xref: /freebsd/sbin/fsck_ffs/suj.c (revision e28a4053)
1 /*-
2  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/disklabel.h>
32 #include <sys/mount.h>
33 #include <sys/stat.h>
34 
35 #include <ufs/ufs/ufsmount.h>
36 #include <ufs/ufs/dinode.h>
37 #include <ufs/ufs/dir.h>
38 #include <ufs/ffs/fs.h>
39 
40 #include <setjmp.h>
41 #include <stdarg.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <stdint.h>
45 #include <libufs.h>
46 #include <string.h>
47 #include <strings.h>
48 #include <sysexits.h>
49 #include <err.h>
50 #include <assert.h>
51 
52 #include "fsck.h"
53 
54 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
55 #define	SUJ_HASHSIZE	2048
56 #define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
57 #define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
58 
59 struct suj_seg {
60 	TAILQ_ENTRY(suj_seg) ss_next;
61 	struct jsegrec	ss_rec;
62 	uint8_t		*ss_blk;
63 };
64 
65 struct suj_rec {
66 	TAILQ_ENTRY(suj_rec) sr_next;
67 	union jrec	*sr_rec;
68 };
69 TAILQ_HEAD(srechd, suj_rec);
70 
71 struct suj_ino {
72 	LIST_ENTRY(suj_ino)	si_next;
73 	struct srechd		si_recs;
74 	struct srechd		si_newrecs;
75 	struct srechd		si_movs;
76 	struct jtrncrec		*si_trunc;
77 	ino_t			si_ino;
78 	char			si_skipparent;
79 	char			si_hasrecs;
80 	char			si_blkadj;
81 	char			si_linkadj;
82 	int			si_mode;
83 	nlink_t			si_nlinkadj;
84 	nlink_t			si_nlink;
85 	nlink_t			si_dotlinks;
86 };
87 LIST_HEAD(inohd, suj_ino);
88 
89 struct suj_blk {
90 	LIST_ENTRY(suj_blk)	sb_next;
91 	struct srechd		sb_recs;
92 	ufs2_daddr_t		sb_blk;
93 };
94 LIST_HEAD(blkhd, suj_blk);
95 
96 struct data_blk {
97 	LIST_ENTRY(data_blk)	db_next;
98 	uint8_t			*db_buf;
99 	ufs2_daddr_t		db_blk;
100 	int			db_size;
101 	int			db_dirty;
102 };
103 
104 struct ino_blk {
105 	LIST_ENTRY(ino_blk)	ib_next;
106 	uint8_t			*ib_buf;
107 	int			ib_dirty;
108 	ufs2_daddr_t		ib_blk;
109 };
110 LIST_HEAD(iblkhd, ino_blk);
111 
112 struct suj_cg {
113 	LIST_ENTRY(suj_cg)	sc_next;
114 	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
115 	struct inohd		sc_inohash[SUJ_HASHSIZE];
116 	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
117 	struct ino_blk		*sc_lastiblk;
118 	struct suj_ino		*sc_lastino;
119 	struct suj_blk		*sc_lastblk;
120 	uint8_t			*sc_cgbuf;
121 	struct cg		*sc_cgp;
122 	int			sc_dirty;
123 	int			sc_cgx;
124 };
125 
126 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
127 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
128 struct suj_cg *lastcg;
129 struct data_blk *lastblk;
130 
131 TAILQ_HEAD(seghd, suj_seg) allsegs;
132 uint64_t oldseq;
133 static struct uufsd *disk = NULL;
134 static struct fs *fs = NULL;
135 ino_t sujino;
136 
137 /*
138  * Summary statistics.
139  */
140 uint64_t freefrags;
141 uint64_t freeblocks;
142 uint64_t freeinos;
143 uint64_t freedir;
144 uint64_t jbytes;
145 uint64_t jrecs;
146 
147 static jmp_buf	jmpbuf;
148 
149 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
150 static void err_suj(const char *, ...) __dead2;
151 static void ino_trunc(ino_t, off_t);
152 static void ino_decr(ino_t);
153 static void ino_adjust(struct suj_ino *);
154 static void ino_build(struct suj_ino *);
155 static int blk_isfree(ufs2_daddr_t);
156 
157 static void *
158 errmalloc(size_t n)
159 {
160 	void *a;
161 
162 	a = malloc(n);
163 	if (a == NULL)
164 		err(EX_OSERR, "malloc(%zu)", n);
165 	return (a);
166 }
167 
168 /*
169  * When hit a fatal error in journalling check, print out
170  * the error and then offer to fallback to normal fsck.
171  */
172 static void
173 err_suj(const char * restrict fmt, ...)
174 {
175 	va_list ap;
176 
177 	if (preen)
178 		(void)fprintf(stdout, "%s: ", cdevname);
179 
180 	va_start(ap, fmt);
181 	(void)vfprintf(stdout, fmt, ap);
182 	va_end(ap);
183 
184 	longjmp(jmpbuf, -1);
185 }
186 
187 /*
188  * Open the given provider, load superblock.
189  */
190 static void
191 opendisk(const char *devnam)
192 {
193 	if (disk != NULL)
194 		return;
195 	disk = malloc(sizeof(*disk));
196 	if (disk == NULL)
197 		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
198 	if (ufs_disk_fillout(disk, devnam) == -1) {
199 		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
200 		    disk->d_error);
201 	}
202 	fs = &disk->d_fs;
203 }
204 
205 /*
206  * Mark file system as clean, write the super-block back, close the disk.
207  */
208 static void
209 closedisk(const char *devnam)
210 {
211 	struct csum *cgsum;
212 	int i;
213 
214 	/*
215 	 * Recompute the fs summary info from correct cs summaries.
216 	 */
217 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
218 	for (i = 0; i < fs->fs_ncg; i++) {
219 		cgsum = &fs->fs_cs(fs, i);
220 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
221 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
222 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
223 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
224 	}
225 	fs->fs_pendinginodes = 0;
226 	fs->fs_pendingblocks = 0;
227 	fs->fs_clean = 1;
228 	fs->fs_time = time(NULL);
229 	fs->fs_mtime = time(NULL);
230 	if (sbwrite(disk, 0) == -1)
231 		err(EX_OSERR, "sbwrite(%s)", devnam);
232 	if (ufs_disk_close(disk) == -1)
233 		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
234 	free(disk);
235 	disk = NULL;
236 	fs = NULL;
237 }
238 
239 /*
240  * Lookup a cg by number in the hash so we can keep track of which cgs
241  * need stats rebuilt.
242  */
243 static struct suj_cg *
244 cg_lookup(int cgx)
245 {
246 	struct cghd *hd;
247 	struct suj_cg *sc;
248 
249 	if (cgx < 0 || cgx >= fs->fs_ncg)
250 		err_suj("Bad cg number %d\n", cgx);
251 	if (lastcg && lastcg->sc_cgx == cgx)
252 		return (lastcg);
253 	hd = &cghash[SUJ_HASH(cgx)];
254 	LIST_FOREACH(sc, hd, sc_next)
255 		if (sc->sc_cgx == cgx) {
256 			lastcg = sc;
257 			return (sc);
258 		}
259 	sc = errmalloc(sizeof(*sc));
260 	bzero(sc, sizeof(*sc));
261 	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
262 	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
263 	sc->sc_cgx = cgx;
264 	LIST_INSERT_HEAD(hd, sc, sc_next);
265 	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
266 	    fs->fs_bsize) == -1)
267 		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
268 
269 	return (sc);
270 }
271 
272 /*
273  * Lookup an inode number in the hash and allocate a suj_ino if it does
274  * not exist.
275  */
276 static struct suj_ino *
277 ino_lookup(ino_t ino, int creat)
278 {
279 	struct suj_ino *sino;
280 	struct inohd *hd;
281 	struct suj_cg *sc;
282 
283 	sc = cg_lookup(ino_to_cg(fs, ino));
284 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
285 		return (sc->sc_lastino);
286 	hd = &sc->sc_inohash[SUJ_HASH(ino)];
287 	LIST_FOREACH(sino, hd, si_next)
288 		if (sino->si_ino == ino)
289 			return (sino);
290 	if (creat == 0)
291 		return (NULL);
292 	sino = errmalloc(sizeof(*sino));
293 	bzero(sino, sizeof(*sino));
294 	sino->si_ino = ino;
295 	TAILQ_INIT(&sino->si_recs);
296 	TAILQ_INIT(&sino->si_newrecs);
297 	TAILQ_INIT(&sino->si_movs);
298 	LIST_INSERT_HEAD(hd, sino, si_next);
299 
300 	return (sino);
301 }
302 
303 /*
304  * Lookup a block number in the hash and allocate a suj_blk if it does
305  * not exist.
306  */
307 static struct suj_blk *
308 blk_lookup(ufs2_daddr_t blk, int creat)
309 {
310 	struct suj_blk *sblk;
311 	struct suj_cg *sc;
312 	struct blkhd *hd;
313 
314 	sc = cg_lookup(dtog(fs, blk));
315 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
316 		return (sc->sc_lastblk);
317 	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
318 	LIST_FOREACH(sblk, hd, sb_next)
319 		if (sblk->sb_blk == blk)
320 			return (sblk);
321 	if (creat == 0)
322 		return (NULL);
323 	sblk = errmalloc(sizeof(*sblk));
324 	bzero(sblk, sizeof(*sblk));
325 	sblk->sb_blk = blk;
326 	TAILQ_INIT(&sblk->sb_recs);
327 	LIST_INSERT_HEAD(hd, sblk, sb_next);
328 
329 	return (sblk);
330 }
331 
332 static struct data_blk *
333 dblk_lookup(ufs2_daddr_t blk)
334 {
335 	struct data_blk *dblk;
336 	struct dblkhd *hd;
337 
338 	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
339 	if (lastblk && lastblk->db_blk == blk)
340 		return (lastblk);
341 	LIST_FOREACH(dblk, hd, db_next)
342 		if (dblk->db_blk == blk)
343 			return (dblk);
344 	/*
345 	 * The inode block wasn't located, allocate a new one.
346 	 */
347 	dblk = errmalloc(sizeof(*dblk));
348 	bzero(dblk, sizeof(*dblk));
349 	LIST_INSERT_HEAD(hd, dblk, db_next);
350 	dblk->db_blk = blk;
351 	return (dblk);
352 }
353 
354 static uint8_t *
355 dblk_read(ufs2_daddr_t blk, int size)
356 {
357 	struct data_blk *dblk;
358 
359 	dblk = dblk_lookup(blk);
360 	/*
361 	 * I doubt size mismatches can happen in practice but it is trivial
362 	 * to handle.
363 	 */
364 	if (size != dblk->db_size) {
365 		if (dblk->db_buf)
366 			free(dblk->db_buf);
367 		dblk->db_buf = errmalloc(size);
368 		dblk->db_size = size;
369 		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
370 			err_suj("Failed to read data block %jd\n", blk);
371 	}
372 	return (dblk->db_buf);
373 }
374 
375 static void
376 dblk_dirty(ufs2_daddr_t blk)
377 {
378 	struct data_blk *dblk;
379 
380 	dblk = dblk_lookup(blk);
381 	dblk->db_dirty = 1;
382 }
383 
384 static void
385 dblk_write(void)
386 {
387 	struct data_blk *dblk;
388 	int i;
389 
390 	for (i = 0; i < SUJ_HASHSIZE; i++) {
391 		LIST_FOREACH(dblk, &dbhash[i], db_next) {
392 			if (dblk->db_dirty == 0 || dblk->db_size == 0)
393 				continue;
394 			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
395 			    dblk->db_buf, dblk->db_size) == -1)
396 				err_suj("Unable to write block %jd\n",
397 				    dblk->db_blk);
398 		}
399 	}
400 }
401 
402 static union dinode *
403 ino_read(ino_t ino)
404 {
405 	struct ino_blk *iblk;
406 	struct iblkhd *hd;
407 	struct suj_cg *sc;
408 	ufs2_daddr_t blk;
409 	int off;
410 
411 	blk = ino_to_fsba(fs, ino);
412 	sc = cg_lookup(ino_to_cg(fs, ino));
413 	iblk = sc->sc_lastiblk;
414 	if (iblk && iblk->ib_blk == blk)
415 		goto found;
416 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
417 	LIST_FOREACH(iblk, hd, ib_next)
418 		if (iblk->ib_blk == blk)
419 			goto found;
420 	/*
421 	 * The inode block wasn't located, allocate a new one.
422 	 */
423 	iblk = errmalloc(sizeof(*iblk));
424 	bzero(iblk, sizeof(*iblk));
425 	iblk->ib_buf = errmalloc(fs->fs_bsize);
426 	iblk->ib_blk = blk;
427 	LIST_INSERT_HEAD(hd, iblk, ib_next);
428 	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
429 		err_suj("Failed to read inode block %jd\n", blk);
430 found:
431 	sc->sc_lastiblk = iblk;
432 	off = ino_to_fsbo(fs, ino);
433 	if (fs->fs_magic == FS_UFS1_MAGIC)
434 		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
435 	else
436 		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
437 }
438 
439 static void
440 ino_dirty(ino_t ino)
441 {
442 	struct ino_blk *iblk;
443 	struct iblkhd *hd;
444 	struct suj_cg *sc;
445 	ufs2_daddr_t blk;
446 
447 	blk = ino_to_fsba(fs, ino);
448 	sc = cg_lookup(ino_to_cg(fs, ino));
449 	iblk = sc->sc_lastiblk;
450 	if (iblk && iblk->ib_blk == blk) {
451 		iblk->ib_dirty = 1;
452 		return;
453 	}
454 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
455 	LIST_FOREACH(iblk, hd, ib_next) {
456 		if (iblk->ib_blk == blk) {
457 			iblk->ib_dirty = 1;
458 			return;
459 		}
460 	}
461 	ino_read(ino);
462 	ino_dirty(ino);
463 }
464 
465 static void
466 iblk_write(struct ino_blk *iblk)
467 {
468 
469 	if (iblk->ib_dirty == 0)
470 		return;
471 	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
472 	    fs->fs_bsize) == -1)
473 		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
474 }
475 
476 static int
477 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
478 {
479 	ufs2_daddr_t bstart;
480 	ufs2_daddr_t bend;
481 	ufs2_daddr_t end;
482 
483 	end = start + frags;
484 	bstart = brec->jb_blkno + brec->jb_oldfrags;
485 	bend = bstart + brec->jb_frags;
486 	if (start < bend && end > bstart)
487 		return (1);
488 	return (0);
489 }
490 
491 static int
492 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
493     int frags)
494 {
495 
496 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
497 		return (0);
498 	if (brec->jb_blkno + brec->jb_oldfrags != start)
499 		return (0);
500 	if (brec->jb_frags != frags)
501 		return (0);
502 	return (1);
503 }
504 
505 static void
506 blk_setmask(struct jblkrec *brec, int *mask)
507 {
508 	int i;
509 
510 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
511 		*mask |= 1 << i;
512 }
513 
514 /*
515  * Determine whether a given block has been reallocated to a new location.
516  * Returns a mask of overlapping bits if any frags have been reused or
517  * zero if the block has not been re-used and the contents can be trusted.
518  *
519  * This is used to ensure that an orphaned pointer due to truncate is safe
520  * to be freed.  The mask value can be used to free partial blocks.
521  */
522 static int
523 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
524 {
525 	struct suj_blk *sblk;
526 	struct suj_rec *srec;
527 	struct jblkrec *brec;
528 	int mask;
529 	int off;
530 
531 	/*
532 	 * To be certain we're not freeing a reallocated block we lookup
533 	 * this block in the blk hash and see if there is an allocation
534 	 * journal record that overlaps with any fragments in the block
535 	 * we're concerned with.  If any fragments have ben reallocated
536 	 * the block has already been freed and re-used for another purpose.
537 	 */
538 	mask = 0;
539 	sblk = blk_lookup(blknum(fs, blk), 0);
540 	if (sblk == NULL)
541 		return (0);
542 	off = blk - sblk->sb_blk;
543 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
544 		brec = (struct jblkrec *)srec->sr_rec;
545 		/*
546 		 * If the block overlaps but does not match
547 		 * exactly it's a new allocation.  If it matches
548 		 * exactly this record refers to the current
549 		 * location.
550 		 */
551 		if (blk_overlaps(brec, blk, frags) == 0)
552 			continue;
553 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
554 			mask = 0;
555 		else
556 			blk_setmask(brec, &mask);
557 	}
558 	if (debug)
559 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
560 		    blk, sblk->sb_blk, off, mask);
561 	return (mask >> off);
562 }
563 
564 /*
565  * Determine whether it is safe to follow an indirect.  It is not safe
566  * if any part of the indirect has been reallocated or the last journal
567  * entry was an allocation.  Just allocated indirects may not have valid
568  * pointers yet and all of their children will have their own records.
569  * It is also not safe to follow an indirect if the cg bitmap has been
570  * cleared as a new allocation may write to the block prior to the journal
571  * being written.
572  *
573  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
574  */
575 static int
576 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
577 {
578 	struct suj_blk *sblk;
579 	struct jblkrec *brec;
580 
581 	sblk = blk_lookup(blk, 0);
582 	if (sblk == NULL)
583 		return (1);
584 	if (TAILQ_EMPTY(&sblk->sb_recs))
585 		return (1);
586 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
587 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
588 		if (brec->jb_op == JOP_FREEBLK)
589 			return (!blk_isfree(blk));
590 	return (0);
591 }
592 
593 /*
594  * Clear an inode from the cg bitmap.  If the inode was already clear return
595  * 0 so the caller knows it does not have to check the inode contents.
596  */
597 static int
598 ino_free(ino_t ino, int mode)
599 {
600 	struct suj_cg *sc;
601 	uint8_t *inosused;
602 	struct cg *cgp;
603 	int cg;
604 
605 	cg = ino_to_cg(fs, ino);
606 	ino = ino % fs->fs_ipg;
607 	sc = cg_lookup(cg);
608 	cgp = sc->sc_cgp;
609 	inosused = cg_inosused(cgp);
610 	/*
611 	 * The bitmap may never have made it to the disk so we have to
612 	 * conditionally clear.  We can avoid writing the cg in this case.
613 	 */
614 	if (isclr(inosused, ino))
615 		return (0);
616 	freeinos++;
617 	clrbit(inosused, ino);
618 	if (ino < cgp->cg_irotor)
619 		cgp->cg_irotor = ino;
620 	cgp->cg_cs.cs_nifree++;
621 	if ((mode & IFMT) == IFDIR) {
622 		freedir++;
623 		cgp->cg_cs.cs_ndir--;
624 	}
625 	sc->sc_dirty = 1;
626 
627 	return (1);
628 }
629 
630 /*
631  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
632  * set in the mask.
633  */
634 static void
635 blk_free(ufs2_daddr_t bno, int mask, int frags)
636 {
637 	ufs1_daddr_t fragno, cgbno;
638 	struct suj_cg *sc;
639 	struct cg *cgp;
640 	int i, cg;
641 	uint8_t *blksfree;
642 
643 	if (debug)
644 		printf("Freeing %d frags at blk %jd\n", frags, bno);
645 	cg = dtog(fs, bno);
646 	sc = cg_lookup(cg);
647 	cgp = sc->sc_cgp;
648 	cgbno = dtogd(fs, bno);
649 	blksfree = cg_blksfree(cgp);
650 
651 	/*
652 	 * If it's not allocated we only wrote the journal entry
653 	 * and never the bitmaps.  Here we unconditionally clear and
654 	 * resolve the cg summary later.
655 	 */
656 	if (frags == fs->fs_frag && mask == 0) {
657 		fragno = fragstoblks(fs, cgbno);
658 		ffs_setblock(fs, blksfree, fragno);
659 		freeblocks++;
660 	} else {
661 		/*
662 		 * deallocate the fragment
663 		 */
664 		for (i = 0; i < frags; i++)
665 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
666 				freefrags++;
667 				setbit(blksfree, cgbno + i);
668 			}
669 	}
670 	sc->sc_dirty = 1;
671 }
672 
673 /*
674  * Returns 1 if the whole block starting at 'bno' is marked free and 0
675  * otherwise.
676  */
677 static int
678 blk_isfree(ufs2_daddr_t bno)
679 {
680 	struct suj_cg *sc;
681 
682 	sc = cg_lookup(dtog(fs, bno));
683 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
684 }
685 
686 /*
687  * Fetch an indirect block to find the block at a given lbn.  The lbn
688  * may be negative to fetch a specific indirect block pointer or positive
689  * to fetch a specific block.
690  */
691 static ufs2_daddr_t
692 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
693 {
694 	ufs2_daddr_t *bap2;
695 	ufs2_daddr_t *bap1;
696 	ufs_lbn_t lbnadd;
697 	ufs_lbn_t base;
698 	int level;
699 	int i;
700 
701 	if (blk == 0)
702 		return (0);
703 	level = lbn_level(cur);
704 	if (level == -1)
705 		err_suj("Invalid indir lbn %jd\n", lbn);
706 	if (level == 0 && lbn < 0)
707 		err_suj("Invalid lbn %jd\n", lbn);
708 	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
709 	bap1 = (void *)bap2;
710 	lbnadd = 1;
711 	base = -(cur + level);
712 	for (i = level; i > 0; i--)
713 		lbnadd *= NINDIR(fs);
714 	if (lbn > 0)
715 		i = (lbn - base) / lbnadd;
716 	else
717 		i = (-lbn - base) / lbnadd;
718 	if (i < 0 || i >= NINDIR(fs))
719 		err_suj("Invalid indirect index %d produced by lbn %jd\n",
720 		    i, lbn);
721 	if (level == 0)
722 		cur = base + (i * lbnadd);
723 	else
724 		cur = -(base + (i * lbnadd)) - (level - 1);
725 	if (fs->fs_magic == FS_UFS1_MAGIC)
726 		blk = bap1[i];
727 	else
728 		blk = bap2[i];
729 	if (cur == lbn)
730 		return (blk);
731 	if (level == 0)
732 		err_suj("Invalid lbn %jd at level 0\n", lbn);
733 	return indir_blkatoff(blk, ino, cur, lbn);
734 }
735 
736 /*
737  * Finds the disk block address at the specified lbn within the inode
738  * specified by ip.  This follows the whole tree and honors di_size and
739  * di_extsize so it is a true test of reachability.  The lbn may be
740  * negative if an extattr or indirect block is requested.
741  */
742 static ufs2_daddr_t
743 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
744 {
745 	ufs_lbn_t tmpval;
746 	ufs_lbn_t cur;
747 	ufs_lbn_t next;
748 	int i;
749 
750 	/*
751 	 * Handle extattr blocks first.
752 	 */
753 	if (lbn < 0 && lbn >= -NXADDR) {
754 		lbn = -1 - lbn;
755 		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
756 			return (0);
757 		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
758 		return (ip->dp2.di_extb[lbn]);
759 	}
760 	/*
761 	 * Now direct and indirect.
762 	 */
763 	if (DIP(ip, di_mode) == IFLNK &&
764 	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
765 		return (0);
766 	if (lbn >= 0 && lbn < NDADDR) {
767 		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
768 		return (DIP(ip, di_db[lbn]));
769 	}
770 	*frags = fs->fs_frag;
771 
772 	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
773 	    tmpval *= NINDIR(fs), cur = next) {
774 		next = cur + tmpval;
775 		if (lbn == -cur - i)
776 			return (DIP(ip, di_ib[i]));
777 		/*
778 		 * Determine whether the lbn in question is within this tree.
779 		 */
780 		if (lbn < 0 && -lbn >= next)
781 			continue;
782 		if (lbn > 0 && lbn >= next)
783 			continue;
784 		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
785 	}
786 	err_suj("lbn %jd not in ino\n", lbn);
787 	/* NOTREACHED */
788 }
789 
790 /*
791  * Determine whether a block exists at a particular lbn in an inode.
792  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
793  * or ext blocks.
794  */
795 static int
796 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
797 {
798 	union dinode *ip;
799 	ufs2_daddr_t nblk;
800 
801 	ip = ino_read(ino);
802 
803 	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
804 		return (0);
805 	nblk = ino_blkatoff(ip, ino, lbn, frags);
806 
807 	return (nblk == blk);
808 }
809 
810 /*
811  * Clear the directory entry at diroff that should point to child.  Minimal
812  * checking is done and it is assumed that this path was verified with isat.
813  */
814 static void
815 ino_clrat(ino_t parent, off_t diroff, ino_t child)
816 {
817 	union dinode *dip;
818 	struct direct *dp;
819 	ufs2_daddr_t blk;
820 	uint8_t *block;
821 	ufs_lbn_t lbn;
822 	int blksize;
823 	int frags;
824 	int doff;
825 
826 	if (debug)
827 		printf("Clearing inode %d from parent %d at offset %jd\n",
828 		    child, parent, diroff);
829 
830 	lbn = lblkno(fs, diroff);
831 	doff = blkoff(fs, diroff);
832 	dip = ino_read(parent);
833 	blk = ino_blkatoff(dip, parent, lbn, &frags);
834 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
835 	block = dblk_read(blk, blksize);
836 	dp = (struct direct *)&block[doff];
837 	if (dp->d_ino != child)
838 		errx(1, "Inode %d does not exist in %d at %jd",
839 		    child, parent, diroff);
840 	dp->d_ino = 0;
841 	dblk_dirty(blk);
842 	/*
843 	 * The actual .. reference count will already have been removed
844 	 * from the parent by the .. remref record.
845 	 */
846 }
847 
848 /*
849  * Determines whether a pointer to an inode exists within a directory
850  * at a specified offset.  Returns the mode of the found entry.
851  */
852 static int
853 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
854 {
855 	union dinode *dip;
856 	struct direct *dp;
857 	ufs2_daddr_t blk;
858 	uint8_t *block;
859 	ufs_lbn_t lbn;
860 	int blksize;
861 	int frags;
862 	int dpoff;
863 	int doff;
864 
865 	*isdot = 0;
866 	dip = ino_read(parent);
867 	*mode = DIP(dip, di_mode);
868 	if ((*mode & IFMT) != IFDIR) {
869 		if (debug) {
870 			/*
871 			 * This can happen if the parent inode
872 			 * was reallocated.
873 			 */
874 			if (*mode != 0)
875 				printf("Directory %d has bad mode %o\n",
876 				    parent, *mode);
877 			else
878 				printf("Directory %d zero inode\n", parent);
879 		}
880 		return (0);
881 	}
882 	lbn = lblkno(fs, diroff);
883 	doff = blkoff(fs, diroff);
884 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
885 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
886 		if (debug)
887 			printf("ino %d absent from %d due to offset %jd"
888 			    " exceeding size %jd\n",
889 			    child, parent, diroff, DIP(dip, di_size));
890 		return (0);
891 	}
892 	blk = ino_blkatoff(dip, parent, lbn, &frags);
893 	if (blk <= 0) {
894 		if (debug)
895 			printf("Sparse directory %d", parent);
896 		return (0);
897 	}
898 	block = dblk_read(blk, blksize);
899 	/*
900 	 * Walk through the records from the start of the block to be
901 	 * certain we hit a valid record and not some junk in the middle
902 	 * of a file name.  Stop when we reach or pass the expected offset.
903 	 */
904 	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
905 	do {
906 		dp = (struct direct *)&block[dpoff];
907 		if (dpoff == doff)
908 			break;
909 		if (dp->d_reclen == 0)
910 			break;
911 		dpoff += dp->d_reclen;
912 	} while (dpoff <= doff);
913 	if (dpoff > fs->fs_bsize)
914 		err_suj("Corrupt directory block in dir ino %d\n", parent);
915 	/* Not found. */
916 	if (dpoff != doff) {
917 		if (debug)
918 			printf("ino %d not found in %d, lbn %jd, dpoff %d\n",
919 			    child, parent, lbn, dpoff);
920 		return (0);
921 	}
922 	/*
923 	 * We found the item in question.  Record the mode and whether it's
924 	 * a . or .. link for the caller.
925 	 */
926 	if (dp->d_ino == child) {
927 		if (child == parent)
928 			*isdot = 1;
929 		else if (dp->d_namlen == 2 &&
930 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
931 			*isdot = 1;
932 		*mode = DTTOIF(dp->d_type);
933 		return (1);
934 	}
935 	if (debug)
936 		printf("ino %d doesn't match dirent ino %d in parent %d\n",
937 		    child, dp->d_ino, parent);
938 	return (0);
939 }
940 
941 #define	VISIT_INDIR	0x0001
942 #define	VISIT_EXT	0x0002
943 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
944 
945 /*
946  * Read an indirect level which may or may not be linked into an inode.
947  */
948 static void
949 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
950     ino_visitor visitor, int flags)
951 {
952 	ufs2_daddr_t *bap2;
953 	ufs1_daddr_t *bap1;
954 	ufs_lbn_t lbnadd;
955 	ufs2_daddr_t nblk;
956 	ufs_lbn_t nlbn;
957 	int level;
958 	int i;
959 
960 	/*
961 	 * Don't visit indirect blocks with contents we can't trust.  This
962 	 * should only happen when indir_visit() is called to complete a
963 	 * truncate that never finished and not when a pointer is found via
964 	 * an inode.
965 	 */
966 	if (blk == 0)
967 		return;
968 	level = lbn_level(lbn);
969 	if (level == -1)
970 		err_suj("Invalid level for lbn %jd\n", lbn);
971 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
972 		if (debug)
973 			printf("blk %jd ino %d lbn %jd(%d) is not indir.\n",
974 			    blk, ino, lbn, level);
975 		goto out;
976 	}
977 	lbnadd = 1;
978 	for (i = level; i > 0; i--)
979 		lbnadd *= NINDIR(fs);
980 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
981 	bap2 = (void *)bap1;
982 	for (i = 0; i < NINDIR(fs); i++) {
983 		if (fs->fs_magic == FS_UFS1_MAGIC)
984 			nblk = *bap1++;
985 		else
986 			nblk = *bap2++;
987 		if (nblk == 0)
988 			continue;
989 		if (level == 0) {
990 			nlbn = -lbn + i * lbnadd;
991 			(*frags) += fs->fs_frag;
992 			visitor(ino, nlbn, nblk, fs->fs_frag);
993 		} else {
994 			nlbn = (lbn + 1) - (i * lbnadd);
995 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
996 		}
997 	}
998 out:
999 	if (flags & VISIT_INDIR) {
1000 		(*frags) += fs->fs_frag;
1001 		visitor(ino, lbn, blk, fs->fs_frag);
1002 	}
1003 }
1004 
1005 /*
1006  * Visit each block in an inode as specified by 'flags' and call a
1007  * callback function.  The callback may inspect or free blocks.  The
1008  * count of frags found according to the size in the file is returned.
1009  * This is not valid for sparse files but may be used to determine
1010  * the correct di_blocks for a file.
1011  */
1012 static uint64_t
1013 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1014 {
1015 	ufs_lbn_t nextlbn;
1016 	ufs_lbn_t tmpval;
1017 	ufs_lbn_t lbn;
1018 	uint64_t size;
1019 	uint64_t fragcnt;
1020 	int mode;
1021 	int frags;
1022 	int i;
1023 
1024 	size = DIP(ip, di_size);
1025 	mode = DIP(ip, di_mode) & IFMT;
1026 	fragcnt = 0;
1027 	if ((flags & VISIT_EXT) &&
1028 	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1029 		for (i = 0; i < NXADDR; i++) {
1030 			if (ip->dp2.di_extb[i] == 0)
1031 				continue;
1032 			frags = sblksize(fs, ip->dp2.di_extsize, i);
1033 			frags = numfrags(fs, frags);
1034 			fragcnt += frags;
1035 			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1036 		}
1037 	}
1038 	/* Skip datablocks for short links and devices. */
1039 	if (mode == IFBLK || mode == IFCHR ||
1040 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1041 		return (fragcnt);
1042 	for (i = 0; i < NDADDR; i++) {
1043 		if (DIP(ip, di_db[i]) == 0)
1044 			continue;
1045 		frags = sblksize(fs, size, i);
1046 		frags = numfrags(fs, frags);
1047 		fragcnt += frags;
1048 		visitor(ino, i, DIP(ip, di_db[i]), frags);
1049 	}
1050 	/*
1051 	 * We know the following indirects are real as we're following
1052 	 * real pointers to them.
1053 	 */
1054 	flags |= VISIT_ROOT;
1055 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1056 	    lbn = nextlbn) {
1057 		nextlbn = lbn + tmpval;
1058 		tmpval *= NINDIR(fs);
1059 		if (DIP(ip, di_ib[i]) == 0)
1060 			continue;
1061 		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1062 		    flags);
1063 	}
1064 	return (fragcnt);
1065 }
1066 
1067 /*
1068  * Null visitor function used when we just want to count blocks and
1069  * record the lbn.
1070  */
1071 ufs_lbn_t visitlbn;
1072 static void
1073 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1074 {
1075 	if (lbn > 0)
1076 		visitlbn = lbn;
1077 }
1078 
1079 /*
1080  * Recalculate di_blocks when we discover that a block allocation or
1081  * free was not successfully completed.  The kernel does not roll this back
1082  * because it would be too expensive to compute which indirects were
1083  * reachable at the time the inode was written.
1084  */
1085 static void
1086 ino_adjblks(struct suj_ino *sino)
1087 {
1088 	union dinode *ip;
1089 	uint64_t blocks;
1090 	uint64_t frags;
1091 	off_t isize;
1092 	off_t size;
1093 	ino_t ino;
1094 
1095 	ino = sino->si_ino;
1096 	ip = ino_read(ino);
1097 	/* No need to adjust zero'd inodes. */
1098 	if (DIP(ip, di_mode) == 0)
1099 		return;
1100 	/*
1101 	 * Visit all blocks and count them as well as recording the last
1102 	 * valid lbn in the file.  If the file size doesn't agree with the
1103 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1104 	 * the blocks count.
1105 	 */
1106 	visitlbn = 0;
1107 	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1108 	blocks = fsbtodb(fs, frags);
1109 	/*
1110 	 * We assume the size and direct block list is kept coherent by
1111 	 * softdep.  For files that have extended into indirects we truncate
1112 	 * to the size in the inode or the maximum size permitted by
1113 	 * populated indirects.
1114 	 */
1115 	if (visitlbn >= NDADDR) {
1116 		isize = DIP(ip, di_size);
1117 		size = lblktosize(fs, visitlbn + 1);
1118 		if (isize > size)
1119 			isize = size;
1120 		/* Always truncate to free any unpopulated indirects. */
1121 		ino_trunc(sino->si_ino, isize);
1122 		return;
1123 	}
1124 	if (blocks == DIP(ip, di_blocks))
1125 		return;
1126 	if (debug)
1127 		printf("ino %d adjusting block count from %jd to %jd\n",
1128 		    ino, DIP(ip, di_blocks), blocks);
1129 	DIP_SET(ip, di_blocks, blocks);
1130 	ino_dirty(ino);
1131 }
1132 
1133 static void
1134 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1135 {
1136 	int mask;
1137 
1138 	mask = blk_freemask(blk, ino, lbn, frags);
1139 	if (debug)
1140 		printf("blk %jd freemask 0x%X\n", blk, mask);
1141 	blk_free(blk, mask, frags);
1142 }
1143 
1144 /*
1145  * Free a block or tree of blocks that was previously rooted in ino at
1146  * the given lbn.  If the lbn is an indirect all children are freed
1147  * recursively.
1148  */
1149 static void
1150 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1151 {
1152 	uint64_t resid;
1153 	int mask;
1154 
1155 	mask = blk_freemask(blk, ino, lbn, frags);
1156 	if (debug)
1157 		printf("blk %jd freemask 0x%X\n", blk, mask);
1158 	resid = 0;
1159 	if (lbn <= -NDADDR && follow && mask == 0)
1160 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1161 	else
1162 		blk_free(blk, mask, frags);
1163 }
1164 
1165 static void
1166 ino_setskip(struct suj_ino *sino, ino_t parent)
1167 {
1168 	int isdot;
1169 	int mode;
1170 
1171 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1172 		sino->si_skipparent = 1;
1173 }
1174 
1175 static void
1176 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1177 {
1178 	struct suj_ino *sino;
1179 	struct suj_rec *srec;
1180 	struct jrefrec *rrec;
1181 
1182 	/*
1183 	 * Lookup this inode to see if we have a record for it.
1184 	 */
1185 	sino = ino_lookup(child, 0);
1186 	/*
1187 	 * Tell any child directories we've already removed their
1188 	 * parent link cnt.  Don't try to adjust our link down again.
1189 	 */
1190 	if (sino != NULL && isdotdot == 0)
1191 		ino_setskip(sino, parent);
1192 	/*
1193 	 * No valid record for this inode.  Just drop the on-disk
1194 	 * link by one.
1195 	 */
1196 	if (sino == NULL || sino->si_hasrecs == 0) {
1197 		ino_decr(child);
1198 		return;
1199 	}
1200 	/*
1201 	 * Use ino_adjust() if ino_check() has already processed this
1202 	 * child.  If we lose the last non-dot reference to a
1203 	 * directory it will be discarded.
1204 	 */
1205 	if (sino->si_linkadj) {
1206 		sino->si_nlink--;
1207 		if (isdotdot)
1208 			sino->si_dotlinks--;
1209 		ino_adjust(sino);
1210 		return;
1211 	}
1212 	/*
1213 	 * If we haven't yet processed this inode we need to make
1214 	 * sure we will successfully discover the lost path.  If not
1215 	 * use nlinkadj to remember.
1216 	 */
1217 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1218 		rrec = (struct jrefrec *)srec->sr_rec;
1219 		if (rrec->jr_parent == parent &&
1220 		    rrec->jr_diroff == diroff)
1221 			return;
1222 	}
1223 	sino->si_nlinkadj++;
1224 }
1225 
1226 /*
1227  * Free the children of a directory when the directory is discarded.
1228  */
1229 static void
1230 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1231 {
1232 	struct suj_ino *sino;
1233 	struct direct *dp;
1234 	off_t diroff;
1235 	uint8_t *block;
1236 	int skipparent;
1237 	int isdotdot;
1238 	int dpoff;
1239 	int size;
1240 
1241 	sino = ino_lookup(ino, 0);
1242 	if (sino)
1243 		skipparent = sino->si_skipparent;
1244 	else
1245 		skipparent = 0;
1246 	size = lfragtosize(fs, frags);
1247 	block = dblk_read(blk, size);
1248 	dp = (struct direct *)&block[0];
1249 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1250 		dp = (struct direct *)&block[dpoff];
1251 		if (dp->d_ino == 0 || dp->d_ino == WINO)
1252 			continue;
1253 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1254 			continue;
1255 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1256 		    dp->d_name[1] == '.';
1257 		if (isdotdot && skipparent == 1)
1258 			continue;
1259 		if (debug)
1260 			printf("Directory %d removing ino %d name %s\n",
1261 			    ino, dp->d_ino, dp->d_name);
1262 		diroff = lblktosize(fs, lbn) + dpoff;
1263 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1264 	}
1265 }
1266 
1267 /*
1268  * Reclaim an inode, freeing all blocks and decrementing all children's
1269  * link counts.  Free the inode back to the cg.
1270  */
1271 static void
1272 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1273 {
1274 	uint32_t gen;
1275 
1276 	if (ino == ROOTINO)
1277 		err_suj("Attempting to free ROOTINO\n");
1278 	if (debug)
1279 		printf("Truncating and freeing ino %d, nlink %d, mode %o\n",
1280 		    ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1281 
1282 	/* We are freeing an inode or directory. */
1283 	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1284 		ino_visit(ip, ino, ino_free_children, 0);
1285 	DIP_SET(ip, di_nlink, 0);
1286 	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1287 	/* Here we have to clear the inode and release any blocks it holds. */
1288 	gen = DIP(ip, di_gen);
1289 	if (fs->fs_magic == FS_UFS1_MAGIC)
1290 		bzero(ip, sizeof(struct ufs1_dinode));
1291 	else
1292 		bzero(ip, sizeof(struct ufs2_dinode));
1293 	DIP_SET(ip, di_gen, gen);
1294 	ino_dirty(ino);
1295 	ino_free(ino, mode);
1296 	return;
1297 }
1298 
1299 /*
1300  * Adjust an inode's link count down by one when a directory goes away.
1301  */
1302 static void
1303 ino_decr(ino_t ino)
1304 {
1305 	union dinode *ip;
1306 	int reqlink;
1307 	int nlink;
1308 	int mode;
1309 
1310 	ip = ino_read(ino);
1311 	nlink = DIP(ip, di_nlink);
1312 	mode = DIP(ip, di_mode);
1313 	if (nlink < 1)
1314 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1315 	if (mode == 0)
1316 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1317 	nlink--;
1318 	if ((mode & IFMT) == IFDIR)
1319 		reqlink = 2;
1320 	else
1321 		reqlink = 1;
1322 	if (nlink < reqlink) {
1323 		if (debug)
1324 			printf("ino %d not enough links to live %d < %d\n",
1325 			    ino, nlink, reqlink);
1326 		ino_reclaim(ip, ino, mode);
1327 		return;
1328 	}
1329 	DIP_SET(ip, di_nlink, nlink);
1330 	ino_dirty(ino);
1331 }
1332 
1333 /*
1334  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1335  * free it.
1336  */
1337 static void
1338 ino_adjust(struct suj_ino *sino)
1339 {
1340 	struct jrefrec *rrec;
1341 	struct suj_rec *srec;
1342 	struct suj_ino *stmp;
1343 	union dinode *ip;
1344 	nlink_t nlink;
1345 	int recmode;
1346 	int reqlink;
1347 	int isdot;
1348 	int mode;
1349 	ino_t ino;
1350 
1351 	nlink = sino->si_nlink;
1352 	ino = sino->si_ino;
1353 	mode = sino->si_mode & IFMT;
1354 	/*
1355 	 * If it's a directory with no dot links, it was truncated before
1356 	 * the name was cleared.  We need to clear the dirent that
1357 	 * points at it.
1358 	 */
1359 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1360 		sino->si_nlink = nlink = 0;
1361 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1362 			rrec = (struct jrefrec *)srec->sr_rec;
1363 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1364 			    &recmode, &isdot) == 0)
1365 				continue;
1366 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1367 			break;
1368 		}
1369 		if (srec == NULL)
1370 			errx(1, "Directory %d name not found", ino);
1371 	}
1372 	/*
1373 	 * If it's a directory with no real names pointing to it go ahead
1374 	 * and truncate it.  This will free any children.
1375 	 */
1376 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1377 		sino->si_nlink = nlink = 0;
1378 		/*
1379 		 * Mark any .. links so they know not to free this inode
1380 		 * when they are removed.
1381 		 */
1382 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1383 			rrec = (struct jrefrec *)srec->sr_rec;
1384 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1385 				stmp = ino_lookup(rrec->jr_parent, 0);
1386 				if (stmp)
1387 					ino_setskip(stmp, ino);
1388 			}
1389 		}
1390 	}
1391 	ip = ino_read(ino);
1392 	mode = DIP(ip, di_mode) & IFMT;
1393 	if (nlink > LINK_MAX)
1394 		err_suj(
1395 		    "ino %d nlink manipulation error, new link %d, old link %d\n",
1396 		    ino, nlink, DIP(ip, di_nlink));
1397 	if (debug)
1398 		printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n",
1399 		    ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1400 	if (mode == 0) {
1401 		if (debug)
1402 			printf("ino %d, zero inode freeing bitmap\n", ino);
1403 		ino_free(ino, sino->si_mode);
1404 		return;
1405 	}
1406 	/* XXX Should be an assert? */
1407 	if (mode != sino->si_mode && debug)
1408 		printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode);
1409 	if ((mode & IFMT) == IFDIR)
1410 		reqlink = 2;
1411 	else
1412 		reqlink = 1;
1413 	/* If the inode doesn't have enough links to live, free it. */
1414 	if (nlink < reqlink) {
1415 		if (debug)
1416 			printf("ino %d not enough links to live %d < %d\n",
1417 			    ino, nlink, reqlink);
1418 		ino_reclaim(ip, ino, mode);
1419 		return;
1420 	}
1421 	/* If required write the updated link count. */
1422 	if (DIP(ip, di_nlink) == nlink) {
1423 		if (debug)
1424 			printf("ino %d, link matches, skipping.\n", ino);
1425 		return;
1426 	}
1427 	DIP_SET(ip, di_nlink, nlink);
1428 	ino_dirty(ino);
1429 }
1430 
1431 /*
1432  * Truncate some or all blocks in an indirect, freeing any that are required
1433  * and zeroing the indirect.
1434  */
1435 static void
1436 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1437 {
1438 	ufs2_daddr_t *bap2;
1439 	ufs1_daddr_t *bap1;
1440 	ufs_lbn_t lbnadd;
1441 	ufs2_daddr_t nblk;
1442 	ufs_lbn_t next;
1443 	ufs_lbn_t nlbn;
1444 	int dirty;
1445 	int level;
1446 	int i;
1447 
1448 	if (blk == 0)
1449 		return;
1450 	dirty = 0;
1451 	level = lbn_level(lbn);
1452 	if (level == -1)
1453 		err_suj("Invalid level for lbn %jd\n", lbn);
1454 	lbnadd = 1;
1455 	for (i = level; i > 0; i--)
1456 		lbnadd *= NINDIR(fs);
1457 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1458 	bap2 = (void *)bap1;
1459 	for (i = 0; i < NINDIR(fs); i++) {
1460 		if (fs->fs_magic == FS_UFS1_MAGIC)
1461 			nblk = *bap1++;
1462 		else
1463 			nblk = *bap2++;
1464 		if (nblk == 0)
1465 			continue;
1466 		if (level != 0) {
1467 			nlbn = (lbn + 1) - (i * lbnadd);
1468 			/*
1469 			 * Calculate the lbn of the next indirect to
1470 			 * determine if any of this indirect must be
1471 			 * reclaimed.
1472 			 */
1473 			next = -(lbn + level) + ((i+1) * lbnadd);
1474 			if (next <= lastlbn)
1475 				continue;
1476 			indir_trunc(ino, nlbn, nblk, lastlbn);
1477 			/* If all of this indirect was reclaimed, free it. */
1478 			nlbn = next - lbnadd;
1479 			if (nlbn < lastlbn)
1480 				continue;
1481 		} else {
1482 			nlbn = -lbn + i * lbnadd;
1483 			if (nlbn < lastlbn)
1484 				continue;
1485 		}
1486 		dirty = 1;
1487 		blk_free(nblk, 0, fs->fs_frag);
1488 		if (fs->fs_magic == FS_UFS1_MAGIC)
1489 			*(bap1 - 1) = 0;
1490 		else
1491 			*(bap2 - 1) = 0;
1492 	}
1493 	if (dirty)
1494 		dblk_dirty(blk);
1495 }
1496 
1497 /*
1498  * Truncate an inode to the minimum of the given size or the last populated
1499  * block after any over size have been discarded.  The kernel would allocate
1500  * the last block in the file but fsck does not and neither do we.  This
1501  * code never extends files, only shrinks them.
1502  */
1503 static void
1504 ino_trunc(ino_t ino, off_t size)
1505 {
1506 	union dinode *ip;
1507 	ufs2_daddr_t bn;
1508 	uint64_t totalfrags;
1509 	ufs_lbn_t nextlbn;
1510 	ufs_lbn_t lastlbn;
1511 	ufs_lbn_t tmpval;
1512 	ufs_lbn_t lbn;
1513 	ufs_lbn_t i;
1514 	int frags;
1515 	off_t cursize;
1516 	off_t off;
1517 	int mode;
1518 
1519 	ip = ino_read(ino);
1520 	mode = DIP(ip, di_mode) & IFMT;
1521 	cursize = DIP(ip, di_size);
1522 	if (debug)
1523 		printf("Truncating ino %d, mode %o to size %jd from size %jd\n",
1524 		    ino, mode, size, cursize);
1525 
1526 	/* Skip datablocks for short links and devices. */
1527 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1528 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1529 		return;
1530 	/* Don't extend. */
1531 	if (size > cursize)
1532 		size = cursize;
1533 	lastlbn = lblkno(fs, blkroundup(fs, size));
1534 	for (i = lastlbn; i < NDADDR; i++) {
1535 		if (DIP(ip, di_db[i]) == 0)
1536 			continue;
1537 		frags = sblksize(fs, cursize, i);
1538 		frags = numfrags(fs, frags);
1539 		blk_free(DIP(ip, di_db[i]), 0, frags);
1540 		DIP_SET(ip, di_db[i], 0);
1541 	}
1542 	/*
1543 	 * Follow indirect blocks, freeing anything required.
1544 	 */
1545 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1546 	    lbn = nextlbn) {
1547 		nextlbn = lbn + tmpval;
1548 		tmpval *= NINDIR(fs);
1549 		/* If we're not freeing any in this indirect range skip it. */
1550 		if (lastlbn >= nextlbn)
1551 			continue;
1552 		if (DIP(ip, di_ib[i]) == 0)
1553 			continue;
1554 		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1555 		/* If we freed everything in this indirect free the indir. */
1556 		if (lastlbn > lbn)
1557 			continue;
1558 		blk_free(DIP(ip, di_ib[i]), 0, frags);
1559 		DIP_SET(ip, di_ib[i], 0);
1560 	}
1561 	ino_dirty(ino);
1562 	/*
1563 	 * Now that we've freed any whole blocks that exceed the desired
1564 	 * truncation size, figure out how many blocks remain and what the
1565 	 * last populated lbn is.  We will set the size to this last lbn
1566 	 * rather than worrying about allocating the final lbn as the kernel
1567 	 * would've done.  This is consistent with normal fsck behavior.
1568 	 */
1569 	visitlbn = 0;
1570 	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1571 	if (size > lblktosize(fs, visitlbn + 1))
1572 		size = lblktosize(fs, visitlbn + 1);
1573 	/*
1574 	 * If we're truncating direct blocks we have to adjust frags
1575 	 * accordingly.
1576 	 */
1577 	if (visitlbn < NDADDR && totalfrags) {
1578 		long oldspace, newspace;
1579 
1580 		bn = DIP(ip, di_db[visitlbn]);
1581 		if (bn == 0)
1582 			err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn);
1583 		oldspace = sblksize(fs, cursize, visitlbn);
1584 		newspace = sblksize(fs, size, visitlbn);
1585 		if (oldspace != newspace) {
1586 			bn += numfrags(fs, newspace);
1587 			frags = numfrags(fs, oldspace - newspace);
1588 			blk_free(bn, 0, frags);
1589 			totalfrags -= frags;
1590 		}
1591 	}
1592 	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1593 	DIP_SET(ip, di_size, size);
1594 	/*
1595 	 * If we've truncated into the middle of a block or frag we have
1596 	 * to zero it here.  Otherwise the file could extend into
1597 	 * uninitialized space later.
1598 	 */
1599 	off = blkoff(fs, size);
1600 	if (off) {
1601 		uint8_t *buf;
1602 		long clrsize;
1603 
1604 		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1605 		if (bn == 0)
1606 			err_suj("Block missing from ino %d at lbn %jd\n",
1607 			    ino, visitlbn);
1608 		clrsize = frags * fs->fs_fsize;
1609 		buf = dblk_read(bn, clrsize);
1610 		clrsize -= off;
1611 		buf += off;
1612 		bzero(buf, clrsize);
1613 		dblk_dirty(bn);
1614 	}
1615 	return;
1616 }
1617 
1618 /*
1619  * Process records available for one inode and determine whether the
1620  * link count is correct or needs adjusting.
1621  */
1622 static void
1623 ino_check(struct suj_ino *sino)
1624 {
1625 	struct suj_rec *srec;
1626 	struct jrefrec *rrec;
1627 	nlink_t dotlinks;
1628 	int newlinks;
1629 	int removes;
1630 	int nlink;
1631 	ino_t ino;
1632 	int isdot;
1633 	int isat;
1634 	int mode;
1635 
1636 	if (sino->si_hasrecs == 0)
1637 		return;
1638 	ino = sino->si_ino;
1639 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1640 	nlink = rrec->jr_nlink;
1641 	newlinks = 0;
1642 	dotlinks = 0;
1643 	removes = sino->si_nlinkadj;
1644 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1645 		rrec = (struct jrefrec *)srec->sr_rec;
1646 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1647 		    rrec->jr_ino, &mode, &isdot);
1648 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1649 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1650 			    mode, rrec->jr_mode);
1651 		if (debug)
1652 			printf("jrefrec: op %d ino %d, nlink %d, parent %d, "
1653 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1654 			    rrec->jr_op, rrec->jr_ino, rrec->jr_nlink,
1655 			    rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode,
1656 			    isat, isdot);
1657 		mode = rrec->jr_mode & IFMT;
1658 		if (rrec->jr_op == JOP_REMREF)
1659 			removes++;
1660 		newlinks += isat;
1661 		if (isdot)
1662 			dotlinks += isat;
1663 	}
1664 	/*
1665 	 * The number of links that remain are the starting link count
1666 	 * subtracted by the total number of removes with the total
1667 	 * links discovered back in.  An incomplete remove thus
1668 	 * makes no change to the link count but an add increases
1669 	 * by one.
1670 	 */
1671 	if (debug)
1672 		printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n",
1673 		    ino, nlink, newlinks, removes, dotlinks);
1674 	nlink += newlinks;
1675 	nlink -= removes;
1676 	sino->si_linkadj = 1;
1677 	sino->si_nlink = nlink;
1678 	sino->si_dotlinks = dotlinks;
1679 	sino->si_mode = mode;
1680 	ino_adjust(sino);
1681 }
1682 
1683 /*
1684  * Process records available for one block and determine whether it is
1685  * still allocated and whether the owning inode needs to be updated or
1686  * a free completed.
1687  */
1688 static void
1689 blk_check(struct suj_blk *sblk)
1690 {
1691 	struct suj_rec *srec;
1692 	struct jblkrec *brec;
1693 	struct suj_ino *sino;
1694 	ufs2_daddr_t blk;
1695 	int mask;
1696 	int frags;
1697 	int isat;
1698 
1699 	/*
1700 	 * Each suj_blk actually contains records for any fragments in that
1701 	 * block.  As a result we must evaluate each record individually.
1702 	 */
1703 	sino = NULL;
1704 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1705 		brec = (struct jblkrec *)srec->sr_rec;
1706 		frags = brec->jb_frags;
1707 		blk = brec->jb_blkno + brec->jb_oldfrags;
1708 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1709 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1710 			sino = ino_lookup(brec->jb_ino, 1);
1711 			sino->si_blkadj = 1;
1712 		}
1713 		if (debug)
1714 			printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n",
1715 			    brec->jb_op, blk, brec->jb_ino, brec->jb_lbn,
1716 			    brec->jb_frags, isat, frags);
1717 		/*
1718 		 * If we found the block at this address we still have to
1719 		 * determine if we need to free the tail end that was
1720 		 * added by adding contiguous fragments from the same block.
1721 		 */
1722 		if (isat == 1) {
1723 			if (frags == brec->jb_frags)
1724 				continue;
1725 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1726 			    brec->jb_frags);
1727 			mask >>= frags;
1728 			blk += frags;
1729 			frags = brec->jb_frags - frags;
1730 			blk_free(blk, mask, frags);
1731 			continue;
1732 		}
1733 		/*
1734 	 	 * The block wasn't found, attempt to free it.  It won't be
1735 		 * freed if it was actually reallocated.  If this was an
1736 		 * allocation we don't want to follow indirects as they
1737 		 * may not be written yet.  Any children of the indirect will
1738 		 * have their own records.  If it's a free we need to
1739 		 * recursively free children.
1740 		 */
1741 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1742 		    brec->jb_op == JOP_FREEBLK);
1743 	}
1744 }
1745 
1746 /*
1747  * Walk the list of inode records for this cg and resolve moved and duplicate
1748  * inode references now that we have a complete picture.
1749  */
1750 static void
1751 cg_build(struct suj_cg *sc)
1752 {
1753 	struct suj_ino *sino;
1754 	int i;
1755 
1756 	for (i = 0; i < SUJ_HASHSIZE; i++)
1757 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1758 			ino_build(sino);
1759 }
1760 
1761 /*
1762  * Handle inodes requiring truncation.  This must be done prior to
1763  * looking up any inodes in directories.
1764  */
1765 static void
1766 cg_trunc(struct suj_cg *sc)
1767 {
1768 	struct suj_ino *sino;
1769 	int i;
1770 
1771 	for (i = 0; i < SUJ_HASHSIZE; i++)
1772 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1773 			if (sino->si_trunc) {
1774 				ino_trunc(sino->si_ino,
1775 				    sino->si_trunc->jt_size);
1776 				sino->si_trunc = NULL;
1777 			}
1778 }
1779 
1780 /*
1781  * Free any partially allocated blocks and then resolve inode block
1782  * counts.
1783  */
1784 static void
1785 cg_check_blk(struct suj_cg *sc)
1786 {
1787 	struct suj_ino *sino;
1788 	struct suj_blk *sblk;
1789 	int i;
1790 
1791 
1792 	for (i = 0; i < SUJ_HASHSIZE; i++)
1793 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1794 			blk_check(sblk);
1795 	/*
1796 	 * Now that we've freed blocks which are not referenced we
1797 	 * make a second pass over all inodes to adjust their block
1798 	 * counts.
1799 	 */
1800 	for (i = 0; i < SUJ_HASHSIZE; i++)
1801 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1802 			if (sino->si_blkadj)
1803 				ino_adjblks(sino);
1804 }
1805 
1806 /*
1807  * Walk the list of inode records for this cg, recovering any
1808  * changes which were not complete at the time of crash.
1809  */
1810 static void
1811 cg_check_ino(struct suj_cg *sc)
1812 {
1813 	struct suj_ino *sino;
1814 	int i;
1815 
1816 	for (i = 0; i < SUJ_HASHSIZE; i++)
1817 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1818 			ino_check(sino);
1819 }
1820 
1821 /*
1822  * Write a potentially dirty cg.  Recalculate the summary information and
1823  * update the superblock summary.
1824  */
1825 static void
1826 cg_write(struct suj_cg *sc)
1827 {
1828 	ufs1_daddr_t fragno, cgbno, maxbno;
1829 	u_int8_t *blksfree;
1830 	struct cg *cgp;
1831 	int blk;
1832 	int i;
1833 
1834 	if (sc->sc_dirty == 0)
1835 		return;
1836 	/*
1837 	 * Fix the frag and cluster summary.
1838 	 */
1839 	cgp = sc->sc_cgp;
1840 	cgp->cg_cs.cs_nbfree = 0;
1841 	cgp->cg_cs.cs_nffree = 0;
1842 	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1843 	maxbno = fragstoblks(fs, fs->fs_fpg);
1844 	if (fs->fs_contigsumsize > 0) {
1845 		for (i = 1; i <= fs->fs_contigsumsize; i++)
1846 			cg_clustersum(cgp)[i] = 0;
1847 		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1848 	}
1849 	blksfree = cg_blksfree(cgp);
1850 	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1851 		if (ffs_isfreeblock(fs, blksfree, cgbno))
1852 			continue;
1853 		if (ffs_isblock(fs, blksfree, cgbno)) {
1854 			ffs_clusteracct(fs, cgp, cgbno, 1);
1855 			cgp->cg_cs.cs_nbfree++;
1856 			continue;
1857 		}
1858 		fragno = blkstofrags(fs, cgbno);
1859 		blk = blkmap(fs, blksfree, fragno);
1860 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1861 		for (i = 0; i < fs->fs_frag; i++)
1862 			if (isset(blksfree, fragno + i))
1863 				cgp->cg_cs.cs_nffree++;
1864 	}
1865 	/*
1866 	 * Update the superblock cg summary from our now correct values
1867 	 * before writing the block.
1868 	 */
1869 	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1870 	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1871 	    fs->fs_bsize) == -1)
1872 		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1873 }
1874 
1875 /*
1876  * Write out any modified inodes.
1877  */
1878 static void
1879 cg_write_inos(struct suj_cg *sc)
1880 {
1881 	struct ino_blk *iblk;
1882 	int i;
1883 
1884 	for (i = 0; i < SUJ_HASHSIZE; i++)
1885 		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1886 			if (iblk->ib_dirty)
1887 				iblk_write(iblk);
1888 }
1889 
1890 static void
1891 cg_apply(void (*apply)(struct suj_cg *))
1892 {
1893 	struct suj_cg *scg;
1894 	int i;
1895 
1896 	for (i = 0; i < SUJ_HASHSIZE; i++)
1897 		LIST_FOREACH(scg, &cghash[i], sc_next)
1898 			apply(scg);
1899 }
1900 
1901 /*
1902  * Process the unlinked but referenced file list.  Freeing all inodes.
1903  */
1904 static void
1905 ino_unlinked(void)
1906 {
1907 	union dinode *ip;
1908 	uint16_t mode;
1909 	ino_t inon;
1910 	ino_t ino;
1911 
1912 	ino = fs->fs_sujfree;
1913 	fs->fs_sujfree = 0;
1914 	while (ino != 0) {
1915 		ip = ino_read(ino);
1916 		mode = DIP(ip, di_mode) & IFMT;
1917 		inon = DIP(ip, di_freelink);
1918 		DIP_SET(ip, di_freelink, 0);
1919 		/*
1920 		 * XXX Should this be an errx?
1921 		 */
1922 		if (DIP(ip, di_nlink) == 0) {
1923 			if (debug)
1924 				printf("Freeing unlinked ino %d mode %o\n",
1925 				    ino, mode);
1926 			ino_reclaim(ip, ino, mode);
1927 		} else if (debug)
1928 			printf("Skipping ino %d mode %o with link %d\n",
1929 			    ino, mode, DIP(ip, di_nlink));
1930 		ino = inon;
1931 	}
1932 }
1933 
1934 /*
1935  * Append a new record to the list of records requiring processing.
1936  */
1937 static void
1938 ino_append(union jrec *rec)
1939 {
1940 	struct jrefrec *refrec;
1941 	struct jmvrec *mvrec;
1942 	struct suj_ino *sino;
1943 	struct suj_rec *srec;
1944 
1945 	mvrec = &rec->rec_jmvrec;
1946 	refrec = &rec->rec_jrefrec;
1947 	if (debug && mvrec->jm_op == JOP_MVREF)
1948 		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1949 		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1950 		    mvrec->jm_oldoff);
1951 	else if (debug &&
1952 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1953 		printf("ino ref: op %d, ino %d, nlink %d, "
1954 		    "parent %d, diroff %jd\n",
1955 		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1956 		    refrec->jr_parent, refrec->jr_diroff);
1957 	/*
1958 	 * Lookup the ino and clear truncate if one is found.  Partial
1959 	 * truncates are always done synchronously so if we discover
1960 	 * an operation that requires a lock the truncation has completed
1961 	 * and can be discarded.
1962 	 */
1963 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1964 	sino->si_trunc = NULL;
1965 	sino->si_hasrecs = 1;
1966 	srec = errmalloc(sizeof(*srec));
1967 	srec->sr_rec = rec;
1968 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1969 }
1970 
1971 /*
1972  * Add a reference adjustment to the sino list and eliminate dups.  The
1973  * primary loop in ino_build_ref() checks for dups but new ones may be
1974  * created as a result of offset adjustments.
1975  */
1976 static void
1977 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1978 {
1979 	struct jrefrec *refrec;
1980 	struct suj_rec *srn;
1981 	struct jrefrec *rrn;
1982 
1983 	refrec = (struct jrefrec *)srec->sr_rec;
1984 	/*
1985 	 * We walk backwards so that the oldest link count is preserved.  If
1986 	 * an add record conflicts with a remove keep the remove.  Redundant
1987 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1988 	 * oldest record at a given location.
1989 	 */
1990 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1991 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1992 		rrn = (struct jrefrec *)srn->sr_rec;
1993 		if (rrn->jr_parent != refrec->jr_parent ||
1994 		    rrn->jr_diroff != refrec->jr_diroff)
1995 			continue;
1996 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1997 			rrn->jr_mode = refrec->jr_mode;
1998 			return;
1999 		}
2000 		/*
2001 		 * Adding a remove.
2002 		 *
2003 		 * Replace the record in place with the old nlink in case
2004 		 * we replace the head of the list.  Abandon srec as a dup.
2005 		 */
2006 		refrec->jr_nlink = rrn->jr_nlink;
2007 		srn->sr_rec = srec->sr_rec;
2008 		return;
2009 	}
2010 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2011 }
2012 
2013 /*
2014  * Create a duplicate of a reference at a previous location.
2015  */
2016 static void
2017 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2018 {
2019 	struct jrefrec *rrn;
2020 	struct suj_rec *srn;
2021 
2022 	rrn = errmalloc(sizeof(*refrec));
2023 	*rrn = *refrec;
2024 	rrn->jr_op = JOP_ADDREF;
2025 	rrn->jr_diroff = diroff;
2026 	srn = errmalloc(sizeof(*srn));
2027 	srn->sr_rec = (union jrec *)rrn;
2028 	ino_add_ref(sino, srn);
2029 }
2030 
2031 /*
2032  * Add a reference to the list at all known locations.  We follow the offset
2033  * changes for a single instance and create duplicate add refs at each so
2034  * that we can tolerate any version of the directory block.  Eliminate
2035  * removes which collide with adds that are seen in the journal.  They should
2036  * not adjust the link count down.
2037  */
2038 static void
2039 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2040 {
2041 	struct jrefrec *refrec;
2042 	struct jmvrec *mvrec;
2043 	struct suj_rec *srp;
2044 	struct suj_rec *srn;
2045 	struct jrefrec *rrn;
2046 	off_t diroff;
2047 
2048 	refrec = (struct jrefrec *)srec->sr_rec;
2049 	/*
2050 	 * Search for a mvrec that matches this offset.  Whether it's an add
2051 	 * or a remove we can delete the mvref after creating a dup record in
2052 	 * the old location.
2053 	 */
2054 	if (!TAILQ_EMPTY(&sino->si_movs)) {
2055 		diroff = refrec->jr_diroff;
2056 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2057 			srp = TAILQ_PREV(srn, srechd, sr_next);
2058 			mvrec = (struct jmvrec *)srn->sr_rec;
2059 			if (mvrec->jm_parent != refrec->jr_parent ||
2060 			    mvrec->jm_newoff != diroff)
2061 				continue;
2062 			diroff = mvrec->jm_oldoff;
2063 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2064 			free(srn);
2065 			ino_dup_ref(sino, refrec, diroff);
2066 		}
2067 	}
2068 	/*
2069 	 * If a remove wasn't eliminated by an earlier add just append it to
2070 	 * the list.
2071 	 */
2072 	if (refrec->jr_op == JOP_REMREF) {
2073 		ino_add_ref(sino, srec);
2074 		return;
2075 	}
2076 	/*
2077 	 * Walk the list of records waiting to be added to the list.  We
2078 	 * must check for moves that apply to our current offset and remove
2079 	 * them from the list.  Remove any duplicates to eliminate removes
2080 	 * with corresponding adds.
2081 	 */
2082 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2083 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2084 		case JOP_ADDREF:
2085 			/*
2086 			 * This should actually be an error we should
2087 			 * have a remove for every add journaled.
2088 			 */
2089 			rrn = (struct jrefrec *)srn->sr_rec;
2090 			if (rrn->jr_parent != refrec->jr_parent ||
2091 			    rrn->jr_diroff != refrec->jr_diroff)
2092 				break;
2093 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2094 			break;
2095 		case JOP_REMREF:
2096 			/*
2097 			 * Once we remove the current iteration of the
2098 			 * record at this address we're done.
2099 			 */
2100 			rrn = (struct jrefrec *)srn->sr_rec;
2101 			if (rrn->jr_parent != refrec->jr_parent ||
2102 			    rrn->jr_diroff != refrec->jr_diroff)
2103 				break;
2104 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2105 			ino_add_ref(sino, srec);
2106 			return;
2107 		case JOP_MVREF:
2108 			/*
2109 			 * Update our diroff based on any moves that match
2110 			 * and remove the move.
2111 			 */
2112 			mvrec = (struct jmvrec *)srn->sr_rec;
2113 			if (mvrec->jm_parent != refrec->jr_parent ||
2114 			    mvrec->jm_oldoff != refrec->jr_diroff)
2115 				break;
2116 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2117 			refrec->jr_diroff = mvrec->jm_newoff;
2118 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2119 			break;
2120 		default:
2121 			err_suj("ino_build_ref: Unknown op %d\n",
2122 			    srn->sr_rec->rec_jrefrec.jr_op);
2123 		}
2124 	}
2125 	ino_add_ref(sino, srec);
2126 }
2127 
2128 /*
2129  * Walk the list of new records and add them in-order resolving any
2130  * dups and adjusted offsets.
2131  */
2132 static void
2133 ino_build(struct suj_ino *sino)
2134 {
2135 	struct suj_rec *srec;
2136 
2137 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2138 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2139 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2140 		case JOP_ADDREF:
2141 		case JOP_REMREF:
2142 			ino_build_ref(sino, srec);
2143 			break;
2144 		case JOP_MVREF:
2145 			/*
2146 			 * Add this mvrec to the queue of pending mvs.
2147 			 */
2148 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2149 			break;
2150 		default:
2151 			err_suj("ino_build: Unknown op %d\n",
2152 			    srec->sr_rec->rec_jrefrec.jr_op);
2153 		}
2154 	}
2155 	if (TAILQ_EMPTY(&sino->si_recs))
2156 		sino->si_hasrecs = 0;
2157 }
2158 
2159 /*
2160  * Modify journal records so they refer to the base block number
2161  * and a start and end frag range.  This is to facilitate the discovery
2162  * of overlapping fragment allocations.
2163  */
2164 static void
2165 blk_build(struct jblkrec *blkrec)
2166 {
2167 	struct suj_rec *srec;
2168 	struct suj_blk *sblk;
2169 	struct jblkrec *blkrn;
2170 	struct suj_ino *sino;
2171 	ufs2_daddr_t blk;
2172 	off_t foff;
2173 	int frag;
2174 
2175 	if (debug)
2176 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2177 		    "ino %d lbn %jd\n",
2178 		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2179 		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2180 
2181 	/*
2182 	 * Look up the inode and clear the truncate if any lbns after the
2183 	 * truncate lbn are freed or allocated.
2184 	 */
2185 	sino = ino_lookup(blkrec->jb_ino, 0);
2186 	if (sino && sino->si_trunc) {
2187 		foff = lblktosize(fs, blkrec->jb_lbn);
2188 		foff += lfragtosize(fs, blkrec->jb_frags);
2189 		if (foff > sino->si_trunc->jt_size)
2190 			sino->si_trunc = NULL;
2191 	}
2192 	blk = blknum(fs, blkrec->jb_blkno);
2193 	frag = fragnum(fs, blkrec->jb_blkno);
2194 	sblk = blk_lookup(blk, 1);
2195 	/*
2196 	 * Rewrite the record using oldfrags to indicate the offset into
2197 	 * the block.  Leave jb_frags as the actual allocated count.
2198 	 */
2199 	blkrec->jb_blkno -= frag;
2200 	blkrec->jb_oldfrags = frag;
2201 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2202 		err_suj("Invalid fragment count %d oldfrags %d\n",
2203 		    blkrec->jb_frags, frag);
2204 	/*
2205 	 * Detect dups.  If we detect a dup we always discard the oldest
2206 	 * record as it is superseded by the new record.  This speeds up
2207 	 * later stages but also eliminates free records which are used
2208 	 * to indicate that the contents of indirects can be trusted.
2209 	 */
2210 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2211 		blkrn = (struct jblkrec *)srec->sr_rec;
2212 		if (blkrn->jb_ino != blkrec->jb_ino ||
2213 		    blkrn->jb_lbn != blkrec->jb_lbn ||
2214 		    blkrn->jb_blkno != blkrec->jb_blkno ||
2215 		    blkrn->jb_frags != blkrec->jb_frags ||
2216 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2217 			continue;
2218 		if (debug)
2219 			printf("Removed dup.\n");
2220 		/* Discard the free which is a dup with an alloc. */
2221 		if (blkrec->jb_op == JOP_FREEBLK)
2222 			return;
2223 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2224 		free(srec);
2225 		break;
2226 	}
2227 	srec = errmalloc(sizeof(*srec));
2228 	srec->sr_rec = (union jrec *)blkrec;
2229 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2230 }
2231 
2232 static void
2233 ino_build_trunc(struct jtrncrec *rec)
2234 {
2235 	struct suj_ino *sino;
2236 
2237 	if (debug)
2238 		printf("ino_build_trunc: ino %d, size %jd\n",
2239 		    rec->jt_ino, rec->jt_size);
2240 	sino = ino_lookup(rec->jt_ino, 1);
2241 	sino->si_trunc = rec;
2242 }
2243 
2244 /*
2245  * Build up tables of the operations we need to recover.
2246  */
2247 static void
2248 suj_build(void)
2249 {
2250 	struct suj_seg *seg;
2251 	union jrec *rec;
2252 	int off;
2253 	int i;
2254 
2255 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2256 		if (debug)
2257 			printf("seg %jd has %d records, oldseq %jd.\n",
2258 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2259 			    seg->ss_rec.jsr_oldest);
2260 		off = 0;
2261 		rec = (union jrec *)seg->ss_blk;
2262 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2263 			/* skip the segrec. */
2264 			if ((off % DEV_BSIZE) == 0)
2265 				continue;
2266 			switch (rec->rec_jrefrec.jr_op) {
2267 			case JOP_ADDREF:
2268 			case JOP_REMREF:
2269 			case JOP_MVREF:
2270 				ino_append(rec);
2271 				break;
2272 			case JOP_NEWBLK:
2273 			case JOP_FREEBLK:
2274 				blk_build((struct jblkrec *)rec);
2275 				break;
2276 			case JOP_TRUNC:
2277 				ino_build_trunc((struct jtrncrec *)rec);
2278 				break;
2279 			default:
2280 				err_suj("Unknown journal operation %d (%d)\n",
2281 				    rec->rec_jrefrec.jr_op, off);
2282 			}
2283 			i++;
2284 		}
2285 	}
2286 }
2287 
2288 /*
2289  * Prune the journal segments to those we care about based on the
2290  * oldest sequence in the newest segment.  Order the segment list
2291  * based on sequence number.
2292  */
2293 static void
2294 suj_prune(void)
2295 {
2296 	struct suj_seg *seg;
2297 	struct suj_seg *segn;
2298 	uint64_t newseq;
2299 	int discard;
2300 
2301 	if (debug)
2302 		printf("Pruning up to %jd\n", oldseq);
2303 	/* First free the expired segments. */
2304 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2305 		if (seg->ss_rec.jsr_seq >= oldseq)
2306 			continue;
2307 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2308 		free(seg->ss_blk);
2309 		free(seg);
2310 	}
2311 	/* Next ensure that segments are ordered properly. */
2312 	seg = TAILQ_FIRST(&allsegs);
2313 	if (seg == NULL) {
2314 		if (debug)
2315 			printf("Empty journal\n");
2316 		return;
2317 	}
2318 	newseq = seg->ss_rec.jsr_seq;
2319 	for (;;) {
2320 		seg = TAILQ_LAST(&allsegs, seghd);
2321 		if (seg->ss_rec.jsr_seq >= newseq)
2322 			break;
2323 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2324 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2325 		newseq = seg->ss_rec.jsr_seq;
2326 
2327 	}
2328 	if (newseq != oldseq) {
2329 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2330 		    newseq, oldseq);
2331 	}
2332 	/*
2333 	 * The kernel may asynchronously write segments which can create
2334 	 * gaps in the sequence space.  Throw away any segments after the
2335 	 * gap as the kernel guarantees only those that are contiguously
2336 	 * reachable are marked as completed.
2337 	 */
2338 	discard = 0;
2339 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2340 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2341 			jrecs += seg->ss_rec.jsr_cnt;
2342 			jbytes += seg->ss_rec.jsr_blocks * DEV_BSIZE;
2343 			continue;
2344 		}
2345 		discard = 1;
2346 		if (debug)
2347 			printf("Journal order mismatch %jd != %jd pruning\n",
2348 			    newseq-1, seg->ss_rec.jsr_seq);
2349 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2350 		free(seg->ss_blk);
2351 		free(seg);
2352 	}
2353 	if (debug)
2354 		printf("Processing journal segments from %jd to %jd\n",
2355 		    oldseq, newseq-1);
2356 }
2357 
2358 /*
2359  * Verify the journal inode before attempting to read records.
2360  */
2361 static int
2362 suj_verifyino(union dinode *ip)
2363 {
2364 
2365 	if (DIP(ip, di_nlink) != 1) {
2366 		printf("Invalid link count %d for journal inode %d\n",
2367 		    DIP(ip, di_nlink), sujino);
2368 		return (-1);
2369 	}
2370 
2371 	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2372 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2373 		printf("Invalid flags 0x%X for journal inode %d\n",
2374 		    DIP(ip, di_flags), sujino);
2375 		return (-1);
2376 	}
2377 
2378 	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2379 		printf("Invalid mode %o for journal inode %d\n",
2380 		    DIP(ip, di_mode), sujino);
2381 		return (-1);
2382 	}
2383 
2384 	if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) {
2385 		printf("Invalid size %jd for journal inode %d\n",
2386 		    DIP(ip, di_size), sujino);
2387 		return (-1);
2388 	}
2389 
2390 	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2391 		printf("Journal timestamp does not match fs mount time\n");
2392 		return (-1);
2393 	}
2394 
2395 	return (0);
2396 }
2397 
2398 struct jblocks {
2399 	struct jextent *jb_extent;	/* Extent array. */
2400 	int		jb_avail;	/* Available extents. */
2401 	int		jb_used;	/* Last used extent. */
2402 	int		jb_head;	/* Allocator head. */
2403 	int		jb_off;		/* Allocator extent offset. */
2404 };
2405 struct jextent {
2406 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2407 	int		je_blocks;	/* Disk block count. */
2408 };
2409 
2410 struct jblocks *suj_jblocks;
2411 
2412 static struct jblocks *
2413 jblocks_create(void)
2414 {
2415 	struct jblocks *jblocks;
2416 	int size;
2417 
2418 	jblocks = errmalloc(sizeof(*jblocks));
2419 	jblocks->jb_avail = 10;
2420 	jblocks->jb_used = 0;
2421 	jblocks->jb_head = 0;
2422 	jblocks->jb_off = 0;
2423 	size = sizeof(struct jextent) * jblocks->jb_avail;
2424 	jblocks->jb_extent = errmalloc(size);
2425 	bzero(jblocks->jb_extent, size);
2426 
2427 	return (jblocks);
2428 }
2429 
2430 /*
2431  * Return the next available disk block and the amount of contiguous
2432  * free space it contains.
2433  */
2434 static ufs2_daddr_t
2435 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2436 {
2437 	struct jextent *jext;
2438 	ufs2_daddr_t daddr;
2439 	int freecnt;
2440 	int blocks;
2441 
2442 	blocks = bytes / DEV_BSIZE;
2443 	jext = &jblocks->jb_extent[jblocks->jb_head];
2444 	freecnt = jext->je_blocks - jblocks->jb_off;
2445 	if (freecnt == 0) {
2446 		jblocks->jb_off = 0;
2447 		if (++jblocks->jb_head > jblocks->jb_used)
2448 			return (0);
2449 		jext = &jblocks->jb_extent[jblocks->jb_head];
2450 		freecnt = jext->je_blocks;
2451 	}
2452 	if (freecnt > blocks)
2453 		freecnt = blocks;
2454 	*actual = freecnt * DEV_BSIZE;
2455 	daddr = jext->je_daddr + jblocks->jb_off;
2456 
2457 	return (daddr);
2458 }
2459 
2460 /*
2461  * Advance the allocation head by a specified number of bytes, consuming
2462  * one journal segment.
2463  */
2464 static void
2465 jblocks_advance(struct jblocks *jblocks, int bytes)
2466 {
2467 
2468 	jblocks->jb_off += bytes / DEV_BSIZE;
2469 }
2470 
2471 static void
2472 jblocks_destroy(struct jblocks *jblocks)
2473 {
2474 
2475 	free(jblocks->jb_extent);
2476 	free(jblocks);
2477 }
2478 
2479 static void
2480 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2481 {
2482 	struct jextent *jext;
2483 	int size;
2484 
2485 	jext = &jblocks->jb_extent[jblocks->jb_used];
2486 	/* Adding the first block. */
2487 	if (jext->je_daddr == 0) {
2488 		jext->je_daddr = daddr;
2489 		jext->je_blocks = blocks;
2490 		return;
2491 	}
2492 	/* Extending the last extent. */
2493 	if (jext->je_daddr + jext->je_blocks == daddr) {
2494 		jext->je_blocks += blocks;
2495 		return;
2496 	}
2497 	/* Adding a new extent. */
2498 	if (++jblocks->jb_used == jblocks->jb_avail) {
2499 		jblocks->jb_avail *= 2;
2500 		size = sizeof(struct jextent) * jblocks->jb_avail;
2501 		jext = errmalloc(size);
2502 		bzero(jext, size);
2503 		bcopy(jblocks->jb_extent, jext,
2504 		    sizeof(struct jextent) * jblocks->jb_used);
2505 		free(jblocks->jb_extent);
2506 		jblocks->jb_extent = jext;
2507 	}
2508 	jext = &jblocks->jb_extent[jblocks->jb_used];
2509 	jext->je_daddr = daddr;
2510 	jext->je_blocks = blocks;
2511 
2512 	return;
2513 }
2514 
2515 /*
2516  * Add a file block from the journal to the extent map.  We can't read
2517  * each file block individually because the kernel treats it as a circular
2518  * buffer and segments may span mutliple contiguous blocks.
2519  */
2520 static void
2521 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2522 {
2523 
2524 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2525 }
2526 
2527 static void
2528 suj_read(void)
2529 {
2530 	uint8_t block[1 * 1024 * 1024];
2531 	struct suj_seg *seg;
2532 	struct jsegrec *recn;
2533 	struct jsegrec *rec;
2534 	ufs2_daddr_t blk;
2535 	int readsize;
2536 	int blocks;
2537 	int recsize;
2538 	int size;
2539 	int i;
2540 
2541 	/*
2542 	 * Read records until we exhaust the journal space.  If we find
2543 	 * an invalid record we start searching for a valid segment header
2544 	 * at the next block.  This is because we don't have a head/tail
2545 	 * pointer and must recover the information indirectly.  At the gap
2546 	 * between the head and tail we won't necessarily have a valid
2547 	 * segment.
2548 	 */
2549 restart:
2550 	for (;;) {
2551 		size = sizeof(block);
2552 		blk = jblocks_next(suj_jblocks, size, &readsize);
2553 		if (blk == 0)
2554 			return;
2555 		size = readsize;
2556 		/*
2557 		 * Read 1MB at a time and scan for records within this block.
2558 		 */
2559 		if (bread(disk, blk, &block, size) == -1) {
2560 			err_suj("Error reading journal block %jd\n",
2561 			    (intmax_t)blk);
2562 		}
2563 		for (rec = (void *)block; size; size -= recsize,
2564 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2565 			recsize = DEV_BSIZE;
2566 			if (rec->jsr_time != fs->fs_mtime) {
2567 				if (debug)
2568 					printf("Rec time %jd != fs mtime %jd\n",
2569 					    rec->jsr_time, fs->fs_mtime);
2570 				jblocks_advance(suj_jblocks, recsize);
2571 				continue;
2572 			}
2573 			if (rec->jsr_cnt == 0) {
2574 				if (debug)
2575 					printf("Found illegal count %d\n",
2576 					    rec->jsr_cnt);
2577 				jblocks_advance(suj_jblocks, recsize);
2578 				continue;
2579 			}
2580 			blocks = rec->jsr_blocks;
2581 			recsize = blocks * DEV_BSIZE;
2582 			if (recsize > size) {
2583 				/*
2584 				 * We may just have run out of buffer, restart
2585 				 * the loop to re-read from this spot.
2586 				 */
2587 				if (size < fs->fs_bsize &&
2588 				    size != readsize &&
2589 				    recsize <= fs->fs_bsize)
2590 					goto restart;
2591 				if (debug)
2592 					printf("Found invalid segsize %d > %d\n",
2593 					    recsize, size);
2594 				recsize = DEV_BSIZE;
2595 				jblocks_advance(suj_jblocks, recsize);
2596 				continue;
2597 			}
2598 			/*
2599 			 * Verify that all blocks in the segment are present.
2600 			 */
2601 			for (i = 1; i < blocks; i++) {
2602 				recn = (void *)
2603 				    ((uintptr_t)rec) + i * DEV_BSIZE;
2604 				if (recn->jsr_seq == rec->jsr_seq &&
2605 				    recn->jsr_time == rec->jsr_time)
2606 					continue;
2607 				if (debug)
2608 					printf("Incomplete record %jd (%d)\n",
2609 					    rec->jsr_seq, i);
2610 				recsize = i * DEV_BSIZE;
2611 				jblocks_advance(suj_jblocks, recsize);
2612 				goto restart;
2613 			}
2614 			seg = errmalloc(sizeof(*seg));
2615 			seg->ss_blk = errmalloc(recsize);
2616 			seg->ss_rec = *rec;
2617 			bcopy((void *)rec, seg->ss_blk, recsize);
2618 			if (rec->jsr_oldest > oldseq)
2619 				oldseq = rec->jsr_oldest;
2620 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2621 			jblocks_advance(suj_jblocks, recsize);
2622 		}
2623 	}
2624 }
2625 
2626 /*
2627  * Search a directory block for the SUJ_FILE.
2628  */
2629 static void
2630 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2631 {
2632 	char block[MAXBSIZE];
2633 	struct direct *dp;
2634 	int bytes;
2635 	int off;
2636 
2637 	if (sujino)
2638 		return;
2639 	bytes = lfragtosize(fs, frags);
2640 	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2641 		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2642 	for (off = 0; off < bytes; off += dp->d_reclen) {
2643 		dp = (struct direct *)&block[off];
2644 		if (dp->d_reclen == 0)
2645 			break;
2646 		if (dp->d_ino == 0)
2647 			continue;
2648 		if (dp->d_namlen != strlen(SUJ_FILE))
2649 			continue;
2650 		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2651 			continue;
2652 		sujino = dp->d_ino;
2653 		return;
2654 	}
2655 }
2656 
2657 /*
2658  * Orchestrate the verification of a filesystem via the softupdates journal.
2659  */
2660 int
2661 suj_check(const char *filesys)
2662 {
2663 	union dinode *jip;
2664 	union dinode *ip;
2665 	uint64_t blocks;
2666 	int retval;
2667 	struct suj_seg *seg;
2668 	struct suj_seg *segn;
2669 
2670 	opendisk(filesys);
2671 	TAILQ_INIT(&allsegs);
2672 
2673 	/*
2674 	 * Set an exit point when SUJ check failed
2675 	 */
2676 	retval = setjmp(jmpbuf);
2677 	if (retval != 0) {
2678 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2679 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2680 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2681 				free(seg->ss_blk);
2682 				free(seg);
2683 		}
2684 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2685 			ckfini(0);
2686 			exit(EEXIT);
2687 		} else
2688 			return (-1);
2689 	}
2690 
2691 	/*
2692 	 * Find the journal inode.
2693 	 */
2694 	ip = ino_read(ROOTINO);
2695 	sujino = 0;
2696 	ino_visit(ip, ROOTINO, suj_find, 0);
2697 	if (sujino == 0) {
2698 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2699 		sblock.fs_flags &= ~FS_SUJ;
2700 		sblock.fs_sujfree = 0;
2701 		return (-1);
2702 	}
2703 	/*
2704 	 * Fetch the journal inode and verify it.
2705 	 */
2706 	jip = ino_read(sujino);
2707 	printf("** SU+J Recovering %s\n", filesys);
2708 	if (suj_verifyino(jip) != 0)
2709 		return (-1);
2710 	/*
2711 	 * Build a list of journal blocks in jblocks before parsing the
2712 	 * available journal blocks in with suj_read().
2713 	 */
2714 	printf("** Reading %jd byte journal from inode %d.\n",
2715 	    DIP(jip, di_size), sujino);
2716 	suj_jblocks = jblocks_create();
2717 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2718 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2719 		printf("Sparse journal inode %d.\n", sujino);
2720 		return (-1);
2721 	}
2722 	suj_read();
2723 	jblocks_destroy(suj_jblocks);
2724 	suj_jblocks = NULL;
2725 	if (preen || reply("RECOVER")) {
2726 		printf("** Building recovery table.\n");
2727 		suj_prune();
2728 		suj_build();
2729 		cg_apply(cg_build);
2730 		printf("** Resolving unreferenced inode list.\n");
2731 		ino_unlinked();
2732 		printf("** Processing journal entries.\n");
2733 		cg_apply(cg_trunc);
2734 		cg_apply(cg_check_blk);
2735 		cg_apply(cg_check_ino);
2736 	}
2737 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2738 		return (0);
2739 	/*
2740 	 * To remain idempotent with partial truncations the free bitmaps
2741 	 * must be written followed by indirect blocks and lastly inode
2742 	 * blocks.  This preserves access to the modified pointers until
2743 	 * they are freed.
2744 	 */
2745 	cg_apply(cg_write);
2746 	dblk_write();
2747 	cg_apply(cg_write_inos);
2748 	/* Write back superblock. */
2749 	closedisk(filesys);
2750 	if (jrecs > 0 || jbytes > 0) {
2751 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2752 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2753 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2754 		    freeinos, freedir, freeblocks, freefrags);
2755 	}
2756 
2757 	return (0);
2758 }
2759