xref: /freebsd/libexec/rtld-elf/rtld.c (revision f56f82e0)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * Copyright 2014-2017 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Dynamic linker for ELF.
35  *
36  * John Polstra <jdp@polstra.com>.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/mount.h>
44 #include <sys/mman.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 #include <sys/ktrace.h>
50 
51 #include <dlfcn.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "debug.h"
62 #include "rtld.h"
63 #include "libmap.h"
64 #include "paths.h"
65 #include "rtld_tls.h"
66 #include "rtld_printf.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 
70 /* Types. */
71 typedef void (*func_ptr_type)();
72 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
73 
74 /*
75  * Function declarations.
76  */
77 static const char *basename(const char *);
78 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
79     const Elf_Dyn **, const Elf_Dyn **);
80 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
81     const Elf_Dyn *);
82 static void digest_dynamic(Obj_Entry *, int);
83 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
84 static Obj_Entry *dlcheck(void *);
85 static int dlclose_locked(void *, RtldLockState *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode, RtldLockState *lockstate);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *, int *);
95 static const char *gethints(bool);
96 static void hold_object(Obj_Entry *);
97 static void unhold_object(Obj_Entry *);
98 static void init_dag(Obj_Entry *);
99 static void init_marker(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *, RtldLockState *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static int obj_enforce_relro(Obj_Entry *);
113 static Obj_Entry *obj_from_addr(const void *);
114 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
115 static void objlist_call_init(Objlist *, RtldLockState *);
116 static void objlist_clear(Objlist *);
117 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
118 static void objlist_init(Objlist *);
119 static void objlist_push_head(Objlist *, Obj_Entry *);
120 static void objlist_push_tail(Objlist *, Obj_Entry *);
121 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
122 static void objlist_remove(Objlist *, Obj_Entry *);
123 static int open_binary_fd(const char *argv0, bool search_in_path);
124 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
125 static int parse_integer(const char *);
126 static void *path_enumerate(const char *, path_enum_proc, void *);
127 static void print_usage(const char *argv0);
128 static void release_object(Obj_Entry *);
129 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
130     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
131 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
132     int flags, RtldLockState *lockstate);
133 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
134     RtldLockState *);
135 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
136     int flags, RtldLockState *lockstate);
137 static int rtld_dirname(const char *, char *);
138 static int rtld_dirname_abs(const char *, char *);
139 static void *rtld_dlopen(const char *name, int fd, int mode);
140 static void rtld_exit(void);
141 static char *search_library_path(const char *, const char *);
142 static char *search_library_pathfds(const char *, const char *, int *);
143 static const void **get_program_var_addr(const char *, RtldLockState *);
144 static void set_program_var(const char *, const void *);
145 static int symlook_default(SymLook *, const Obj_Entry *refobj);
146 static int symlook_global(SymLook *, DoneList *);
147 static void symlook_init_from_req(SymLook *, const SymLook *);
148 static int symlook_list(SymLook *, const Objlist *, DoneList *);
149 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
150 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
151 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
152 static void trace_loaded_objects(Obj_Entry *);
153 static void unlink_object(Obj_Entry *);
154 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
155 static void unref_dag(Obj_Entry *);
156 static void ref_dag(Obj_Entry *);
157 static char *origin_subst_one(Obj_Entry *, char *, const char *,
158     const char *, bool);
159 static char *origin_subst(Obj_Entry *, char *);
160 static bool obj_resolve_origin(Obj_Entry *obj);
161 static void preinit_main(void);
162 static int  rtld_verify_versions(const Objlist *);
163 static int  rtld_verify_object_versions(Obj_Entry *);
164 static void object_add_name(Obj_Entry *, const char *);
165 static int  object_match_name(const Obj_Entry *, const char *);
166 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
167 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
168     struct dl_phdr_info *phdr_info);
169 static uint32_t gnu_hash(const char *);
170 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
171     const unsigned long);
172 
173 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
174 void _r_debug_postinit(struct link_map *) __noinline __exported;
175 
176 int __sys_openat(int, const char *, int, ...);
177 
178 /*
179  * Data declarations.
180  */
181 static char *error_message;	/* Message for dlerror(), or NULL */
182 struct r_debug r_debug __exported;	/* for GDB; */
183 static bool libmap_disable;	/* Disable libmap */
184 static bool ld_loadfltr;	/* Immediate filters processing */
185 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
186 static bool trust;		/* False for setuid and setgid programs */
187 static bool dangerous_ld_env;	/* True if environment variables have been
188 				   used to affect the libraries loaded */
189 bool ld_bind_not;		/* Disable PLT update */
190 static char *ld_bind_now;	/* Environment variable for immediate binding */
191 static char *ld_debug;		/* Environment variable for debugging */
192 static char *ld_library_path;	/* Environment variable for search path */
193 static char *ld_library_dirs;	/* Environment variable for library descriptors */
194 static char *ld_preload;	/* Environment variable for libraries to
195 				   load first */
196 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
197 static char *ld_tracing;	/* Called from ldd to print libs */
198 static char *ld_utrace;		/* Use utrace() to log events. */
199 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
200 static Obj_Entry *obj_main;	/* The main program shared object */
201 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
202 static unsigned int obj_count;	/* Number of objects in obj_list */
203 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
204 
205 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
206   STAILQ_HEAD_INITIALIZER(list_global);
207 static Objlist list_main =	/* Objects loaded at program startup */
208   STAILQ_HEAD_INITIALIZER(list_main);
209 static Objlist list_fini =	/* Objects needing fini() calls */
210   STAILQ_HEAD_INITIALIZER(list_fini);
211 
212 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
213 
214 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
215 
216 extern Elf_Dyn _DYNAMIC;
217 #pragma weak _DYNAMIC
218 
219 int dlclose(void *) __exported;
220 char *dlerror(void) __exported;
221 void *dlopen(const char *, int) __exported;
222 void *fdlopen(int, int) __exported;
223 void *dlsym(void *, const char *) __exported;
224 dlfunc_t dlfunc(void *, const char *) __exported;
225 void *dlvsym(void *, const char *, const char *) __exported;
226 int dladdr(const void *, Dl_info *) __exported;
227 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
228     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
229 int dlinfo(void *, int , void *) __exported;
230 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
231 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
232 int _rtld_get_stack_prot(void) __exported;
233 int _rtld_is_dlopened(void *) __exported;
234 void _rtld_error(const char *, ...) __exported;
235 
236 int npagesizes, osreldate;
237 size_t *pagesizes;
238 
239 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
240 
241 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
242 static int max_stack_flags;
243 
244 /*
245  * Global declarations normally provided by crt1.  The dynamic linker is
246  * not built with crt1, so we have to provide them ourselves.
247  */
248 char *__progname;
249 char **environ;
250 
251 /*
252  * Used to pass argc, argv to init functions.
253  */
254 int main_argc;
255 char **main_argv;
256 
257 /*
258  * Globals to control TLS allocation.
259  */
260 size_t tls_last_offset;		/* Static TLS offset of last module */
261 size_t tls_last_size;		/* Static TLS size of last module */
262 size_t tls_static_space;	/* Static TLS space allocated */
263 size_t tls_static_max_align;
264 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
265 int tls_max_index = 1;		/* Largest module index allocated */
266 
267 bool ld_library_path_rpath = false;
268 
269 /*
270  * Globals for path names, and such
271  */
272 char *ld_elf_hints_default = _PATH_ELF_HINTS;
273 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
274 char *ld_path_rtld = _PATH_RTLD;
275 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
276 char *ld_env_prefix = LD_;
277 
278 /*
279  * Fill in a DoneList with an allocation large enough to hold all of
280  * the currently-loaded objects.  Keep this as a macro since it calls
281  * alloca and we want that to occur within the scope of the caller.
282  */
283 #define donelist_init(dlp)					\
284     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
285     assert((dlp)->objs != NULL),				\
286     (dlp)->num_alloc = obj_count,				\
287     (dlp)->num_used = 0)
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
300 
301 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
302 	ut.event = event;
303 	ut.handle = handle;
304 	ut.mapbase = mapbase;
305 	ut.mapsize = mapsize;
306 	ut.refcnt = refcnt;
307 	bzero(ut.name, sizeof(ut.name));
308 	if (name)
309 		strlcpy(ut.name, name, sizeof(ut.name));
310 	utrace(&ut, sizeof(ut));
311 }
312 
313 #ifdef RTLD_VARIANT_ENV_NAMES
314 /*
315  * construct the env variable based on the type of binary that's
316  * running.
317  */
318 static inline const char *
319 _LD(const char *var)
320 {
321 	static char buffer[128];
322 
323 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
324 	strlcat(buffer, var, sizeof(buffer));
325 	return (buffer);
326 }
327 #else
328 #define _LD(x)	LD_ x
329 #endif
330 
331 /*
332  * Main entry point for dynamic linking.  The first argument is the
333  * stack pointer.  The stack is expected to be laid out as described
334  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
335  * Specifically, the stack pointer points to a word containing
336  * ARGC.  Following that in the stack is a null-terminated sequence
337  * of pointers to argument strings.  Then comes a null-terminated
338  * sequence of pointers to environment strings.  Finally, there is a
339  * sequence of "auxiliary vector" entries.
340  *
341  * The second argument points to a place to store the dynamic linker's
342  * exit procedure pointer and the third to a place to store the main
343  * program's object.
344  *
345  * The return value is the main program's entry point.
346  */
347 func_ptr_type
348 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
349 {
350     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
351     Objlist_Entry *entry;
352     Obj_Entry *last_interposer, *obj, *preload_tail;
353     const Elf_Phdr *phdr;
354     Objlist initlist;
355     RtldLockState lockstate;
356     struct stat st;
357     Elf_Addr *argcp;
358     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
359     caddr_t imgentry;
360     char buf[MAXPATHLEN];
361     int argc, fd, i, mib[2], phnum, rtld_argc;
362     size_t len;
363     bool dir_enable, explicit_fd, search_in_path;
364 
365     /*
366      * On entry, the dynamic linker itself has not been relocated yet.
367      * Be very careful not to reference any global data until after
368      * init_rtld has returned.  It is OK to reference file-scope statics
369      * and string constants, and to call static and global functions.
370      */
371 
372     /* Find the auxiliary vector on the stack. */
373     argcp = sp;
374     argc = *sp++;
375     argv = (char **) sp;
376     sp += argc + 1;	/* Skip over arguments and NULL terminator */
377     env = (char **) sp;
378     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
379 	;
380     aux = (Elf_Auxinfo *) sp;
381 
382     /* Digest the auxiliary vector. */
383     for (i = 0;  i < AT_COUNT;  i++)
384 	aux_info[i] = NULL;
385     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
386 	if (auxp->a_type < AT_COUNT)
387 	    aux_info[auxp->a_type] = auxp;
388     }
389 
390     /* Initialize and relocate ourselves. */
391     assert(aux_info[AT_BASE] != NULL);
392     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
393 
394     __progname = obj_rtld.path;
395     argv0 = argv[0] != NULL ? argv[0] : "(null)";
396     environ = env;
397     main_argc = argc;
398     main_argv = argv;
399 
400     if (aux_info[AT_CANARY] != NULL &&
401 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
402 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
403 	    if (i > sizeof(__stack_chk_guard))
404 		    i = sizeof(__stack_chk_guard);
405 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
406     } else {
407 	mib[0] = CTL_KERN;
408 	mib[1] = KERN_ARND;
409 
410 	len = sizeof(__stack_chk_guard);
411 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
412 	    len != sizeof(__stack_chk_guard)) {
413 		/* If sysctl was unsuccessful, use the "terminator canary". */
414 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
415 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
416 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
417 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
418 	}
419     }
420 
421     trust = !issetugid();
422 
423     md_abi_variant_hook(aux_info);
424 
425     fd = -1;
426     if (aux_info[AT_EXECFD] != NULL) {
427 	fd = aux_info[AT_EXECFD]->a_un.a_val;
428     } else {
429 	assert(aux_info[AT_PHDR] != NULL);
430 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
431 	if (phdr == obj_rtld.phdr) {
432 	    if (!trust) {
433 		rtld_printf("Tainted process refusing to run binary %s\n",
434 		  argv0);
435 		rtld_die();
436 	    }
437 	    dbg("opening main program in direct exec mode");
438 	    if (argc >= 2) {
439 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
440 		argv0 = argv[rtld_argc];
441 		explicit_fd = (fd != -1);
442 		if (!explicit_fd)
443 		    fd = open_binary_fd(argv0, search_in_path);
444 		if (fstat(fd, &st) == -1) {
445 		    _rtld_error("failed to fstat FD %d (%s): %s", fd,
446 		      explicit_fd ? "user-provided descriptor" : argv0,
447 		      rtld_strerror(errno));
448 		    rtld_die();
449 		}
450 
451 		/*
452 		 * Rough emulation of the permission checks done by
453 		 * execve(2), only Unix DACs are checked, ACLs are
454 		 * ignored.  Preserve the semantic of disabling owner
455 		 * to execute if owner x bit is cleared, even if
456 		 * others x bit is enabled.
457 		 * mmap(2) does not allow to mmap with PROT_EXEC if
458 		 * binary' file comes from noexec mount.  We cannot
459 		 * set VV_TEXT on the binary.
460 		 */
461 		dir_enable = false;
462 		if (st.st_uid == geteuid()) {
463 		    if ((st.st_mode & S_IXUSR) != 0)
464 			dir_enable = true;
465 		} else if (st.st_gid == getegid()) {
466 		    if ((st.st_mode & S_IXGRP) != 0)
467 			dir_enable = true;
468 		} else if ((st.st_mode & S_IXOTH) != 0) {
469 		    dir_enable = true;
470 		}
471 		if (!dir_enable) {
472 		    rtld_printf("No execute permission for binary %s\n",
473 		      argv0);
474 		    rtld_die();
475 		}
476 
477 		/*
478 		 * For direct exec mode, argv[0] is the interpreter
479 		 * name, we must remove it and shift arguments left
480 		 * before invoking binary main.  Since stack layout
481 		 * places environment pointers and aux vectors right
482 		 * after the terminating NULL, we must shift
483 		 * environment and aux as well.
484 		 */
485 		main_argc = argc - rtld_argc;
486 		for (i = 0; i <= main_argc; i++)
487 		    argv[i] = argv[i + rtld_argc];
488 		*argcp -= rtld_argc;
489 		environ = env = envp = argv + main_argc + 1;
490 		do {
491 		    *envp = *(envp + rtld_argc);
492 		    envp++;
493 		} while (*envp != NULL);
494 		aux = auxp = (Elf_Auxinfo *)envp;
495 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
496 		for (;; auxp++, auxpf++) {
497 		    *auxp = *auxpf;
498 		    if (auxp->a_type == AT_NULL)
499 			    break;
500 		}
501 	    } else {
502 		rtld_printf("no binary\n");
503 		rtld_die();
504 	    }
505 	}
506     }
507 
508     ld_bind_now = getenv(_LD("BIND_NOW"));
509 
510     /*
511      * If the process is tainted, then we un-set the dangerous environment
512      * variables.  The process will be marked as tainted until setuid(2)
513      * is called.  If any child process calls setuid(2) we do not want any
514      * future processes to honor the potentially un-safe variables.
515      */
516     if (!trust) {
517 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
518 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
519 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
520 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
521 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
522 		_rtld_error("environment corrupt; aborting");
523 		rtld_die();
524 	}
525     }
526     ld_debug = getenv(_LD("DEBUG"));
527     if (ld_bind_now == NULL)
528 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
529     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
530     libmap_override = getenv(_LD("LIBMAP"));
531     ld_library_path = getenv(_LD("LIBRARY_PATH"));
532     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
533     ld_preload = getenv(_LD("PRELOAD"));
534     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
535     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
536     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
537     if (library_path_rpath != NULL) {
538 	    if (library_path_rpath[0] == 'y' ||
539 		library_path_rpath[0] == 'Y' ||
540 		library_path_rpath[0] == '1')
541 		    ld_library_path_rpath = true;
542 	    else
543 		    ld_library_path_rpath = false;
544     }
545     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
546 	(ld_library_path != NULL) || (ld_preload != NULL) ||
547 	(ld_elf_hints_path != NULL) || ld_loadfltr;
548     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
549     ld_utrace = getenv(_LD("UTRACE"));
550 
551     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
552 	ld_elf_hints_path = ld_elf_hints_default;
553 
554     if (ld_debug != NULL && *ld_debug != '\0')
555 	debug = 1;
556     dbg("%s is initialized, base address = %p", __progname,
557 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
558     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
559     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
560 
561     dbg("initializing thread locks");
562     lockdflt_init();
563 
564     /*
565      * Load the main program, or process its program header if it is
566      * already loaded.
567      */
568     if (fd != -1) {	/* Load the main program. */
569 	dbg("loading main program");
570 	obj_main = map_object(fd, argv0, NULL);
571 	close(fd);
572 	if (obj_main == NULL)
573 	    rtld_die();
574 	max_stack_flags = obj->stack_flags;
575     } else {				/* Main program already loaded. */
576 	dbg("processing main program's program header");
577 	assert(aux_info[AT_PHDR] != NULL);
578 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
579 	assert(aux_info[AT_PHNUM] != NULL);
580 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
581 	assert(aux_info[AT_PHENT] != NULL);
582 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
583 	assert(aux_info[AT_ENTRY] != NULL);
584 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
585 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
586 	    rtld_die();
587     }
588 
589     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
590 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
591 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
592 	    if (kexecpath[0] == '/')
593 		    obj_main->path = kexecpath;
594 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
595 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
596 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
597 		    obj_main->path = xstrdup(argv0);
598 	    else
599 		    obj_main->path = xstrdup(buf);
600     } else {
601 	    dbg("No AT_EXECPATH or direct exec");
602 	    obj_main->path = xstrdup(argv0);
603     }
604     dbg("obj_main path %s", obj_main->path);
605     obj_main->mainprog = true;
606 
607     if (aux_info[AT_STACKPROT] != NULL &&
608       aux_info[AT_STACKPROT]->a_un.a_val != 0)
609 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
610 
611 #ifndef COMPAT_32BIT
612     /*
613      * Get the actual dynamic linker pathname from the executable if
614      * possible.  (It should always be possible.)  That ensures that
615      * gdb will find the right dynamic linker even if a non-standard
616      * one is being used.
617      */
618     if (obj_main->interp != NULL &&
619       strcmp(obj_main->interp, obj_rtld.path) != 0) {
620 	free(obj_rtld.path);
621 	obj_rtld.path = xstrdup(obj_main->interp);
622         __progname = obj_rtld.path;
623     }
624 #endif
625 
626     digest_dynamic(obj_main, 0);
627     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
628 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
629 	obj_main->dynsymcount);
630 
631     linkmap_add(obj_main);
632     linkmap_add(&obj_rtld);
633 
634     /* Link the main program into the list of objects. */
635     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
636     obj_count++;
637     obj_loads++;
638 
639     /* Initialize a fake symbol for resolving undefined weak references. */
640     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
641     sym_zero.st_shndx = SHN_UNDEF;
642     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
643 
644     if (!libmap_disable)
645         libmap_disable = (bool)lm_init(libmap_override);
646 
647     dbg("loading LD_PRELOAD libraries");
648     if (load_preload_objects() == -1)
649 	rtld_die();
650     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
651 
652     dbg("loading needed objects");
653     if (load_needed_objects(obj_main, 0) == -1)
654 	rtld_die();
655 
656     /* Make a list of all objects loaded at startup. */
657     last_interposer = obj_main;
658     TAILQ_FOREACH(obj, &obj_list, next) {
659 	if (obj->marker)
660 	    continue;
661 	if (obj->z_interpose && obj != obj_main) {
662 	    objlist_put_after(&list_main, last_interposer, obj);
663 	    last_interposer = obj;
664 	} else {
665 	    objlist_push_tail(&list_main, obj);
666 	}
667     	obj->refcount++;
668     }
669 
670     dbg("checking for required versions");
671     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
672 	rtld_die();
673 
674     if (ld_tracing) {		/* We're done */
675 	trace_loaded_objects(obj_main);
676 	exit(0);
677     }
678 
679     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
680        dump_relocations(obj_main);
681        exit (0);
682     }
683 
684     /*
685      * Processing tls relocations requires having the tls offsets
686      * initialized.  Prepare offsets before starting initial
687      * relocation processing.
688      */
689     dbg("initializing initial thread local storage offsets");
690     STAILQ_FOREACH(entry, &list_main, link) {
691 	/*
692 	 * Allocate all the initial objects out of the static TLS
693 	 * block even if they didn't ask for it.
694 	 */
695 	allocate_tls_offset(entry->obj);
696     }
697 
698     if (relocate_objects(obj_main,
699       ld_bind_now != NULL && *ld_bind_now != '\0',
700       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
701 	rtld_die();
702 
703     dbg("doing copy relocations");
704     if (do_copy_relocations(obj_main) == -1)
705 	rtld_die();
706 
707     dbg("enforcing main obj relro");
708     if (obj_enforce_relro(obj_main) == -1)
709 	rtld_die();
710 
711     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
712        dump_relocations(obj_main);
713        exit (0);
714     }
715 
716     /*
717      * Setup TLS for main thread.  This must be done after the
718      * relocations are processed, since tls initialization section
719      * might be the subject for relocations.
720      */
721     dbg("initializing initial thread local storage");
722     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
723 
724     dbg("initializing key program variables");
725     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
726     set_program_var("environ", env);
727     set_program_var("__elf_aux_vector", aux);
728 
729     /* Make a list of init functions to call. */
730     objlist_init(&initlist);
731     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
732       preload_tail, &initlist);
733 
734     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
735 
736     map_stacks_exec(NULL);
737     ifunc_init(aux);
738 
739     dbg("resolving ifuncs");
740     if (resolve_objects_ifunc(obj_main,
741       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
742       NULL) == -1)
743 	rtld_die();
744 
745     if (!obj_main->crt_no_init) {
746 	/*
747 	 * Make sure we don't call the main program's init and fini
748 	 * functions for binaries linked with old crt1 which calls
749 	 * _init itself.
750 	 */
751 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
752 	obj_main->preinit_array = obj_main->init_array =
753 	    obj_main->fini_array = (Elf_Addr)NULL;
754     }
755 
756     wlock_acquire(rtld_bind_lock, &lockstate);
757     if (obj_main->crt_no_init)
758 	preinit_main();
759     objlist_call_init(&initlist, &lockstate);
760     _r_debug_postinit(&obj_main->linkmap);
761     objlist_clear(&initlist);
762     dbg("loading filtees");
763     TAILQ_FOREACH(obj, &obj_list, next) {
764 	if (obj->marker)
765 	    continue;
766 	if (ld_loadfltr || obj->z_loadfltr)
767 	    load_filtees(obj, 0, &lockstate);
768     }
769     lock_release(rtld_bind_lock, &lockstate);
770 
771     dbg("transferring control to program entry point = %p", obj_main->entry);
772 
773     /* Return the exit procedure and the program entry point. */
774     *exit_proc = rtld_exit;
775     *objp = obj_main;
776     return (func_ptr_type) obj_main->entry;
777 }
778 
779 void *
780 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
781 {
782 	void *ptr;
783 	Elf_Addr target;
784 
785 	ptr = (void *)make_function_pointer(def, obj);
786 	target = call_ifunc_resolver(ptr);
787 	return ((void *)target);
788 }
789 
790 /*
791  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
792  * Changes to this function should be applied there as well.
793  */
794 Elf_Addr
795 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
796 {
797     const Elf_Rel *rel;
798     const Elf_Sym *def;
799     const Obj_Entry *defobj;
800     Elf_Addr *where;
801     Elf_Addr target;
802     RtldLockState lockstate;
803 
804     rlock_acquire(rtld_bind_lock, &lockstate);
805     if (sigsetjmp(lockstate.env, 0) != 0)
806 	    lock_upgrade(rtld_bind_lock, &lockstate);
807     if (obj->pltrel)
808 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
809     else
810 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
811 
812     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
813     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
814 	NULL, &lockstate);
815     if (def == NULL)
816 	rtld_die();
817     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
818 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
819     else
820 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
821 
822     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
823       defobj->strtab + def->st_name, basename(obj->path),
824       (void *)target, basename(defobj->path));
825 
826     /*
827      * Write the new contents for the jmpslot. Note that depending on
828      * architecture, the value which we need to return back to the
829      * lazy binding trampoline may or may not be the target
830      * address. The value returned from reloc_jmpslot() is the value
831      * that the trampoline needs.
832      */
833     target = reloc_jmpslot(where, target, defobj, obj, rel);
834     lock_release(rtld_bind_lock, &lockstate);
835     return target;
836 }
837 
838 /*
839  * Error reporting function.  Use it like printf.  If formats the message
840  * into a buffer, and sets things up so that the next call to dlerror()
841  * will return the message.
842  */
843 void
844 _rtld_error(const char *fmt, ...)
845 {
846     static char buf[512];
847     va_list ap;
848 
849     va_start(ap, fmt);
850     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
851     error_message = buf;
852     va_end(ap);
853     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
854 }
855 
856 /*
857  * Return a dynamically-allocated copy of the current error message, if any.
858  */
859 static char *
860 errmsg_save(void)
861 {
862     return error_message == NULL ? NULL : xstrdup(error_message);
863 }
864 
865 /*
866  * Restore the current error message from a copy which was previously saved
867  * by errmsg_save().  The copy is freed.
868  */
869 static void
870 errmsg_restore(char *saved_msg)
871 {
872     if (saved_msg == NULL)
873 	error_message = NULL;
874     else {
875 	_rtld_error("%s", saved_msg);
876 	free(saved_msg);
877     }
878 }
879 
880 static const char *
881 basename(const char *name)
882 {
883     const char *p = strrchr(name, '/');
884     return p != NULL ? p + 1 : name;
885 }
886 
887 static struct utsname uts;
888 
889 static char *
890 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
891     const char *subst, bool may_free)
892 {
893 	char *p, *p1, *res, *resp;
894 	int subst_len, kw_len, subst_count, old_len, new_len;
895 
896 	kw_len = strlen(kw);
897 
898 	/*
899 	 * First, count the number of the keyword occurrences, to
900 	 * preallocate the final string.
901 	 */
902 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
903 		p1 = strstr(p, kw);
904 		if (p1 == NULL)
905 			break;
906 	}
907 
908 	/*
909 	 * If the keyword is not found, just return.
910 	 *
911 	 * Return non-substituted string if resolution failed.  We
912 	 * cannot do anything more reasonable, the failure mode of the
913 	 * caller is unresolved library anyway.
914 	 */
915 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
916 		return (may_free ? real : xstrdup(real));
917 	if (obj != NULL)
918 		subst = obj->origin_path;
919 
920 	/*
921 	 * There is indeed something to substitute.  Calculate the
922 	 * length of the resulting string, and allocate it.
923 	 */
924 	subst_len = strlen(subst);
925 	old_len = strlen(real);
926 	new_len = old_len + (subst_len - kw_len) * subst_count;
927 	res = xmalloc(new_len + 1);
928 
929 	/*
930 	 * Now, execute the substitution loop.
931 	 */
932 	for (p = real, resp = res, *resp = '\0';;) {
933 		p1 = strstr(p, kw);
934 		if (p1 != NULL) {
935 			/* Copy the prefix before keyword. */
936 			memcpy(resp, p, p1 - p);
937 			resp += p1 - p;
938 			/* Keyword replacement. */
939 			memcpy(resp, subst, subst_len);
940 			resp += subst_len;
941 			*resp = '\0';
942 			p = p1 + kw_len;
943 		} else
944 			break;
945 	}
946 
947 	/* Copy to the end of string and finish. */
948 	strcat(resp, p);
949 	if (may_free)
950 		free(real);
951 	return (res);
952 }
953 
954 static char *
955 origin_subst(Obj_Entry *obj, char *real)
956 {
957 	char *res1, *res2, *res3, *res4;
958 
959 	if (obj == NULL || !trust)
960 		return (xstrdup(real));
961 	if (uts.sysname[0] == '\0') {
962 		if (uname(&uts) != 0) {
963 			_rtld_error("utsname failed: %d", errno);
964 			return (NULL);
965 		}
966 	}
967 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
968 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
969 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
970 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
971 	return (res4);
972 }
973 
974 void
975 rtld_die(void)
976 {
977     const char *msg = dlerror();
978 
979     if (msg == NULL)
980 	msg = "Fatal error";
981     rtld_fdputstr(STDERR_FILENO, msg);
982     rtld_fdputchar(STDERR_FILENO, '\n');
983     _exit(1);
984 }
985 
986 /*
987  * Process a shared object's DYNAMIC section, and save the important
988  * information in its Obj_Entry structure.
989  */
990 static void
991 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
992     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
993 {
994     const Elf_Dyn *dynp;
995     Needed_Entry **needed_tail = &obj->needed;
996     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
997     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
998     const Elf_Hashelt *hashtab;
999     const Elf32_Word *hashval;
1000     Elf32_Word bkt, nmaskwords;
1001     int bloom_size32;
1002     int plttype = DT_REL;
1003 
1004     *dyn_rpath = NULL;
1005     *dyn_soname = NULL;
1006     *dyn_runpath = NULL;
1007 
1008     obj->bind_now = false;
1009     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1010 	switch (dynp->d_tag) {
1011 
1012 	case DT_REL:
1013 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1014 	    break;
1015 
1016 	case DT_RELSZ:
1017 	    obj->relsize = dynp->d_un.d_val;
1018 	    break;
1019 
1020 	case DT_RELENT:
1021 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1022 	    break;
1023 
1024 	case DT_JMPREL:
1025 	    obj->pltrel = (const Elf_Rel *)
1026 	      (obj->relocbase + dynp->d_un.d_ptr);
1027 	    break;
1028 
1029 	case DT_PLTRELSZ:
1030 	    obj->pltrelsize = dynp->d_un.d_val;
1031 	    break;
1032 
1033 	case DT_RELA:
1034 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1035 	    break;
1036 
1037 	case DT_RELASZ:
1038 	    obj->relasize = dynp->d_un.d_val;
1039 	    break;
1040 
1041 	case DT_RELAENT:
1042 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1043 	    break;
1044 
1045 	case DT_PLTREL:
1046 	    plttype = dynp->d_un.d_val;
1047 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1048 	    break;
1049 
1050 	case DT_SYMTAB:
1051 	    obj->symtab = (const Elf_Sym *)
1052 	      (obj->relocbase + dynp->d_un.d_ptr);
1053 	    break;
1054 
1055 	case DT_SYMENT:
1056 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1057 	    break;
1058 
1059 	case DT_STRTAB:
1060 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1061 	    break;
1062 
1063 	case DT_STRSZ:
1064 	    obj->strsize = dynp->d_un.d_val;
1065 	    break;
1066 
1067 	case DT_VERNEED:
1068 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1069 		dynp->d_un.d_val);
1070 	    break;
1071 
1072 	case DT_VERNEEDNUM:
1073 	    obj->verneednum = dynp->d_un.d_val;
1074 	    break;
1075 
1076 	case DT_VERDEF:
1077 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1078 		dynp->d_un.d_val);
1079 	    break;
1080 
1081 	case DT_VERDEFNUM:
1082 	    obj->verdefnum = dynp->d_un.d_val;
1083 	    break;
1084 
1085 	case DT_VERSYM:
1086 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1087 		dynp->d_un.d_val);
1088 	    break;
1089 
1090 	case DT_HASH:
1091 	    {
1092 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1093 		    dynp->d_un.d_ptr);
1094 		obj->nbuckets = hashtab[0];
1095 		obj->nchains = hashtab[1];
1096 		obj->buckets = hashtab + 2;
1097 		obj->chains = obj->buckets + obj->nbuckets;
1098 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1099 		  obj->buckets != NULL;
1100 	    }
1101 	    break;
1102 
1103 	case DT_GNU_HASH:
1104 	    {
1105 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1106 		    dynp->d_un.d_ptr);
1107 		obj->nbuckets_gnu = hashtab[0];
1108 		obj->symndx_gnu = hashtab[1];
1109 		nmaskwords = hashtab[2];
1110 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1111 		obj->maskwords_bm_gnu = nmaskwords - 1;
1112 		obj->shift2_gnu = hashtab[3];
1113 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1114 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1115 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1116 		  obj->symndx_gnu;
1117 		/* Number of bitmask words is required to be power of 2 */
1118 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1119 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1120 	    }
1121 	    break;
1122 
1123 	case DT_NEEDED:
1124 	    if (!obj->rtld) {
1125 		Needed_Entry *nep = NEW(Needed_Entry);
1126 		nep->name = dynp->d_un.d_val;
1127 		nep->obj = NULL;
1128 		nep->next = NULL;
1129 
1130 		*needed_tail = nep;
1131 		needed_tail = &nep->next;
1132 	    }
1133 	    break;
1134 
1135 	case DT_FILTER:
1136 	    if (!obj->rtld) {
1137 		Needed_Entry *nep = NEW(Needed_Entry);
1138 		nep->name = dynp->d_un.d_val;
1139 		nep->obj = NULL;
1140 		nep->next = NULL;
1141 
1142 		*needed_filtees_tail = nep;
1143 		needed_filtees_tail = &nep->next;
1144 	    }
1145 	    break;
1146 
1147 	case DT_AUXILIARY:
1148 	    if (!obj->rtld) {
1149 		Needed_Entry *nep = NEW(Needed_Entry);
1150 		nep->name = dynp->d_un.d_val;
1151 		nep->obj = NULL;
1152 		nep->next = NULL;
1153 
1154 		*needed_aux_filtees_tail = nep;
1155 		needed_aux_filtees_tail = &nep->next;
1156 	    }
1157 	    break;
1158 
1159 	case DT_PLTGOT:
1160 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1161 	    break;
1162 
1163 	case DT_TEXTREL:
1164 	    obj->textrel = true;
1165 	    break;
1166 
1167 	case DT_SYMBOLIC:
1168 	    obj->symbolic = true;
1169 	    break;
1170 
1171 	case DT_RPATH:
1172 	    /*
1173 	     * We have to wait until later to process this, because we
1174 	     * might not have gotten the address of the string table yet.
1175 	     */
1176 	    *dyn_rpath = dynp;
1177 	    break;
1178 
1179 	case DT_SONAME:
1180 	    *dyn_soname = dynp;
1181 	    break;
1182 
1183 	case DT_RUNPATH:
1184 	    *dyn_runpath = dynp;
1185 	    break;
1186 
1187 	case DT_INIT:
1188 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1189 	    break;
1190 
1191 	case DT_PREINIT_ARRAY:
1192 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1193 	    break;
1194 
1195 	case DT_PREINIT_ARRAYSZ:
1196 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1197 	    break;
1198 
1199 	case DT_INIT_ARRAY:
1200 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1201 	    break;
1202 
1203 	case DT_INIT_ARRAYSZ:
1204 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1205 	    break;
1206 
1207 	case DT_FINI:
1208 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1209 	    break;
1210 
1211 	case DT_FINI_ARRAY:
1212 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1213 	    break;
1214 
1215 	case DT_FINI_ARRAYSZ:
1216 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1217 	    break;
1218 
1219 	/*
1220 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1221 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1222 	 */
1223 
1224 #ifndef __mips__
1225 	case DT_DEBUG:
1226 	    if (!early)
1227 		dbg("Filling in DT_DEBUG entry");
1228 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1229 	    break;
1230 #endif
1231 
1232 	case DT_FLAGS:
1233 		if (dynp->d_un.d_val & DF_ORIGIN)
1234 		    obj->z_origin = true;
1235 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1236 		    obj->symbolic = true;
1237 		if (dynp->d_un.d_val & DF_TEXTREL)
1238 		    obj->textrel = true;
1239 		if (dynp->d_un.d_val & DF_BIND_NOW)
1240 		    obj->bind_now = true;
1241 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1242 		    ;*/
1243 	    break;
1244 #ifdef __mips__
1245 	case DT_MIPS_LOCAL_GOTNO:
1246 		obj->local_gotno = dynp->d_un.d_val;
1247 		break;
1248 
1249 	case DT_MIPS_SYMTABNO:
1250 		obj->symtabno = dynp->d_un.d_val;
1251 		break;
1252 
1253 	case DT_MIPS_GOTSYM:
1254 		obj->gotsym = dynp->d_un.d_val;
1255 		break;
1256 
1257 	case DT_MIPS_RLD_MAP:
1258 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1259 		break;
1260 #endif
1261 
1262 #ifdef __powerpc64__
1263 	case DT_PPC64_GLINK:
1264 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1265 		break;
1266 #endif
1267 
1268 	case DT_FLAGS_1:
1269 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1270 		    obj->z_noopen = true;
1271 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1272 		    obj->z_origin = true;
1273 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1274 		    obj->z_global = true;
1275 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1276 		    obj->bind_now = true;
1277 		if (dynp->d_un.d_val & DF_1_NODELETE)
1278 		    obj->z_nodelete = true;
1279 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1280 		    obj->z_loadfltr = true;
1281 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1282 		    obj->z_interpose = true;
1283 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1284 		    obj->z_nodeflib = true;
1285 	    break;
1286 
1287 	default:
1288 	    if (!early) {
1289 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1290 		    (long)dynp->d_tag);
1291 	    }
1292 	    break;
1293 	}
1294     }
1295 
1296     obj->traced = false;
1297 
1298     if (plttype == DT_RELA) {
1299 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1300 	obj->pltrel = NULL;
1301 	obj->pltrelasize = obj->pltrelsize;
1302 	obj->pltrelsize = 0;
1303     }
1304 
1305     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1306     if (obj->valid_hash_sysv)
1307 	obj->dynsymcount = obj->nchains;
1308     else if (obj->valid_hash_gnu) {
1309 	obj->dynsymcount = 0;
1310 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1311 	    if (obj->buckets_gnu[bkt] == 0)
1312 		continue;
1313 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1314 	    do
1315 		obj->dynsymcount++;
1316 	    while ((*hashval++ & 1u) == 0);
1317 	}
1318 	obj->dynsymcount += obj->symndx_gnu;
1319     }
1320 }
1321 
1322 static bool
1323 obj_resolve_origin(Obj_Entry *obj)
1324 {
1325 
1326 	if (obj->origin_path != NULL)
1327 		return (true);
1328 	obj->origin_path = xmalloc(PATH_MAX);
1329 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1330 }
1331 
1332 static void
1333 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1334     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1335 {
1336 
1337 	if (obj->z_origin && !obj_resolve_origin(obj))
1338 		rtld_die();
1339 
1340 	if (dyn_runpath != NULL) {
1341 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1342 		obj->runpath = origin_subst(obj, obj->runpath);
1343 	} else if (dyn_rpath != NULL) {
1344 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1345 		obj->rpath = origin_subst(obj, obj->rpath);
1346 	}
1347 	if (dyn_soname != NULL)
1348 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1349 }
1350 
1351 static void
1352 digest_dynamic(Obj_Entry *obj, int early)
1353 {
1354 	const Elf_Dyn *dyn_rpath;
1355 	const Elf_Dyn *dyn_soname;
1356 	const Elf_Dyn *dyn_runpath;
1357 
1358 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1359 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1360 }
1361 
1362 /*
1363  * Process a shared object's program header.  This is used only for the
1364  * main program, when the kernel has already loaded the main program
1365  * into memory before calling the dynamic linker.  It creates and
1366  * returns an Obj_Entry structure.
1367  */
1368 static Obj_Entry *
1369 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1370 {
1371     Obj_Entry *obj;
1372     const Elf_Phdr *phlimit = phdr + phnum;
1373     const Elf_Phdr *ph;
1374     Elf_Addr note_start, note_end;
1375     int nsegs = 0;
1376 
1377     obj = obj_new();
1378     for (ph = phdr;  ph < phlimit;  ph++) {
1379 	if (ph->p_type != PT_PHDR)
1380 	    continue;
1381 
1382 	obj->phdr = phdr;
1383 	obj->phsize = ph->p_memsz;
1384 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1385 	break;
1386     }
1387 
1388     obj->stack_flags = PF_X | PF_R | PF_W;
1389 
1390     for (ph = phdr;  ph < phlimit;  ph++) {
1391 	switch (ph->p_type) {
1392 
1393 	case PT_INTERP:
1394 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1395 	    break;
1396 
1397 	case PT_LOAD:
1398 	    if (nsegs == 0) {	/* First load segment */
1399 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1400 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1401 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1402 		  obj->vaddrbase;
1403 	    } else {		/* Last load segment */
1404 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1405 		  obj->vaddrbase;
1406 	    }
1407 	    nsegs++;
1408 	    break;
1409 
1410 	case PT_DYNAMIC:
1411 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1412 	    break;
1413 
1414 	case PT_TLS:
1415 	    obj->tlsindex = 1;
1416 	    obj->tlssize = ph->p_memsz;
1417 	    obj->tlsalign = ph->p_align;
1418 	    obj->tlsinitsize = ph->p_filesz;
1419 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1420 	    break;
1421 
1422 	case PT_GNU_STACK:
1423 	    obj->stack_flags = ph->p_flags;
1424 	    break;
1425 
1426 	case PT_GNU_RELRO:
1427 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1428 	    obj->relro_size = round_page(ph->p_memsz);
1429 	    break;
1430 
1431 	case PT_NOTE:
1432 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1433 	    note_end = note_start + ph->p_filesz;
1434 	    digest_notes(obj, note_start, note_end);
1435 	    break;
1436 	}
1437     }
1438     if (nsegs < 1) {
1439 	_rtld_error("%s: too few PT_LOAD segments", path);
1440 	return NULL;
1441     }
1442 
1443     obj->entry = entry;
1444     return obj;
1445 }
1446 
1447 void
1448 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1449 {
1450 	const Elf_Note *note;
1451 	const char *note_name;
1452 	uintptr_t p;
1453 
1454 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1455 	    note = (const Elf_Note *)((const char *)(note + 1) +
1456 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1457 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1458 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1459 		    note->n_descsz != sizeof(int32_t))
1460 			continue;
1461 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1462 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1463 			continue;
1464 		note_name = (const char *)(note + 1);
1465 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1466 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1467 			continue;
1468 		switch (note->n_type) {
1469 		case NT_FREEBSD_ABI_TAG:
1470 			/* FreeBSD osrel note */
1471 			p = (uintptr_t)(note + 1);
1472 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1473 			obj->osrel = *(const int32_t *)(p);
1474 			dbg("note osrel %d", obj->osrel);
1475 			break;
1476 		case NT_FREEBSD_NOINIT_TAG:
1477 			/* FreeBSD 'crt does not call init' note */
1478 			obj->crt_no_init = true;
1479 			dbg("note crt_no_init");
1480 			break;
1481 		}
1482 	}
1483 }
1484 
1485 static Obj_Entry *
1486 dlcheck(void *handle)
1487 {
1488     Obj_Entry *obj;
1489 
1490     TAILQ_FOREACH(obj, &obj_list, next) {
1491 	if (obj == (Obj_Entry *) handle)
1492 	    break;
1493     }
1494 
1495     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1496 	_rtld_error("Invalid shared object handle %p", handle);
1497 	return NULL;
1498     }
1499     return obj;
1500 }
1501 
1502 /*
1503  * If the given object is already in the donelist, return true.  Otherwise
1504  * add the object to the list and return false.
1505  */
1506 static bool
1507 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1508 {
1509     unsigned int i;
1510 
1511     for (i = 0;  i < dlp->num_used;  i++)
1512 	if (dlp->objs[i] == obj)
1513 	    return true;
1514     /*
1515      * Our donelist allocation should always be sufficient.  But if
1516      * our threads locking isn't working properly, more shared objects
1517      * could have been loaded since we allocated the list.  That should
1518      * never happen, but we'll handle it properly just in case it does.
1519      */
1520     if (dlp->num_used < dlp->num_alloc)
1521 	dlp->objs[dlp->num_used++] = obj;
1522     return false;
1523 }
1524 
1525 /*
1526  * Hash function for symbol table lookup.  Don't even think about changing
1527  * this.  It is specified by the System V ABI.
1528  */
1529 unsigned long
1530 elf_hash(const char *name)
1531 {
1532     const unsigned char *p = (const unsigned char *) name;
1533     unsigned long h = 0;
1534     unsigned long g;
1535 
1536     while (*p != '\0') {
1537 	h = (h << 4) + *p++;
1538 	if ((g = h & 0xf0000000) != 0)
1539 	    h ^= g >> 24;
1540 	h &= ~g;
1541     }
1542     return h;
1543 }
1544 
1545 /*
1546  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1547  * unsigned in case it's implemented with a wider type.
1548  */
1549 static uint32_t
1550 gnu_hash(const char *s)
1551 {
1552 	uint32_t h;
1553 	unsigned char c;
1554 
1555 	h = 5381;
1556 	for (c = *s; c != '\0'; c = *++s)
1557 		h = h * 33 + c;
1558 	return (h & 0xffffffff);
1559 }
1560 
1561 
1562 /*
1563  * Find the library with the given name, and return its full pathname.
1564  * The returned string is dynamically allocated.  Generates an error
1565  * message and returns NULL if the library cannot be found.
1566  *
1567  * If the second argument is non-NULL, then it refers to an already-
1568  * loaded shared object, whose library search path will be searched.
1569  *
1570  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1571  * descriptor (which is close-on-exec) will be passed out via the third
1572  * argument.
1573  *
1574  * The search order is:
1575  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1576  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1577  *   LD_LIBRARY_PATH
1578  *   DT_RUNPATH in the referencing file
1579  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1580  *	 from list)
1581  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1582  *
1583  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1584  */
1585 static char *
1586 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1587 {
1588     char *pathname;
1589     char *name;
1590     bool nodeflib, objgiven;
1591 
1592     objgiven = refobj != NULL;
1593     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1594 	if (xname[0] != '/' && !trust) {
1595 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1596 	      xname);
1597 	    return NULL;
1598 	}
1599 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1600 	  __DECONST(char *, xname)));
1601     }
1602 
1603     if (libmap_disable || !objgiven ||
1604 	(name = lm_find(refobj->path, xname)) == NULL)
1605 	name = (char *)xname;
1606 
1607     dbg(" Searching for \"%s\"", name);
1608 
1609     /*
1610      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1611      * back to pre-conforming behaviour if user requested so with
1612      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1613      * nodeflib.
1614      */
1615     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1616 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1617 	  (refobj != NULL &&
1618 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1619 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1620           (pathname = search_library_path(name, gethints(false))) != NULL ||
1621 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1622 	    return (pathname);
1623     } else {
1624 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1625 	if ((objgiven &&
1626 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1627 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1628 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1629 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1630 	  (objgiven &&
1631 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1632 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1633 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1634 	  (objgiven && !nodeflib &&
1635 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1636 	    return (pathname);
1637     }
1638 
1639     if (objgiven && refobj->path != NULL) {
1640 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1641 	  name, basename(refobj->path));
1642     } else {
1643 	_rtld_error("Shared object \"%s\" not found", name);
1644     }
1645     return NULL;
1646 }
1647 
1648 /*
1649  * Given a symbol number in a referencing object, find the corresponding
1650  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1651  * no definition was found.  Returns a pointer to the Obj_Entry of the
1652  * defining object via the reference parameter DEFOBJ_OUT.
1653  */
1654 const Elf_Sym *
1655 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1656     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1657     RtldLockState *lockstate)
1658 {
1659     const Elf_Sym *ref;
1660     const Elf_Sym *def;
1661     const Obj_Entry *defobj;
1662     SymLook req;
1663     const char *name;
1664     int res;
1665 
1666     /*
1667      * If we have already found this symbol, get the information from
1668      * the cache.
1669      */
1670     if (symnum >= refobj->dynsymcount)
1671 	return NULL;	/* Bad object */
1672     if (cache != NULL && cache[symnum].sym != NULL) {
1673 	*defobj_out = cache[symnum].obj;
1674 	return cache[symnum].sym;
1675     }
1676 
1677     ref = refobj->symtab + symnum;
1678     name = refobj->strtab + ref->st_name;
1679     def = NULL;
1680     defobj = NULL;
1681 
1682     /*
1683      * We don't have to do a full scale lookup if the symbol is local.
1684      * We know it will bind to the instance in this load module; to
1685      * which we already have a pointer (ie ref). By not doing a lookup,
1686      * we not only improve performance, but it also avoids unresolvable
1687      * symbols when local symbols are not in the hash table. This has
1688      * been seen with the ia64 toolchain.
1689      */
1690     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1691 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1692 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1693 		symnum);
1694 	}
1695 	symlook_init(&req, name);
1696 	req.flags = flags;
1697 	req.ventry = fetch_ventry(refobj, symnum);
1698 	req.lockstate = lockstate;
1699 	res = symlook_default(&req, refobj);
1700 	if (res == 0) {
1701 	    def = req.sym_out;
1702 	    defobj = req.defobj_out;
1703 	}
1704     } else {
1705 	def = ref;
1706 	defobj = refobj;
1707     }
1708 
1709     /*
1710      * If we found no definition and the reference is weak, treat the
1711      * symbol as having the value zero.
1712      */
1713     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1714 	def = &sym_zero;
1715 	defobj = obj_main;
1716     }
1717 
1718     if (def != NULL) {
1719 	*defobj_out = defobj;
1720 	/* Record the information in the cache to avoid subsequent lookups. */
1721 	if (cache != NULL) {
1722 	    cache[symnum].sym = def;
1723 	    cache[symnum].obj = defobj;
1724 	}
1725     } else {
1726 	if (refobj != &obj_rtld)
1727 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1728     }
1729     return def;
1730 }
1731 
1732 /*
1733  * Return the search path from the ldconfig hints file, reading it if
1734  * necessary.  If nostdlib is true, then the default search paths are
1735  * not added to result.
1736  *
1737  * Returns NULL if there are problems with the hints file,
1738  * or if the search path there is empty.
1739  */
1740 static const char *
1741 gethints(bool nostdlib)
1742 {
1743 	static char *hints, *filtered_path;
1744 	static struct elfhints_hdr hdr;
1745 	struct fill_search_info_args sargs, hargs;
1746 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1747 	struct dl_serpath *SLPpath, *hintpath;
1748 	char *p;
1749 	struct stat hint_stat;
1750 	unsigned int SLPndx, hintndx, fndx, fcount;
1751 	int fd;
1752 	size_t flen;
1753 	uint32_t dl;
1754 	bool skip;
1755 
1756 	/* First call, read the hints file */
1757 	if (hints == NULL) {
1758 		/* Keep from trying again in case the hints file is bad. */
1759 		hints = "";
1760 
1761 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1762 			return (NULL);
1763 
1764 		/*
1765 		 * Check of hdr.dirlistlen value against type limit
1766 		 * intends to pacify static analyzers.  Further
1767 		 * paranoia leads to checks that dirlist is fully
1768 		 * contained in the file range.
1769 		 */
1770 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1771 		    hdr.magic != ELFHINTS_MAGIC ||
1772 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1773 		    fstat(fd, &hint_stat) == -1) {
1774 cleanup1:
1775 			close(fd);
1776 			hdr.dirlistlen = 0;
1777 			return (NULL);
1778 		}
1779 		dl = hdr.strtab;
1780 		if (dl + hdr.dirlist < dl)
1781 			goto cleanup1;
1782 		dl += hdr.dirlist;
1783 		if (dl + hdr.dirlistlen < dl)
1784 			goto cleanup1;
1785 		dl += hdr.dirlistlen;
1786 		if (dl > hint_stat.st_size)
1787 			goto cleanup1;
1788 		p = xmalloc(hdr.dirlistlen + 1);
1789 
1790 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1791 		    read(fd, p, hdr.dirlistlen + 1) !=
1792 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1793 			free(p);
1794 			goto cleanup1;
1795 		}
1796 		hints = p;
1797 		close(fd);
1798 	}
1799 
1800 	/*
1801 	 * If caller agreed to receive list which includes the default
1802 	 * paths, we are done. Otherwise, if we still did not
1803 	 * calculated filtered result, do it now.
1804 	 */
1805 	if (!nostdlib)
1806 		return (hints[0] != '\0' ? hints : NULL);
1807 	if (filtered_path != NULL)
1808 		goto filt_ret;
1809 
1810 	/*
1811 	 * Obtain the list of all configured search paths, and the
1812 	 * list of the default paths.
1813 	 *
1814 	 * First estimate the size of the results.
1815 	 */
1816 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1817 	smeta.dls_cnt = 0;
1818 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1819 	hmeta.dls_cnt = 0;
1820 
1821 	sargs.request = RTLD_DI_SERINFOSIZE;
1822 	sargs.serinfo = &smeta;
1823 	hargs.request = RTLD_DI_SERINFOSIZE;
1824 	hargs.serinfo = &hmeta;
1825 
1826 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1827 	path_enumerate(hints, fill_search_info, &hargs);
1828 
1829 	SLPinfo = xmalloc(smeta.dls_size);
1830 	hintinfo = xmalloc(hmeta.dls_size);
1831 
1832 	/*
1833 	 * Next fetch both sets of paths.
1834 	 */
1835 	sargs.request = RTLD_DI_SERINFO;
1836 	sargs.serinfo = SLPinfo;
1837 	sargs.serpath = &SLPinfo->dls_serpath[0];
1838 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1839 
1840 	hargs.request = RTLD_DI_SERINFO;
1841 	hargs.serinfo = hintinfo;
1842 	hargs.serpath = &hintinfo->dls_serpath[0];
1843 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1844 
1845 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1846 	path_enumerate(hints, fill_search_info, &hargs);
1847 
1848 	/*
1849 	 * Now calculate the difference between two sets, by excluding
1850 	 * standard paths from the full set.
1851 	 */
1852 	fndx = 0;
1853 	fcount = 0;
1854 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1855 	hintpath = &hintinfo->dls_serpath[0];
1856 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1857 		skip = false;
1858 		SLPpath = &SLPinfo->dls_serpath[0];
1859 		/*
1860 		 * Check each standard path against current.
1861 		 */
1862 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1863 			/* matched, skip the path */
1864 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1865 				skip = true;
1866 				break;
1867 			}
1868 		}
1869 		if (skip)
1870 			continue;
1871 		/*
1872 		 * Not matched against any standard path, add the path
1873 		 * to result. Separate consequtive paths with ':'.
1874 		 */
1875 		if (fcount > 0) {
1876 			filtered_path[fndx] = ':';
1877 			fndx++;
1878 		}
1879 		fcount++;
1880 		flen = strlen(hintpath->dls_name);
1881 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1882 		fndx += flen;
1883 	}
1884 	filtered_path[fndx] = '\0';
1885 
1886 	free(SLPinfo);
1887 	free(hintinfo);
1888 
1889 filt_ret:
1890 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1891 }
1892 
1893 static void
1894 init_dag(Obj_Entry *root)
1895 {
1896     const Needed_Entry *needed;
1897     const Objlist_Entry *elm;
1898     DoneList donelist;
1899 
1900     if (root->dag_inited)
1901 	return;
1902     donelist_init(&donelist);
1903 
1904     /* Root object belongs to own DAG. */
1905     objlist_push_tail(&root->dldags, root);
1906     objlist_push_tail(&root->dagmembers, root);
1907     donelist_check(&donelist, root);
1908 
1909     /*
1910      * Add dependencies of root object to DAG in breadth order
1911      * by exploiting the fact that each new object get added
1912      * to the tail of the dagmembers list.
1913      */
1914     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1915 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1916 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1917 		continue;
1918 	    objlist_push_tail(&needed->obj->dldags, root);
1919 	    objlist_push_tail(&root->dagmembers, needed->obj);
1920 	}
1921     }
1922     root->dag_inited = true;
1923 }
1924 
1925 static void
1926 init_marker(Obj_Entry *marker)
1927 {
1928 
1929 	bzero(marker, sizeof(*marker));
1930 	marker->marker = true;
1931 }
1932 
1933 Obj_Entry *
1934 globallist_curr(const Obj_Entry *obj)
1935 {
1936 
1937 	for (;;) {
1938 		if (obj == NULL)
1939 			return (NULL);
1940 		if (!obj->marker)
1941 			return (__DECONST(Obj_Entry *, obj));
1942 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1943 	}
1944 }
1945 
1946 Obj_Entry *
1947 globallist_next(const Obj_Entry *obj)
1948 {
1949 
1950 	for (;;) {
1951 		obj = TAILQ_NEXT(obj, next);
1952 		if (obj == NULL)
1953 			return (NULL);
1954 		if (!obj->marker)
1955 			return (__DECONST(Obj_Entry *, obj));
1956 	}
1957 }
1958 
1959 /* Prevent the object from being unmapped while the bind lock is dropped. */
1960 static void
1961 hold_object(Obj_Entry *obj)
1962 {
1963 
1964 	obj->holdcount++;
1965 }
1966 
1967 static void
1968 unhold_object(Obj_Entry *obj)
1969 {
1970 
1971 	assert(obj->holdcount > 0);
1972 	if (--obj->holdcount == 0 && obj->unholdfree)
1973 		release_object(obj);
1974 }
1975 
1976 static void
1977 process_z(Obj_Entry *root)
1978 {
1979 	const Objlist_Entry *elm;
1980 	Obj_Entry *obj;
1981 
1982 	/*
1983 	 * Walk over object DAG and process every dependent object
1984 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1985 	 * to grow their own DAG.
1986 	 *
1987 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1988 	 * symlook_global() to work.
1989 	 *
1990 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1991 	 */
1992 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1993 		obj = elm->obj;
1994 		if (obj == NULL)
1995 			continue;
1996 		if (obj->z_nodelete && !obj->ref_nodel) {
1997 			dbg("obj %s -z nodelete", obj->path);
1998 			init_dag(obj);
1999 			ref_dag(obj);
2000 			obj->ref_nodel = true;
2001 		}
2002 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2003 			dbg("obj %s -z global", obj->path);
2004 			objlist_push_tail(&list_global, obj);
2005 			init_dag(obj);
2006 		}
2007 	}
2008 }
2009 /*
2010  * Initialize the dynamic linker.  The argument is the address at which
2011  * the dynamic linker has been mapped into memory.  The primary task of
2012  * this function is to relocate the dynamic linker.
2013  */
2014 static void
2015 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2016 {
2017     Obj_Entry objtmp;	/* Temporary rtld object */
2018     const Elf_Ehdr *ehdr;
2019     const Elf_Dyn *dyn_rpath;
2020     const Elf_Dyn *dyn_soname;
2021     const Elf_Dyn *dyn_runpath;
2022 
2023 #ifdef RTLD_INIT_PAGESIZES_EARLY
2024     /* The page size is required by the dynamic memory allocator. */
2025     init_pagesizes(aux_info);
2026 #endif
2027 
2028     /*
2029      * Conjure up an Obj_Entry structure for the dynamic linker.
2030      *
2031      * The "path" member can't be initialized yet because string constants
2032      * cannot yet be accessed. Below we will set it correctly.
2033      */
2034     memset(&objtmp, 0, sizeof(objtmp));
2035     objtmp.path = NULL;
2036     objtmp.rtld = true;
2037     objtmp.mapbase = mapbase;
2038 #ifdef PIC
2039     objtmp.relocbase = mapbase;
2040 #endif
2041 
2042     objtmp.dynamic = rtld_dynamic(&objtmp);
2043     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2044     assert(objtmp.needed == NULL);
2045 #if !defined(__mips__)
2046     /* MIPS has a bogus DT_TEXTREL. */
2047     assert(!objtmp.textrel);
2048 #endif
2049     /*
2050      * Temporarily put the dynamic linker entry into the object list, so
2051      * that symbols can be found.
2052      */
2053     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2054 
2055     ehdr = (Elf_Ehdr *)mapbase;
2056     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2057     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2058 
2059     /* Initialize the object list. */
2060     TAILQ_INIT(&obj_list);
2061 
2062     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2063     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2064 
2065 #ifndef RTLD_INIT_PAGESIZES_EARLY
2066     /* The page size is required by the dynamic memory allocator. */
2067     init_pagesizes(aux_info);
2068 #endif
2069 
2070     if (aux_info[AT_OSRELDATE] != NULL)
2071 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2072 
2073     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2074 
2075     /* Replace the path with a dynamically allocated copy. */
2076     obj_rtld.path = xstrdup(ld_path_rtld);
2077 
2078     r_debug.r_brk = r_debug_state;
2079     r_debug.r_state = RT_CONSISTENT;
2080 }
2081 
2082 /*
2083  * Retrieve the array of supported page sizes.  The kernel provides the page
2084  * sizes in increasing order.
2085  */
2086 static void
2087 init_pagesizes(Elf_Auxinfo **aux_info)
2088 {
2089 	static size_t psa[MAXPAGESIZES];
2090 	int mib[2];
2091 	size_t len, size;
2092 
2093 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2094 	    NULL) {
2095 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2096 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2097 	} else {
2098 		len = 2;
2099 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2100 			size = sizeof(psa);
2101 		else {
2102 			/* As a fallback, retrieve the base page size. */
2103 			size = sizeof(psa[0]);
2104 			if (aux_info[AT_PAGESZ] != NULL) {
2105 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2106 				goto psa_filled;
2107 			} else {
2108 				mib[0] = CTL_HW;
2109 				mib[1] = HW_PAGESIZE;
2110 				len = 2;
2111 			}
2112 		}
2113 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2114 			_rtld_error("sysctl for hw.pagesize(s) failed");
2115 			rtld_die();
2116 		}
2117 psa_filled:
2118 		pagesizes = psa;
2119 	}
2120 	npagesizes = size / sizeof(pagesizes[0]);
2121 	/* Discard any invalid entries at the end of the array. */
2122 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2123 		npagesizes--;
2124 }
2125 
2126 /*
2127  * Add the init functions from a needed object list (and its recursive
2128  * needed objects) to "list".  This is not used directly; it is a helper
2129  * function for initlist_add_objects().  The write lock must be held
2130  * when this function is called.
2131  */
2132 static void
2133 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2134 {
2135     /* Recursively process the successor needed objects. */
2136     if (needed->next != NULL)
2137 	initlist_add_neededs(needed->next, list);
2138 
2139     /* Process the current needed object. */
2140     if (needed->obj != NULL)
2141 	initlist_add_objects(needed->obj, needed->obj, list);
2142 }
2143 
2144 /*
2145  * Scan all of the DAGs rooted in the range of objects from "obj" to
2146  * "tail" and add their init functions to "list".  This recurses over
2147  * the DAGs and ensure the proper init ordering such that each object's
2148  * needed libraries are initialized before the object itself.  At the
2149  * same time, this function adds the objects to the global finalization
2150  * list "list_fini" in the opposite order.  The write lock must be
2151  * held when this function is called.
2152  */
2153 static void
2154 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2155 {
2156     Obj_Entry *nobj;
2157 
2158     if (obj->init_scanned || obj->init_done)
2159 	return;
2160     obj->init_scanned = true;
2161 
2162     /* Recursively process the successor objects. */
2163     nobj = globallist_next(obj);
2164     if (nobj != NULL && obj != tail)
2165 	initlist_add_objects(nobj, tail, list);
2166 
2167     /* Recursively process the needed objects. */
2168     if (obj->needed != NULL)
2169 	initlist_add_neededs(obj->needed, list);
2170     if (obj->needed_filtees != NULL)
2171 	initlist_add_neededs(obj->needed_filtees, list);
2172     if (obj->needed_aux_filtees != NULL)
2173 	initlist_add_neededs(obj->needed_aux_filtees, list);
2174 
2175     /* Add the object to the init list. */
2176     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2177       obj->init_array != (Elf_Addr)NULL)
2178 	objlist_push_tail(list, obj);
2179 
2180     /* Add the object to the global fini list in the reverse order. */
2181     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2182       && !obj->on_fini_list) {
2183 	objlist_push_head(&list_fini, obj);
2184 	obj->on_fini_list = true;
2185     }
2186 }
2187 
2188 #ifndef FPTR_TARGET
2189 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2190 #endif
2191 
2192 static void
2193 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2194 {
2195     Needed_Entry *needed, *needed1;
2196 
2197     for (needed = n; needed != NULL; needed = needed->next) {
2198 	if (needed->obj != NULL) {
2199 	    dlclose_locked(needed->obj, lockstate);
2200 	    needed->obj = NULL;
2201 	}
2202     }
2203     for (needed = n; needed != NULL; needed = needed1) {
2204 	needed1 = needed->next;
2205 	free(needed);
2206     }
2207 }
2208 
2209 static void
2210 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2211 {
2212 
2213 	free_needed_filtees(obj->needed_filtees, lockstate);
2214 	obj->needed_filtees = NULL;
2215 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2216 	obj->needed_aux_filtees = NULL;
2217 	obj->filtees_loaded = false;
2218 }
2219 
2220 static void
2221 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2222     RtldLockState *lockstate)
2223 {
2224 
2225     for (; needed != NULL; needed = needed->next) {
2226 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2227 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2228 	  RTLD_LOCAL, lockstate);
2229     }
2230 }
2231 
2232 static void
2233 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2234 {
2235 
2236     lock_restart_for_upgrade(lockstate);
2237     if (!obj->filtees_loaded) {
2238 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2239 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2240 	obj->filtees_loaded = true;
2241     }
2242 }
2243 
2244 static int
2245 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2246 {
2247     Obj_Entry *obj1;
2248 
2249     for (; needed != NULL; needed = needed->next) {
2250 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2251 	  flags & ~RTLD_LO_NOLOAD);
2252 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2253 	    return (-1);
2254     }
2255     return (0);
2256 }
2257 
2258 /*
2259  * Given a shared object, traverse its list of needed objects, and load
2260  * each of them.  Returns 0 on success.  Generates an error message and
2261  * returns -1 on failure.
2262  */
2263 static int
2264 load_needed_objects(Obj_Entry *first, int flags)
2265 {
2266     Obj_Entry *obj;
2267 
2268     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2269 	if (obj->marker)
2270 	    continue;
2271 	if (process_needed(obj, obj->needed, flags) == -1)
2272 	    return (-1);
2273     }
2274     return (0);
2275 }
2276 
2277 static int
2278 load_preload_objects(void)
2279 {
2280     char *p = ld_preload;
2281     Obj_Entry *obj;
2282     static const char delim[] = " \t:;";
2283 
2284     if (p == NULL)
2285 	return 0;
2286 
2287     p += strspn(p, delim);
2288     while (*p != '\0') {
2289 	size_t len = strcspn(p, delim);
2290 	char savech;
2291 
2292 	savech = p[len];
2293 	p[len] = '\0';
2294 	obj = load_object(p, -1, NULL, 0);
2295 	if (obj == NULL)
2296 	    return -1;	/* XXX - cleanup */
2297 	obj->z_interpose = true;
2298 	p[len] = savech;
2299 	p += len;
2300 	p += strspn(p, delim);
2301     }
2302     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2303     return 0;
2304 }
2305 
2306 static const char *
2307 printable_path(const char *path)
2308 {
2309 
2310 	return (path == NULL ? "<unknown>" : path);
2311 }
2312 
2313 /*
2314  * Load a shared object into memory, if it is not already loaded.  The
2315  * object may be specified by name or by user-supplied file descriptor
2316  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2317  * duplicate is.
2318  *
2319  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2320  * on failure.
2321  */
2322 static Obj_Entry *
2323 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2324 {
2325     Obj_Entry *obj;
2326     int fd;
2327     struct stat sb;
2328     char *path;
2329 
2330     fd = -1;
2331     if (name != NULL) {
2332 	TAILQ_FOREACH(obj, &obj_list, next) {
2333 	    if (obj->marker || obj->doomed)
2334 		continue;
2335 	    if (object_match_name(obj, name))
2336 		return (obj);
2337 	}
2338 
2339 	path = find_library(name, refobj, &fd);
2340 	if (path == NULL)
2341 	    return (NULL);
2342     } else
2343 	path = NULL;
2344 
2345     if (fd >= 0) {
2346 	/*
2347 	 * search_library_pathfds() opens a fresh file descriptor for the
2348 	 * library, so there is no need to dup().
2349 	 */
2350     } else if (fd_u == -1) {
2351 	/*
2352 	 * If we didn't find a match by pathname, or the name is not
2353 	 * supplied, open the file and check again by device and inode.
2354 	 * This avoids false mismatches caused by multiple links or ".."
2355 	 * in pathnames.
2356 	 *
2357 	 * To avoid a race, we open the file and use fstat() rather than
2358 	 * using stat().
2359 	 */
2360 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2361 	    _rtld_error("Cannot open \"%s\"", path);
2362 	    free(path);
2363 	    return (NULL);
2364 	}
2365     } else {
2366 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2367 	if (fd == -1) {
2368 	    _rtld_error("Cannot dup fd");
2369 	    free(path);
2370 	    return (NULL);
2371 	}
2372     }
2373     if (fstat(fd, &sb) == -1) {
2374 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2375 	close(fd);
2376 	free(path);
2377 	return NULL;
2378     }
2379     TAILQ_FOREACH(obj, &obj_list, next) {
2380 	if (obj->marker || obj->doomed)
2381 	    continue;
2382 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2383 	    break;
2384     }
2385     if (obj != NULL && name != NULL) {
2386 	object_add_name(obj, name);
2387 	free(path);
2388 	close(fd);
2389 	return obj;
2390     }
2391     if (flags & RTLD_LO_NOLOAD) {
2392 	free(path);
2393 	close(fd);
2394 	return (NULL);
2395     }
2396 
2397     /* First use of this object, so we must map it in */
2398     obj = do_load_object(fd, name, path, &sb, flags);
2399     if (obj == NULL)
2400 	free(path);
2401     close(fd);
2402 
2403     return obj;
2404 }
2405 
2406 static Obj_Entry *
2407 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2408   int flags)
2409 {
2410     Obj_Entry *obj;
2411     struct statfs fs;
2412 
2413     /*
2414      * but first, make sure that environment variables haven't been
2415      * used to circumvent the noexec flag on a filesystem.
2416      */
2417     if (dangerous_ld_env) {
2418 	if (fstatfs(fd, &fs) != 0) {
2419 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2420 	    return NULL;
2421 	}
2422 	if (fs.f_flags & MNT_NOEXEC) {
2423 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2424 	    return NULL;
2425 	}
2426     }
2427     dbg("loading \"%s\"", printable_path(path));
2428     obj = map_object(fd, printable_path(path), sbp);
2429     if (obj == NULL)
2430         return NULL;
2431 
2432     /*
2433      * If DT_SONAME is present in the object, digest_dynamic2 already
2434      * added it to the object names.
2435      */
2436     if (name != NULL)
2437 	object_add_name(obj, name);
2438     obj->path = path;
2439     digest_dynamic(obj, 0);
2440     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2441 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2442     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2443       RTLD_LO_DLOPEN) {
2444 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2445 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2446 	munmap(obj->mapbase, obj->mapsize);
2447 	obj_free(obj);
2448 	return (NULL);
2449     }
2450 
2451     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2452     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2453     obj_count++;
2454     obj_loads++;
2455     linkmap_add(obj);	/* for GDB & dlinfo() */
2456     max_stack_flags |= obj->stack_flags;
2457 
2458     dbg("  %p .. %p: %s", obj->mapbase,
2459          obj->mapbase + obj->mapsize - 1, obj->path);
2460     if (obj->textrel)
2461 	dbg("  WARNING: %s has impure text", obj->path);
2462     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2463 	obj->path);
2464 
2465     return obj;
2466 }
2467 
2468 static Obj_Entry *
2469 obj_from_addr(const void *addr)
2470 {
2471     Obj_Entry *obj;
2472 
2473     TAILQ_FOREACH(obj, &obj_list, next) {
2474 	if (obj->marker)
2475 	    continue;
2476 	if (addr < (void *) obj->mapbase)
2477 	    continue;
2478 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2479 	    return obj;
2480     }
2481     return NULL;
2482 }
2483 
2484 static void
2485 preinit_main(void)
2486 {
2487     Elf_Addr *preinit_addr;
2488     int index;
2489 
2490     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2491     if (preinit_addr == NULL)
2492 	return;
2493 
2494     for (index = 0; index < obj_main->preinit_array_num; index++) {
2495 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2496 	    dbg("calling preinit function for %s at %p", obj_main->path,
2497 	      (void *)preinit_addr[index]);
2498 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2499 	      0, 0, obj_main->path);
2500 	    call_init_pointer(obj_main, preinit_addr[index]);
2501 	}
2502     }
2503 }
2504 
2505 /*
2506  * Call the finalization functions for each of the objects in "list"
2507  * belonging to the DAG of "root" and referenced once. If NULL "root"
2508  * is specified, every finalization function will be called regardless
2509  * of the reference count and the list elements won't be freed. All of
2510  * the objects are expected to have non-NULL fini functions.
2511  */
2512 static void
2513 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2514 {
2515     Objlist_Entry *elm;
2516     char *saved_msg;
2517     Elf_Addr *fini_addr;
2518     int index;
2519 
2520     assert(root == NULL || root->refcount == 1);
2521 
2522     if (root != NULL)
2523 	root->doomed = true;
2524 
2525     /*
2526      * Preserve the current error message since a fini function might
2527      * call into the dynamic linker and overwrite it.
2528      */
2529     saved_msg = errmsg_save();
2530     do {
2531 	STAILQ_FOREACH(elm, list, link) {
2532 	    if (root != NULL && (elm->obj->refcount != 1 ||
2533 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2534 		continue;
2535 	    /* Remove object from fini list to prevent recursive invocation. */
2536 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2537 	    /* Ensure that new references cannot be acquired. */
2538 	    elm->obj->doomed = true;
2539 
2540 	    hold_object(elm->obj);
2541 	    lock_release(rtld_bind_lock, lockstate);
2542 	    /*
2543 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2544 	     * When this happens, DT_FINI_ARRAY is processed first.
2545 	     */
2546 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2547 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2548 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2549 		  index--) {
2550 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2551 			dbg("calling fini function for %s at %p",
2552 			    elm->obj->path, (void *)fini_addr[index]);
2553 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2554 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2555 			call_initfini_pointer(elm->obj, fini_addr[index]);
2556 		    }
2557 		}
2558 	    }
2559 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2560 		dbg("calling fini function for %s at %p", elm->obj->path,
2561 		    (void *)elm->obj->fini);
2562 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2563 		    0, 0, elm->obj->path);
2564 		call_initfini_pointer(elm->obj, elm->obj->fini);
2565 	    }
2566 	    wlock_acquire(rtld_bind_lock, lockstate);
2567 	    unhold_object(elm->obj);
2568 	    /* No need to free anything if process is going down. */
2569 	    if (root != NULL)
2570 	    	free(elm);
2571 	    /*
2572 	     * We must restart the list traversal after every fini call
2573 	     * because a dlclose() call from the fini function or from
2574 	     * another thread might have modified the reference counts.
2575 	     */
2576 	    break;
2577 	}
2578     } while (elm != NULL);
2579     errmsg_restore(saved_msg);
2580 }
2581 
2582 /*
2583  * Call the initialization functions for each of the objects in
2584  * "list".  All of the objects are expected to have non-NULL init
2585  * functions.
2586  */
2587 static void
2588 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2589 {
2590     Objlist_Entry *elm;
2591     Obj_Entry *obj;
2592     char *saved_msg;
2593     Elf_Addr *init_addr;
2594     int index;
2595 
2596     /*
2597      * Clean init_scanned flag so that objects can be rechecked and
2598      * possibly initialized earlier if any of vectors called below
2599      * cause the change by using dlopen.
2600      */
2601     TAILQ_FOREACH(obj, &obj_list, next) {
2602 	if (obj->marker)
2603 	    continue;
2604 	obj->init_scanned = false;
2605     }
2606 
2607     /*
2608      * Preserve the current error message since an init function might
2609      * call into the dynamic linker and overwrite it.
2610      */
2611     saved_msg = errmsg_save();
2612     STAILQ_FOREACH(elm, list, link) {
2613 	if (elm->obj->init_done) /* Initialized early. */
2614 	    continue;
2615 	/*
2616 	 * Race: other thread might try to use this object before current
2617 	 * one completes the initialization. Not much can be done here
2618 	 * without better locking.
2619 	 */
2620 	elm->obj->init_done = true;
2621 	hold_object(elm->obj);
2622 	lock_release(rtld_bind_lock, lockstate);
2623 
2624         /*
2625          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2626          * When this happens, DT_INIT is processed first.
2627          */
2628 	if (elm->obj->init != (Elf_Addr)NULL) {
2629 	    dbg("calling init function for %s at %p", elm->obj->path,
2630 	        (void *)elm->obj->init);
2631 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2632 	        0, 0, elm->obj->path);
2633 	    call_initfini_pointer(elm->obj, elm->obj->init);
2634 	}
2635 	init_addr = (Elf_Addr *)elm->obj->init_array;
2636 	if (init_addr != NULL) {
2637 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2638 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2639 		    dbg("calling init function for %s at %p", elm->obj->path,
2640 			(void *)init_addr[index]);
2641 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2642 			(void *)init_addr[index], 0, 0, elm->obj->path);
2643 		    call_init_pointer(elm->obj, init_addr[index]);
2644 		}
2645 	    }
2646 	}
2647 	wlock_acquire(rtld_bind_lock, lockstate);
2648 	unhold_object(elm->obj);
2649     }
2650     errmsg_restore(saved_msg);
2651 }
2652 
2653 static void
2654 objlist_clear(Objlist *list)
2655 {
2656     Objlist_Entry *elm;
2657 
2658     while (!STAILQ_EMPTY(list)) {
2659 	elm = STAILQ_FIRST(list);
2660 	STAILQ_REMOVE_HEAD(list, link);
2661 	free(elm);
2662     }
2663 }
2664 
2665 static Objlist_Entry *
2666 objlist_find(Objlist *list, const Obj_Entry *obj)
2667 {
2668     Objlist_Entry *elm;
2669 
2670     STAILQ_FOREACH(elm, list, link)
2671 	if (elm->obj == obj)
2672 	    return elm;
2673     return NULL;
2674 }
2675 
2676 static void
2677 objlist_init(Objlist *list)
2678 {
2679     STAILQ_INIT(list);
2680 }
2681 
2682 static void
2683 objlist_push_head(Objlist *list, Obj_Entry *obj)
2684 {
2685     Objlist_Entry *elm;
2686 
2687     elm = NEW(Objlist_Entry);
2688     elm->obj = obj;
2689     STAILQ_INSERT_HEAD(list, elm, link);
2690 }
2691 
2692 static void
2693 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2694 {
2695     Objlist_Entry *elm;
2696 
2697     elm = NEW(Objlist_Entry);
2698     elm->obj = obj;
2699     STAILQ_INSERT_TAIL(list, elm, link);
2700 }
2701 
2702 static void
2703 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2704 {
2705 	Objlist_Entry *elm, *listelm;
2706 
2707 	STAILQ_FOREACH(listelm, list, link) {
2708 		if (listelm->obj == listobj)
2709 			break;
2710 	}
2711 	elm = NEW(Objlist_Entry);
2712 	elm->obj = obj;
2713 	if (listelm != NULL)
2714 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2715 	else
2716 		STAILQ_INSERT_TAIL(list, elm, link);
2717 }
2718 
2719 static void
2720 objlist_remove(Objlist *list, Obj_Entry *obj)
2721 {
2722     Objlist_Entry *elm;
2723 
2724     if ((elm = objlist_find(list, obj)) != NULL) {
2725 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2726 	free(elm);
2727     }
2728 }
2729 
2730 /*
2731  * Relocate dag rooted in the specified object.
2732  * Returns 0 on success, or -1 on failure.
2733  */
2734 
2735 static int
2736 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2737     int flags, RtldLockState *lockstate)
2738 {
2739 	Objlist_Entry *elm;
2740 	int error;
2741 
2742 	error = 0;
2743 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2744 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2745 		    lockstate);
2746 		if (error == -1)
2747 			break;
2748 	}
2749 	return (error);
2750 }
2751 
2752 /*
2753  * Prepare for, or clean after, relocating an object marked with
2754  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2755  * segments are remapped read-write.  After relocations are done, the
2756  * segment's permissions are returned back to the modes specified in
2757  * the phdrs.  If any relocation happened, or always for wired
2758  * program, COW is triggered.
2759  */
2760 static int
2761 reloc_textrel_prot(Obj_Entry *obj, bool before)
2762 {
2763 	const Elf_Phdr *ph;
2764 	void *base;
2765 	size_t l, sz;
2766 	int prot;
2767 
2768 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2769 	    l--, ph++) {
2770 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2771 			continue;
2772 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2773 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2774 		    trunc_page(ph->p_vaddr);
2775 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2776 		if (mprotect(base, sz, prot) == -1) {
2777 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2778 			    obj->path, before ? "en" : "dis",
2779 			    rtld_strerror(errno));
2780 			return (-1);
2781 		}
2782 	}
2783 	return (0);
2784 }
2785 
2786 /*
2787  * Relocate single object.
2788  * Returns 0 on success, or -1 on failure.
2789  */
2790 static int
2791 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2792     int flags, RtldLockState *lockstate)
2793 {
2794 
2795 	if (obj->relocated)
2796 		return (0);
2797 	obj->relocated = true;
2798 	if (obj != rtldobj)
2799 		dbg("relocating \"%s\"", obj->path);
2800 
2801 	if (obj->symtab == NULL || obj->strtab == NULL ||
2802 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2803 		_rtld_error("%s: Shared object has no run-time symbol table",
2804 			    obj->path);
2805 		return (-1);
2806 	}
2807 
2808 	/* There are relocations to the write-protected text segment. */
2809 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2810 		return (-1);
2811 
2812 	/* Process the non-PLT non-IFUNC relocations. */
2813 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2814 		return (-1);
2815 
2816 	/* Re-protected the text segment. */
2817 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2818 		return (-1);
2819 
2820 	/* Set the special PLT or GOT entries. */
2821 	init_pltgot(obj);
2822 
2823 	/* Process the PLT relocations. */
2824 	if (reloc_plt(obj) == -1)
2825 		return (-1);
2826 	/* Relocate the jump slots if we are doing immediate binding. */
2827 	if (obj->bind_now || bind_now)
2828 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2829 			return (-1);
2830 
2831 	/*
2832 	 * Process the non-PLT IFUNC relocations.  The relocations are
2833 	 * processed in two phases, because IFUNC resolvers may
2834 	 * reference other symbols, which must be readily processed
2835 	 * before resolvers are called.
2836 	 */
2837 	if (obj->non_plt_gnu_ifunc &&
2838 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2839 		return (-1);
2840 
2841 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2842 		return (-1);
2843 
2844 	/*
2845 	 * Set up the magic number and version in the Obj_Entry.  These
2846 	 * were checked in the crt1.o from the original ElfKit, so we
2847 	 * set them for backward compatibility.
2848 	 */
2849 	obj->magic = RTLD_MAGIC;
2850 	obj->version = RTLD_VERSION;
2851 
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Relocate newly-loaded shared objects.  The argument is a pointer to
2857  * the Obj_Entry for the first such object.  All objects from the first
2858  * to the end of the list of objects are relocated.  Returns 0 on success,
2859  * or -1 on failure.
2860  */
2861 static int
2862 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2863     int flags, RtldLockState *lockstate)
2864 {
2865 	Obj_Entry *obj;
2866 	int error;
2867 
2868 	for (error = 0, obj = first;  obj != NULL;
2869 	    obj = TAILQ_NEXT(obj, next)) {
2870 		if (obj->marker)
2871 			continue;
2872 		error = relocate_object(obj, bind_now, rtldobj, flags,
2873 		    lockstate);
2874 		if (error == -1)
2875 			break;
2876 	}
2877 	return (error);
2878 }
2879 
2880 /*
2881  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2882  * referencing STT_GNU_IFUNC symbols is postponed till the other
2883  * relocations are done.  The indirect functions specified as
2884  * ifunc are allowed to call other symbols, so we need to have
2885  * objects relocated before asking for resolution from indirects.
2886  *
2887  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2888  * instead of the usual lazy handling of PLT slots.  It is
2889  * consistent with how GNU does it.
2890  */
2891 static int
2892 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2893     RtldLockState *lockstate)
2894 {
2895 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2896 		return (-1);
2897 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2898 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2899 		return (-1);
2900 	return (0);
2901 }
2902 
2903 static int
2904 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2905     RtldLockState *lockstate)
2906 {
2907 	Obj_Entry *obj;
2908 
2909 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2910 		if (obj->marker)
2911 			continue;
2912 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2913 			return (-1);
2914 	}
2915 	return (0);
2916 }
2917 
2918 static int
2919 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2920     RtldLockState *lockstate)
2921 {
2922 	Objlist_Entry *elm;
2923 
2924 	STAILQ_FOREACH(elm, list, link) {
2925 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2926 		    lockstate) == -1)
2927 			return (-1);
2928 	}
2929 	return (0);
2930 }
2931 
2932 /*
2933  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2934  * before the process exits.
2935  */
2936 static void
2937 rtld_exit(void)
2938 {
2939     RtldLockState lockstate;
2940 
2941     wlock_acquire(rtld_bind_lock, &lockstate);
2942     dbg("rtld_exit()");
2943     objlist_call_fini(&list_fini, NULL, &lockstate);
2944     /* No need to remove the items from the list, since we are exiting. */
2945     if (!libmap_disable)
2946         lm_fini();
2947     lock_release(rtld_bind_lock, &lockstate);
2948 }
2949 
2950 /*
2951  * Iterate over a search path, translate each element, and invoke the
2952  * callback on the result.
2953  */
2954 static void *
2955 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2956 {
2957     const char *trans;
2958     if (path == NULL)
2959 	return (NULL);
2960 
2961     path += strspn(path, ":;");
2962     while (*path != '\0') {
2963 	size_t len;
2964 	char  *res;
2965 
2966 	len = strcspn(path, ":;");
2967 	trans = lm_findn(NULL, path, len);
2968 	if (trans)
2969 	    res = callback(trans, strlen(trans), arg);
2970 	else
2971 	    res = callback(path, len, arg);
2972 
2973 	if (res != NULL)
2974 	    return (res);
2975 
2976 	path += len;
2977 	path += strspn(path, ":;");
2978     }
2979 
2980     return (NULL);
2981 }
2982 
2983 struct try_library_args {
2984     const char	*name;
2985     size_t	 namelen;
2986     char	*buffer;
2987     size_t	 buflen;
2988 };
2989 
2990 static void *
2991 try_library_path(const char *dir, size_t dirlen, void *param)
2992 {
2993     struct try_library_args *arg;
2994 
2995     arg = param;
2996     if (*dir == '/' || trust) {
2997 	char *pathname;
2998 
2999 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3000 		return (NULL);
3001 
3002 	pathname = arg->buffer;
3003 	strncpy(pathname, dir, dirlen);
3004 	pathname[dirlen] = '/';
3005 	strcpy(pathname + dirlen + 1, arg->name);
3006 
3007 	dbg("  Trying \"%s\"", pathname);
3008 	if (access(pathname, F_OK) == 0) {		/* We found it */
3009 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3010 	    strcpy(pathname, arg->buffer);
3011 	    return (pathname);
3012 	}
3013     }
3014     return (NULL);
3015 }
3016 
3017 static char *
3018 search_library_path(const char *name, const char *path)
3019 {
3020     char *p;
3021     struct try_library_args arg;
3022 
3023     if (path == NULL)
3024 	return NULL;
3025 
3026     arg.name = name;
3027     arg.namelen = strlen(name);
3028     arg.buffer = xmalloc(PATH_MAX);
3029     arg.buflen = PATH_MAX;
3030 
3031     p = path_enumerate(path, try_library_path, &arg);
3032 
3033     free(arg.buffer);
3034 
3035     return (p);
3036 }
3037 
3038 
3039 /*
3040  * Finds the library with the given name using the directory descriptors
3041  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3042  *
3043  * Returns a freshly-opened close-on-exec file descriptor for the library,
3044  * or -1 if the library cannot be found.
3045  */
3046 static char *
3047 search_library_pathfds(const char *name, const char *path, int *fdp)
3048 {
3049 	char *envcopy, *fdstr, *found, *last_token;
3050 	size_t len;
3051 	int dirfd, fd;
3052 
3053 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3054 
3055 	/* Don't load from user-specified libdirs into setuid binaries. */
3056 	if (!trust)
3057 		return (NULL);
3058 
3059 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3060 	if (path == NULL)
3061 		return (NULL);
3062 
3063 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3064 	if (name[0] == '/') {
3065 		dbg("Absolute path (%s) passed to %s", name, __func__);
3066 		return (NULL);
3067 	}
3068 
3069 	/*
3070 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3071 	 * copy of the path, as strtok_r rewrites separator tokens
3072 	 * with '\0'.
3073 	 */
3074 	found = NULL;
3075 	envcopy = xstrdup(path);
3076 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3077 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3078 		dirfd = parse_integer(fdstr);
3079 		if (dirfd < 0) {
3080 			_rtld_error("failed to parse directory FD: '%s'",
3081 				fdstr);
3082 			break;
3083 		}
3084 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3085 		if (fd >= 0) {
3086 			*fdp = fd;
3087 			len = strlen(fdstr) + strlen(name) + 3;
3088 			found = xmalloc(len);
3089 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3090 				_rtld_error("error generating '%d/%s'",
3091 				    dirfd, name);
3092 				rtld_die();
3093 			}
3094 			dbg("open('%s') => %d", found, fd);
3095 			break;
3096 		}
3097 	}
3098 	free(envcopy);
3099 
3100 	return (found);
3101 }
3102 
3103 
3104 int
3105 dlclose(void *handle)
3106 {
3107 	RtldLockState lockstate;
3108 	int error;
3109 
3110 	wlock_acquire(rtld_bind_lock, &lockstate);
3111 	error = dlclose_locked(handle, &lockstate);
3112 	lock_release(rtld_bind_lock, &lockstate);
3113 	return (error);
3114 }
3115 
3116 static int
3117 dlclose_locked(void *handle, RtldLockState *lockstate)
3118 {
3119     Obj_Entry *root;
3120 
3121     root = dlcheck(handle);
3122     if (root == NULL)
3123 	return -1;
3124     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3125 	root->path);
3126 
3127     /* Unreference the object and its dependencies. */
3128     root->dl_refcount--;
3129 
3130     if (root->refcount == 1) {
3131 	/*
3132 	 * The object will be no longer referenced, so we must unload it.
3133 	 * First, call the fini functions.
3134 	 */
3135 	objlist_call_fini(&list_fini, root, lockstate);
3136 
3137 	unref_dag(root);
3138 
3139 	/* Finish cleaning up the newly-unreferenced objects. */
3140 	GDB_STATE(RT_DELETE,&root->linkmap);
3141 	unload_object(root, lockstate);
3142 	GDB_STATE(RT_CONSISTENT,NULL);
3143     } else
3144 	unref_dag(root);
3145 
3146     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3147     return 0;
3148 }
3149 
3150 char *
3151 dlerror(void)
3152 {
3153     char *msg = error_message;
3154     error_message = NULL;
3155     return msg;
3156 }
3157 
3158 /*
3159  * This function is deprecated and has no effect.
3160  */
3161 void
3162 dllockinit(void *context,
3163 	   void *(*lock_create)(void *context),
3164            void (*rlock_acquire)(void *lock),
3165            void (*wlock_acquire)(void *lock),
3166            void (*lock_release)(void *lock),
3167            void (*lock_destroy)(void *lock),
3168 	   void (*context_destroy)(void *context))
3169 {
3170     static void *cur_context;
3171     static void (*cur_context_destroy)(void *);
3172 
3173     /* Just destroy the context from the previous call, if necessary. */
3174     if (cur_context_destroy != NULL)
3175 	cur_context_destroy(cur_context);
3176     cur_context = context;
3177     cur_context_destroy = context_destroy;
3178 }
3179 
3180 void *
3181 dlopen(const char *name, int mode)
3182 {
3183 
3184 	return (rtld_dlopen(name, -1, mode));
3185 }
3186 
3187 void *
3188 fdlopen(int fd, int mode)
3189 {
3190 
3191 	return (rtld_dlopen(NULL, fd, mode));
3192 }
3193 
3194 static void *
3195 rtld_dlopen(const char *name, int fd, int mode)
3196 {
3197     RtldLockState lockstate;
3198     int lo_flags;
3199 
3200     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3201     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3202     if (ld_tracing != NULL) {
3203 	rlock_acquire(rtld_bind_lock, &lockstate);
3204 	if (sigsetjmp(lockstate.env, 0) != 0)
3205 	    lock_upgrade(rtld_bind_lock, &lockstate);
3206 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3207 	lock_release(rtld_bind_lock, &lockstate);
3208     }
3209     lo_flags = RTLD_LO_DLOPEN;
3210     if (mode & RTLD_NODELETE)
3211 	    lo_flags |= RTLD_LO_NODELETE;
3212     if (mode & RTLD_NOLOAD)
3213 	    lo_flags |= RTLD_LO_NOLOAD;
3214     if (ld_tracing != NULL)
3215 	    lo_flags |= RTLD_LO_TRACE;
3216 
3217     return (dlopen_object(name, fd, obj_main, lo_flags,
3218       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3219 }
3220 
3221 static void
3222 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3223 {
3224 
3225 	obj->dl_refcount--;
3226 	unref_dag(obj);
3227 	if (obj->refcount == 0)
3228 		unload_object(obj, lockstate);
3229 }
3230 
3231 static Obj_Entry *
3232 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3233     int mode, RtldLockState *lockstate)
3234 {
3235     Obj_Entry *old_obj_tail;
3236     Obj_Entry *obj;
3237     Objlist initlist;
3238     RtldLockState mlockstate;
3239     int result;
3240 
3241     objlist_init(&initlist);
3242 
3243     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3244 	wlock_acquire(rtld_bind_lock, &mlockstate);
3245 	lockstate = &mlockstate;
3246     }
3247     GDB_STATE(RT_ADD,NULL);
3248 
3249     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3250     obj = NULL;
3251     if (name == NULL && fd == -1) {
3252 	obj = obj_main;
3253 	obj->refcount++;
3254     } else {
3255 	obj = load_object(name, fd, refobj, lo_flags);
3256     }
3257 
3258     if (obj) {
3259 	obj->dl_refcount++;
3260 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3261 	    objlist_push_tail(&list_global, obj);
3262 	if (globallist_next(old_obj_tail) != NULL) {
3263 	    /* We loaded something new. */
3264 	    assert(globallist_next(old_obj_tail) == obj);
3265 	    result = load_needed_objects(obj,
3266 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3267 	    init_dag(obj);
3268 	    ref_dag(obj);
3269 	    if (result != -1)
3270 		result = rtld_verify_versions(&obj->dagmembers);
3271 	    if (result != -1 && ld_tracing)
3272 		goto trace;
3273 	    if (result == -1 || relocate_object_dag(obj,
3274 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3275 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3276 	      lockstate) == -1) {
3277 		dlopen_cleanup(obj, lockstate);
3278 		obj = NULL;
3279 	    } else if (lo_flags & RTLD_LO_EARLY) {
3280 		/*
3281 		 * Do not call the init functions for early loaded
3282 		 * filtees.  The image is still not initialized enough
3283 		 * for them to work.
3284 		 *
3285 		 * Our object is found by the global object list and
3286 		 * will be ordered among all init calls done right
3287 		 * before transferring control to main.
3288 		 */
3289 	    } else {
3290 		/* Make list of init functions to call. */
3291 		initlist_add_objects(obj, obj, &initlist);
3292 	    }
3293 	    /*
3294 	     * Process all no_delete or global objects here, given
3295 	     * them own DAGs to prevent their dependencies from being
3296 	     * unloaded.  This has to be done after we have loaded all
3297 	     * of the dependencies, so that we do not miss any.
3298 	     */
3299 	    if (obj != NULL)
3300 		process_z(obj);
3301 	} else {
3302 	    /*
3303 	     * Bump the reference counts for objects on this DAG.  If
3304 	     * this is the first dlopen() call for the object that was
3305 	     * already loaded as a dependency, initialize the dag
3306 	     * starting at it.
3307 	     */
3308 	    init_dag(obj);
3309 	    ref_dag(obj);
3310 
3311 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3312 		goto trace;
3313 	}
3314 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3315 	  obj->z_nodelete) && !obj->ref_nodel) {
3316 	    dbg("obj %s nodelete", obj->path);
3317 	    ref_dag(obj);
3318 	    obj->z_nodelete = obj->ref_nodel = true;
3319 	}
3320     }
3321 
3322     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3323 	name);
3324     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3325 
3326     if (!(lo_flags & RTLD_LO_EARLY)) {
3327 	map_stacks_exec(lockstate);
3328     }
3329 
3330     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3331       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3332       lockstate) == -1) {
3333 	objlist_clear(&initlist);
3334 	dlopen_cleanup(obj, lockstate);
3335 	if (lockstate == &mlockstate)
3336 	    lock_release(rtld_bind_lock, lockstate);
3337 	return (NULL);
3338     }
3339 
3340     if (!(lo_flags & RTLD_LO_EARLY)) {
3341 	/* Call the init functions. */
3342 	objlist_call_init(&initlist, lockstate);
3343     }
3344     objlist_clear(&initlist);
3345     if (lockstate == &mlockstate)
3346 	lock_release(rtld_bind_lock, lockstate);
3347     return obj;
3348 trace:
3349     trace_loaded_objects(obj);
3350     if (lockstate == &mlockstate)
3351 	lock_release(rtld_bind_lock, lockstate);
3352     exit(0);
3353 }
3354 
3355 static void *
3356 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3357     int flags)
3358 {
3359     DoneList donelist;
3360     const Obj_Entry *obj, *defobj;
3361     const Elf_Sym *def;
3362     SymLook req;
3363     RtldLockState lockstate;
3364     tls_index ti;
3365     void *sym;
3366     int res;
3367 
3368     def = NULL;
3369     defobj = NULL;
3370     symlook_init(&req, name);
3371     req.ventry = ve;
3372     req.flags = flags | SYMLOOK_IN_PLT;
3373     req.lockstate = &lockstate;
3374 
3375     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3376     rlock_acquire(rtld_bind_lock, &lockstate);
3377     if (sigsetjmp(lockstate.env, 0) != 0)
3378 	    lock_upgrade(rtld_bind_lock, &lockstate);
3379     if (handle == NULL || handle == RTLD_NEXT ||
3380 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3381 
3382 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3383 	    _rtld_error("Cannot determine caller's shared object");
3384 	    lock_release(rtld_bind_lock, &lockstate);
3385 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3386 	    return NULL;
3387 	}
3388 	if (handle == NULL) {	/* Just the caller's shared object. */
3389 	    res = symlook_obj(&req, obj);
3390 	    if (res == 0) {
3391 		def = req.sym_out;
3392 		defobj = req.defobj_out;
3393 	    }
3394 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3395 		   handle == RTLD_SELF) { /* ... caller included */
3396 	    if (handle == RTLD_NEXT)
3397 		obj = globallist_next(obj);
3398 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3399 		if (obj->marker)
3400 		    continue;
3401 		res = symlook_obj(&req, obj);
3402 		if (res == 0) {
3403 		    if (def == NULL ||
3404 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3405 			def = req.sym_out;
3406 			defobj = req.defobj_out;
3407 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3408 			    break;
3409 		    }
3410 		}
3411 	    }
3412 	    /*
3413 	     * Search the dynamic linker itself, and possibly resolve the
3414 	     * symbol from there.  This is how the application links to
3415 	     * dynamic linker services such as dlopen.
3416 	     */
3417 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3418 		res = symlook_obj(&req, &obj_rtld);
3419 		if (res == 0) {
3420 		    def = req.sym_out;
3421 		    defobj = req.defobj_out;
3422 		}
3423 	    }
3424 	} else {
3425 	    assert(handle == RTLD_DEFAULT);
3426 	    res = symlook_default(&req, obj);
3427 	    if (res == 0) {
3428 		defobj = req.defobj_out;
3429 		def = req.sym_out;
3430 	    }
3431 	}
3432     } else {
3433 	if ((obj = dlcheck(handle)) == NULL) {
3434 	    lock_release(rtld_bind_lock, &lockstate);
3435 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3436 	    return NULL;
3437 	}
3438 
3439 	donelist_init(&donelist);
3440 	if (obj->mainprog) {
3441             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3442 	    res = symlook_global(&req, &donelist);
3443 	    if (res == 0) {
3444 		def = req.sym_out;
3445 		defobj = req.defobj_out;
3446 	    }
3447 	    /*
3448 	     * Search the dynamic linker itself, and possibly resolve the
3449 	     * symbol from there.  This is how the application links to
3450 	     * dynamic linker services such as dlopen.
3451 	     */
3452 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3453 		res = symlook_obj(&req, &obj_rtld);
3454 		if (res == 0) {
3455 		    def = req.sym_out;
3456 		    defobj = req.defobj_out;
3457 		}
3458 	    }
3459 	}
3460 	else {
3461 	    /* Search the whole DAG rooted at the given object. */
3462 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3463 	    if (res == 0) {
3464 		def = req.sym_out;
3465 		defobj = req.defobj_out;
3466 	    }
3467 	}
3468     }
3469 
3470     if (def != NULL) {
3471 	lock_release(rtld_bind_lock, &lockstate);
3472 
3473 	/*
3474 	 * The value required by the caller is derived from the value
3475 	 * of the symbol. this is simply the relocated value of the
3476 	 * symbol.
3477 	 */
3478 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3479 	    sym = make_function_pointer(def, defobj);
3480 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3481 	    sym = rtld_resolve_ifunc(defobj, def);
3482 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3483 	    ti.ti_module = defobj->tlsindex;
3484 	    ti.ti_offset = def->st_value;
3485 	    sym = __tls_get_addr(&ti);
3486 	} else
3487 	    sym = defobj->relocbase + def->st_value;
3488 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3489 	return (sym);
3490     }
3491 
3492     _rtld_error("Undefined symbol \"%s\"", name);
3493     lock_release(rtld_bind_lock, &lockstate);
3494     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3495     return NULL;
3496 }
3497 
3498 void *
3499 dlsym(void *handle, const char *name)
3500 {
3501 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3502 	    SYMLOOK_DLSYM);
3503 }
3504 
3505 dlfunc_t
3506 dlfunc(void *handle, const char *name)
3507 {
3508 	union {
3509 		void *d;
3510 		dlfunc_t f;
3511 	} rv;
3512 
3513 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3514 	    SYMLOOK_DLSYM);
3515 	return (rv.f);
3516 }
3517 
3518 void *
3519 dlvsym(void *handle, const char *name, const char *version)
3520 {
3521 	Ver_Entry ventry;
3522 
3523 	ventry.name = version;
3524 	ventry.file = NULL;
3525 	ventry.hash = elf_hash(version);
3526 	ventry.flags= 0;
3527 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3528 	    SYMLOOK_DLSYM);
3529 }
3530 
3531 int
3532 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3533 {
3534     const Obj_Entry *obj;
3535     RtldLockState lockstate;
3536 
3537     rlock_acquire(rtld_bind_lock, &lockstate);
3538     obj = obj_from_addr(addr);
3539     if (obj == NULL) {
3540         _rtld_error("No shared object contains address");
3541 	lock_release(rtld_bind_lock, &lockstate);
3542         return (0);
3543     }
3544     rtld_fill_dl_phdr_info(obj, phdr_info);
3545     lock_release(rtld_bind_lock, &lockstate);
3546     return (1);
3547 }
3548 
3549 int
3550 dladdr(const void *addr, Dl_info *info)
3551 {
3552     const Obj_Entry *obj;
3553     const Elf_Sym *def;
3554     void *symbol_addr;
3555     unsigned long symoffset;
3556     RtldLockState lockstate;
3557 
3558     rlock_acquire(rtld_bind_lock, &lockstate);
3559     obj = obj_from_addr(addr);
3560     if (obj == NULL) {
3561         _rtld_error("No shared object contains address");
3562 	lock_release(rtld_bind_lock, &lockstate);
3563         return 0;
3564     }
3565     info->dli_fname = obj->path;
3566     info->dli_fbase = obj->mapbase;
3567     info->dli_saddr = (void *)0;
3568     info->dli_sname = NULL;
3569 
3570     /*
3571      * Walk the symbol list looking for the symbol whose address is
3572      * closest to the address sent in.
3573      */
3574     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3575         def = obj->symtab + symoffset;
3576 
3577         /*
3578          * For skip the symbol if st_shndx is either SHN_UNDEF or
3579          * SHN_COMMON.
3580          */
3581         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3582             continue;
3583 
3584         /*
3585          * If the symbol is greater than the specified address, or if it
3586          * is further away from addr than the current nearest symbol,
3587          * then reject it.
3588          */
3589         symbol_addr = obj->relocbase + def->st_value;
3590         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3591             continue;
3592 
3593         /* Update our idea of the nearest symbol. */
3594         info->dli_sname = obj->strtab + def->st_name;
3595         info->dli_saddr = symbol_addr;
3596 
3597         /* Exact match? */
3598         if (info->dli_saddr == addr)
3599             break;
3600     }
3601     lock_release(rtld_bind_lock, &lockstate);
3602     return 1;
3603 }
3604 
3605 int
3606 dlinfo(void *handle, int request, void *p)
3607 {
3608     const Obj_Entry *obj;
3609     RtldLockState lockstate;
3610     int error;
3611 
3612     rlock_acquire(rtld_bind_lock, &lockstate);
3613 
3614     if (handle == NULL || handle == RTLD_SELF) {
3615 	void *retaddr;
3616 
3617 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3618 	if ((obj = obj_from_addr(retaddr)) == NULL)
3619 	    _rtld_error("Cannot determine caller's shared object");
3620     } else
3621 	obj = dlcheck(handle);
3622 
3623     if (obj == NULL) {
3624 	lock_release(rtld_bind_lock, &lockstate);
3625 	return (-1);
3626     }
3627 
3628     error = 0;
3629     switch (request) {
3630     case RTLD_DI_LINKMAP:
3631 	*((struct link_map const **)p) = &obj->linkmap;
3632 	break;
3633     case RTLD_DI_ORIGIN:
3634 	error = rtld_dirname(obj->path, p);
3635 	break;
3636 
3637     case RTLD_DI_SERINFOSIZE:
3638     case RTLD_DI_SERINFO:
3639 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3640 	break;
3641 
3642     default:
3643 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3644 	error = -1;
3645     }
3646 
3647     lock_release(rtld_bind_lock, &lockstate);
3648 
3649     return (error);
3650 }
3651 
3652 static void
3653 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3654 {
3655 
3656 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3657 	phdr_info->dlpi_name = obj->path;
3658 	phdr_info->dlpi_phdr = obj->phdr;
3659 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3660 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3661 	phdr_info->dlpi_tls_data = obj->tlsinit;
3662 	phdr_info->dlpi_adds = obj_loads;
3663 	phdr_info->dlpi_subs = obj_loads - obj_count;
3664 }
3665 
3666 int
3667 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3668 {
3669 	struct dl_phdr_info phdr_info;
3670 	Obj_Entry *obj, marker;
3671 	RtldLockState bind_lockstate, phdr_lockstate;
3672 	int error;
3673 
3674 	init_marker(&marker);
3675 	error = 0;
3676 
3677 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3678 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3679 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3680 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3681 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3682 		hold_object(obj);
3683 		lock_release(rtld_bind_lock, &bind_lockstate);
3684 
3685 		error = callback(&phdr_info, sizeof phdr_info, param);
3686 
3687 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3688 		unhold_object(obj);
3689 		obj = globallist_next(&marker);
3690 		TAILQ_REMOVE(&obj_list, &marker, next);
3691 		if (error != 0) {
3692 			lock_release(rtld_bind_lock, &bind_lockstate);
3693 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3694 			return (error);
3695 		}
3696 	}
3697 
3698 	if (error == 0) {
3699 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3700 		lock_release(rtld_bind_lock, &bind_lockstate);
3701 		error = callback(&phdr_info, sizeof(phdr_info), param);
3702 	}
3703 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3704 	return (error);
3705 }
3706 
3707 static void *
3708 fill_search_info(const char *dir, size_t dirlen, void *param)
3709 {
3710     struct fill_search_info_args *arg;
3711 
3712     arg = param;
3713 
3714     if (arg->request == RTLD_DI_SERINFOSIZE) {
3715 	arg->serinfo->dls_cnt ++;
3716 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3717     } else {
3718 	struct dl_serpath *s_entry;
3719 
3720 	s_entry = arg->serpath;
3721 	s_entry->dls_name  = arg->strspace;
3722 	s_entry->dls_flags = arg->flags;
3723 
3724 	strncpy(arg->strspace, dir, dirlen);
3725 	arg->strspace[dirlen] = '\0';
3726 
3727 	arg->strspace += dirlen + 1;
3728 	arg->serpath++;
3729     }
3730 
3731     return (NULL);
3732 }
3733 
3734 static int
3735 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3736 {
3737     struct dl_serinfo _info;
3738     struct fill_search_info_args args;
3739 
3740     args.request = RTLD_DI_SERINFOSIZE;
3741     args.serinfo = &_info;
3742 
3743     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3744     _info.dls_cnt  = 0;
3745 
3746     path_enumerate(obj->rpath, fill_search_info, &args);
3747     path_enumerate(ld_library_path, fill_search_info, &args);
3748     path_enumerate(obj->runpath, fill_search_info, &args);
3749     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3750     if (!obj->z_nodeflib)
3751       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3752 
3753 
3754     if (request == RTLD_DI_SERINFOSIZE) {
3755 	info->dls_size = _info.dls_size;
3756 	info->dls_cnt = _info.dls_cnt;
3757 	return (0);
3758     }
3759 
3760     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3761 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3762 	return (-1);
3763     }
3764 
3765     args.request  = RTLD_DI_SERINFO;
3766     args.serinfo  = info;
3767     args.serpath  = &info->dls_serpath[0];
3768     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3769 
3770     args.flags = LA_SER_RUNPATH;
3771     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3772 	return (-1);
3773 
3774     args.flags = LA_SER_LIBPATH;
3775     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3776 	return (-1);
3777 
3778     args.flags = LA_SER_RUNPATH;
3779     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3780 	return (-1);
3781 
3782     args.flags = LA_SER_CONFIG;
3783     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3784       != NULL)
3785 	return (-1);
3786 
3787     args.flags = LA_SER_DEFAULT;
3788     if (!obj->z_nodeflib &&
3789       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3790 	return (-1);
3791     return (0);
3792 }
3793 
3794 static int
3795 rtld_dirname(const char *path, char *bname)
3796 {
3797     const char *endp;
3798 
3799     /* Empty or NULL string gets treated as "." */
3800     if (path == NULL || *path == '\0') {
3801 	bname[0] = '.';
3802 	bname[1] = '\0';
3803 	return (0);
3804     }
3805 
3806     /* Strip trailing slashes */
3807     endp = path + strlen(path) - 1;
3808     while (endp > path && *endp == '/')
3809 	endp--;
3810 
3811     /* Find the start of the dir */
3812     while (endp > path && *endp != '/')
3813 	endp--;
3814 
3815     /* Either the dir is "/" or there are no slashes */
3816     if (endp == path) {
3817 	bname[0] = *endp == '/' ? '/' : '.';
3818 	bname[1] = '\0';
3819 	return (0);
3820     } else {
3821 	do {
3822 	    endp--;
3823 	} while (endp > path && *endp == '/');
3824     }
3825 
3826     if (endp - path + 2 > PATH_MAX)
3827     {
3828 	_rtld_error("Filename is too long: %s", path);
3829 	return(-1);
3830     }
3831 
3832     strncpy(bname, path, endp - path + 1);
3833     bname[endp - path + 1] = '\0';
3834     return (0);
3835 }
3836 
3837 static int
3838 rtld_dirname_abs(const char *path, char *base)
3839 {
3840 	char *last;
3841 
3842 	if (realpath(path, base) == NULL)
3843 		return (-1);
3844 	dbg("%s -> %s", path, base);
3845 	last = strrchr(base, '/');
3846 	if (last == NULL)
3847 		return (-1);
3848 	if (last != base)
3849 		*last = '\0';
3850 	return (0);
3851 }
3852 
3853 static void
3854 linkmap_add(Obj_Entry *obj)
3855 {
3856     struct link_map *l = &obj->linkmap;
3857     struct link_map *prev;
3858 
3859     obj->linkmap.l_name = obj->path;
3860     obj->linkmap.l_addr = obj->mapbase;
3861     obj->linkmap.l_ld = obj->dynamic;
3862 #ifdef __mips__
3863     /* GDB needs load offset on MIPS to use the symbols */
3864     obj->linkmap.l_offs = obj->relocbase;
3865 #endif
3866 
3867     if (r_debug.r_map == NULL) {
3868 	r_debug.r_map = l;
3869 	return;
3870     }
3871 
3872     /*
3873      * Scan to the end of the list, but not past the entry for the
3874      * dynamic linker, which we want to keep at the very end.
3875      */
3876     for (prev = r_debug.r_map;
3877       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3878       prev = prev->l_next)
3879 	;
3880 
3881     /* Link in the new entry. */
3882     l->l_prev = prev;
3883     l->l_next = prev->l_next;
3884     if (l->l_next != NULL)
3885 	l->l_next->l_prev = l;
3886     prev->l_next = l;
3887 }
3888 
3889 static void
3890 linkmap_delete(Obj_Entry *obj)
3891 {
3892     struct link_map *l = &obj->linkmap;
3893 
3894     if (l->l_prev == NULL) {
3895 	if ((r_debug.r_map = l->l_next) != NULL)
3896 	    l->l_next->l_prev = NULL;
3897 	return;
3898     }
3899 
3900     if ((l->l_prev->l_next = l->l_next) != NULL)
3901 	l->l_next->l_prev = l->l_prev;
3902 }
3903 
3904 /*
3905  * Function for the debugger to set a breakpoint on to gain control.
3906  *
3907  * The two parameters allow the debugger to easily find and determine
3908  * what the runtime loader is doing and to whom it is doing it.
3909  *
3910  * When the loadhook trap is hit (r_debug_state, set at program
3911  * initialization), the arguments can be found on the stack:
3912  *
3913  *  +8   struct link_map *m
3914  *  +4   struct r_debug  *rd
3915  *  +0   RetAddr
3916  */
3917 void
3918 r_debug_state(struct r_debug* rd, struct link_map *m)
3919 {
3920     /*
3921      * The following is a hack to force the compiler to emit calls to
3922      * this function, even when optimizing.  If the function is empty,
3923      * the compiler is not obliged to emit any code for calls to it,
3924      * even when marked __noinline.  However, gdb depends on those
3925      * calls being made.
3926      */
3927     __compiler_membar();
3928 }
3929 
3930 /*
3931  * A function called after init routines have completed. This can be used to
3932  * break before a program's entry routine is called, and can be used when
3933  * main is not available in the symbol table.
3934  */
3935 void
3936 _r_debug_postinit(struct link_map *m)
3937 {
3938 
3939 	/* See r_debug_state(). */
3940 	__compiler_membar();
3941 }
3942 
3943 static void
3944 release_object(Obj_Entry *obj)
3945 {
3946 
3947 	if (obj->holdcount > 0) {
3948 		obj->unholdfree = true;
3949 		return;
3950 	}
3951 	munmap(obj->mapbase, obj->mapsize);
3952 	linkmap_delete(obj);
3953 	obj_free(obj);
3954 }
3955 
3956 /*
3957  * Get address of the pointer variable in the main program.
3958  * Prefer non-weak symbol over the weak one.
3959  */
3960 static const void **
3961 get_program_var_addr(const char *name, RtldLockState *lockstate)
3962 {
3963     SymLook req;
3964     DoneList donelist;
3965 
3966     symlook_init(&req, name);
3967     req.lockstate = lockstate;
3968     donelist_init(&donelist);
3969     if (symlook_global(&req, &donelist) != 0)
3970 	return (NULL);
3971     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3972 	return ((const void **)make_function_pointer(req.sym_out,
3973 	  req.defobj_out));
3974     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3975 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3976     else
3977 	return ((const void **)(req.defobj_out->relocbase +
3978 	  req.sym_out->st_value));
3979 }
3980 
3981 /*
3982  * Set a pointer variable in the main program to the given value.  This
3983  * is used to set key variables such as "environ" before any of the
3984  * init functions are called.
3985  */
3986 static void
3987 set_program_var(const char *name, const void *value)
3988 {
3989     const void **addr;
3990 
3991     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3992 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3993 	*addr = value;
3994     }
3995 }
3996 
3997 /*
3998  * Search the global objects, including dependencies and main object,
3999  * for the given symbol.
4000  */
4001 static int
4002 symlook_global(SymLook *req, DoneList *donelist)
4003 {
4004     SymLook req1;
4005     const Objlist_Entry *elm;
4006     int res;
4007 
4008     symlook_init_from_req(&req1, req);
4009 
4010     /* Search all objects loaded at program start up. */
4011     if (req->defobj_out == NULL ||
4012       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4013 	res = symlook_list(&req1, &list_main, donelist);
4014 	if (res == 0 && (req->defobj_out == NULL ||
4015 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4016 	    req->sym_out = req1.sym_out;
4017 	    req->defobj_out = req1.defobj_out;
4018 	    assert(req->defobj_out != NULL);
4019 	}
4020     }
4021 
4022     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4023     STAILQ_FOREACH(elm, &list_global, link) {
4024 	if (req->defobj_out != NULL &&
4025 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4026 	    break;
4027 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4028 	if (res == 0 && (req->defobj_out == NULL ||
4029 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4030 	    req->sym_out = req1.sym_out;
4031 	    req->defobj_out = req1.defobj_out;
4032 	    assert(req->defobj_out != NULL);
4033 	}
4034     }
4035 
4036     return (req->sym_out != NULL ? 0 : ESRCH);
4037 }
4038 
4039 /*
4040  * Given a symbol name in a referencing object, find the corresponding
4041  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4042  * no definition was found.  Returns a pointer to the Obj_Entry of the
4043  * defining object via the reference parameter DEFOBJ_OUT.
4044  */
4045 static int
4046 symlook_default(SymLook *req, const Obj_Entry *refobj)
4047 {
4048     DoneList donelist;
4049     const Objlist_Entry *elm;
4050     SymLook req1;
4051     int res;
4052 
4053     donelist_init(&donelist);
4054     symlook_init_from_req(&req1, req);
4055 
4056     /*
4057      * Look first in the referencing object if linked symbolically,
4058      * and similarly handle protected symbols.
4059      */
4060     res = symlook_obj(&req1, refobj);
4061     if (res == 0 && (refobj->symbolic ||
4062       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4063 	req->sym_out = req1.sym_out;
4064 	req->defobj_out = req1.defobj_out;
4065 	assert(req->defobj_out != NULL);
4066     }
4067     if (refobj->symbolic || req->defobj_out != NULL)
4068 	donelist_check(&donelist, refobj);
4069 
4070     symlook_global(req, &donelist);
4071 
4072     /* Search all dlopened DAGs containing the referencing object. */
4073     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4074 	if (req->sym_out != NULL &&
4075 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4076 	    break;
4077 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4078 	if (res == 0 && (req->sym_out == NULL ||
4079 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4080 	    req->sym_out = req1.sym_out;
4081 	    req->defobj_out = req1.defobj_out;
4082 	    assert(req->defobj_out != NULL);
4083 	}
4084     }
4085 
4086     /*
4087      * Search the dynamic linker itself, and possibly resolve the
4088      * symbol from there.  This is how the application links to
4089      * dynamic linker services such as dlopen.
4090      */
4091     if (req->sym_out == NULL ||
4092       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4093 	res = symlook_obj(&req1, &obj_rtld);
4094 	if (res == 0) {
4095 	    req->sym_out = req1.sym_out;
4096 	    req->defobj_out = req1.defobj_out;
4097 	    assert(req->defobj_out != NULL);
4098 	}
4099     }
4100 
4101     return (req->sym_out != NULL ? 0 : ESRCH);
4102 }
4103 
4104 static int
4105 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4106 {
4107     const Elf_Sym *def;
4108     const Obj_Entry *defobj;
4109     const Objlist_Entry *elm;
4110     SymLook req1;
4111     int res;
4112 
4113     def = NULL;
4114     defobj = NULL;
4115     STAILQ_FOREACH(elm, objlist, link) {
4116 	if (donelist_check(dlp, elm->obj))
4117 	    continue;
4118 	symlook_init_from_req(&req1, req);
4119 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4120 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4121 		def = req1.sym_out;
4122 		defobj = req1.defobj_out;
4123 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4124 		    break;
4125 	    }
4126 	}
4127     }
4128     if (def != NULL) {
4129 	req->sym_out = def;
4130 	req->defobj_out = defobj;
4131 	return (0);
4132     }
4133     return (ESRCH);
4134 }
4135 
4136 /*
4137  * Search the chain of DAGS cointed to by the given Needed_Entry
4138  * for a symbol of the given name.  Each DAG is scanned completely
4139  * before advancing to the next one.  Returns a pointer to the symbol,
4140  * or NULL if no definition was found.
4141  */
4142 static int
4143 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4144 {
4145     const Elf_Sym *def;
4146     const Needed_Entry *n;
4147     const Obj_Entry *defobj;
4148     SymLook req1;
4149     int res;
4150 
4151     def = NULL;
4152     defobj = NULL;
4153     symlook_init_from_req(&req1, req);
4154     for (n = needed; n != NULL; n = n->next) {
4155 	if (n->obj == NULL ||
4156 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4157 	    continue;
4158 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4159 	    def = req1.sym_out;
4160 	    defobj = req1.defobj_out;
4161 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4162 		break;
4163 	}
4164     }
4165     if (def != NULL) {
4166 	req->sym_out = def;
4167 	req->defobj_out = defobj;
4168 	return (0);
4169     }
4170     return (ESRCH);
4171 }
4172 
4173 /*
4174  * Search the symbol table of a single shared object for a symbol of
4175  * the given name and version, if requested.  Returns a pointer to the
4176  * symbol, or NULL if no definition was found.  If the object is
4177  * filter, return filtered symbol from filtee.
4178  *
4179  * The symbol's hash value is passed in for efficiency reasons; that
4180  * eliminates many recomputations of the hash value.
4181  */
4182 int
4183 symlook_obj(SymLook *req, const Obj_Entry *obj)
4184 {
4185     DoneList donelist;
4186     SymLook req1;
4187     int flags, res, mres;
4188 
4189     /*
4190      * If there is at least one valid hash at this point, we prefer to
4191      * use the faster GNU version if available.
4192      */
4193     if (obj->valid_hash_gnu)
4194 	mres = symlook_obj1_gnu(req, obj);
4195     else if (obj->valid_hash_sysv)
4196 	mres = symlook_obj1_sysv(req, obj);
4197     else
4198 	return (EINVAL);
4199 
4200     if (mres == 0) {
4201 	if (obj->needed_filtees != NULL) {
4202 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4203 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4204 	    donelist_init(&donelist);
4205 	    symlook_init_from_req(&req1, req);
4206 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4207 	    if (res == 0) {
4208 		req->sym_out = req1.sym_out;
4209 		req->defobj_out = req1.defobj_out;
4210 	    }
4211 	    return (res);
4212 	}
4213 	if (obj->needed_aux_filtees != NULL) {
4214 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4215 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4216 	    donelist_init(&donelist);
4217 	    symlook_init_from_req(&req1, req);
4218 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4219 	    if (res == 0) {
4220 		req->sym_out = req1.sym_out;
4221 		req->defobj_out = req1.defobj_out;
4222 		return (res);
4223 	    }
4224 	}
4225     }
4226     return (mres);
4227 }
4228 
4229 /* Symbol match routine common to both hash functions */
4230 static bool
4231 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4232     const unsigned long symnum)
4233 {
4234 	Elf_Versym verndx;
4235 	const Elf_Sym *symp;
4236 	const char *strp;
4237 
4238 	symp = obj->symtab + symnum;
4239 	strp = obj->strtab + symp->st_name;
4240 
4241 	switch (ELF_ST_TYPE(symp->st_info)) {
4242 	case STT_FUNC:
4243 	case STT_NOTYPE:
4244 	case STT_OBJECT:
4245 	case STT_COMMON:
4246 	case STT_GNU_IFUNC:
4247 		if (symp->st_value == 0)
4248 			return (false);
4249 		/* fallthrough */
4250 	case STT_TLS:
4251 		if (symp->st_shndx != SHN_UNDEF)
4252 			break;
4253 #ifndef __mips__
4254 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4255 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4256 			break;
4257 		/* fallthrough */
4258 #endif
4259 	default:
4260 		return (false);
4261 	}
4262 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4263 		return (false);
4264 
4265 	if (req->ventry == NULL) {
4266 		if (obj->versyms != NULL) {
4267 			verndx = VER_NDX(obj->versyms[symnum]);
4268 			if (verndx > obj->vernum) {
4269 				_rtld_error(
4270 				    "%s: symbol %s references wrong version %d",
4271 				    obj->path, obj->strtab + symnum, verndx);
4272 				return (false);
4273 			}
4274 			/*
4275 			 * If we are not called from dlsym (i.e. this
4276 			 * is a normal relocation from unversioned
4277 			 * binary), accept the symbol immediately if
4278 			 * it happens to have first version after this
4279 			 * shared object became versioned.  Otherwise,
4280 			 * if symbol is versioned and not hidden,
4281 			 * remember it. If it is the only symbol with
4282 			 * this name exported by the shared object, it
4283 			 * will be returned as a match by the calling
4284 			 * function. If symbol is global (verndx < 2)
4285 			 * accept it unconditionally.
4286 			 */
4287 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4288 			    verndx == VER_NDX_GIVEN) {
4289 				result->sym_out = symp;
4290 				return (true);
4291 			}
4292 			else if (verndx >= VER_NDX_GIVEN) {
4293 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4294 				    == 0) {
4295 					if (result->vsymp == NULL)
4296 						result->vsymp = symp;
4297 					result->vcount++;
4298 				}
4299 				return (false);
4300 			}
4301 		}
4302 		result->sym_out = symp;
4303 		return (true);
4304 	}
4305 	if (obj->versyms == NULL) {
4306 		if (object_match_name(obj, req->ventry->name)) {
4307 			_rtld_error("%s: object %s should provide version %s "
4308 			    "for symbol %s", obj_rtld.path, obj->path,
4309 			    req->ventry->name, obj->strtab + symnum);
4310 			return (false);
4311 		}
4312 	} else {
4313 		verndx = VER_NDX(obj->versyms[symnum]);
4314 		if (verndx > obj->vernum) {
4315 			_rtld_error("%s: symbol %s references wrong version %d",
4316 			    obj->path, obj->strtab + symnum, verndx);
4317 			return (false);
4318 		}
4319 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4320 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4321 			/*
4322 			 * Version does not match. Look if this is a
4323 			 * global symbol and if it is not hidden. If
4324 			 * global symbol (verndx < 2) is available,
4325 			 * use it. Do not return symbol if we are
4326 			 * called by dlvsym, because dlvsym looks for
4327 			 * a specific version and default one is not
4328 			 * what dlvsym wants.
4329 			 */
4330 			if ((req->flags & SYMLOOK_DLSYM) ||
4331 			    (verndx >= VER_NDX_GIVEN) ||
4332 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4333 				return (false);
4334 		}
4335 	}
4336 	result->sym_out = symp;
4337 	return (true);
4338 }
4339 
4340 /*
4341  * Search for symbol using SysV hash function.
4342  * obj->buckets is known not to be NULL at this point; the test for this was
4343  * performed with the obj->valid_hash_sysv assignment.
4344  */
4345 static int
4346 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4347 {
4348 	unsigned long symnum;
4349 	Sym_Match_Result matchres;
4350 
4351 	matchres.sym_out = NULL;
4352 	matchres.vsymp = NULL;
4353 	matchres.vcount = 0;
4354 
4355 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4356 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4357 		if (symnum >= obj->nchains)
4358 			return (ESRCH);	/* Bad object */
4359 
4360 		if (matched_symbol(req, obj, &matchres, symnum)) {
4361 			req->sym_out = matchres.sym_out;
4362 			req->defobj_out = obj;
4363 			return (0);
4364 		}
4365 	}
4366 	if (matchres.vcount == 1) {
4367 		req->sym_out = matchres.vsymp;
4368 		req->defobj_out = obj;
4369 		return (0);
4370 	}
4371 	return (ESRCH);
4372 }
4373 
4374 /* Search for symbol using GNU hash function */
4375 static int
4376 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4377 {
4378 	Elf_Addr bloom_word;
4379 	const Elf32_Word *hashval;
4380 	Elf32_Word bucket;
4381 	Sym_Match_Result matchres;
4382 	unsigned int h1, h2;
4383 	unsigned long symnum;
4384 
4385 	matchres.sym_out = NULL;
4386 	matchres.vsymp = NULL;
4387 	matchres.vcount = 0;
4388 
4389 	/* Pick right bitmask word from Bloom filter array */
4390 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4391 	    obj->maskwords_bm_gnu];
4392 
4393 	/* Calculate modulus word size of gnu hash and its derivative */
4394 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4395 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4396 
4397 	/* Filter out the "definitely not in set" queries */
4398 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4399 		return (ESRCH);
4400 
4401 	/* Locate hash chain and corresponding value element*/
4402 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4403 	if (bucket == 0)
4404 		return (ESRCH);
4405 	hashval = &obj->chain_zero_gnu[bucket];
4406 	do {
4407 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4408 			symnum = hashval - obj->chain_zero_gnu;
4409 			if (matched_symbol(req, obj, &matchres, symnum)) {
4410 				req->sym_out = matchres.sym_out;
4411 				req->defobj_out = obj;
4412 				return (0);
4413 			}
4414 		}
4415 	} while ((*hashval++ & 1) == 0);
4416 	if (matchres.vcount == 1) {
4417 		req->sym_out = matchres.vsymp;
4418 		req->defobj_out = obj;
4419 		return (0);
4420 	}
4421 	return (ESRCH);
4422 }
4423 
4424 static void
4425 trace_loaded_objects(Obj_Entry *obj)
4426 {
4427     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4428     int		c;
4429 
4430     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4431 	main_local = "";
4432 
4433     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4434 	fmt1 = "\t%o => %p (%x)\n";
4435 
4436     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4437 	fmt2 = "\t%o (%x)\n";
4438 
4439     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4440 
4441     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4442 	Needed_Entry		*needed;
4443 	char			*name, *path;
4444 	bool			is_lib;
4445 
4446 	if (obj->marker)
4447 	    continue;
4448 	if (list_containers && obj->needed != NULL)
4449 	    rtld_printf("%s:\n", obj->path);
4450 	for (needed = obj->needed; needed; needed = needed->next) {
4451 	    if (needed->obj != NULL) {
4452 		if (needed->obj->traced && !list_containers)
4453 		    continue;
4454 		needed->obj->traced = true;
4455 		path = needed->obj->path;
4456 	    } else
4457 		path = "not found";
4458 
4459 	    name = (char *)obj->strtab + needed->name;
4460 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4461 
4462 	    fmt = is_lib ? fmt1 : fmt2;
4463 	    while ((c = *fmt++) != '\0') {
4464 		switch (c) {
4465 		default:
4466 		    rtld_putchar(c);
4467 		    continue;
4468 		case '\\':
4469 		    switch (c = *fmt) {
4470 		    case '\0':
4471 			continue;
4472 		    case 'n':
4473 			rtld_putchar('\n');
4474 			break;
4475 		    case 't':
4476 			rtld_putchar('\t');
4477 			break;
4478 		    }
4479 		    break;
4480 		case '%':
4481 		    switch (c = *fmt) {
4482 		    case '\0':
4483 			continue;
4484 		    case '%':
4485 		    default:
4486 			rtld_putchar(c);
4487 			break;
4488 		    case 'A':
4489 			rtld_putstr(main_local);
4490 			break;
4491 		    case 'a':
4492 			rtld_putstr(obj_main->path);
4493 			break;
4494 		    case 'o':
4495 			rtld_putstr(name);
4496 			break;
4497 #if 0
4498 		    case 'm':
4499 			rtld_printf("%d", sodp->sod_major);
4500 			break;
4501 		    case 'n':
4502 			rtld_printf("%d", sodp->sod_minor);
4503 			break;
4504 #endif
4505 		    case 'p':
4506 			rtld_putstr(path);
4507 			break;
4508 		    case 'x':
4509 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4510 			  0);
4511 			break;
4512 		    }
4513 		    break;
4514 		}
4515 		++fmt;
4516 	    }
4517 	}
4518     }
4519 }
4520 
4521 /*
4522  * Unload a dlopened object and its dependencies from memory and from
4523  * our data structures.  It is assumed that the DAG rooted in the
4524  * object has already been unreferenced, and that the object has a
4525  * reference count of 0.
4526  */
4527 static void
4528 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4529 {
4530 	Obj_Entry marker, *obj, *next;
4531 
4532 	assert(root->refcount == 0);
4533 
4534 	/*
4535 	 * Pass over the DAG removing unreferenced objects from
4536 	 * appropriate lists.
4537 	 */
4538 	unlink_object(root);
4539 
4540 	/* Unmap all objects that are no longer referenced. */
4541 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4542 		next = TAILQ_NEXT(obj, next);
4543 		if (obj->marker || obj->refcount != 0)
4544 			continue;
4545 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4546 		    obj->mapsize, 0, obj->path);
4547 		dbg("unloading \"%s\"", obj->path);
4548 		/*
4549 		 * Unlink the object now to prevent new references from
4550 		 * being acquired while the bind lock is dropped in
4551 		 * recursive dlclose() invocations.
4552 		 */
4553 		TAILQ_REMOVE(&obj_list, obj, next);
4554 		obj_count--;
4555 
4556 		if (obj->filtees_loaded) {
4557 			if (next != NULL) {
4558 				init_marker(&marker);
4559 				TAILQ_INSERT_BEFORE(next, &marker, next);
4560 				unload_filtees(obj, lockstate);
4561 				next = TAILQ_NEXT(&marker, next);
4562 				TAILQ_REMOVE(&obj_list, &marker, next);
4563 			} else
4564 				unload_filtees(obj, lockstate);
4565 		}
4566 		release_object(obj);
4567 	}
4568 }
4569 
4570 static void
4571 unlink_object(Obj_Entry *root)
4572 {
4573     Objlist_Entry *elm;
4574 
4575     if (root->refcount == 0) {
4576 	/* Remove the object from the RTLD_GLOBAL list. */
4577 	objlist_remove(&list_global, root);
4578 
4579     	/* Remove the object from all objects' DAG lists. */
4580     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4581 	    objlist_remove(&elm->obj->dldags, root);
4582 	    if (elm->obj != root)
4583 		unlink_object(elm->obj);
4584 	}
4585     }
4586 }
4587 
4588 static void
4589 ref_dag(Obj_Entry *root)
4590 {
4591     Objlist_Entry *elm;
4592 
4593     assert(root->dag_inited);
4594     STAILQ_FOREACH(elm, &root->dagmembers, link)
4595 	elm->obj->refcount++;
4596 }
4597 
4598 static void
4599 unref_dag(Obj_Entry *root)
4600 {
4601     Objlist_Entry *elm;
4602 
4603     assert(root->dag_inited);
4604     STAILQ_FOREACH(elm, &root->dagmembers, link)
4605 	elm->obj->refcount--;
4606 }
4607 
4608 /*
4609  * Common code for MD __tls_get_addr().
4610  */
4611 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4612 static void *
4613 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4614 {
4615     Elf_Addr *newdtv, *dtv;
4616     RtldLockState lockstate;
4617     int to_copy;
4618 
4619     dtv = *dtvp;
4620     /* Check dtv generation in case new modules have arrived */
4621     if (dtv[0] != tls_dtv_generation) {
4622 	wlock_acquire(rtld_bind_lock, &lockstate);
4623 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4624 	to_copy = dtv[1];
4625 	if (to_copy > tls_max_index)
4626 	    to_copy = tls_max_index;
4627 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4628 	newdtv[0] = tls_dtv_generation;
4629 	newdtv[1] = tls_max_index;
4630 	free(dtv);
4631 	lock_release(rtld_bind_lock, &lockstate);
4632 	dtv = *dtvp = newdtv;
4633     }
4634 
4635     /* Dynamically allocate module TLS if necessary */
4636     if (dtv[index + 1] == 0) {
4637 	/* Signal safe, wlock will block out signals. */
4638 	wlock_acquire(rtld_bind_lock, &lockstate);
4639 	if (!dtv[index + 1])
4640 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4641 	lock_release(rtld_bind_lock, &lockstate);
4642     }
4643     return ((void *)(dtv[index + 1] + offset));
4644 }
4645 
4646 void *
4647 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4648 {
4649 	Elf_Addr *dtv;
4650 
4651 	dtv = *dtvp;
4652 	/* Check dtv generation in case new modules have arrived */
4653 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4654 	    dtv[index + 1] != 0))
4655 		return ((void *)(dtv[index + 1] + offset));
4656 	return (tls_get_addr_slow(dtvp, index, offset));
4657 }
4658 
4659 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4660     defined(__powerpc__) || defined(__riscv__)
4661 
4662 /*
4663  * Allocate Static TLS using the Variant I method.
4664  */
4665 void *
4666 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4667 {
4668     Obj_Entry *obj;
4669     char *tcb;
4670     Elf_Addr **tls;
4671     Elf_Addr *dtv;
4672     Elf_Addr addr;
4673     int i;
4674 
4675     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4676 	return (oldtcb);
4677 
4678     assert(tcbsize >= TLS_TCB_SIZE);
4679     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4680     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4681 
4682     if (oldtcb != NULL) {
4683 	memcpy(tls, oldtcb, tls_static_space);
4684 	free(oldtcb);
4685 
4686 	/* Adjust the DTV. */
4687 	dtv = tls[0];
4688 	for (i = 0; i < dtv[1]; i++) {
4689 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4690 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4691 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4692 	    }
4693 	}
4694     } else {
4695 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4696 	tls[0] = dtv;
4697 	dtv[0] = tls_dtv_generation;
4698 	dtv[1] = tls_max_index;
4699 
4700 	for (obj = globallist_curr(objs); obj != NULL;
4701 	  obj = globallist_next(obj)) {
4702 	    if (obj->tlsoffset > 0) {
4703 		addr = (Elf_Addr)tls + obj->tlsoffset;
4704 		if (obj->tlsinitsize > 0)
4705 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4706 		if (obj->tlssize > obj->tlsinitsize)
4707 		    memset((void*) (addr + obj->tlsinitsize), 0,
4708 			   obj->tlssize - obj->tlsinitsize);
4709 		dtv[obj->tlsindex + 1] = addr;
4710 	    }
4711 	}
4712     }
4713 
4714     return (tcb);
4715 }
4716 
4717 void
4718 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4719 {
4720     Elf_Addr *dtv;
4721     Elf_Addr tlsstart, tlsend;
4722     int dtvsize, i;
4723 
4724     assert(tcbsize >= TLS_TCB_SIZE);
4725 
4726     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4727     tlsend = tlsstart + tls_static_space;
4728 
4729     dtv = *(Elf_Addr **)tlsstart;
4730     dtvsize = dtv[1];
4731     for (i = 0; i < dtvsize; i++) {
4732 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4733 	    free((void*)dtv[i+2]);
4734 	}
4735     }
4736     free(dtv);
4737     free(tcb);
4738 }
4739 
4740 #endif
4741 
4742 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4743 
4744 /*
4745  * Allocate Static TLS using the Variant II method.
4746  */
4747 void *
4748 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4749 {
4750     Obj_Entry *obj;
4751     size_t size, ralign;
4752     char *tls;
4753     Elf_Addr *dtv, *olddtv;
4754     Elf_Addr segbase, oldsegbase, addr;
4755     int i;
4756 
4757     ralign = tcbalign;
4758     if (tls_static_max_align > ralign)
4759 	    ralign = tls_static_max_align;
4760     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4761 
4762     assert(tcbsize >= 2*sizeof(Elf_Addr));
4763     tls = malloc_aligned(size, ralign);
4764     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4765 
4766     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4767     ((Elf_Addr*)segbase)[0] = segbase;
4768     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4769 
4770     dtv[0] = tls_dtv_generation;
4771     dtv[1] = tls_max_index;
4772 
4773     if (oldtls) {
4774 	/*
4775 	 * Copy the static TLS block over whole.
4776 	 */
4777 	oldsegbase = (Elf_Addr) oldtls;
4778 	memcpy((void *)(segbase - tls_static_space),
4779 	       (const void *)(oldsegbase - tls_static_space),
4780 	       tls_static_space);
4781 
4782 	/*
4783 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4784 	 * move them over.
4785 	 */
4786 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4787 	for (i = 0; i < olddtv[1]; i++) {
4788 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4789 		dtv[i+2] = olddtv[i+2];
4790 		olddtv[i+2] = 0;
4791 	    }
4792 	}
4793 
4794 	/*
4795 	 * We assume that this block was the one we created with
4796 	 * allocate_initial_tls().
4797 	 */
4798 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4799     } else {
4800 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4801 		if (obj->marker || obj->tlsoffset == 0)
4802 			continue;
4803 		addr = segbase - obj->tlsoffset;
4804 		memset((void*) (addr + obj->tlsinitsize),
4805 		       0, obj->tlssize - obj->tlsinitsize);
4806 		if (obj->tlsinit)
4807 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4808 		dtv[obj->tlsindex + 1] = addr;
4809 	}
4810     }
4811 
4812     return (void*) segbase;
4813 }
4814 
4815 void
4816 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4817 {
4818     Elf_Addr* dtv;
4819     size_t size, ralign;
4820     int dtvsize, i;
4821     Elf_Addr tlsstart, tlsend;
4822 
4823     /*
4824      * Figure out the size of the initial TLS block so that we can
4825      * find stuff which ___tls_get_addr() allocated dynamically.
4826      */
4827     ralign = tcbalign;
4828     if (tls_static_max_align > ralign)
4829 	    ralign = tls_static_max_align;
4830     size = round(tls_static_space, ralign);
4831 
4832     dtv = ((Elf_Addr**)tls)[1];
4833     dtvsize = dtv[1];
4834     tlsend = (Elf_Addr) tls;
4835     tlsstart = tlsend - size;
4836     for (i = 0; i < dtvsize; i++) {
4837 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4838 		free_aligned((void *)dtv[i + 2]);
4839 	}
4840     }
4841 
4842     free_aligned((void *)tlsstart);
4843     free((void*) dtv);
4844 }
4845 
4846 #endif
4847 
4848 /*
4849  * Allocate TLS block for module with given index.
4850  */
4851 void *
4852 allocate_module_tls(int index)
4853 {
4854     Obj_Entry* obj;
4855     char* p;
4856 
4857     TAILQ_FOREACH(obj, &obj_list, next) {
4858 	if (obj->marker)
4859 	    continue;
4860 	if (obj->tlsindex == index)
4861 	    break;
4862     }
4863     if (!obj) {
4864 	_rtld_error("Can't find module with TLS index %d", index);
4865 	rtld_die();
4866     }
4867 
4868     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4869     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4870     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4871 
4872     return p;
4873 }
4874 
4875 bool
4876 allocate_tls_offset(Obj_Entry *obj)
4877 {
4878     size_t off;
4879 
4880     if (obj->tls_done)
4881 	return true;
4882 
4883     if (obj->tlssize == 0) {
4884 	obj->tls_done = true;
4885 	return true;
4886     }
4887 
4888     if (tls_last_offset == 0)
4889 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4890     else
4891 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4892 				   obj->tlssize, obj->tlsalign);
4893 
4894     /*
4895      * If we have already fixed the size of the static TLS block, we
4896      * must stay within that size. When allocating the static TLS, we
4897      * leave a small amount of space spare to be used for dynamically
4898      * loading modules which use static TLS.
4899      */
4900     if (tls_static_space != 0) {
4901 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4902 	    return false;
4903     } else if (obj->tlsalign > tls_static_max_align) {
4904 	    tls_static_max_align = obj->tlsalign;
4905     }
4906 
4907     tls_last_offset = obj->tlsoffset = off;
4908     tls_last_size = obj->tlssize;
4909     obj->tls_done = true;
4910 
4911     return true;
4912 }
4913 
4914 void
4915 free_tls_offset(Obj_Entry *obj)
4916 {
4917 
4918     /*
4919      * If we were the last thing to allocate out of the static TLS
4920      * block, we give our space back to the 'allocator'. This is a
4921      * simplistic workaround to allow libGL.so.1 to be loaded and
4922      * unloaded multiple times.
4923      */
4924     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4925 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4926 	tls_last_offset -= obj->tlssize;
4927 	tls_last_size = 0;
4928     }
4929 }
4930 
4931 void *
4932 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4933 {
4934     void *ret;
4935     RtldLockState lockstate;
4936 
4937     wlock_acquire(rtld_bind_lock, &lockstate);
4938     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4939       tcbsize, tcbalign);
4940     lock_release(rtld_bind_lock, &lockstate);
4941     return (ret);
4942 }
4943 
4944 void
4945 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4946 {
4947     RtldLockState lockstate;
4948 
4949     wlock_acquire(rtld_bind_lock, &lockstate);
4950     free_tls(tcb, tcbsize, tcbalign);
4951     lock_release(rtld_bind_lock, &lockstate);
4952 }
4953 
4954 static void
4955 object_add_name(Obj_Entry *obj, const char *name)
4956 {
4957     Name_Entry *entry;
4958     size_t len;
4959 
4960     len = strlen(name);
4961     entry = malloc(sizeof(Name_Entry) + len);
4962 
4963     if (entry != NULL) {
4964 	strcpy(entry->name, name);
4965 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4966     }
4967 }
4968 
4969 static int
4970 object_match_name(const Obj_Entry *obj, const char *name)
4971 {
4972     Name_Entry *entry;
4973 
4974     STAILQ_FOREACH(entry, &obj->names, link) {
4975 	if (strcmp(name, entry->name) == 0)
4976 	    return (1);
4977     }
4978     return (0);
4979 }
4980 
4981 static Obj_Entry *
4982 locate_dependency(const Obj_Entry *obj, const char *name)
4983 {
4984     const Objlist_Entry *entry;
4985     const Needed_Entry *needed;
4986 
4987     STAILQ_FOREACH(entry, &list_main, link) {
4988 	if (object_match_name(entry->obj, name))
4989 	    return entry->obj;
4990     }
4991 
4992     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4993 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4994 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4995 	    /*
4996 	     * If there is DT_NEEDED for the name we are looking for,
4997 	     * we are all set.  Note that object might not be found if
4998 	     * dependency was not loaded yet, so the function can
4999 	     * return NULL here.  This is expected and handled
5000 	     * properly by the caller.
5001 	     */
5002 	    return (needed->obj);
5003 	}
5004     }
5005     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5006 	obj->path, name);
5007     rtld_die();
5008 }
5009 
5010 static int
5011 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5012     const Elf_Vernaux *vna)
5013 {
5014     const Elf_Verdef *vd;
5015     const char *vername;
5016 
5017     vername = refobj->strtab + vna->vna_name;
5018     vd = depobj->verdef;
5019     if (vd == NULL) {
5020 	_rtld_error("%s: version %s required by %s not defined",
5021 	    depobj->path, vername, refobj->path);
5022 	return (-1);
5023     }
5024     for (;;) {
5025 	if (vd->vd_version != VER_DEF_CURRENT) {
5026 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5027 		depobj->path, vd->vd_version);
5028 	    return (-1);
5029 	}
5030 	if (vna->vna_hash == vd->vd_hash) {
5031 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5032 		((char *)vd + vd->vd_aux);
5033 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5034 		return (0);
5035 	}
5036 	if (vd->vd_next == 0)
5037 	    break;
5038 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5039     }
5040     if (vna->vna_flags & VER_FLG_WEAK)
5041 	return (0);
5042     _rtld_error("%s: version %s required by %s not found",
5043 	depobj->path, vername, refobj->path);
5044     return (-1);
5045 }
5046 
5047 static int
5048 rtld_verify_object_versions(Obj_Entry *obj)
5049 {
5050     const Elf_Verneed *vn;
5051     const Elf_Verdef  *vd;
5052     const Elf_Verdaux *vda;
5053     const Elf_Vernaux *vna;
5054     const Obj_Entry *depobj;
5055     int maxvernum, vernum;
5056 
5057     if (obj->ver_checked)
5058 	return (0);
5059     obj->ver_checked = true;
5060 
5061     maxvernum = 0;
5062     /*
5063      * Walk over defined and required version records and figure out
5064      * max index used by any of them. Do very basic sanity checking
5065      * while there.
5066      */
5067     vn = obj->verneed;
5068     while (vn != NULL) {
5069 	if (vn->vn_version != VER_NEED_CURRENT) {
5070 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5071 		obj->path, vn->vn_version);
5072 	    return (-1);
5073 	}
5074 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5075 	for (;;) {
5076 	    vernum = VER_NEED_IDX(vna->vna_other);
5077 	    if (vernum > maxvernum)
5078 		maxvernum = vernum;
5079 	    if (vna->vna_next == 0)
5080 		 break;
5081 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5082 	}
5083 	if (vn->vn_next == 0)
5084 	    break;
5085 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5086     }
5087 
5088     vd = obj->verdef;
5089     while (vd != NULL) {
5090 	if (vd->vd_version != VER_DEF_CURRENT) {
5091 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5092 		obj->path, vd->vd_version);
5093 	    return (-1);
5094 	}
5095 	vernum = VER_DEF_IDX(vd->vd_ndx);
5096 	if (vernum > maxvernum)
5097 		maxvernum = vernum;
5098 	if (vd->vd_next == 0)
5099 	    break;
5100 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5101     }
5102 
5103     if (maxvernum == 0)
5104 	return (0);
5105 
5106     /*
5107      * Store version information in array indexable by version index.
5108      * Verify that object version requirements are satisfied along the
5109      * way.
5110      */
5111     obj->vernum = maxvernum + 1;
5112     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5113 
5114     vd = obj->verdef;
5115     while (vd != NULL) {
5116 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5117 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5118 	    assert(vernum <= maxvernum);
5119 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5120 	    obj->vertab[vernum].hash = vd->vd_hash;
5121 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5122 	    obj->vertab[vernum].file = NULL;
5123 	    obj->vertab[vernum].flags = 0;
5124 	}
5125 	if (vd->vd_next == 0)
5126 	    break;
5127 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5128     }
5129 
5130     vn = obj->verneed;
5131     while (vn != NULL) {
5132 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5133 	if (depobj == NULL)
5134 	    return (-1);
5135 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5136 	for (;;) {
5137 	    if (check_object_provided_version(obj, depobj, vna))
5138 		return (-1);
5139 	    vernum = VER_NEED_IDX(vna->vna_other);
5140 	    assert(vernum <= maxvernum);
5141 	    obj->vertab[vernum].hash = vna->vna_hash;
5142 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5143 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5144 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5145 		VER_INFO_HIDDEN : 0;
5146 	    if (vna->vna_next == 0)
5147 		 break;
5148 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5149 	}
5150 	if (vn->vn_next == 0)
5151 	    break;
5152 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5153     }
5154     return 0;
5155 }
5156 
5157 static int
5158 rtld_verify_versions(const Objlist *objlist)
5159 {
5160     Objlist_Entry *entry;
5161     int rc;
5162 
5163     rc = 0;
5164     STAILQ_FOREACH(entry, objlist, link) {
5165 	/*
5166 	 * Skip dummy objects or objects that have their version requirements
5167 	 * already checked.
5168 	 */
5169 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5170 	    continue;
5171 	if (rtld_verify_object_versions(entry->obj) == -1) {
5172 	    rc = -1;
5173 	    if (ld_tracing == NULL)
5174 		break;
5175 	}
5176     }
5177     if (rc == 0 || ld_tracing != NULL)
5178     	rc = rtld_verify_object_versions(&obj_rtld);
5179     return rc;
5180 }
5181 
5182 const Ver_Entry *
5183 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5184 {
5185     Elf_Versym vernum;
5186 
5187     if (obj->vertab) {
5188 	vernum = VER_NDX(obj->versyms[symnum]);
5189 	if (vernum >= obj->vernum) {
5190 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5191 		obj->path, obj->strtab + symnum, vernum);
5192 	} else if (obj->vertab[vernum].hash != 0) {
5193 	    return &obj->vertab[vernum];
5194 	}
5195     }
5196     return NULL;
5197 }
5198 
5199 int
5200 _rtld_get_stack_prot(void)
5201 {
5202 
5203 	return (stack_prot);
5204 }
5205 
5206 int
5207 _rtld_is_dlopened(void *arg)
5208 {
5209 	Obj_Entry *obj;
5210 	RtldLockState lockstate;
5211 	int res;
5212 
5213 	rlock_acquire(rtld_bind_lock, &lockstate);
5214 	obj = dlcheck(arg);
5215 	if (obj == NULL)
5216 		obj = obj_from_addr(arg);
5217 	if (obj == NULL) {
5218 		_rtld_error("No shared object contains address");
5219 		lock_release(rtld_bind_lock, &lockstate);
5220 		return (-1);
5221 	}
5222 	res = obj->dlopened ? 1 : 0;
5223 	lock_release(rtld_bind_lock, &lockstate);
5224 	return (res);
5225 }
5226 
5227 int
5228 obj_enforce_relro(Obj_Entry *obj)
5229 {
5230 
5231 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5232 	    PROT_READ) == -1) {
5233 		_rtld_error("%s: Cannot enforce relro protection: %s",
5234 		    obj->path, rtld_strerror(errno));
5235 		return (-1);
5236 	}
5237 	return (0);
5238 }
5239 
5240 static void
5241 map_stacks_exec(RtldLockState *lockstate)
5242 {
5243 	void (*thr_map_stacks_exec)(void);
5244 
5245 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5246 		return;
5247 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5248 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5249 	if (thr_map_stacks_exec != NULL) {
5250 		stack_prot |= PROT_EXEC;
5251 		thr_map_stacks_exec();
5252 	}
5253 }
5254 
5255 void
5256 symlook_init(SymLook *dst, const char *name)
5257 {
5258 
5259 	bzero(dst, sizeof(*dst));
5260 	dst->name = name;
5261 	dst->hash = elf_hash(name);
5262 	dst->hash_gnu = gnu_hash(name);
5263 }
5264 
5265 static void
5266 symlook_init_from_req(SymLook *dst, const SymLook *src)
5267 {
5268 
5269 	dst->name = src->name;
5270 	dst->hash = src->hash;
5271 	dst->hash_gnu = src->hash_gnu;
5272 	dst->ventry = src->ventry;
5273 	dst->flags = src->flags;
5274 	dst->defobj_out = NULL;
5275 	dst->sym_out = NULL;
5276 	dst->lockstate = src->lockstate;
5277 }
5278 
5279 static int
5280 open_binary_fd(const char *argv0, bool search_in_path)
5281 {
5282 	char *pathenv, *pe, binpath[PATH_MAX];
5283 	int fd;
5284 
5285 	if (search_in_path && strchr(argv0, '/') == NULL) {
5286 		pathenv = getenv("PATH");
5287 		if (pathenv == NULL) {
5288 			rtld_printf("-p and no PATH environment variable\n");
5289 			rtld_die();
5290 		}
5291 		pathenv = strdup(pathenv);
5292 		if (pathenv == NULL) {
5293 			rtld_printf("Cannot allocate memory\n");
5294 			rtld_die();
5295 		}
5296 		fd = -1;
5297 		errno = ENOENT;
5298 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5299 			if (strlcpy(binpath, pe, sizeof(binpath)) >
5300 			    sizeof(binpath))
5301 				continue;
5302 			if (binpath[0] != '\0' &&
5303 			    strlcat(binpath, "/", sizeof(binpath)) >
5304 			    sizeof(binpath))
5305 				continue;
5306 			if (strlcat(binpath, argv0, sizeof(binpath)) >
5307 			    sizeof(binpath))
5308 				continue;
5309 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5310 			if (fd != -1 || errno != ENOENT)
5311 				break;
5312 		}
5313 		free(pathenv);
5314 	} else {
5315 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5316 	}
5317 
5318 	if (fd == -1) {
5319 		rtld_printf("Opening %s: %s\n", argv0,
5320 		    rtld_strerror(errno));
5321 		rtld_die();
5322 	}
5323 	return (fd);
5324 }
5325 
5326 /*
5327  * Parse a set of command-line arguments.
5328  */
5329 static int
5330 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5331 {
5332 	const char *arg;
5333 	int fd, i, j, arglen;
5334 	char opt;
5335 
5336 	dbg("Parsing command-line arguments");
5337 	*use_pathp = false;
5338 	*fdp = -1;
5339 
5340 	for (i = 1; i < argc; i++ ) {
5341 		arg = argv[i];
5342 		dbg("argv[%d]: '%s'", i, arg);
5343 
5344 		/*
5345 		 * rtld arguments end with an explicit "--" or with the first
5346 		 * non-prefixed argument.
5347 		 */
5348 		if (strcmp(arg, "--") == 0) {
5349 			i++;
5350 			break;
5351 		}
5352 		if (arg[0] != '-')
5353 			break;
5354 
5355 		/*
5356 		 * All other arguments are single-character options that can
5357 		 * be combined, so we need to search through `arg` for them.
5358 		 */
5359 		arglen = strlen(arg);
5360 		for (j = 1; j < arglen; j++) {
5361 			opt = arg[j];
5362 			if (opt == 'h') {
5363 				print_usage(argv[0]);
5364 				rtld_die();
5365 			} else if (opt == 'f') {
5366 			/*
5367 			 * -f XX can be used to specify a descriptor for the
5368 			 * binary named at the command line (i.e., the later
5369 			 * argument will specify the process name but the
5370 			 * descriptor is what will actually be executed)
5371 			 */
5372 			if (j != arglen - 1) {
5373 				/* -f must be the last option in, e.g., -abcf */
5374 				_rtld_error("invalid options: %s", arg);
5375 				rtld_die();
5376 			}
5377 			i++;
5378 			fd = parse_integer(argv[i]);
5379 			if (fd == -1) {
5380 				_rtld_error("invalid file descriptor: '%s'",
5381 				    argv[i]);
5382 				rtld_die();
5383 			}
5384 			*fdp = fd;
5385 			break;
5386 			} else if (opt == 'p') {
5387 				*use_pathp = true;
5388 			} else {
5389 				rtld_printf("invalid argument: '%s'\n", arg);
5390 				print_usage(argv[0]);
5391 				rtld_die();
5392 			}
5393 		}
5394 	}
5395 
5396 	return (i);
5397 }
5398 
5399 /*
5400  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5401  */
5402 static int
5403 parse_integer(const char *str)
5404 {
5405 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5406 	const char *orig;
5407 	int n;
5408 	char c;
5409 
5410 	orig = str;
5411 	n = 0;
5412 	for (c = *str; c != '\0'; c = *++str) {
5413 		if (c < '0' || c > '9')
5414 			return (-1);
5415 
5416 		n *= RADIX;
5417 		n += c - '0';
5418 	}
5419 
5420 	/* Make sure we actually parsed something. */
5421 	if (str == orig)
5422 		return (-1);
5423 	return (n);
5424 }
5425 
5426 static void
5427 print_usage(const char *argv0)
5428 {
5429 
5430 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5431 		"\n"
5432 		"Options:\n"
5433 		"  -h        Display this help message\n"
5434 		"  -p        Search in PATH for named binary\n"
5435 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5436 		"  --        End of RTLD options\n"
5437 		"  <binary>  Name of process to execute\n"
5438 		"  <args>    Arguments to the executed process\n", argv0);
5439 }
5440 
5441 /*
5442  * Overrides for libc_pic-provided functions.
5443  */
5444 
5445 int
5446 __getosreldate(void)
5447 {
5448 	size_t len;
5449 	int oid[2];
5450 	int error, osrel;
5451 
5452 	if (osreldate != 0)
5453 		return (osreldate);
5454 
5455 	oid[0] = CTL_KERN;
5456 	oid[1] = KERN_OSRELDATE;
5457 	osrel = 0;
5458 	len = sizeof(osrel);
5459 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5460 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5461 		osreldate = osrel;
5462 	return (osreldate);
5463 }
5464 
5465 void
5466 exit(int status)
5467 {
5468 
5469 	_exit(status);
5470 }
5471 
5472 void (*__cleanup)(void);
5473 int __isthreaded = 0;
5474 int _thread_autoinit_dummy_decl = 1;
5475 
5476 /*
5477  * No unresolved symbols for rtld.
5478  */
5479 void
5480 __pthread_cxa_finalize(struct dl_phdr_info *a)
5481 {
5482 }
5483 
5484 void
5485 __stack_chk_fail(void)
5486 {
5487 
5488 	_rtld_error("stack overflow detected; terminated");
5489 	rtld_die();
5490 }
5491 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5492 
5493 void
5494 __chk_fail(void)
5495 {
5496 
5497 	_rtld_error("buffer overflow detected; terminated");
5498 	rtld_die();
5499 }
5500 
5501 const char *
5502 rtld_strerror(int errnum)
5503 {
5504 
5505 	if (errnum < 0 || errnum >= sys_nerr)
5506 		return ("Unknown error");
5507 	return (sys_errlist[errnum]);
5508 }
5509