcpy(pathname + dirlen + 1, arg->name);
3481 
3482 	dbg("  Trying \"%s\"", pathname);
3483 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3484 	if (fd >= 0) {
3485 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3486 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3487 	    strcpy(pathname, arg->buffer);
3488 	    arg->fd = fd;
3489 	    return (pathname);
3490 	} else {
3491 	    dbg("  Failed to open \"%s\": %s",
3492 		pathname, rtld_strerror(errno));
3493 	}
3494     }
3495     return (NULL);
3496 }
3497 
3498 static char *
3499 search_library_path(const char *name, const char *path,
3500     const char *refobj_path, int *fdp)
3501 {
3502     char *p;
3503     struct try_library_args arg;
3504 
3505     if (path == NULL)
3506 	return (NULL);
3507 
3508     arg.name = name;
3509     arg.namelen = strlen(name);
3510     arg.buffer = xmalloc(PATH_MAX);
3511     arg.buflen = PATH_MAX;
3512     arg.fd = -1;
3513 
3514     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3515     *fdp = arg.fd;
3516 
3517     free(arg.buffer);
3518 
3519     return (p);
3520 }
3521 
3522 
3523 /*
3524  * Finds the library with the given name using the directory descriptors
3525  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3526  *
3527  * Returns a freshly-opened close-on-exec file descriptor for the library,
3528  * or -1 if the library cannot be found.
3529  */
3530 static char *
3531 search_library_pathfds(const char *name, const char *path, int *fdp)
3532 {
3533 	char *envcopy, *fdstr, *found, *last_token;
3534 	size_t len;
3535 	int dirfd, fd;
3536 
3537 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3538 
3539 	/* Don't load from user-specified libdirs into setuid binaries. */
3540 	if (!trust)
3541 		return (NULL);
3542 
3543 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3544 	if (path == NULL)
3545 		return (NULL);
3546 
3547 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3548 	if (name[0] == '/') {
3549 		dbg("Absolute path (%s) passed to %s", name, __func__);
3550 		return (NULL);
3551 	}
3552 
3553 	/*
3554 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3555 	 * copy of the path, as strtok_r rewrites separator tokens
3556 	 * with '\0'.
3557 	 */
3558 	found = NULL;
3559 	envcopy = xstrdup(path);
3560 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3561 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3562 		dirfd = parse_integer(fdstr);
3563 		if (dirfd < 0) {
3564 			_rtld_error("failed to parse directory FD: '%s'",
3565 				fdstr);
3566 			break;
3567 		}
3568 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3569 		if (fd >= 0) {
3570 			*fdp = fd;
3571 			len = strlen(fdstr) + strlen(name) + 3;
3572 			found = xmalloc(len);
3573 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3574 				_rtld_error("error generating '%d/%s'",
3575 				    dirfd, name);
3576 				rtld_die();
3577 			}
3578 			dbg("open('%s') => %d", found, fd);
3579 			break;
3580 		}
3581 	}
3582 	free(envcopy);
3583 
3584 	return (found);
3585 }
3586 
3587 
3588 int
3589 dlclose(void *handle)
3590 {
3591 	RtldLockState lockstate;
3592 	int error;
3593 
3594 	wlock_acquire(rtld_bind_lock, &lockstate);
3595 	error = dlclose_locked(handle, &lockstate);
3596 	lock_release(rtld_bind_lock, &lockstate);
3597 	return (error);
3598 }
3599 
3600 static int
3601 dlclose_locked(void *handle, RtldLockState *lockstate)
3602 {
3603     Obj_Entry *root;
3604 
3605     root = dlcheck(handle);
3606     if (root == NULL)
3607 	return (-1);
3608     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3609 	root->path);
3610 
3611     /* Unreference the object and its dependencies. */
3612     root->dl_refcount--;
3613 
3614     if (root->refcount == 1) {
3615 	/*
3616 	 * The object will be no longer referenced, so we must unload it.
3617 	 * First, call the fini functions.
3618 	 */
3619 	objlist_call_fini(&list_fini, root, lockstate);
3620 
3621 	unref_dag(root);
3622 
3623 	/* Finish cleaning up the newly-unreferenced objects. */
3624 	GDB_STATE(RT_DELETE,&root->linkmap);
3625 	unload_object(root, lockstate);
3626 	GDB_STATE(RT_CONSISTENT,NULL);
3627     } else
3628 	unref_dag(root);
3629 
3630     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3631     return (0);
3632 }
3633 
3634 char *
3635 dlerror(void)
3636 {
3637 	if (*(lockinfo.dlerror_seen()) != 0)
3638 		return (NULL);
3639 	*lockinfo.dlerror_seen() = 1;
3640 	return (lockinfo.dlerror_loc());
3641 }
3642 
3643 /*
3644  * This function is deprecated and has no effect.
3645  */
3646 void
3647 dllockinit(void *context,
3648     void *(*_lock_create)(void *context) __unused,
3649     void (*_rlock_acquire)(void *lock) __unused,
3650     void (*_wlock_acquire)(void *lock)  __unused,
3651     void (*_lock_release)(void *lock) __unused,
3652     void (*_lock_destroy)(void *lock) __unused,
3653     void (*context_destroy)(void *context))
3654 {
3655     static void *cur_context;
3656     static void (*cur_context_destroy)(void *);
3657 
3658     /* Just destroy the context from the previous call, if necessary. */
3659     if (cur_context_destroy != NULL)
3660 	cur_context_destroy(cur_context);
3661     cur_context = context;
3662     cur_context_destroy = context_destroy;
3663 }
3664 
3665 void *
3666 dlopen(const char *name, int mode)
3667 {
3668 
3669 	return (rtld_dlopen(name, -1, mode));
3670 }
3671 
3672 void *
3673 fdlopen(int fd, int mode)
3674 {
3675 
3676 	return (rtld_dlopen(NULL, fd, mode));
3677 }
3678 
3679 static void *
3680 rtld_dlopen(const char *name, int fd, int mode)
3681 {
3682     RtldLockState lockstate;
3683     int lo_flags;
3684 
3685     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3686     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3687     if (ld_tracing != NULL) {
3688 	rlock_acquire(rtld_bind_lock, &lockstate);
3689 	if (sigsetjmp(lockstate.env, 0) != 0)
3690 	    lock_upgrade(rtld_bind_lock, &lockstate);
3691 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3692 	lock_release(rtld_bind_lock, &lockstate);
3693     }
3694     lo_flags = RTLD_LO_DLOPEN;
3695     if (mode & RTLD_NODELETE)
3696 	    lo_flags |= RTLD_LO_NODELETE;
3697     if (mode & RTLD_NOLOAD)
3698 	    lo_flags |= RTLD_LO_NOLOAD;
3699     if (mode & RTLD_DEEPBIND)
3700 	    lo_flags |= RTLD_LO_DEEPBIND;
3701     if (ld_tracing != NULL)
3702 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3703 
3704     return (dlopen_object(name, fd, obj_main, lo_flags,
3705       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3706 }
3707 
3708 static void
3709 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3710 {
3711 
3712 	obj->dl_refcount--;
3713 	unref_dag(obj);
3714 	if (obj->refcount == 0)
3715 		unload_object(obj, lockstate);
3716 }
3717 
3718 static Obj_Entry *
3719 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3720     int mode, RtldLockState *lockstate)
3721 {
3722     Obj_Entry *old_obj_tail;
3723     Obj_Entry *obj;
3724     Objlist initlist;
3725     RtldLockState mlockstate;
3726     int result;
3727 
3728     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3729       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3730       refobj->path, lo_flags, mode);
3731     objlist_init(&initlist);
3732 
3733     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3734 	wlock_acquire(rtld_bind_lock, &mlockstate);
3735 	lockstate = &mlockstate;
3736     }
3737     GDB_STATE(RT_ADD,NULL);
3738 
3739     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3740     obj = NULL;
3741     if (name == NULL && fd == -1) {
3742 	obj = obj_main;
3743 	obj->refcount++;
3744     } else {
3745 	obj = load_object(name, fd, refobj, lo_flags);
3746     }
3747 
3748     if (obj) {
3749 	obj->dl_refcount++;
3750 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3751 	    objlist_push_tail(&list_global, obj);
3752 	if (globallist_next(old_obj_tail) != NULL) {
3753 	    /* We loaded something new. */
3754 	    assert(globallist_next(old_obj_tail) == obj);
3755 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3756 		obj->symbolic = true;
3757 	    result = 0;
3758 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3759 	      obj->static_tls && !allocate_tls_offset(obj)) {
3760 		_rtld_error("%s: No space available "
3761 		  "for static Thread Local Storage", obj->path);
3762 		result = -1;
3763 	    }
3764 	    if (result != -1)
3765 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3766 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3767 	    init_dag(obj);
3768 	    ref_dag(obj);
3769 	    if (result != -1)
3770 		result = rtld_verify_versions(&obj->dagmembers);
3771 	    if (result != -1 && ld_tracing)
3772 		goto trace;
3773 	    if (result == -1 || relocate_object_dag(obj,
3774 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3775 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3776 	      lockstate) == -1) {
3777 		dlopen_cleanup(obj, lockstate);
3778 		obj = NULL;
3779 	    } else if (lo_flags & RTLD_LO_EARLY) {
3780 		/*
3781 		 * Do not call the init functions for early loaded
3782 		 * filtees.  The image is still not initialized enough
3783 		 * for them to work.
3784 		 *
3785 		 * Our object is found by the global object list and
3786 		 * will be ordered among all init calls done right
3787 		 * before transferring control to main.
3788 		 */
3789 	    } else {
3790 		/* Make list of init functions to call. */
3791 		initlist_add_objects(obj, obj, &initlist);
3792 	    }
3793 	    /*
3794 	     * Process all no_delete or global objects here, given
3795 	     * them own DAGs to prevent their dependencies from being
3796 	     * unloaded.  This has to be done after we have loaded all
3797 	     * of the dependencies, so that we do not miss any.
3798 	     */
3799 	    if (obj != NULL)
3800 		process_z(obj);
3801 	} else {
3802 	    /*
3803 	     * Bump the reference counts for objects on this DAG.  If
3804 	     * this is the first dlopen() call for the object that was
3805 	     * already loaded as a dependency, initialize the dag
3806 	     * starting at it.
3807 	     */
3808 	    init_dag(obj);
3809 	    ref_dag(obj);
3810 
3811 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3812 		goto trace;
3813 	}
3814 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3815 	  obj->z_nodelete) && !obj->ref_nodel) {
3816 	    dbg("obj %s nodelete", obj->path);
3817 	    ref_dag(obj);
3818 	    obj->z_nodelete = obj->ref_nodel = true;
3819 	}
3820     }
3821 
3822     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3823 	name);
3824     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3825 
3826     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3827 	map_stacks_exec(lockstate);
3828 	if (obj != NULL)
3829 	    distribute_static_tls(&initlist, lockstate);
3830     }
3831 
3832     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3833       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3834       lockstate) == -1) {
3835 	objlist_clear(&initlist);
3836 	dlopen_cleanup(obj, lockstate);
3837 	if (lockstate == &mlockstate)
3838 	    lock_release(rtld_bind_lock, lockstate);
3839 	return (NULL);
3840     }
3841 
3842     if (!(lo_flags & RTLD_LO_EARLY)) {
3843 	/* Call the init functions. */
3844 	objlist_call_init(&initlist, lockstate);
3845     }
3846     objlist_clear(&initlist);
3847     if (lockstate == &mlockstate)
3848 	lock_release(rtld_bind_lock, lockstate);
3849     return (obj);
3850 trace:
3851     trace_loaded_objects(obj, false);
3852     if (lockstate == &mlockstate)
3853 	lock_release(rtld_bind_lock, lockstate);
3854     exit(0);
3855 }
3856 
3857 static void *
3858 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3859     int flags)
3860 {
3861     DoneList donelist;
3862     const Obj_Entry *obj, *defobj;
3863     const Elf_Sym *def;
3864     SymLook req;
3865     RtldLockState lockstate;
3866     tls_index ti;
3867     void *sym;
3868     int res;
3869 
3870     def = NULL;
3871     defobj = NULL;
3872     symlook_init(&req, name);
3873     req.ventry = ve;
3874     req.flags = flags | SYMLOOK_IN_PLT;
3875     req.lockstate = &lockstate;
3876 
3877     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3878     rlock_acquire(rtld_bind_lock, &lockstate);
3879     if (sigsetjmp(lockstate.env, 0) != 0)
3880 	    lock_upgrade(rtld_bind_lock, &lockstate);
3881     if (handle == NULL || handle == RTLD_NEXT ||
3882 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3883 
3884 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3885 	    _rtld_error("Cannot determine caller's shared object");
3886 	    lock_release(rtld_bind_lock, &lockstate);
3887 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3888 	    return (NULL);
3889 	}
3890 	if (handle == NULL) {	/* Just the caller's shared object. */
3891 	    res = symlook_obj(&req, obj);
3892 	    if (res == 0) {
3893 		def = req.sym_out;
3894 		defobj = req.defobj_out;
3895 	    }
3896 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3897 		   handle == RTLD_SELF) { /* ... caller included */
3898 	    if (handle == RTLD_NEXT)
3899 		obj = globallist_next(obj);
3900 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3901 		if (obj->marker)
3902 		    continue;
3903 		res = symlook_obj(&req, obj);
3904 		if (res == 0) {
3905 		    if (def == NULL || (ld_dynamic_weak &&
3906                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3907 			def = req.sym_out;
3908 			defobj = req.defobj_out;
3909 			if (!ld_dynamic_weak ||
3910 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3911 			    break;
3912 		    }
3913 		}
3914 	    }
3915 	    /*
3916 	     * Search the dynamic linker itself, and possibly resolve the
3917 	     * symbol from there.  This is how the application links to
3918 	     * dynamic linker services such as dlopen.
3919 	     * Note that we ignore ld_dynamic_weak == false case,
3920 	     * always overriding weak symbols by rtld definitions.
3921 	     */
3922 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3923 		res = symlook_obj(&req, &obj_rtld);
3924 		if (res == 0) {
3925 		    def = req.sym_out;
3926 		    defobj = req.defobj_out;
3927 		}
3928 	    }
3929 	} else {
3930 	    assert(handle == RTLD_DEFAULT);
3931 	    res = symlook_default(&req, obj);
3932 	    if (res == 0) {
3933 		defobj = req.defobj_out;
3934 		def = req.sym_out;
3935 	    }
3936 	}
3937     } else {
3938 	if ((obj = dlcheck(handle)) == NULL) {
3939 	    lock_release(rtld_bind_lock, &lockstate);
3940 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3941 	    return (NULL);
3942 	}
3943 
3944 	donelist_init(&donelist);
3945 	if (obj->mainprog) {
3946             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3947 	    res = symlook_global(&req, &donelist);
3948 	    if (res == 0) {
3949 		def = req.sym_out;
3950 		defobj = req.defobj_out;
3951 	    }
3952 	    /*
3953 	     * Search the dynamic linker itself, and possibly resolve the
3954 	     * symbol from there.  This is how the application links to
3955 	     * dynamic linker services such as dlopen.
3956 	     */
3957 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3958 		res = symlook_obj(&req, &obj_rtld);
3959 		if (res == 0) {
3960 		    def = req.sym_out;
3961 		    defobj = req.defobj_out;
3962 		}
3963 	    }
3964 	}
3965 	else {
3966 	    /* Search the whole DAG rooted at the given object. */
3967 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3968 	    if (res == 0) {
3969 		def = req.sym_out;
3970 		defobj = req.defobj_out;
3971 	    }
3972 	}
3973     }
3974 
3975     if (def != NULL) {
3976 	lock_release(rtld_bind_lock, &lockstate);
3977 
3978 	/*
3979 	 * The value required by the caller is derived from the value
3980 	 * of the symbol. this is simply the relocated value of the
3981 	 * symbol.
3982 	 */
3983 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3984 	    sym = make_function_pointer(def, defobj);
3985 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3986 	    sym = rtld_resolve_ifunc(defobj, def);
3987 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3988 	    ti.ti_module = defobj->tlsindex;
3989 	    ti.ti_offset = def->st_value;
3990 	    sym = __tls_get_addr(&ti);
3991 	} else
3992 	    sym = defobj->relocbase + def->st_value;
3993 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3994 	return (sym);
3995     }
3996 
3997     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3998       ve != NULL ? ve->name : "");
3999     lock_release(rtld_bind_lock, &lockstate);
4000     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4001     return (NULL);
4002 }
4003 
4004 void *
4005 dlsym(void *handle, const char *name)
4006 {
4007 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4008 	    SYMLOOK_DLSYM));
4009 }
4010 
4011 dlfunc_t
4012 dlfunc(void *handle, const char *name)
4013 {
4014 	union {
4015 		void *d;
4016 		dlfunc_t f;
4017 	} rv;
4018 
4019 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4020 	    SYMLOOK_DLSYM);
4021 	return (rv.f);
4022 }
4023 
4024 void *
4025 dlvsym(void *handle, const char *name, const char *version)
4026 {
4027 	Ver_Entry ventry;
4028 
4029 	ventry.name = version;
4030 	ventry.file = NULL;
4031 	ventry.hash = elf_hash(version);
4032 	ventry.flags= 0;
4033 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4034 	    SYMLOOK_DLSYM));
4035 }
4036 
4037 int
4038 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4039 {
4040     const Obj_Entry *obj;
4041     RtldLockState lockstate;
4042 
4043     rlock_acquire(rtld_bind_lock, &lockstate);
4044     obj = obj_from_addr(addr);
4045     if (obj == NULL) {
4046         _rtld_error("No shared object contains address");
4047 	lock_release(rtld_bind_lock, &lockstate);
4048         return (0);
4049     }
4050     rtld_fill_dl_phdr_info(obj, phdr_info);
4051     lock_release(rtld_bind_lock, &lockstate);
4052     return (1);
4053 }
4054 
4055 int
4056 dladdr(const void *addr, Dl_info *info)
4057 {
4058     const Obj_Entry *obj;
4059     const Elf_Sym *def;
4060     void *symbol_addr;
4061     unsigned long symoffset;
4062     RtldLockState lockstate;
4063 
4064     rlock_acquire(rtld_bind_lock, &lockstate);
4065     obj = obj_from_addr(addr);
4066     if (obj == NULL) {
4067         _rtld_error("No shared object contains address");
4068 	lock_release(rtld_bind_lock, &lockstate);
4069         return (0);
4070     }
4071     info->dli_fname = obj->path;
4072     info->dli_fbase = obj->mapbase;
4073     info->dli_saddr = (void *)0;
4074     info->dli_sname = NULL;
4075 
4076     /*
4077      * Walk the symbol list looking for the symbol whose address is
4078      * closest to the address sent in.
4079      */
4080     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4081         def = obj->symtab + symoffset;
4082 
4083         /*
4084          * For skip the symbol if st_shndx is either SHN_UNDEF or
4085          * SHN_COMMON.
4086          */
4087         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4088             continue;
4089 
4090         /*
4091          * If the symbol is greater than the specified address, or if it
4092          * is further away from addr than the current nearest symbol,
4093          * then reject it.
4094          */
4095         symbol_addr = obj->relocbase + def->st_value;
4096         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4097             continue;
4098 
4099         /* Update our idea of the nearest symbol. */
4100         info->dli_sname = obj->strtab + def->st_name;
4101         info->dli_saddr = symbol_addr;
4102 
4103         /* Exact match? */
4104         if (info->dli_saddr == addr)
4105             break;
4106     }
4107     lock_release(rtld_bind_lock, &lockstate);
4108     return (1);
4109 }
4110 
4111 int
4112 dlinfo(void *handle, int request, void *p)
4113 {
4114     const Obj_Entry *obj;
4115     RtldLockState lockstate;
4116     int error;
4117 
4118     rlock_acquire(rtld_bind_lock, &lockstate);
4119 
4120     if (handle == NULL || handle == RTLD_SELF) {
4121 	void *retaddr;
4122 
4123 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4124 	if ((obj = obj_from_addr(retaddr)) == NULL)
4125 	    _rtld_error("Cannot determine caller's shared object");
4126     } else
4127 	obj = dlcheck(handle);
4128 
4129     if (obj == NULL) {
4130 	lock_release(rtld_bind_lock, &lockstate);
4131 	return (-1);
4132     }
4133 
4134     error = 0;
4135     switch (request) {
4136     case RTLD_DI_LINKMAP:
4137 	*((struct link_map const **)p) = &obj->linkmap;
4138 	break;
4139     case RTLD_DI_ORIGIN:
4140 	error = rtld_dirname(obj->path, p);
4141 	break;
4142 
4143     case RTLD_DI_SERINFOSIZE:
4144     case RTLD_DI_SERINFO:
4145 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4146 	break;
4147 
4148     default:
4149 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4150 	error = -1;
4151     }
4152 
4153     lock_release(rtld_bind_lock, &lockstate);
4154 
4155     return (error);
4156 }
4157 
4158 static void
4159 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4160 {
4161 	uintptr_t **dtvp;
4162 
4163 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4164 	phdr_info->dlpi_name = obj->path;
4165 	phdr_info->dlpi_phdr = obj->phdr;
4166 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4167 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4168 	dtvp = &_tcb_get()->tcb_dtv;
4169 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4170 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4171 	phdr_info->dlpi_adds = obj_loads;
4172 	phdr_info->dlpi_subs = obj_loads - obj_count;
4173 }
4174 
4175 int
4176 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4177 {
4178 	struct dl_phdr_info phdr_info;
4179 	Obj_Entry *obj, marker;
4180 	RtldLockState bind_lockstate, phdr_lockstate;
4181 	int error;
4182 
4183 	init_marker(&marker);
4184 	error = 0;
4185 
4186 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4187 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4188 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4189 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4190 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4191 		hold_object(obj);
4192 		lock_release(rtld_bind_lock, &bind_lockstate);
4193 
4194 		error = callback(&phdr_info, sizeof phdr_info, param);
4195 
4196 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4197 		unhold_object(obj);
4198 		obj = globallist_next(&marker);
4199 		TAILQ_REMOVE(&obj_list, &marker, next);
4200 		if (error != 0) {
4201 			lock_release(rtld_bind_lock, &bind_lockstate);
4202 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4203 			return (error);
4204 		}
4205 	}
4206 
4207 	if (error == 0) {
4208 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4209 		lock_release(rtld_bind_lock, &bind_lockstate);
4210 		error = callback(&phdr_info, sizeof(phdr_info), param);
4211 	}
4212 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4213 	return (error);
4214 }
4215 
4216 static void *
4217 fill_search_info(const char *dir, size_t dirlen, void *param)
4218 {
4219     struct fill_search_info_args *arg;
4220 
4221     arg = param;
4222 
4223     if (arg->request == RTLD_DI_SERINFOSIZE) {
4224 	arg->serinfo->dls_cnt ++;
4225 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4226     } else {
4227 	struct dl_serpath *s_entry;
4228 
4229 	s_entry = arg->serpath;
4230 	s_entry->dls_name  = arg->strspace;
4231 	s_entry->dls_flags = arg->flags;
4232 
4233 	strncpy(arg->strspace, dir, dirlen);
4234 	arg->strspace[dirlen] = '\0';
4235 
4236 	arg->strspace += dirlen + 1;
4237 	arg->serpath++;
4238     }
4239 
4240     return (NULL);
4241 }
4242 
4243 static int
4244 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4245 {
4246     struct dl_serinfo _info;
4247     struct fill_search_info_args args;
4248 
4249     args.request = RTLD_DI_SERINFOSIZE;
4250     args.serinfo = &_info;
4251 
4252     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4253     _info.dls_cnt  = 0;
4254 
4255     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4256     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4257     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4258     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4259     if (!obj->z_nodeflib)
4260       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4261 
4262 
4263     if (request == RTLD_DI_SERINFOSIZE) {
4264 	info->dls_size = _info.dls_size;
4265 	info->dls_cnt = _info.dls_cnt;
4266 	return (0);
4267     }
4268 
4269     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4270 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4271 	return (-1);
4272     }
4273 
4274     args.request  = RTLD_DI_SERINFO;
4275     args.serinfo  = info;
4276     args.serpath  = &info->dls_serpath[0];
4277     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4278 
4279     args.flags = LA_SER_RUNPATH;
4280     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4281 	return (-1);
4282 
4283     args.flags = LA_SER_LIBPATH;
4284     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4285 	return (-1);
4286 
4287     args.flags = LA_SER_RUNPATH;
4288     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4289 	return (-1);
4290 
4291     args.flags = LA_SER_CONFIG;
4292     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4293       != NULL)
4294 	return (-1);
4295 
4296     args.flags = LA_SER_DEFAULT;
4297     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4298       fill_search_info, NULL, &args) != NULL)
4299 	return (-1);
4300     return (0);
4301 }
4302 
4303 static int
4304 rtld_dirname(const char *path, char *bname)
4305 {
4306     const char *endp;
4307 
4308     /* Empty or NULL string gets treated as "." */
4309     if (path == NULL || *path == '\0') {
4310 	bname[0] = '.';
4311 	bname[1] = '\0';
4312 	return (0);
4313     }
4314 
4315     /* Strip trailing slashes */
4316     endp = path + strlen(path) - 1;
4317     while (endp > path && *endp == '/')
4318 	endp--;
4319 
4320     /* Find the start of the dir */
4321     while (endp > path && *endp != '/')
4322 	endp--;
4323 
4324     /* Either the dir is "/" or there are no slashes */
4325     if (endp == path) {
4326 	bname[0] = *endp == '/' ? '/' : '.';
4327 	bname[1] = '\0';
4328 	return (0);
4329     } else {
4330 	do {
4331 	    endp--;
4332 	} while (endp > path && *endp == '/');
4333     }
4334 
4335     if (endp - path + 2 > PATH_MAX)
4336     {
4337 	_rtld_error("Filename is too long: %s", path);
4338 	return(-1);
4339     }
4340 
4341     strncpy(bname, path, endp - path + 1);
4342     bname[endp - path + 1] = '\0';
4343     return (0);
4344 }
4345 
4346 static int
4347 rtld_dirname_abs(const char *path, char *base)
4348 {
4349 	char *last;
4350 
4351 	if (realpath(path, base) == NULL) {
4352 		_rtld_error("realpath \"%s\" failed (%s)", path,
4353 		    rtld_strerror(errno));
4354 		return (-1);
4355 	}
4356 	dbg("%s -> %s", path, base);
4357 	last = strrchr(base, '/');
4358 	if (last == NULL) {
4359 		_rtld_error("non-abs result from realpath \"%s\"", path);
4360 		return (-1);
4361 	}
4362 	if (last != base)
4363 		*last = '\0';
4364 	return (0);
4365 }
4366 
4367 static void
4368 linkmap_add(Obj_Entry *obj)
4369 {
4370 	struct link_map *l, *prev;
4371 
4372 	l = &obj->linkmap;
4373 	l->l_name = obj->path;
4374 	l->l_base = obj->mapbase;
4375 	l->l_ld = obj->dynamic;
4376 	l->l_addr = obj->relocbase;
4377 
4378 	if (r_debug.r_map == NULL) {
4379 		r_debug.r_map = l;
4380 		return;
4381 	}
4382 
4383 	/*
4384 	 * Scan to the end of the list, but not past the entry for the
4385 	 * dynamic linker, which we want to keep at the very end.
4386 	 */
4387 	for (prev = r_debug.r_map;
4388 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4389 	     prev = prev->l_next)
4390 		;
4391 
4392 	/* Link in the new entry. */
4393 	l->l_prev = prev;
4394 	l->l_next = prev->l_next;
4395 	if (l->l_next != NULL)
4396 		l->l_next->l_prev = l;
4397 	prev->l_next = l;
4398 }
4399 
4400 static void
4401 linkmap_delete(Obj_Entry *obj)
4402 {
4403 	struct link_map *l;
4404 
4405 	l = &obj->linkmap;
4406 	if (l->l_prev == NULL) {
4407 		if ((r_debug.r_map = l->l_next) != NULL)
4408 			l->l_next->l_prev = NULL;
4409 		return;
4410 	}
4411 
4412 	if ((l->l_prev->l_next = l->l_next) != NULL)
4413 		l->l_next->l_prev = l->l_prev;
4414 }
4415 
4416 /*
4417  * Function for the debugger to set a breakpoint on to gain control.
4418  *
4419  * The two parameters allow the debugger to easily find and determine
4420  * what the runtime loader is doing and to whom it is doing it.
4421  *
4422  * When the loadhook trap is hit (r_debug_state, set at program
4423  * initialization), the arguments can be found on the stack:
4424  *
4425  *  +8   struct link_map *m
4426  *  +4   struct r_debug  *rd
4427  *  +0   RetAddr
4428  */
4429 void
4430 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4431 {
4432     /*
4433      * The following is a hack to force the compiler to emit calls to
4434      * this function, even when optimizing.  If the function is empty,
4435      * the compiler is not obliged to emit any code for calls to it,
4436      * even when marked __noinline.  However, gdb depends on those
4437      * calls being made.
4438      */
4439     __compiler_membar();
4440 }
4441 
4442 /*
4443  * A function called after init routines have completed. This can be used to
4444  * break before a program's entry routine is called, and can be used when
4445  * main is not available in the symbol table.
4446  */
4447 void
4448 _r_debug_postinit(struct link_map *m __unused)
4449 {
4450 
4451 	/* See r_debug_state(). */
4452 	__compiler_membar();
4453 }
4454 
4455 static void
4456 release_object(Obj_Entry *obj)
4457 {
4458 
4459 	if (obj->holdcount > 0) {
4460 		obj->unholdfree = true;
4461 		return;
4462 	}
4463 	munmap(obj->mapbase, obj->mapsize);
4464 	linkmap_delete(obj);
4465 	obj_free(obj);
4466 }
4467 
4468 /*
4469  * Get address of the pointer variable in the main program.
4470  * Prefer non-weak symbol over the weak one.
4471  */
4472 static const void **
4473 get_program_var_addr(const char *name, RtldLockState *lockstate)
4474 {
4475     SymLook req;
4476     DoneList donelist;
4477 
4478     symlook_init(&req, name);
4479     req.lockstate = lockstate;
4480     donelist_init(&donelist);
4481     if (symlook_global(&req, &donelist) != 0)
4482 	return (NULL);
4483     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4484 	return ((const void **)make_function_pointer(req.sym_out,
4485 	  req.defobj_out));
4486     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4487 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4488     else
4489 	return ((const void **)(req.defobj_out->relocbase +
4490 	  req.sym_out->st_value));
4491 }
4492 
4493 /*
4494  * Set a pointer variable in the main program to the given value.  This
4495  * is used to set key variables such as "environ" before any of the
4496  * init functions are called.
4497  */
4498 static void
4499 set_program_var(const char *name, const void *value)
4500 {
4501     const void **addr;
4502 
4503     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4504 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4505 	*addr = value;
4506     }
4507 }
4508 
4509 /*
4510  * Search the global objects, including dependencies and main object,
4511  * for the given symbol.
4512  */
4513 static int
4514 symlook_global(SymLook *req, DoneList *donelist)
4515 {
4516     SymLook req1;
4517     const Objlist_Entry *elm;
4518     int res;
4519 
4520     symlook_init_from_req(&req1, req);
4521 
4522     /* Search all objects loaded at program start up. */
4523     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4524       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4525 	res = symlook_list(&req1, &list_main, donelist);
4526 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4527 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4528 	    req->sym_out = req1.sym_out;
4529 	    req->defobj_out = req1.defobj_out;
4530 	    assert(req->defobj_out != NULL);
4531 	}
4532     }
4533 
4534     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4535     STAILQ_FOREACH(elm, &list_global, link) {
4536 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4537           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4538 	    break;
4539 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4540 	if (res == 0 && (req->defobj_out == NULL ||
4541 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4542 	    req->sym_out = req1.sym_out;
4543 	    req->defobj_out = req1.defobj_out;
4544 	    assert(req->defobj_out != NULL);
4545 	}
4546     }
4547 
4548     return (req->sym_out != NULL ? 0 : ESRCH);
4549 }
4550 
4551 /*
4552  * Given a symbol name in a referencing object, find the corresponding
4553  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4554  * no definition was found.  Returns a pointer to the Obj_Entry of the
4555  * defining object via the reference parameter DEFOBJ_OUT.
4556  */
4557 static int
4558 symlook_default(SymLook *req, const Obj_Entry *refobj)
4559 {
4560     DoneList donelist;
4561     const Objlist_Entry *elm;
4562     SymLook req1;
4563     int res;
4564 
4565     donelist_init(&donelist);
4566     symlook_init_from_req(&req1, req);
4567 
4568     /*
4569      * Look first in the referencing object if linked symbolically,
4570      * and similarly handle protected symbols.
4571      */
4572     res = symlook_obj(&req1, refobj);
4573     if (res == 0 && (refobj->symbolic ||
4574       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4575 	req->sym_out = req1.sym_out;
4576 	req->defobj_out = req1.defobj_out;
4577 	assert(req->defobj_out != NULL);
4578     }
4579     if (refobj->symbolic || req->defobj_out != NULL)
4580 	donelist_check(&donelist, refobj);
4581 
4582     symlook_global(req, &donelist);
4583 
4584     /* Search all dlopened DAGs containing the referencing object. */
4585     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4586 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4587           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4588 	    break;
4589 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4590 	if (res == 0 && (req->sym_out == NULL ||
4591 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4592 	    req->sym_out = req1.sym_out;
4593 	    req->defobj_out = req1.defobj_out;
4594 	    assert(req->defobj_out != NULL);
4595 	}
4596     }
4597 
4598     /*
4599      * Search the dynamic linker itself, and possibly resolve the
4600      * symbol from there.  This is how the application links to
4601      * dynamic linker services such as dlopen.
4602      */
4603     if (req->sym_out == NULL ||
4604       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4605 	res = symlook_obj(&req1, &obj_rtld);
4606 	if (res == 0) {
4607 	    req->sym_out = req1.sym_out;
4608 	    req->defobj_out = req1.defobj_out;
4609 	    assert(req->defobj_out != NULL);
4610 	}
4611     }
4612 
4613     return (req->sym_out != NULL ? 0 : ESRCH);
4614 }
4615 
4616 static int
4617 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4618 {
4619     const Elf_Sym *def;
4620     const Obj_Entry *defobj;
4621     const Objlist_Entry *elm;
4622     SymLook req1;
4623     int res;
4624 
4625     def = NULL;
4626     defobj = NULL;
4627     STAILQ_FOREACH(elm, objlist, link) {
4628 	if (donelist_check(dlp, elm->obj))
4629 	    continue;
4630 	symlook_init_from_req(&req1, req);
4631 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4632 	    if (def == NULL || (ld_dynamic_weak &&
4633               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4634 		def = req1.sym_out;
4635 		defobj = req1.defobj_out;
4636 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4637 		    break;
4638 	    }
4639 	}
4640     }
4641     if (def != NULL) {
4642 	req->sym_out = def;
4643 	req->defobj_out = defobj;
4644 	return (0);
4645     }
4646     return (ESRCH);
4647 }
4648 
4649 /*
4650  * Search the chain of DAGS cointed to by the given Needed_Entry
4651  * for a symbol of the given name.  Each DAG is scanned completely
4652  * before advancing to the next one.  Returns a pointer to the symbol,
4653  * or NULL if no definition was found.
4654  */
4655 static int
4656 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4657 {
4658     const Elf_Sym *def;
4659     const Needed_Entry *n;
4660     const Obj_Entry *defobj;
4661     SymLook req1;
4662     int res;
4663 
4664     def = NULL;
4665     defobj = NULL;
4666     symlook_init_from_req(&req1, req);
4667     for (n = needed; n != NULL; n = n->next) {
4668 	if (n->obj == NULL ||
4669 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4670 	    continue;
4671 	if (def == NULL || (ld_dynamic_weak &&
4672           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4673 	    def = req1.sym_out;
4674 	    defobj = req1.defobj_out;
4675 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4676 		break;
4677 	}
4678     }
4679     if (def != NULL) {
4680 	req->sym_out = def;
4681 	req->defobj_out = defobj;
4682 	return (0);
4683     }
4684     return (ESRCH);
4685 }
4686 
4687 /*
4688  * Search the symbol table of a single shared object for a symbol of
4689  * the given name and version, if requested.  Returns a pointer to the
4690  * symbol, or NULL if no definition was found.  If the object is
4691  * filter, return filtered symbol from filtee.
4692  *
4693  * The symbol's hash value is passed in for efficiency reasons; that
4694  * eliminates many recomputations of the hash value.
4695  */
4696 int
4697 symlook_obj(SymLook *req, const Obj_Entry *obj)
4698 {
4699     DoneList donelist;
4700     SymLook req1;
4701     int flags, res, mres;
4702 
4703     /*
4704      * If there is at least one valid hash at this point, we prefer to
4705      * use the faster GNU version if available.
4706      */
4707     if (obj->valid_hash_gnu)
4708 	mres = symlook_obj1_gnu(req, obj);
4709     else if (obj->valid_hash_sysv)
4710 	mres = symlook_obj1_sysv(req, obj);
4711     else
4712 	return (EINVAL);
4713 
4714     if (mres == 0) {
4715 	if (obj->needed_filtees != NULL) {
4716 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4717 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4718 	    donelist_init(&donelist);
4719 	    symlook_init_from_req(&req1, req);
4720 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4721 	    if (res == 0) {
4722 		req->sym_out = req1.sym_out;
4723 		req->defobj_out = req1.defobj_out;
4724 	    }
4725 	    return (res);
4726 	}
4727 	if (obj->needed_aux_filtees != NULL) {
4728 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4729 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4730 	    donelist_init(&donelist);
4731 	    symlook_init_from_req(&req1, req);
4732 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4733 	    if (res == 0) {
4734 		req->sym_out = req1.sym_out;
4735 		req->defobj_out = req1.defobj_out;
4736 		return (res);
4737 	    }
4738 	}
4739     }
4740     return (mres);
4741 }
4742 
4743 /* Symbol match routine common to both hash functions */
4744 static bool
4745 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4746     const unsigned long symnum)
4747 {
4748 	Elf_Versym verndx;
4749 	const Elf_Sym *symp;
4750 	const char *strp;
4751 
4752 	symp = obj->symtab + symnum;
4753 	strp = obj->strtab + symp->st_name;
4754 
4755 	switch (ELF_ST_TYPE(symp->st_info)) {
4756 	case STT_FUNC:
4757 	case STT_NOTYPE:
4758 	case STT_OBJECT:
4759 	case STT_COMMON:
4760 	case STT_GNU_IFUNC:
4761 		if (symp->st_value == 0)
4762 			return (false);
4763 		/* fallthrough */
4764 	case STT_TLS:
4765 		if (symp->st_shndx != SHN_UNDEF)
4766 			break;
4767 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4768 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4769 			break;
4770 		/* fallthrough */
4771 	default:
4772 		return (false);
4773 	}
4774 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4775 		return (false);
4776 
4777 	if (req->ventry == NULL) {
4778 		if (obj->versyms != NULL) {
4779 			verndx = VER_NDX(obj->versyms[symnum]);
4780 			if (verndx > obj->vernum) {
4781 				_rtld_error(
4782 				    "%s: symbol %s references wrong version %d",
4783 				    obj->path, obj->strtab + symnum, verndx);
4784 				return (false);
4785 			}
4786 			/*
4787 			 * If we are not called from dlsym (i.e. this
4788 			 * is a normal relocation from unversioned
4789 			 * binary), accept the symbol immediately if
4790 			 * it happens to have first version after this
4791 			 * shared object became versioned.  Otherwise,
4792 			 * if symbol is versioned and not hidden,
4793 			 * remember it. If it is the only symbol with
4794 			 * this name exported by the shared object, it
4795 			 * will be returned as a match by the calling
4796 			 * function. If symbol is global (verndx < 2)
4797 			 * accept it unconditionally.
4798 			 */
4799 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4800 			    verndx == VER_NDX_GIVEN) {
4801 				result->sym_out = symp;
4802 				return (true);
4803 			}
4804 			else if (verndx >= VER_NDX_GIVEN) {
4805 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4806 				    == 0) {
4807 					if (result->vsymp == NULL)
4808 						result->vsymp = symp;
4809 					result->vcount++;
4810 				}
4811 				return (false);
4812 			}
4813 		}
4814 		result->sym_out = symp;
4815 		return (true);
4816 	}
4817 	if (obj->versyms == NULL) {
4818 		if (object_match_name(obj, req->ventry->name)) {
4819 			_rtld_error("%s: object %s should provide version %s "
4820 			    "for symbol %s", obj_rtld.path, obj->path,
4821 			    req->ventry->name, obj->strtab + symnum);
4822 			return (false);
4823 		}
4824 	} else {
4825 		verndx = VER_NDX(obj->versyms[symnum]);
4826 		if (verndx > obj->vernum) {
4827 			_rtld_error("%s: symbol %s references wrong version %d",
4828 			    obj->path, obj->strtab + symnum, verndx);
4829 			return (false);
4830 		}
4831 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4832 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4833 			/*
4834 			 * Version does not match. Look if this is a
4835 			 * global symbol and if it is not hidden. If
4836 			 * global symbol (verndx < 2) is available,
4837 			 * use it. Do not return symbol if we are
4838 			 * called by dlvsym, because dlvsym looks for
4839 			 * a specific version and default one is not
4840 			 * what dlvsym wants.
4841 			 */
4842 			if ((req->flags & SYMLOOK_DLSYM) ||
4843 			    (verndx >= VER_NDX_GIVEN) ||
4844 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4845 				return (false);
4846 		}
4847 	}
4848 	result->sym_out = symp;
4849 	return (true);
4850 }
4851 
4852 /*
4853  * Search for symbol using SysV hash function.
4854  * obj->buckets is known not to be NULL at this point; the test for this was
4855  * performed with the obj->valid_hash_sysv assignment.
4856  */
4857 static int
4858 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4859 {
4860 	unsigned long symnum;
4861 	Sym_Match_Result matchres;
4862 
4863 	matchres.sym_out = NULL;
4864 	matchres.vsymp = NULL;
4865 	matchres.vcount = 0;
4866 
4867 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4868 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4869 		if (symnum >= obj->nchains)
4870 			return (ESRCH);	/* Bad object */
4871 
4872 		if (matched_symbol(req, obj, &matchres, symnum)) {
4873 			req->sym_out = matchres.sym_out;
4874 			req->defobj_out = obj;
4875 			return (0);
4876 		}
4877 	}
4878 	if (matchres.vcount == 1) {
4879 		req->sym_out = matchres.vsymp;
4880 		req->defobj_out = obj;
4881 		return (0);
4882 	}
4883 	return (ESRCH);
4884 }
4885 
4886 /* Search for symbol using GNU hash function */
4887 static int
4888 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4889 {
4890 	Elf_Addr bloom_word;
4891 	const Elf32_Word *hashval;
4892 	Elf32_Word bucket;
4893 	Sym_Match_Result matchres;
4894 	unsigned int h1, h2;
4895 	unsigned long symnum;
4896 
4897 	matchres.sym_out = NULL;
4898 	matchres.vsymp = NULL;
4899 	matchres.vcount = 0;
4900 
4901 	/* Pick right bitmask word from Bloom filter array */
4902 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4903 	    obj->maskwords_bm_gnu];
4904 
4905 	/* Calculate modulus word size of gnu hash and its derivative */
4906 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4907 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4908 
4909 	/* Filter out the "definitely not in set" queries */
4910 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4911 		return (ESRCH);
4912 
4913 	/* Locate hash chain and corresponding value element*/
4914 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4915 	if (bucket == 0)
4916 		return (ESRCH);
4917 	hashval = &obj->chain_zero_gnu[bucket];
4918 	do {
4919 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4920 			symnum = hashval - obj->chain_zero_gnu;
4921 			if (matched_symbol(req, obj, &matchres, symnum)) {
4922 				req->sym_out = matchres.sym_out;
4923 				req->defobj_out = obj;
4924 				return (0);
4925 			}
4926 		}
4927 	} while ((*hashval++ & 1) == 0);
4928 	if (matchres.vcount == 1) {
4929 		req->sym_out = matchres.vsymp;
4930 		req->defobj_out = obj;
4931 		return (0);
4932 	}
4933 	return (ESRCH);
4934 }
4935 
4936 static void
4937 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4938 {
4939 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4940 	if (*main_local == NULL)
4941 		*main_local = "";
4942 
4943 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4944 	if (*fmt1 == NULL)
4945 		*fmt1 = "\t%o => %p (%x)\n";
4946 
4947 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4948 	if (*fmt2 == NULL)
4949 		*fmt2 = "\t%o (%x)\n";
4950 }
4951 
4952 static void
4953 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4954     const char *main_local, const char *fmt1, const char *fmt2)
4955 {
4956 	const char *fmt;
4957 	int c;
4958 
4959 	fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;	/* XXX bogus */
4960 	while ((c = *fmt++) != '\0') {
4961 		switch (c) {
4962 		default:
4963 			rtld_putchar(c);
4964 			continue;
4965 		case '\\':
4966 			switch (c = *fmt) {
4967 			case '\0':
4968 				continue;
4969 			case 'n':
4970 				rtld_putchar('\n');
4971 				break;
4972 			case 't':
4973 				rtld_putchar('\t');
4974 				break;
4975 			}
4976 			break;
4977 		case '%':
4978 			switch (c = *fmt) {
4979 			case '\0':
4980 				continue;
4981 			case '%':
4982 			default:
4983 				rtld_putchar(c);
4984 				break;
4985 			case 'A':
4986 				rtld_putstr(main_local);
4987 				break;
4988 			case 'a':
4989 				rtld_putstr(obj_main->path);
4990 				break;
4991 			case 'o':
4992 				rtld_putstr(name);
4993 				break;
4994 			case 'p':
4995 				rtld_putstr(path);
4996 				break;
4997 			case 'x':
4998 				rtld_printf("%p", obj != NULL ?
4999 				    obj->mapbase : NULL);
5000 				break;
5001 			}
5002 			break;
5003 		}
5004 		++fmt;
5005 	}
5006 }
5007 
5008 static void
5009 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5010 {
5011 	const char *fmt1, *fmt2, *main_local;
5012 	const char *name, *path;
5013 	bool first_spurious, list_containers;
5014 
5015 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5016 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5017 
5018 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5019 		Needed_Entry *needed;
5020 
5021 		if (obj->marker)
5022 			continue;
5023 		if (list_containers && obj->needed != NULL)
5024 			rtld_printf("%s:\n", obj->path);
5025 		for (needed = obj->needed; needed; needed = needed->next) {
5026 			if (needed->obj != NULL) {
5027 				if (needed->obj->traced && !list_containers)
5028 					continue;
5029 				needed->obj->traced = true;
5030 				path = needed->obj->path;
5031 			} else
5032 				path = "not found";
5033 
5034 			name = obj->strtab + needed->name;
5035 			trace_print_obj(needed->obj, name, path, main_local,
5036 			    fmt1, fmt2);
5037 		}
5038 	}
5039 
5040 	if (show_preload) {
5041 		first_spurious = true;
5042 		TAILQ_FOREACH(obj, &obj_list, next) {
5043 			if (obj->marker || obj == obj_main || obj->traced)
5044 				continue;
5045 
5046 			if (first_spurious) {
5047 				rtld_printf("[preloaded]\n");
5048 				first_spurious = false;
5049 			}
5050 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5051 			name = fname == NULL ? "<unknown>" : fname->name;
5052 			trace_print_obj(obj, name, obj->path, main_local,
5053 			    fmt1, fmt2);
5054 		}
5055 	}
5056 }
5057 
5058 /*
5059  * Unload a dlopened object and its dependencies from memory and from
5060  * our data structures.  It is assumed that the DAG rooted in the
5061  * object has already been unreferenced, and that the object has a
5062  * reference count of 0.
5063  */
5064 static void
5065 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5066 {
5067 	Obj_Entry marker, *obj, *next;
5068 
5069 	assert(root->refcount == 0);
5070 
5071 	/*
5072 	 * Pass over the DAG removing unreferenced objects from
5073 	 * appropriate lists.
5074 	 */
5075 	unlink_object(root);
5076 
5077 	/* Unmap all objects that are no longer referenced. */
5078 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5079 		next = TAILQ_NEXT(obj, next);
5080 		if (obj->marker || obj->refcount != 0)
5081 			continue;
5082 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5083 		    obj->mapsize, 0, obj->path);
5084 		dbg("unloading \"%s\"", obj->path);
5085 		/*
5086 		 * Unlink the object now to prevent new references from
5087 		 * being acquired while the bind lock is dropped in
5088 		 * recursive dlclose() invocations.
5089 		 */
5090 		TAILQ_REMOVE(&obj_list, obj, next);
5091 		obj_count--;
5092 
5093 		if (obj->filtees_loaded) {
5094 			if (next != NULL) {
5095 				init_marker(&marker);
5096 				TAILQ_INSERT_BEFORE(next, &marker, next);
5097 				unload_filtees(obj, lockstate);
5098 				next = TAILQ_NEXT(&marker, next);
5099 				TAILQ_REMOVE(&obj_list, &marker, next);
5100 			} else
5101 				unload_filtees(obj, lockstate);
5102 		}
5103 		release_object(obj);
5104 	}
5105 }
5106 
5107 static void
5108 unlink_object(Obj_Entry *root)
5109 {
5110     Objlist_Entry *elm;
5111 
5112     if (root->refcount == 0) {
5113 	/* Remove the object from the RTLD_GLOBAL list. */
5114 	objlist_remove(&list_global, root);
5115 
5116     	/* Remove the object from all objects' DAG lists. */
5117     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5118 	    objlist_remove(&elm->obj->dldags, root);
5119 	    if (elm->obj != root)
5120 		unlink_object(elm->obj);
5121 	}
5122     }
5123 }
5124 
5125 static void
5126 ref_dag(Obj_Entry *root)
5127 {
5128     Objlist_Entry *elm;
5129 
5130     assert(root->dag_inited);
5131     STAILQ_FOREACH(elm, &root->dagmembers, link)
5132 	elm->obj->refcount++;
5133 }
5134 
5135 static void
5136 unref_dag(Obj_Entry *root)
5137 {
5138     Objlist_Entry *elm;
5139 
5140     assert(root->dag_inited);
5141     STAILQ_FOREACH(elm, &root->dagmembers, link)
5142 	elm->obj->refcount--;
5143 }
5144 
5145 /*
5146  * Common code for MD __tls_get_addr().
5147  */
5148 static void *
5149 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5150 {
5151 	Elf_Addr *newdtv, *dtv;
5152 	RtldLockState lockstate;
5153 	int to_copy;
5154 
5155 	dtv = *dtvp;
5156 	/* Check dtv generation in case new modules have arrived */
5157 	if (dtv[0] != tls_dtv_generation) {
5158 		if (!locked)
5159 			wlock_acquire(rtld_bind_lock, &lockstate);
5160 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5161 		to_copy = dtv[1];
5162 		if (to_copy > tls_max_index)
5163 			to_copy = tls_max_index;
5164 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5165 		newdtv[0] = tls_dtv_generation;
5166 		newdtv[1] = tls_max_index;
5167 		free(dtv);
5168 		if (!locked)
5169 			lock_release(rtld_bind_lock, &lockstate);
5170 		dtv = *dtvp = newdtv;
5171 	}
5172 
5173 	/* Dynamically allocate module TLS if necessary */
5174 	if (dtv[index + 1] == 0) {
5175 		/* Signal safe, wlock will block out signals. */
5176 		if (!locked)
5177 			wlock_acquire(rtld_bind_lock, &lockstate);
5178 		if (!dtv[index + 1])
5179 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5180 		if (!locked)
5181 			lock_release(rtld_bind_lock, &lockstate);
5182 	}
5183 	return ((void *)(dtv[index + 1] + offset));
5184 }
5185 
5186 void *
5187 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5188 {
5189 	uintptr_t *dtv;
5190 
5191 	dtv = *dtvp;
5192 	/* Check dtv generation in case new modules have arrived */
5193 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5194 	    dtv[index + 1] != 0))
5195 		return ((void *)(dtv[index + 1] + offset));
5196 	return (tls_get_addr_slow(dtvp, index, offset, false));
5197 }
5198 
5199 #ifdef TLS_VARIANT_I
5200 
5201 /*
5202  * Return pointer to allocated TLS block
5203  */
5204 static void *
5205 get_tls_block_ptr(void *tcb, size_t tcbsize)
5206 {
5207     size_t extra_size, post_size, pre_size, tls_block_size;
5208     size_t tls_init_align;
5209 
5210     tls_init_align = MAX(obj_main->tlsalign, 1);
5211 
5212     /* Compute fragments sizes. */
5213     extra_size = tcbsize - TLS_TCB_SIZE;
5214     post_size = calculate_tls_post_size(tls_init_align);
5215     tls_block_size = tcbsize + post_size;
5216     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5217 
5218     return ((char *)tcb - pre_size - extra_size);
5219 }
5220 
5221 /*
5222  * Allocate Static TLS using the Variant I method.
5223  *
5224  * For details on the layout, see lib/libc/gen/tls.c.
5225  *
5226  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5227  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5228  *     offsets, whereas libc's tls_static_space is just the executable's static
5229  *     TLS segment.
5230  */
5231 void *
5232 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5233 {
5234     Obj_Entry *obj;
5235     char *tls_block;
5236     Elf_Addr *dtv, **tcb;
5237     Elf_Addr addr;
5238     Elf_Addr i;
5239     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5240     size_t tls_init_align, tls_init_offset;
5241 
5242     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5243 	return (oldtcb);
5244 
5245     assert(tcbsize >= TLS_TCB_SIZE);
5246     maxalign = MAX(tcbalign, tls_static_max_align);
5247     tls_init_align = MAX(obj_main->tlsalign, 1);
5248 
5249     /* Compute fragmets sizes. */
5250     extra_size = tcbsize - TLS_TCB_SIZE;
5251     post_size = calculate_tls_post_size(tls_init_align);
5252     tls_block_size = tcbsize + post_size;
5253     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5254     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5255 
5256     /* Allocate whole TLS block */
5257     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5258     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5259 
5260     if (oldtcb != NULL) {
5261 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5262 	    tls_static_space);
5263 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5264 
5265 	/* Adjust the DTV. */
5266 	dtv = tcb[0];
5267 	for (i = 0; i < dtv[1]; i++) {
5268 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5269 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5270 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5271 	    }
5272 	}
5273     } else {
5274 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5275 	tcb[0] = dtv;
5276 	dtv[0] = tls_dtv_generation;
5277 	dtv[1] = tls_max_index;
5278 
5279 	for (obj = globallist_curr(objs); obj != NULL;
5280 	  obj = globallist_next(obj)) {
5281 	    if (obj->tlsoffset == 0)
5282 		continue;
5283 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5284 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5285 	    if (tls_init_offset > 0)
5286 		memset((void *)addr, 0, tls_init_offset);
5287 	    if (obj->tlsinitsize > 0) {
5288 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5289 		    obj->tlsinitsize);
5290 	    }
5291 	    if (obj->tlssize > obj->tlsinitsize) {
5292 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5293 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5294 	    }
5295 	    dtv[obj->tlsindex + 1] = addr;
5296 	}
5297     }
5298 
5299     return (tcb);
5300 }
5301 
5302 void
5303 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5304 {
5305     Elf_Addr *dtv;
5306     Elf_Addr tlsstart, tlsend;
5307     size_t post_size;
5308     size_t dtvsize, i, tls_init_align;
5309 
5310     assert(tcbsize >= TLS_TCB_SIZE);
5311     tls_init_align = MAX(obj_main->tlsalign, 1);
5312 
5313     /* Compute fragments sizes. */
5314     post_size = calculate_tls_post_size(tls_init_align);
5315 
5316     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5317     tlsend = (Elf_Addr)tcb + tls_static_space;
5318 
5319     dtv = *(Elf_Addr **)tcb;
5320     dtvsize = dtv[1];
5321     for (i = 0; i < dtvsize; i++) {
5322 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5323 	    free((void*)dtv[i+2]);
5324 	}
5325     }
5326     free(dtv);
5327     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5328 }
5329 
5330 #endif	/* TLS_VARIANT_I */
5331 
5332 #ifdef TLS_VARIANT_II
5333 
5334 /*
5335  * Allocate Static TLS using the Variant II method.
5336  */
5337 void *
5338 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5339 {
5340     Obj_Entry *obj;
5341     size_t size, ralign;
5342     char *tls;
5343     Elf_Addr *dtv, *olddtv;
5344     Elf_Addr segbase, oldsegbase, addr;
5345     size_t i;
5346 
5347     ralign = tcbalign;
5348     if (tls_static_max_align > ralign)
5349 	    ralign = tls_static_max_align;
5350     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5351 
5352     assert(tcbsize >= 2*sizeof(Elf_Addr));
5353     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5354     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5355 
5356     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5357     ((Elf_Addr *)segbase)[0] = segbase;
5358     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5359 
5360     dtv[0] = tls_dtv_generation;
5361     dtv[1] = tls_max_index;
5362 
5363     if (oldtls) {
5364 	/*
5365 	 * Copy the static TLS block over whole.
5366 	 */
5367 	oldsegbase = (Elf_Addr) oldtls;
5368 	memcpy((void *)(segbase - tls_static_space),
5369 	   (const void *)(oldsegbase - tls_static_space),
5370 	   tls_static_space);
5371 
5372 	/*
5373 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5374 	 * move them over.
5375 	 */
5376 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5377 	for (i = 0; i < olddtv[1]; i++) {
5378 	    if (olddtv[i + 2] < oldsegbase - size ||
5379 		olddtv[i + 2] > oldsegbase) {
5380 		    dtv[i + 2] = olddtv[i + 2];
5381 		    olddtv[i + 2] = 0;
5382 	    }
5383 	}
5384 
5385 	/*
5386 	 * We assume that this block was the one we created with
5387 	 * allocate_initial_tls().
5388 	 */
5389 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5390     } else {
5391 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5392 		if (obj->marker || obj->tlsoffset == 0)
5393 			continue;
5394 		addr = segbase - obj->tlsoffset;
5395 		memset((void *)(addr + obj->tlsinitsize),
5396 		    0, obj->tlssize - obj->tlsinitsize);
5397 		if (obj->tlsinit) {
5398 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5399 			obj->static_tls_copied = true;
5400 		}
5401 		dtv[obj->tlsindex + 1] = addr;
5402 	}
5403     }
5404 
5405     return ((void *)segbase);
5406 }
5407 
5408 void
5409 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5410 {
5411     Elf_Addr* dtv;
5412     size_t size, ralign;
5413     int dtvsize, i;
5414     Elf_Addr tlsstart, tlsend;
5415 
5416     /*
5417      * Figure out the size of the initial TLS block so that we can
5418      * find stuff which ___tls_get_addr() allocated dynamically.
5419      */
5420     ralign = tcbalign;
5421     if (tls_static_max_align > ralign)
5422 	    ralign = tls_static_max_align;
5423     size = roundup(tls_static_space, ralign);
5424 
5425     dtv = ((Elf_Addr **)tls)[1];
5426     dtvsize = dtv[1];
5427     tlsend = (Elf_Addr)tls;
5428     tlsstart = tlsend - size;
5429     for (i = 0; i < dtvsize; i++) {
5430 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5431 	        dtv[i + 2] > tlsend)) {
5432 		    free_aligned((void *)dtv[i + 2]);
5433 	}
5434     }
5435 
5436     free_aligned((void *)tlsstart);
5437     free((void *)dtv);
5438 }
5439 
5440 #endif	/* TLS_VARIANT_II */
5441 
5442 /*
5443  * Allocate TLS block for module with given index.
5444  */
5445 void *
5446 allocate_module_tls(int index)
5447 {
5448 	Obj_Entry *obj;
5449 	char *p;
5450 
5451 	TAILQ_FOREACH(obj, &obj_list, next) {
5452 		if (obj->marker)
5453 			continue;
5454 		if (obj->tlsindex == index)
5455 			break;
5456 	}
5457 	if (obj == NULL) {
5458 		_rtld_error("Can't find module with TLS index %d", index);
5459 		rtld_die();
5460 	}
5461 
5462 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5463 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5464 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5465 	return (p);
5466 }
5467 
5468 bool
5469 allocate_tls_offset(Obj_Entry *obj)
5470 {
5471     size_t off;
5472 
5473     if (obj->tls_done)
5474 	return (true);
5475 
5476     if (obj->tlssize == 0) {
5477 	obj->tls_done = true;
5478 	return (true);
5479     }
5480 
5481     if (tls_last_offset == 0)
5482 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5483 	  obj->tlspoffset);
5484     else
5485 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5486 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5487 
5488     obj->tlsoffset = off;
5489 #ifdef TLS_VARIANT_I
5490     off += obj->tlssize;
5491 #endif
5492 
5493     /*
5494      * If we have already fixed the size of the static TLS block, we
5495      * must stay within that size. When allocating the static TLS, we
5496      * leave a small amount of space spare to be used for dynamically
5497      * loading modules which use static TLS.
5498      */
5499     if (tls_static_space != 0) {
5500 	if (off > tls_static_space)
5501 	    return (false);
5502     } else if (obj->tlsalign > tls_static_max_align) {
5503 	    tls_static_max_align = obj->tlsalign;
5504     }
5505 
5506     tls_last_offset = off;
5507     tls_last_size = obj->tlssize;
5508     obj->tls_done = true;
5509 
5510     return (true);
5511 }
5512 
5513 void
5514 free_tls_offset(Obj_Entry *obj)
5515 {
5516 
5517     /*
5518      * If we were the last thing to allocate out of the static TLS
5519      * block, we give our space back to the 'allocator'. This is a
5520      * simplistic workaround to allow libGL.so.1 to be loaded and
5521      * unloaded multiple times.
5522      */
5523     size_t off = obj->tlsoffset;
5524 #ifdef TLS_VARIANT_I
5525     off += obj->tlssize;
5526 #endif
5527     if (off == tls_last_offset) {
5528 	tls_last_offset -= obj->tlssize;
5529 	tls_last_size = 0;
5530     }
5531 }
5532 
5533 void *
5534 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5535 {
5536     void *ret;
5537     RtldLockState lockstate;
5538 
5539     wlock_acquire(rtld_bind_lock, &lockstate);
5540     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5541       tcbsize, tcbalign);
5542     lock_release(rtld_bind_lock, &lockstate);
5543     return (ret);
5544 }
5545 
5546 void
5547 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5548 {
5549     RtldLockState lockstate;
5550 
5551     wlock_acquire(rtld_bind_lock, &lockstate);
5552     free_tls(tcb, tcbsize, tcbalign);
5553     lock_release(rtld_bind_lock, &lockstate);
5554 }
5555 
5556 static void
5557 object_add_name(Obj_Entry *obj, const char *name)
5558 {
5559     Name_Entry *entry;
5560     size_t len;
5561 
5562     len = strlen(name);
5563     entry = malloc(sizeof(Name_Entry) + len);
5564 
5565     if (entry != NULL) {
5566 	strcpy(entry->name, name);
5567 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5568     }
5569 }
5570 
5571 static int
5572 object_match_name(const Obj_Entry *obj, const char *name)
5573 {
5574     Name_Entry *entry;
5575 
5576     STAILQ_FOREACH(entry, &obj->names, link) {
5577 	if (strcmp(name, entry->name) == 0)
5578 	    return (1);
5579     }
5580     return (0);
5581 }
5582 
5583 static Obj_Entry *
5584 locate_dependency(const Obj_Entry *obj, const char *name)
5585 {
5586     const Objlist_Entry *entry;
5587     const Needed_Entry *needed;
5588 
5589     STAILQ_FOREACH(entry, &list_main, link) {
5590 	if (object_match_name(entry->obj, name))
5591 	    return (entry->obj);
5592     }
5593 
5594     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5595 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5596 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5597 	    /*
5598 	     * If there is DT_NEEDED for the name we are looking for,
5599 	     * we are all set.  Note that object might not be found if
5600 	     * dependency was not loaded yet, so the function can
5601 	     * return NULL here.  This is expected and handled
5602 	     * properly by the caller.
5603 	     */
5604 	    return (needed->obj);
5605 	}
5606     }
5607     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5608 	obj->path, name);
5609     rtld_die();
5610 }
5611 
5612 static int
5613 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5614     const Elf_Vernaux *vna)
5615 {
5616     const Elf_Verdef *vd;
5617     const char *vername;
5618 
5619     vername = refobj->strtab + vna->vna_name;
5620     vd = depobj->verdef;
5621     if (vd == NULL) {
5622 	_rtld_error("%s: version %s required by %s not defined",
5623 	    depobj->path, vername, refobj->path);
5624 	return (-1);
5625     }
5626     for (;;) {
5627 	if (vd->vd_version != VER_DEF_CURRENT) {
5628 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5629 		depobj->path, vd->vd_version);
5630 	    return (-1);
5631 	}
5632 	if (vna->vna_hash == vd->vd_hash) {
5633 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5634 		((const char *)vd + vd->vd_aux);
5635 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5636 		return (0);
5637 	}
5638 	if (vd->vd_next == 0)
5639 	    break;
5640 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5641     }
5642     if (vna->vna_flags & VER_FLG_WEAK)
5643 	return (0);
5644     _rtld_error("%s: version %s required by %s not found",
5645 	depobj->path, vername, refobj->path);
5646     return (-1);
5647 }
5648 
5649 static int
5650 rtld_verify_object_versions(Obj_Entry *obj)
5651 {
5652     const Elf_Verneed *vn;
5653     const Elf_Verdef  *vd;
5654     const Elf_Verdaux *vda;
5655     const Elf_Vernaux *vna;
5656     const Obj_Entry *depobj;
5657     int maxvernum, vernum;
5658 
5659     if (obj->ver_checked)
5660 	return (0);
5661     obj->ver_checked = true;
5662 
5663     maxvernum = 0;
5664     /*
5665      * Walk over defined and required version records and figure out
5666      * max index used by any of them. Do very basic sanity checking
5667      * while there.
5668      */
5669     vn = obj->verneed;
5670     while (vn != NULL) {
5671 	if (vn->vn_version != VER_NEED_CURRENT) {
5672 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5673 		obj->path, vn->vn_version);
5674 	    return (-1);
5675 	}
5676 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5677 	for (;;) {
5678 	    vernum = VER_NEED_IDX(vna->vna_other);
5679 	    if (vernum > maxvernum)
5680 		maxvernum = vernum;
5681 	    if (vna->vna_next == 0)
5682 		 break;
5683 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5684 	}
5685 	if (vn->vn_next == 0)
5686 	    break;
5687 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5688     }
5689 
5690     vd = obj->verdef;
5691     while (vd != NULL) {
5692 	if (vd->vd_version != VER_DEF_CURRENT) {
5693 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5694 		obj->path, vd->vd_version);
5695 	    return (-1);
5696 	}
5697 	vernum = VER_DEF_IDX(vd->vd_ndx);
5698 	if (vernum > maxvernum)
5699 		maxvernum = vernum;
5700 	if (vd->vd_next == 0)
5701 	    break;
5702 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5703     }
5704 
5705     if (maxvernum == 0)
5706 	return (0);
5707 
5708     /*
5709      * Store version information in array indexable by version index.
5710      * Verify that object version requirements are satisfied along the
5711      * way.
5712      */
5713     obj->vernum = maxvernum + 1;
5714     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5715 
5716     vd = obj->verdef;
5717     while (vd != NULL) {
5718 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5719 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5720 	    assert(vernum <= maxvernum);
5721 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5722 	    obj->vertab[vernum].hash = vd->vd_hash;
5723 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5724 	    obj->vertab[vernum].file = NULL;
5725 	    obj->vertab[vernum].flags = 0;
5726 	}
5727 	if (vd->vd_next == 0)
5728 	    break;
5729 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5730     }
5731 
5732     vn = obj->verneed;
5733     while (vn != NULL) {
5734 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5735 	if (depobj == NULL)
5736 	    return (-1);
5737 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5738 	for (;;) {
5739 	    if (check_object_provided_version(obj, depobj, vna))
5740 		return (-1);
5741 	    vernum = VER_NEED_IDX(vna->vna_other);
5742 	    assert(vernum <= maxvernum);
5743 	    obj->vertab[vernum].hash = vna->vna_hash;
5744 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5745 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5746 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5747 		VER_INFO_HIDDEN : 0;
5748 	    if (vna->vna_next == 0)
5749 		 break;
5750 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5751 	}
5752 	if (vn->vn_next == 0)
5753 	    break;
5754 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5755     }
5756     return (0);
5757 }
5758 
5759 static int
5760 rtld_verify_versions(const Objlist *objlist)
5761 {
5762     Objlist_Entry *entry;
5763     int rc;
5764 
5765     rc = 0;
5766     STAILQ_FOREACH(entry, objlist, link) {
5767 	/*
5768 	 * Skip dummy objects or objects that have their version requirements
5769 	 * already checked.
5770 	 */
5771 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5772 	    continue;
5773 	if (rtld_verify_object_versions(entry->obj) == -1) {
5774 	    rc = -1;
5775 	    if (ld_tracing == NULL)
5776 		break;
5777 	}
5778     }
5779     if (rc == 0 || ld_tracing != NULL)
5780     	rc = rtld_verify_object_versions(&obj_rtld);
5781     return (rc);
5782 }
5783 
5784 const Ver_Entry *
5785 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5786 {
5787     Elf_Versym vernum;
5788 
5789     if (obj->vertab) {
5790 	vernum = VER_NDX(obj->versyms[symnum]);
5791 	if (vernum >= obj->vernum) {
5792 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5793 		obj->path, obj->strtab + symnum, vernum);
5794 	} else if (obj->vertab[vernum].hash != 0) {
5795 	    return (&obj->vertab[vernum]);
5796 	}
5797     }
5798     return (NULL);
5799 }
5800 
5801 int
5802 _rtld_get_stack_prot(void)
5803 {
5804 
5805 	return (stack_prot);
5806 }
5807 
5808 int
5809 _rtld_is_dlopened(void *arg)
5810 {
5811 	Obj_Entry *obj;
5812 	RtldLockState lockstate;
5813 	int res;
5814 
5815 	rlock_acquire(rtld_bind_lock, &lockstate);
5816 	obj = dlcheck(arg);
5817 	if (obj == NULL)
5818 		obj = obj_from_addr(arg);
5819 	if (obj == NULL) {
5820 		_rtld_error("No shared object contains address");
5821 		lock_release(rtld_bind_lock, &lockstate);
5822 		return (-1);
5823 	}
5824 	res = obj->dlopened ? 1 : 0;
5825 	lock_release(rtld_bind_lock, &lockstate);
5826 	return (res);
5827 }
5828 
5829 static int
5830 obj_remap_relro(Obj_Entry *obj, int prot)
5831 {
5832 
5833 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5834 	    prot) == -1) {
5835 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5836 		    obj->path, prot, rtld_strerror(errno));
5837 		return (-1);
5838 	}
5839 	return (0);
5840 }
5841 
5842 static int
5843 obj_disable_relro(Obj_Entry *obj)
5844 {
5845 
5846 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5847 }
5848 
5849 static int
5850 obj_enforce_relro(Obj_Entry *obj)
5851 {
5852 
5853 	return (obj_remap_relro(obj, PROT_READ));
5854 }
5855 
5856 static void
5857 map_stacks_exec(RtldLockState *lockstate)
5858 {
5859 	void (*thr_map_stacks_exec)(void);
5860 
5861 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5862 		return;
5863 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5864 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5865 	if (thr_map_stacks_exec != NULL) {
5866 		stack_prot |= PROT_EXEC;
5867 		thr_map_stacks_exec();
5868 	}
5869 }
5870 
5871 static void
5872 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5873 {
5874 	Objlist_Entry *elm;
5875 	Obj_Entry *obj;
5876 	void (*distrib)(size_t, void *, size_t, size_t);
5877 
5878 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5879 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5880 	if (distrib == NULL)
5881 		return;
5882 	STAILQ_FOREACH(elm, list, link) {
5883 		obj = elm->obj;
5884 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5885 			continue;
5886 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5887 		    obj->tlssize);
5888 		obj->static_tls_copied = true;
5889 	}
5890 }
5891 
5892 void
5893 symlook_init(SymLook *dst, const char *name)
5894 {
5895 
5896 	bzero(dst, sizeof(*dst));
5897 	dst->name = name;
5898 	dst->hash = elf_hash(name);
5899 	dst->hash_gnu = gnu_hash(name);
5900 }
5901 
5902 static void
5903 symlook_init_from_req(SymLook *dst, const SymLook *src)
5904 {
5905 
5906 	dst->name = src->name;
5907 	dst->hash = src->hash;
5908 	dst->hash_gnu = src->hash_gnu;
5909 	dst->ventry = src->ventry;
5910 	dst->flags = src->flags;
5911 	dst->defobj_out = NULL;
5912 	dst->sym_out = NULL;
5913 	dst->lockstate = src->lockstate;
5914 }
5915 
5916 static int
5917 open_binary_fd(const char *argv0, bool search_in_path,
5918     const char **binpath_res)
5919 {
5920 	char *binpath, *pathenv, *pe, *res1;
5921 	const char *res;
5922 	int fd;
5923 
5924 	binpath = NULL;
5925 	res = NULL;
5926 	if (search_in_path && strchr(argv0, '/') == NULL) {
5927 		binpath = xmalloc(PATH_MAX);
5928 		pathenv = getenv("PATH");
5929 		if (pathenv == NULL) {
5930 			_rtld_error("-p and no PATH environment variable");
5931 			rtld_die();
5932 		}
5933 		pathenv = strdup(pathenv);
5934 		if (pathenv == NULL) {
5935 			_rtld_error("Cannot allocate memory");
5936 			rtld_die();
5937 		}
5938 		fd = -1;
5939 		errno = ENOENT;
5940 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5941 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5942 				continue;
5943 			if (binpath[0] != '\0' &&
5944 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5945 				continue;
5946 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5947 				continue;
5948 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5949 			if (fd != -1 || errno != ENOENT) {
5950 				res = binpath;
5951 				break;
5952 			}
5953 		}
5954 		free(pathenv);
5955 	} else {
5956 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5957 		res = argv0;
5958 	}
5959 
5960 	if (fd == -1) {
5961 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5962 		rtld_die();
5963 	}
5964 	if (res != NULL && res[0] != '/') {
5965 		res1 = xmalloc(PATH_MAX);
5966 		if (realpath(res, res1) != NULL) {
5967 			if (res != argv0)
5968 				free(__DECONST(char *, res));
5969 			res = res1;
5970 		} else {
5971 			free(res1);
5972 		}
5973 	}
5974 	*binpath_res = res;
5975 	return (fd);
5976 }
5977 
5978 /*
5979  * Parse a set of command-line arguments.
5980  */
5981 static int
5982 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5983     const char **argv0, bool *dir_ignore)
5984 {
5985 	const char *arg;
5986 	char machine[64];
5987 	size_t sz;
5988 	int arglen, fd, i, j, mib[2];
5989 	char opt;
5990 	bool seen_b, seen_f;
5991 
5992 	dbg("Parsing command-line arguments");
5993 	*use_pathp = false;
5994 	*fdp = -1;
5995 	*dir_ignore = false;
5996 	seen_b = seen_f = false;
5997 
5998 	for (i = 1; i < argc; i++ ) {
5999 		arg = argv[i];
6000 		dbg("argv[%d]: '%s'", i, arg);
6001 
6002 		/*
6003 		 * rtld arguments end with an explicit "--" or with the first
6004 		 * non-prefixed argument.
6005 		 */
6006 		if (strcmp(arg, "--") == 0) {
6007 			i++;
6008 			break;
6009 		}
6010 		if (arg[0] != '-')
6011 			break;
6012 
6013 		/*
6014 		 * All other arguments are single-character options that can
6015 		 * be combined, so we need to search through `arg` for them.
6016 		 */
6017 		arglen = strlen(arg);
6018 		for (j = 1; j < arglen; j++) {
6019 			opt = arg[j];
6020 			if (opt == 'h') {
6021 				print_usage(argv[0]);
6022 				_exit(0);
6023 			} else if (opt == 'b') {
6024 				if (seen_f) {
6025 					_rtld_error("Both -b and -f specified");
6026 					rtld_die();
6027 				}
6028 				i++;
6029 				*argv0 = argv[i];
6030 				seen_b = true;
6031 				break;
6032 			} else if (opt == 'd') {
6033 				*dir_ignore = true;
6034 				break;
6035 			} else if (opt == 'f') {
6036 				if (seen_b) {
6037 					_rtld_error("Both -b and -f specified");
6038 					rtld_die();
6039 				}
6040 
6041 				/*
6042 				 * -f XX can be used to specify a
6043 				 * descriptor for the binary named at
6044 				 * the command line (i.e., the later
6045 				 * argument will specify the process
6046 				 * name but the descriptor is what
6047 				 * will actually be executed).
6048 				 *
6049 				 * -f must be the last option in, e.g., -abcf.
6050 				 */
6051 				if (j != arglen - 1) {
6052 					_rtld_error("Invalid options: %s", arg);
6053 					rtld_die();
6054 				}
6055 				i++;
6056 				fd = parse_integer(argv[i]);
6057 				if (fd == -1) {
6058 					_rtld_error(
6059 					    "Invalid file descriptor: '%s'",
6060 					    argv[i]);
6061 					rtld_die();
6062 				}
6063 				*fdp = fd;
6064 				seen_f = true;
6065 				break;
6066 			} else if (opt == 'p') {
6067 				*use_pathp = true;
6068 			} else if (opt == 'u') {
6069 				trust = false;
6070 			} else if (opt == 'v') {
6071 				machine[0] = '\0';
6072 				mib[0] = CTL_HW;
6073 				mib[1] = HW_MACHINE;
6074 				sz = sizeof(machine);
6075 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6076 				ld_elf_hints_path = ld_get_env_var(
6077 				    LD_ELF_HINTS_PATH);
6078 				set_ld_elf_hints_path();
6079 				rtld_printf(
6080 				    "FreeBSD ld-elf.so.1 %s\n"
6081 				    "FreeBSD_version %d\n"
6082 				    "Default lib path %s\n"
6083 				    "Hints lib path %s\n"
6084 				    "Env prefix %s\n"
6085 				    "Default hint file %s\n"
6086 				    "Hint file %s\n"
6087 				    "libmap file %s\n",
6088 				    machine,
6089 				    __FreeBSD_version, ld_standard_library_path,
6090 				    gethints(false),
6091 				    ld_env_prefix, ld_elf_hints_default,
6092 				    ld_elf_hints_path,
6093 				    ld_path_libmap_conf);
6094 				_exit(0);
6095 			} else {
6096 				_rtld_error("Invalid argument: '%s'", arg);
6097 				print_usage(argv[0]);
6098 				rtld_die();
6099 			}
6100 		}
6101 	}
6102 
6103 	if (!seen_b)
6104 		*argv0 = argv[i];
6105 	return (i);
6106 }
6107 
6108 /*
6109  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6110  */
6111 static int
6112 parse_integer(const char *str)
6113 {
6114 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6115 	const char *orig;
6116 	int n;
6117 	char c;
6118 
6119 	orig = str;
6120 	n = 0;
6121 	for (c = *str; c != '\0'; c = *++str) {
6122 		if (c < '0' || c > '9')
6123 			return (-1);
6124 
6125 		n *= RADIX;
6126 		n += c - '0';
6127 	}
6128 
6129 	/* Make sure we actually parsed something. */
6130 	if (str == orig)
6131 		return (-1);
6132 	return (n);
6133 }
6134 
6135 static void
6136 print_usage(const char *argv0)
6137 {
6138 
6139 	rtld_printf(
6140 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6141 	    "\n"
6142 	    "Options:\n"
6143 	    "  -h        Display this help message\n"
6144 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6145 	    "  -d        Ignore lack of exec permissions for the binary\n"
6146 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6147 	    "  -p        Search in PATH for named binary\n"
6148 	    "  -u        Ignore LD_ environment variables\n"
6149 	    "  -v        Display identification information\n"
6150 	    "  --        End of RTLD options\n"
6151 	    "  <binary>  Name of process to execute\n"
6152 	    "  <args>    Arguments to the executed process\n", argv0);
6153 }
6154 
6155 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6156 static const struct auxfmt {
6157 	const char *name;
6158 	const char *fmt;
6159 } auxfmts[] = {
6160 	AUXFMT(AT_NULL, NULL),
6161 	AUXFMT(AT_IGNORE, NULL),
6162 	AUXFMT(AT_EXECFD, "%ld"),
6163 	AUXFMT(AT_PHDR, "%p"),
6164 	AUXFMT(AT_PHENT, "%lu"),
6165 	AUXFMT(AT_PHNUM, "%lu"),
6166 	AUXFMT(AT_PAGESZ, "%lu"),
6167 	AUXFMT(AT_BASE, "%#lx"),
6168 	AUXFMT(AT_FLAGS, "%#lx"),
6169 	AUXFMT(AT_ENTRY, "%p"),
6170 	AUXFMT(AT_NOTELF, NULL),
6171 	AUXFMT(AT_UID, "%ld"),
6172 	AUXFMT(AT_EUID, "%ld"),
6173 	AUXFMT(AT_GID, "%ld"),
6174 	AUXFMT(AT_EGID, "%ld"),
6175 	AUXFMT(AT_EXECPATH, "%s"),
6176 	AUXFMT(AT_CANARY, "%p"),
6177 	AUXFMT(AT_CANARYLEN, "%lu"),
6178 	AUXFMT(AT_OSRELDATE, "%lu"),
6179 	AUXFMT(AT_NCPUS, "%lu"),
6180 	AUXFMT(AT_PAGESIZES, "%p"),
6181 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6182 	AUXFMT(AT_TIMEKEEP, "%p"),
6183 	AUXFMT(AT_STACKPROT, "%#lx"),
6184 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6185 	AUXFMT(AT_HWCAP, "%#lx"),
6186 	AUXFMT(AT_HWCAP2, "%#lx"),
6187 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6188 	AUXFMT(AT_ARGC, "%lu"),
6189 	AUXFMT(AT_ARGV, "%p"),
6190 	AUXFMT(AT_ENVC, "%p"),
6191 	AUXFMT(AT_ENVV, "%p"),
6192 	AUXFMT(AT_PS_STRINGS, "%p"),
6193 	AUXFMT(AT_FXRNG, "%p"),
6194 	AUXFMT(AT_KPRELOAD, "%p"),
6195 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6196 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6197 };
6198 
6199 static bool
6200 is_ptr_fmt(const char *fmt)
6201 {
6202 	char last;
6203 
6204 	last = fmt[strlen(fmt) - 1];
6205 	return (last == 'p' || last == 's');
6206 }
6207 
6208 static void
6209 dump_auxv(Elf_Auxinfo **aux_info)
6210 {
6211 	Elf_Auxinfo *auxp;
6212 	const struct auxfmt *fmt;
6213 	int i;
6214 
6215 	for (i = 0; i < AT_COUNT; i++) {
6216 		auxp = aux_info[i];
6217 		if (auxp == NULL)
6218 			continue;
6219 		fmt = &auxfmts[i];
6220 		if (fmt->fmt == NULL)
6221 			continue;
6222 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6223 		if (is_ptr_fmt(fmt->fmt)) {
6224 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6225 			    auxp->a_un.a_ptr);
6226 		} else {
6227 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6228 			    auxp->a_un.a_val);
6229 		}
6230 		rtld_fdprintf(STDOUT_FILENO, "\n");
6231 	}
6232 }
6233 
6234 /*
6235  * Overrides for libc_pic-provided functions.
6236  */
6237 
6238 int
6239 __getosreldate(void)
6240 {
6241 	size_t len;
6242 	int oid[2];
6243 	int error, osrel;
6244 
6245 	if (osreldate != 0)
6246 		return (osreldate);
6247 
6248 	oid[0] = CTL_KERN;
6249 	oid[1] = KERN_OSRELDATE;
6250 	osrel = 0;
6251 	len = sizeof(osrel);
6252 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6253 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6254 		osreldate = osrel;
6255 	return (osreldate);
6256 }
6257 const char *
6258 rtld_strerror(int errnum)
6259 {
6260 
6261 	if (errnum < 0 || errnum >= sys_nerr)
6262 		return ("Unknown error");
6263 	return (sys_errlist[errnum]);
6264 }
6265 
6266 char *
6267 getenv(const char *name)
6268 {
6269 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6270 	    strlen(name))));
6271 }
6272 
6273 /* malloc */
6274 void *
6275 malloc(size_t nbytes)
6276 {
6277 
6278 	return (__crt_malloc(nbytes));
6279 }
6280 
6281 void *
6282 calloc(size_t num, size_t size)
6283 {
6284 
6285 	return (__crt_calloc(num, size));
6286 }
6287 
6288 void
6289 free(void *cp)
6290 {
6291 
6292 	__crt_free(cp);
6293 }
6294 
6295 void *
6296 realloc(void *cp, size_t nbytes)
6297 {
6298 
6299 	return (__crt_realloc(cp, nbytes));
6300 }
6301 
6302 extern int _rtld_version__FreeBSD_version __exported;
6303 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6304 
6305 extern char _rtld_version_laddr_offset __exported;
6306 char _rtld_version_laddr_offset;
6307 
6308 extern char _rtld_version_dlpi_tls_data __exported;
6309 char _rtld_version_dlpi_tls_data;
6310