xref: /freebsd/sbin/ifconfig/ifieee80211.c (revision f126890a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright 2001 The Aerospace Corporation.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of The Aerospace Corporation may not be used to endorse or
15  *    promote products derived from this software.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*-
31  * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
36  * NASA Ames Research Center.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
48  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
49  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
51  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57  * POSSIBILITY OF SUCH DAMAGE.
58  */
59 
60 #include <sys/param.h>
61 #include <sys/ioctl.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/time.h>
65 
66 #include <net/ethernet.h>
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_media.h>
71 #include <net/route.h>
72 
73 #define WANT_NET80211	1
74 #include <net80211/ieee80211_ioctl.h>
75 #include <net80211/ieee80211_freebsd.h>
76 #include <net80211/ieee80211_superg.h>
77 #include <net80211/ieee80211_tdma.h>
78 #include <net80211/ieee80211_mesh.h>
79 #include <net80211/ieee80211_wps.h>
80 
81 #include <assert.h>
82 #include <ctype.h>
83 #include <err.h>
84 #include <errno.h>
85 #include <fcntl.h>
86 #include <inttypes.h>
87 #include <stdio.h>
88 #include <stdlib.h>
89 #include <string.h>
90 #include <unistd.h>
91 #include <stdarg.h>
92 #include <stddef.h>		/* NB: for offsetof */
93 #include <locale.h>
94 #include <langinfo.h>
95 
96 #include "ifconfig.h"
97 
98 #include <lib80211/lib80211_regdomain.h>
99 #include <lib80211/lib80211_ioctl.h>
100 
101 #ifndef IEEE80211_FIXED_RATE_NONE
102 #define	IEEE80211_FIXED_RATE_NONE	0xff
103 #endif
104 
105 /* XXX need these publicly defined or similar */
106 #ifndef IEEE80211_NODE_AUTH
107 #define	IEEE80211_NODE_AUTH	0x000001	/* authorized for data */
108 #define	IEEE80211_NODE_QOS	0x000002	/* QoS enabled */
109 #define	IEEE80211_NODE_ERP	0x000004	/* ERP enabled */
110 #define	IEEE80211_NODE_PWR_MGT	0x000010	/* power save mode enabled */
111 #define	IEEE80211_NODE_AREF	0x000020	/* authentication ref held */
112 #define	IEEE80211_NODE_HT	0x000040	/* HT enabled */
113 #define	IEEE80211_NODE_HTCOMPAT	0x000080	/* HT setup w/ vendor OUI's */
114 #define	IEEE80211_NODE_WPS	0x000100	/* WPS association */
115 #define	IEEE80211_NODE_TSN	0x000200	/* TSN association */
116 #define	IEEE80211_NODE_AMPDU_RX	0x000400	/* AMPDU rx enabled */
117 #define	IEEE80211_NODE_AMPDU_TX	0x000800	/* AMPDU tx enabled */
118 #define	IEEE80211_NODE_MIMO_PS	0x001000	/* MIMO power save enabled */
119 #define	IEEE80211_NODE_MIMO_RTS	0x002000	/* send RTS in MIMO PS */
120 #define	IEEE80211_NODE_RIFS	0x004000	/* RIFS enabled */
121 #define	IEEE80211_NODE_SGI20	0x008000	/* Short GI in HT20 enabled */
122 #define	IEEE80211_NODE_SGI40	0x010000	/* Short GI in HT40 enabled */
123 #define	IEEE80211_NODE_ASSOCID	0x020000	/* xmit requires associd */
124 #define	IEEE80211_NODE_AMSDU_RX	0x040000	/* AMSDU rx enabled */
125 #define	IEEE80211_NODE_AMSDU_TX	0x080000	/* AMSDU tx enabled */
126 #define	IEEE80211_NODE_VHT	0x100000	/* VHT enabled */
127 #define	IEEE80211_NODE_LDPC	0x200000	/* LDPC enabled */
128 #define	IEEE80211_NODE_UAPSD	0x400000	/* UAPSD enabled */
129 #endif
130 
131 /* XXX should also figure out where to put these for k/u-space sharing. */
132 #ifndef IEEE80211_FVHT_VHT
133 #define	IEEE80211_FVHT_VHT	0x000000001	/* CONF: VHT supported */
134 #define	IEEE80211_FVHT_USEVHT40	0x000000002	/* CONF: Use VHT40 */
135 #define	IEEE80211_FVHT_USEVHT80	0x000000004	/* CONF: Use VHT80 */
136 #define	IEEE80211_FVHT_USEVHT160 0x000000008	/* CONF: Use VHT160 */
137 #define	IEEE80211_FVHT_USEVHT80P80 0x000000010	/* CONF: Use VHT 80+80 */
138 #endif
139 
140 /* Helper macros unified. */
141 #ifndef	_IEEE80211_MASKSHIFT
142 #define	_IEEE80211_MASKSHIFT(_v, _f)	(((_v) & _f) >> _f##_S)
143 #endif
144 #ifndef	_IEEE80211_SHIFTMASK
145 #define	_IEEE80211_SHIFTMASK(_v, _f)	(((_v) << _f##_S) & _f)
146 #endif
147 
148 #define	MAXCHAN	1536		/* max 1.5K channels */
149 
150 #define	MAXCOL	78
151 static	int col;
152 static	char spacer;
153 
154 static void LINE_INIT(char c);
155 static void LINE_BREAK(void);
156 static void LINE_CHECK(const char *fmt, ...);
157 
158 static const char *modename[IEEE80211_MODE_MAX] = {
159 	[IEEE80211_MODE_AUTO]	  = "auto",
160 	[IEEE80211_MODE_11A]	  = "11a",
161 	[IEEE80211_MODE_11B]	  = "11b",
162 	[IEEE80211_MODE_11G]	  = "11g",
163 	[IEEE80211_MODE_FH]	  = "fh",
164 	[IEEE80211_MODE_TURBO_A]  = "turboA",
165 	[IEEE80211_MODE_TURBO_G]  = "turboG",
166 	[IEEE80211_MODE_STURBO_A] = "sturbo",
167 	[IEEE80211_MODE_11NA]	  = "11na",
168 	[IEEE80211_MODE_11NG]	  = "11ng",
169 	[IEEE80211_MODE_HALF]	  = "half",
170 	[IEEE80211_MODE_QUARTER]  = "quarter",
171 	[IEEE80211_MODE_VHT_2GHZ] = "11acg",
172 	[IEEE80211_MODE_VHT_5GHZ] = "11ac",
173 };
174 
175 static void set80211(if_ctx *ctx, int type, int val, int len, void *data);
176 static int get80211(if_ctx *ctx, int type, void *data, int len);
177 static int get80211len(if_ctx *ctx, int type, void *data, int len, int *plen);
178 static int get80211val(if_ctx *ctx, int type, int *val);
179 static const char *get_string(const char *val, const char *sep,
180     u_int8_t *buf, int *lenp);
181 static void print_string(const u_int8_t *buf, int len);
182 static void print_regdomain(const struct ieee80211_regdomain *, int);
183 static void print_channels(if_ctx *, const struct ieee80211req_chaninfo *,
184     int allchans, int verbose);
185 static void regdomain_makechannels(if_ctx *, struct ieee80211_regdomain_req *,
186     const struct ieee80211_devcaps_req *);
187 static const char *mesh_linkstate_string(uint8_t state);
188 
189 static struct ieee80211req_chaninfo *chaninfo;
190 static struct ieee80211_regdomain regdomain;
191 static int gotregdomain = 0;
192 static struct ieee80211_roamparams_req roamparams;
193 static int gotroam = 0;
194 static struct ieee80211_txparams_req txparams;
195 static int gottxparams = 0;
196 static struct ieee80211_channel curchan;
197 static int gotcurchan = 0;
198 static struct ifmediareq *global_ifmr;
199 static int htconf = 0;
200 static	int gothtconf = 0;
201 
202 static void
203 gethtconf(if_ctx *ctx)
204 {
205 	if (gothtconf)
206 		return;
207 	if (get80211val(ctx, IEEE80211_IOC_HTCONF, &htconf) < 0)
208 		warn("unable to get HT configuration information");
209 	gothtconf = 1;
210 }
211 
212 /* VHT */
213 static int vhtconf = 0;
214 static	int gotvhtconf = 0;
215 
216 static void
217 getvhtconf(if_ctx *ctx)
218 {
219 	if (gotvhtconf)
220 		return;
221 	if (get80211val(ctx, IEEE80211_IOC_VHTCONF, &vhtconf) < 0)
222 		warn("unable to get VHT configuration information");
223 	gotvhtconf = 1;
224 }
225 
226 /*
227  * Collect channel info from the kernel.  We use this (mostly)
228  * to handle mapping between frequency and IEEE channel number.
229  */
230 static void
231 getchaninfo(if_ctx *ctx)
232 {
233 	if (chaninfo != NULL)
234 		return;
235 	chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN));
236 	if (chaninfo == NULL)
237 		errx(1, "no space for channel list");
238 	if (get80211(ctx, IEEE80211_IOC_CHANINFO, chaninfo,
239 	    IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0)
240 		err(1, "unable to get channel information");
241 	global_ifmr = ifmedia_getstate(ctx);
242 	gethtconf(ctx);
243 	getvhtconf(ctx);
244 }
245 
246 static struct regdata *
247 getregdata(void)
248 {
249 	static struct regdata *rdp = NULL;
250 	if (rdp == NULL) {
251 		rdp = lib80211_alloc_regdata();
252 		if (rdp == NULL)
253 			errx(-1, "missing or corrupted regdomain database");
254 	}
255 	return rdp;
256 }
257 
258 /*
259  * Given the channel at index i with attributes from,
260  * check if there is a channel with attributes to in
261  * the channel table.  With suitable attributes this
262  * allows the caller to look for promotion; e.g. from
263  * 11b > 11g.
264  */
265 static int
266 canpromote(unsigned int i, uint32_t from, uint32_t to)
267 {
268 	const struct ieee80211_channel *fc = &chaninfo->ic_chans[i];
269 	u_int j;
270 
271 	if ((fc->ic_flags & from) != from)
272 		return i;
273 	/* NB: quick check exploiting ordering of chans w/ same frequency */
274 	if (i+1 < chaninfo->ic_nchans &&
275 	    chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq &&
276 	    (chaninfo->ic_chans[i+1].ic_flags & to) == to)
277 		return i+1;
278 	/* brute force search in case channel list is not ordered */
279 	for (j = 0; j < chaninfo->ic_nchans; j++) {
280 		const struct ieee80211_channel *tc = &chaninfo->ic_chans[j];
281 		if (j != i &&
282 		    tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to)
283 		return j;
284 	}
285 	return i;
286 }
287 
288 /*
289  * Handle channel promotion.  When a channel is specified with
290  * only a frequency we want to promote it to the ``best'' channel
291  * available.  The channel list has separate entries for 11b, 11g,
292  * 11a, and 11n[ga] channels so specifying a frequency w/o any
293  * attributes requires we upgrade, e.g. from 11b -> 11g.  This
294  * gets complicated when the channel is specified on the same
295  * command line with a media request that constrains the available
296  * channe list (e.g. mode 11a); we want to honor that to avoid
297  * confusing behaviour.
298  */
299 /*
300  * XXX VHT
301  */
302 static int
303 promote(unsigned int i)
304 {
305 	/*
306 	 * Query the current mode of the interface in case it's
307 	 * constrained (e.g. to 11a).  We must do this carefully
308 	 * as there may be a pending ifmedia request in which case
309 	 * asking the kernel will give us the wrong answer.  This
310 	 * is an unfortunate side-effect of the way ifconfig is
311 	 * structure for modularity (yech).
312 	 *
313 	 * NB: ifmr is actually setup in getchaninfo (above); we
314 	 *     assume it's called coincident with to this call so
315 	 *     we have a ``current setting''; otherwise we must pass
316 	 *     the socket descriptor down to here so we can make
317 	 *     the ifmedia_getstate call ourselves.
318 	 */
319 	int chanmode = global_ifmr != NULL ? IFM_MODE(global_ifmr->ifm_current) : IFM_AUTO;
320 
321 	/* when ambiguous promote to ``best'' */
322 	/* NB: we abitrarily pick HT40+ over HT40- */
323 	if (chanmode != IFM_IEEE80211_11B)
324 		i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G);
325 	if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) {
326 		i = canpromote(i, IEEE80211_CHAN_G,
327 			IEEE80211_CHAN_G | IEEE80211_CHAN_HT20);
328 		if (htconf & 2) {
329 			i = canpromote(i, IEEE80211_CHAN_G,
330 				IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D);
331 			i = canpromote(i, IEEE80211_CHAN_G,
332 				IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U);
333 		}
334 	}
335 	if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) {
336 		i = canpromote(i, IEEE80211_CHAN_A,
337 			IEEE80211_CHAN_A | IEEE80211_CHAN_HT20);
338 		if (htconf & 2) {
339 			i = canpromote(i, IEEE80211_CHAN_A,
340 				IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D);
341 			i = canpromote(i, IEEE80211_CHAN_A,
342 				IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U);
343 		}
344 	}
345 	return i;
346 }
347 
348 static void
349 mapfreq(struct ieee80211_channel *chan, uint16_t freq, unsigned int flags)
350 {
351 	u_int i;
352 
353 	for (i = 0; i < chaninfo->ic_nchans; i++) {
354 		const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
355 
356 		if (c->ic_freq == freq && (c->ic_flags & flags) == flags) {
357 			if (flags == 0) {
358 				/* when ambiguous promote to ``best'' */
359 				c = &chaninfo->ic_chans[promote(i)];
360 			}
361 			*chan = *c;
362 			return;
363 		}
364 	}
365 	errx(1, "unknown/undefined frequency %u/0x%x", freq, flags);
366 }
367 
368 static void
369 mapchan(struct ieee80211_channel *chan, uint8_t ieee, unsigned int flags)
370 {
371 	u_int i;
372 
373 	for (i = 0; i < chaninfo->ic_nchans; i++) {
374 		const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
375 
376 		if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) {
377 			if (flags == 0) {
378 				/* when ambiguous promote to ``best'' */
379 				c = &chaninfo->ic_chans[promote(i)];
380 			}
381 			*chan = *c;
382 			return;
383 		}
384 	}
385 	errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags);
386 }
387 
388 static const struct ieee80211_channel *
389 getcurchan(if_ctx *ctx)
390 {
391 	if (gotcurchan)
392 		return &curchan;
393 	if (get80211(ctx, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) {
394 		int val;
395 		/* fall back to legacy ioctl */
396 		if (get80211val(ctx, IEEE80211_IOC_CHANNEL, &val) < 0)
397 			err(-1, "cannot figure out current channel");
398 		getchaninfo(ctx);
399 		mapchan(&curchan, val, 0);
400 	}
401 	gotcurchan = 1;
402 	return &curchan;
403 }
404 
405 static enum ieee80211_phymode
406 chan2mode(const struct ieee80211_channel *c)
407 {
408 	if (IEEE80211_IS_CHAN_VHTA(c))
409 		return IEEE80211_MODE_VHT_5GHZ;
410 	if (IEEE80211_IS_CHAN_VHTG(c))
411 		return IEEE80211_MODE_VHT_2GHZ;
412 	if (IEEE80211_IS_CHAN_HTA(c))
413 		return IEEE80211_MODE_11NA;
414 	if (IEEE80211_IS_CHAN_HTG(c))
415 		return IEEE80211_MODE_11NG;
416 	if (IEEE80211_IS_CHAN_108A(c))
417 		return IEEE80211_MODE_TURBO_A;
418 	if (IEEE80211_IS_CHAN_108G(c))
419 		return IEEE80211_MODE_TURBO_G;
420 	if (IEEE80211_IS_CHAN_ST(c))
421 		return IEEE80211_MODE_STURBO_A;
422 	if (IEEE80211_IS_CHAN_FHSS(c))
423 		return IEEE80211_MODE_FH;
424 	if (IEEE80211_IS_CHAN_HALF(c))
425 		return IEEE80211_MODE_HALF;
426 	if (IEEE80211_IS_CHAN_QUARTER(c))
427 		return IEEE80211_MODE_QUARTER;
428 	if (IEEE80211_IS_CHAN_A(c))
429 		return IEEE80211_MODE_11A;
430 	if (IEEE80211_IS_CHAN_ANYG(c))
431 		return IEEE80211_MODE_11G;
432 	if (IEEE80211_IS_CHAN_B(c))
433 		return IEEE80211_MODE_11B;
434 	return IEEE80211_MODE_AUTO;
435 }
436 
437 static void
438 getroam(if_ctx *ctx)
439 {
440 	if (gotroam)
441 		return;
442 	if (get80211(ctx, IEEE80211_IOC_ROAM,
443 	    &roamparams, sizeof(roamparams)) < 0)
444 		err(1, "unable to get roaming parameters");
445 	gotroam = 1;
446 }
447 
448 static void
449 setroam_cb(if_ctx *ctx, void *arg)
450 {
451 	struct ieee80211_roamparams_req *roam = arg;
452 	set80211(ctx, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam);
453 }
454 
455 static void
456 gettxparams(if_ctx *ctx)
457 {
458 	if (gottxparams)
459 		return;
460 	if (get80211(ctx, IEEE80211_IOC_TXPARAMS,
461 	    &txparams, sizeof(txparams)) < 0)
462 		err(1, "unable to get transmit parameters");
463 	gottxparams = 1;
464 }
465 
466 static void
467 settxparams_cb(if_ctx *ctx, void *arg)
468 {
469 	struct ieee80211_txparams_req *txp = arg;
470 	set80211(ctx, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp);
471 }
472 
473 static void
474 getregdomain(if_ctx *ctx)
475 {
476 	if (gotregdomain)
477 		return;
478 	if (get80211(ctx, IEEE80211_IOC_REGDOMAIN,
479 	    &regdomain, sizeof(regdomain)) < 0)
480 		err(1, "unable to get regulatory domain info");
481 	gotregdomain = 1;
482 }
483 
484 static void
485 getdevcaps(if_ctx *ctx, struct ieee80211_devcaps_req *dc)
486 {
487 	if (get80211(ctx, IEEE80211_IOC_DEVCAPS, dc,
488 	    IEEE80211_DEVCAPS_SPACE(dc)) < 0)
489 		err(1, "unable to get device capabilities");
490 }
491 
492 static void
493 setregdomain_cb(if_ctx *ctx, void *arg)
494 {
495 	struct ieee80211_regdomain_req *req;
496 	struct ieee80211_regdomain *rd = arg;
497 	struct ieee80211_devcaps_req *dc;
498 	struct regdata *rdp = getregdata();
499 
500 	if (rd->country != NO_COUNTRY) {
501 		const struct country *cc;
502 		/*
503 		 * Check current country seting to make sure it's
504 		 * compatible with the new regdomain.  If not, then
505 		 * override it with any default country for this
506 		 * SKU.  If we cannot arrange a match, then abort.
507 		 */
508 		cc = lib80211_country_findbycc(rdp, rd->country);
509 		if (cc == NULL)
510 			errx(1, "unknown ISO country code %d", rd->country);
511 		if (cc->rd->sku != rd->regdomain) {
512 			const struct regdomain *rp;
513 			/*
514 			 * Check if country is incompatible with regdomain.
515 			 * To enable multiple regdomains for a country code
516 			 * we permit a mismatch between the regdomain and
517 			 * the country's associated regdomain when the
518 			 * regdomain is setup w/o a default country.  For
519 			 * example, US is bound to the FCC regdomain but
520 			 * we allow US to be combined with FCC3 because FCC3
521 			 * has not default country.  This allows bogus
522 			 * combinations like FCC3+DK which are resolved when
523 			 * constructing the channel list by deferring to the
524 			 * regdomain to construct the channel list.
525 			 */
526 			rp = lib80211_regdomain_findbysku(rdp, rd->regdomain);
527 			if (rp == NULL)
528 				errx(1, "country %s (%s) is not usable with "
529 				    "regdomain %d", cc->isoname, cc->name,
530 				    rd->regdomain);
531 			else if (rp->cc != NULL && rp->cc != cc)
532 				errx(1, "country %s (%s) is not usable with "
533 				   "regdomain %s", cc->isoname, cc->name,
534 				   rp->name);
535 		}
536 	}
537 	/*
538 	 * Fetch the device capabilities and calculate the
539 	 * full set of netbands for which we request a new
540 	 * channel list be constructed.  Once that's done we
541 	 * push the regdomain info + channel list to the kernel.
542 	 */
543 	dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN));
544 	if (dc == NULL)
545 		errx(1, "no space for device capabilities");
546 	dc->dc_chaninfo.ic_nchans = MAXCHAN;
547 	getdevcaps(ctx, dc);
548 #if 0
549 	if (verbose) {
550 		printf("drivercaps: 0x%x\n", dc->dc_drivercaps);
551 		printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps);
552 		printf("htcaps    : 0x%x\n", dc->dc_htcaps);
553 		printf("vhtcaps   : 0x%x\n", dc->dc_vhtcaps);
554 #if 0
555 		memcpy(chaninfo, &dc->dc_chaninfo,
556 		    IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
557 		print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/);
558 #endif
559 	}
560 #endif
561 	req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans));
562 	if (req == NULL)
563 		errx(1, "no space for regdomain request");
564 	req->rd = *rd;
565 	regdomain_makechannels(ctx, req, dc);
566 	if (ctx->args->verbose) {
567 		LINE_INIT(':');
568 		print_regdomain(rd, 1/*verbose*/);
569 		LINE_BREAK();
570 		/* blech, reallocate channel list for new data */
571 		if (chaninfo != NULL)
572 			free(chaninfo);
573 		chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo));
574 		if (chaninfo == NULL)
575 			errx(1, "no space for channel list");
576 		memcpy(chaninfo, &req->chaninfo,
577 		    IEEE80211_CHANINFO_SPACE(&req->chaninfo));
578 		print_channels(ctx, &req->chaninfo, 1/*allchans*/, 1/*verbose*/);
579 	}
580 	if (req->chaninfo.ic_nchans == 0)
581 		errx(1, "no channels calculated");
582 	set80211(ctx, IEEE80211_IOC_REGDOMAIN, 0,
583 	    IEEE80211_REGDOMAIN_SPACE(req), req);
584 	free(req);
585 	free(dc);
586 }
587 
588 static int
589 ieee80211_mhz2ieee(int freq, int flags)
590 {
591 	struct ieee80211_channel chan;
592 	mapfreq(&chan, freq, flags);
593 	return chan.ic_ieee;
594 }
595 
596 static int
597 isanyarg(const char *arg)
598 {
599 	return (strncmp(arg, "-", 1) == 0 ||
600 	    strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0);
601 }
602 
603 static void
604 set80211ssid(if_ctx *ctx, const char *val, int dummy __unused)
605 {
606 	int		ssid;
607 	int		len;
608 	u_int8_t	data[IEEE80211_NWID_LEN];
609 
610 	ssid = 0;
611 	len = strlen(val);
612 	if (len > 2 && isdigit((int)val[0]) && val[1] == ':') {
613 		ssid = atoi(val)-1;
614 		val += 2;
615 	}
616 
617 	bzero(data, sizeof(data));
618 	len = sizeof(data);
619 	if (get_string(val, NULL, data, &len) == NULL)
620 		exit(1);
621 
622 	set80211(ctx, IEEE80211_IOC_SSID, ssid, len, data);
623 }
624 
625 static void
626 set80211meshid(if_ctx *ctx, const char *val, int dummy __unused)
627 {
628 	int		len;
629 	u_int8_t	data[IEEE80211_NWID_LEN];
630 
631 	memset(data, 0, sizeof(data));
632 	len = sizeof(data);
633 	if (get_string(val, NULL, data, &len) == NULL)
634 		exit(1);
635 
636 	set80211(ctx, IEEE80211_IOC_MESH_ID, 0, len, data);
637 }
638 
639 static void
640 set80211stationname(if_ctx *ctx, const char *val, int dummy __unused)
641 {
642 	int			len;
643 	u_int8_t		data[33];
644 
645 	bzero(data, sizeof(data));
646 	len = sizeof(data);
647 	get_string(val, NULL, data, &len);
648 
649 	set80211(ctx, IEEE80211_IOC_STATIONNAME, 0, len, data);
650 }
651 
652 /*
653  * Parse a channel specification for attributes/flags.
654  * The syntax is:
655  *	freq/xx		channel width (5,10,20,40,40+,40-)
656  *	freq:mode	channel mode (a,b,g,h,n,t,s,d)
657  *
658  * These can be combined in either order; e.g. 2437:ng/40.
659  * Modes are case insensitive.
660  *
661  * The result is not validated here; it's assumed to be
662  * checked against the channel table fetched from the kernel.
663  */
664 static unsigned int
665 getchannelflags(const char *val, int freq)
666 {
667 #define	_CHAN_HT	0x80000000
668 	const char *cp;
669 	int flags;
670 	int is_vht = 0;
671 
672 	flags = 0;
673 
674 	cp = strchr(val, ':');
675 	if (cp != NULL) {
676 		for (cp++; isalpha((int) *cp); cp++) {
677 			/* accept mixed case */
678 			int c = *cp;
679 			if (isupper(c))
680 				c = tolower(c);
681 			switch (c) {
682 			case 'a':		/* 802.11a */
683 				flags |= IEEE80211_CHAN_A;
684 				break;
685 			case 'b':		/* 802.11b */
686 				flags |= IEEE80211_CHAN_B;
687 				break;
688 			case 'g':		/* 802.11g */
689 				flags |= IEEE80211_CHAN_G;
690 				break;
691 			case 'v':		/* vht: 802.11ac */
692 				is_vht = 1;
693 				/* Fallthrough */
694 			case 'h':		/* ht = 802.11n */
695 			case 'n':		/* 802.11n */
696 				flags |= _CHAN_HT;	/* NB: private */
697 				break;
698 			case 'd':		/* dt = Atheros Dynamic Turbo */
699 				flags |= IEEE80211_CHAN_TURBO;
700 				break;
701 			case 't':		/* ht, dt, st, t */
702 				/* dt and unadorned t specify Dynamic Turbo */
703 				if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0)
704 					flags |= IEEE80211_CHAN_TURBO;
705 				break;
706 			case 's':		/* st = Atheros Static Turbo */
707 				flags |= IEEE80211_CHAN_STURBO;
708 				break;
709 			default:
710 				errx(-1, "%s: Invalid channel attribute %c\n",
711 				    val, *cp);
712 			}
713 		}
714 	}
715 	cp = strchr(val, '/');
716 	if (cp != NULL) {
717 		char *ep;
718 		u_long cw = strtoul(cp+1, &ep, 10);
719 
720 		switch (cw) {
721 		case 5:
722 			flags |= IEEE80211_CHAN_QUARTER;
723 			break;
724 		case 10:
725 			flags |= IEEE80211_CHAN_HALF;
726 			break;
727 		case 20:
728 			/* NB: this may be removed below */
729 			flags |= IEEE80211_CHAN_HT20;
730 			break;
731 		case 40:
732 		case 80:
733 		case 160:
734 			/* Handle the 80/160 VHT flag */
735 			if (cw == 80)
736 				flags |= IEEE80211_CHAN_VHT80;
737 			else if (cw == 160)
738 				flags |= IEEE80211_CHAN_VHT160;
739 
740 			/* Fallthrough */
741 			if (ep != NULL && *ep == '+')
742 				flags |= IEEE80211_CHAN_HT40U;
743 			else if (ep != NULL && *ep == '-')
744 				flags |= IEEE80211_CHAN_HT40D;
745 			break;
746 		default:
747 			errx(-1, "%s: Invalid channel width\n", val);
748 		}
749 	}
750 
751 	/*
752 	 * Cleanup specifications.
753 	 */
754 	if ((flags & _CHAN_HT) == 0) {
755 		/*
756 		 * If user specified freq/20 or freq/40 quietly remove
757 		 * HT cw attributes depending on channel use.  To give
758 		 * an explicit 20/40 width for an HT channel you must
759 		 * indicate it is an HT channel since all HT channels
760 		 * are also usable for legacy operation; e.g. freq:n/40.
761 		 */
762 		flags &= ~IEEE80211_CHAN_HT;
763 		flags &= ~IEEE80211_CHAN_VHT;
764 	} else {
765 		/*
766 		 * Remove private indicator that this is an HT channel
767 		 * and if no explicit channel width has been given
768 		 * provide the default settings.
769 		 */
770 		flags &= ~_CHAN_HT;
771 		if ((flags & IEEE80211_CHAN_HT) == 0) {
772 			struct ieee80211_channel chan;
773 			/*
774 			 * Consult the channel list to see if we can use
775 			 * HT40+ or HT40- (if both the map routines choose).
776 			 */
777 			if (freq > 255)
778 				mapfreq(&chan, freq, 0);
779 			else
780 				mapchan(&chan, freq, 0);
781 			flags |= (chan.ic_flags & IEEE80211_CHAN_HT);
782 		}
783 
784 		/*
785 		 * If VHT is enabled, then also set the VHT flag and the
786 		 * relevant channel up/down.
787 		 */
788 		if (is_vht && (flags & IEEE80211_CHAN_HT)) {
789 			/*
790 			 * XXX yes, maybe we should just have VHT, and reuse
791 			 * HT20/HT40U/HT40D
792 			 */
793 			if (flags & IEEE80211_CHAN_VHT80)
794 				;
795 			else if (flags & IEEE80211_CHAN_HT20)
796 				flags |= IEEE80211_CHAN_VHT20;
797 			else if (flags & IEEE80211_CHAN_HT40U)
798 				flags |= IEEE80211_CHAN_VHT40U;
799 			else if (flags & IEEE80211_CHAN_HT40D)
800 				flags |= IEEE80211_CHAN_VHT40D;
801 		}
802 	}
803 	return flags;
804 #undef _CHAN_HT
805 }
806 
807 static void
808 getchannel(if_ctx *ctx, struct ieee80211_channel *chan, const char *val)
809 {
810 	unsigned int v, flags;
811 	char *eptr;
812 
813 	memset(chan, 0, sizeof(*chan));
814 	if (isanyarg(val)) {
815 		chan->ic_freq = IEEE80211_CHAN_ANY;
816 		return;
817 	}
818 	getchaninfo(ctx);
819 	errno = 0;
820 	v = strtol(val, &eptr, 10);
821 	if (val[0] == '\0' || val == eptr || errno == ERANGE ||
822 	    /* channel may be suffixed with nothing, :flag, or /width */
823 	    (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/'))
824 		errx(1, "invalid channel specification%s",
825 		    errno == ERANGE ? " (out of range)" : "");
826 	flags = getchannelflags(val, v);
827 	if (v > 255) {		/* treat as frequency */
828 		mapfreq(chan, v, flags);
829 	} else {
830 		mapchan(chan, v, flags);
831 	}
832 }
833 
834 static void
835 set80211channel(if_ctx *ctx, const char *val, int dummy __unused)
836 {
837 	struct ieee80211_channel chan;
838 
839 	getchannel(ctx, &chan, val);
840 	set80211(ctx, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan);
841 }
842 
843 static void
844 set80211chanswitch(if_ctx *ctx, const char *val, int dummy __unused)
845 {
846 	struct ieee80211_chanswitch_req csr;
847 
848 	getchannel(ctx, &csr.csa_chan, val);
849 	csr.csa_mode = 1;
850 	csr.csa_count = 5;
851 	set80211(ctx, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr);
852 }
853 
854 static void
855 set80211authmode(if_ctx *ctx, const char *val, int dummy __unused)
856 {
857 	int	mode;
858 
859 	if (strcasecmp(val, "none") == 0) {
860 		mode = IEEE80211_AUTH_NONE;
861 	} else if (strcasecmp(val, "open") == 0) {
862 		mode = IEEE80211_AUTH_OPEN;
863 	} else if (strcasecmp(val, "shared") == 0) {
864 		mode = IEEE80211_AUTH_SHARED;
865 	} else if (strcasecmp(val, "8021x") == 0) {
866 		mode = IEEE80211_AUTH_8021X;
867 	} else if (strcasecmp(val, "wpa") == 0) {
868 		mode = IEEE80211_AUTH_WPA;
869 	} else {
870 		errx(1, "unknown authmode");
871 	}
872 
873 	set80211(ctx, IEEE80211_IOC_AUTHMODE, mode, 0, NULL);
874 }
875 
876 static void
877 set80211powersavemode(if_ctx *ctx, const char *val, int dummy __unused)
878 {
879 	int	mode;
880 
881 	if (strcasecmp(val, "off") == 0) {
882 		mode = IEEE80211_POWERSAVE_OFF;
883 	} else if (strcasecmp(val, "on") == 0) {
884 		mode = IEEE80211_POWERSAVE_ON;
885 	} else if (strcasecmp(val, "cam") == 0) {
886 		mode = IEEE80211_POWERSAVE_CAM;
887 	} else if (strcasecmp(val, "psp") == 0) {
888 		mode = IEEE80211_POWERSAVE_PSP;
889 	} else if (strcasecmp(val, "psp-cam") == 0) {
890 		mode = IEEE80211_POWERSAVE_PSP_CAM;
891 	} else {
892 		errx(1, "unknown powersavemode");
893 	}
894 
895 	set80211(ctx, IEEE80211_IOC_POWERSAVE, mode, 0, NULL);
896 }
897 
898 static void
899 set80211powersave(if_ctx *ctx, const char *val __unused, int d)
900 {
901 	if (d == 0)
902 		set80211(ctx, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF,
903 		    0, NULL);
904 	else
905 		set80211(ctx, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON,
906 		    0, NULL);
907 }
908 
909 static void
910 set80211powersavesleep(if_ctx *ctx, const char *val, int dummy __unused)
911 {
912 	set80211(ctx, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL);
913 }
914 
915 static void
916 set80211wepmode(if_ctx *ctx, const char *val, int dummy __unused)
917 {
918 	int	mode;
919 
920 	if (strcasecmp(val, "off") == 0) {
921 		mode = IEEE80211_WEP_OFF;
922 	} else if (strcasecmp(val, "on") == 0) {
923 		mode = IEEE80211_WEP_ON;
924 	} else if (strcasecmp(val, "mixed") == 0) {
925 		mode = IEEE80211_WEP_MIXED;
926 	} else {
927 		errx(1, "unknown wep mode");
928 	}
929 
930 	set80211(ctx, IEEE80211_IOC_WEP, mode, 0, NULL);
931 }
932 
933 static void
934 set80211wep(if_ctx *ctx, const char *val __unused, int d)
935 {
936 	set80211(ctx, IEEE80211_IOC_WEP, d, 0, NULL);
937 }
938 
939 static int
940 isundefarg(const char *arg)
941 {
942 	return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0);
943 }
944 
945 static void
946 set80211weptxkey(if_ctx *ctx, const char *val, int dummy __unused)
947 {
948 	if (isundefarg(val))
949 		set80211(ctx, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL);
950 	else
951 		set80211(ctx, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL);
952 }
953 
954 static void
955 set80211wepkey(if_ctx *ctx, const char *val, int dummy __unused)
956 {
957 	int		key = 0;
958 	int		len;
959 	u_int8_t	data[IEEE80211_KEYBUF_SIZE];
960 
961 	if (isdigit((int)val[0]) && val[1] == ':') {
962 		key = atoi(val)-1;
963 		val += 2;
964 	}
965 
966 	bzero(data, sizeof(data));
967 	len = sizeof(data);
968 	get_string(val, NULL, data, &len);
969 
970 	set80211(ctx, IEEE80211_IOC_WEPKEY, key, len, data);
971 }
972 
973 /*
974  * This function is purely a NetBSD compatibility interface.  The NetBSD
975  * interface is too inflexible, but it's there so we'll support it since
976  * it's not all that hard.
977  */
978 static void
979 set80211nwkey(if_ctx *ctx, const char *val, int dummy __unused)
980 {
981 	int		txkey;
982 	int		i, len;
983 	u_int8_t	data[IEEE80211_KEYBUF_SIZE];
984 
985 	set80211(ctx, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL);
986 
987 	if (isdigit((int)val[0]) && val[1] == ':') {
988 		txkey = val[0]-'0'-1;
989 		val += 2;
990 
991 		for (i = 0; i < 4; i++) {
992 			bzero(data, sizeof(data));
993 			len = sizeof(data);
994 			val = get_string(val, ",", data, &len);
995 			if (val == NULL)
996 				exit(1);
997 
998 			set80211(ctx, IEEE80211_IOC_WEPKEY, i, len, data);
999 		}
1000 	} else {
1001 		bzero(data, sizeof(data));
1002 		len = sizeof(data);
1003 		get_string(val, NULL, data, &len);
1004 		txkey = 0;
1005 
1006 		set80211(ctx, IEEE80211_IOC_WEPKEY, 0, len, data);
1007 
1008 		bzero(data, sizeof(data));
1009 		for (i = 1; i < 4; i++)
1010 			set80211(ctx, IEEE80211_IOC_WEPKEY, i, 0, data);
1011 	}
1012 
1013 	set80211(ctx, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL);
1014 }
1015 
1016 static void
1017 set80211rtsthreshold(if_ctx *ctx, const char *val, int dummy __unused)
1018 {
1019 	set80211(ctx, IEEE80211_IOC_RTSTHRESHOLD,
1020 		isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL);
1021 }
1022 
1023 static void
1024 set80211protmode(if_ctx *ctx, const char *val, int dummy __unused)
1025 {
1026 	int	mode;
1027 
1028 	if (strcasecmp(val, "off") == 0) {
1029 		mode = IEEE80211_PROTMODE_OFF;
1030 	} else if (strcasecmp(val, "cts") == 0) {
1031 		mode = IEEE80211_PROTMODE_CTS;
1032 	} else if (strncasecmp(val, "rtscts", 3) == 0) {
1033 		mode = IEEE80211_PROTMODE_RTSCTS;
1034 	} else {
1035 		errx(1, "unknown protection mode");
1036 	}
1037 
1038 	set80211(ctx, IEEE80211_IOC_PROTMODE, mode, 0, NULL);
1039 }
1040 
1041 static void
1042 set80211htprotmode(if_ctx *ctx, const char *val, int dummy __unused)
1043 {
1044 	int	mode;
1045 
1046 	if (strcasecmp(val, "off") == 0) {
1047 		mode = IEEE80211_PROTMODE_OFF;
1048 	} else if (strncasecmp(val, "rts", 3) == 0) {
1049 		mode = IEEE80211_PROTMODE_RTSCTS;
1050 	} else {
1051 		errx(1, "unknown protection mode");
1052 	}
1053 
1054 	set80211(ctx, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL);
1055 }
1056 
1057 static void
1058 set80211txpower(if_ctx *ctx, const char *val, int dummy __unused)
1059 {
1060 	double v = atof(val);
1061 	int txpow;
1062 
1063 	txpow = (int) (2*v);
1064 	if (txpow != 2*v)
1065 		errx(-1, "invalid tx power (must be .5 dBm units)");
1066 	set80211(ctx, IEEE80211_IOC_TXPOWER, txpow, 0, NULL);
1067 }
1068 
1069 #define	IEEE80211_ROAMING_DEVICE	0
1070 #define	IEEE80211_ROAMING_AUTO		1
1071 #define	IEEE80211_ROAMING_MANUAL	2
1072 
1073 static void
1074 set80211roaming(if_ctx *ctx, const char *val, int dummy __unused)
1075 {
1076 	int mode;
1077 
1078 	if (strcasecmp(val, "device") == 0) {
1079 		mode = IEEE80211_ROAMING_DEVICE;
1080 	} else if (strcasecmp(val, "auto") == 0) {
1081 		mode = IEEE80211_ROAMING_AUTO;
1082 	} else if (strcasecmp(val, "manual") == 0) {
1083 		mode = IEEE80211_ROAMING_MANUAL;
1084 	} else {
1085 		errx(1, "unknown roaming mode");
1086 	}
1087 	set80211(ctx, IEEE80211_IOC_ROAMING, mode, 0, NULL);
1088 }
1089 
1090 static void
1091 set80211wme(if_ctx *ctx, const char *val __unused, int d)
1092 {
1093 	set80211(ctx, IEEE80211_IOC_WME, d, 0, NULL);
1094 }
1095 
1096 static void
1097 set80211hidessid(if_ctx *ctx, const char *val __unused, int d)
1098 {
1099 	set80211(ctx, IEEE80211_IOC_HIDESSID, d, 0, NULL);
1100 }
1101 
1102 static void
1103 set80211apbridge(if_ctx *ctx, const char *val __unused, int d)
1104 {
1105 	set80211(ctx, IEEE80211_IOC_APBRIDGE, d, 0, NULL);
1106 }
1107 
1108 static void
1109 set80211fastframes(if_ctx *ctx, const char *val __unused, int d)
1110 {
1111 	set80211(ctx, IEEE80211_IOC_FF, d, 0, NULL);
1112 }
1113 
1114 static void
1115 set80211dturbo(if_ctx *ctx, const char *val __unused, int d)
1116 {
1117 	set80211(ctx, IEEE80211_IOC_TURBOP, d, 0, NULL);
1118 }
1119 
1120 static void
1121 set80211chanlist(if_ctx *ctx, const char *val, int dummy __unused)
1122 {
1123 	struct ieee80211req_chanlist chanlist;
1124 	char *temp, *cp, *tp;
1125 
1126 	temp = malloc(strlen(val) + 1);
1127 	if (temp == NULL)
1128 		errx(1, "malloc failed");
1129 	strcpy(temp, val);
1130 	memset(&chanlist, 0, sizeof(chanlist));
1131 	cp = temp;
1132 	for (;;) {
1133 		int first, last, f, c;
1134 
1135 		tp = strchr(cp, ',');
1136 		if (tp != NULL)
1137 			*tp++ = '\0';
1138 		switch (sscanf(cp, "%u-%u", &first, &last)) {
1139 		case 1:
1140 			if (first > IEEE80211_CHAN_MAX)
1141 				errx(-1, "channel %u out of range, max %u",
1142 					first, IEEE80211_CHAN_MAX);
1143 			setbit(chanlist.ic_channels, first);
1144 			break;
1145 		case 2:
1146 			if (first > IEEE80211_CHAN_MAX)
1147 				errx(-1, "channel %u out of range, max %u",
1148 					first, IEEE80211_CHAN_MAX);
1149 			if (last > IEEE80211_CHAN_MAX)
1150 				errx(-1, "channel %u out of range, max %u",
1151 					last, IEEE80211_CHAN_MAX);
1152 			if (first > last)
1153 				errx(-1, "void channel range, %u > %u",
1154 					first, last);
1155 			for (f = first; f <= last; f++)
1156 				setbit(chanlist.ic_channels, f);
1157 			break;
1158 		}
1159 		if (tp == NULL)
1160 			break;
1161 		c = *tp;
1162 		while (isspace(c))
1163 			tp++;
1164 		if (!isdigit(c))
1165 			break;
1166 		cp = tp;
1167 	}
1168 	set80211(ctx, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist);
1169 	free(temp);
1170 }
1171 
1172 static void
1173 set80211bssid(if_ctx *ctx, const char *val, int dummy __unused)
1174 {
1175 	if (!isanyarg(val)) {
1176 		char *temp;
1177 		struct sockaddr_dl sdl;
1178 
1179 		temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1180 		if (temp == NULL)
1181 			errx(1, "malloc failed");
1182 		temp[0] = ':';
1183 		strcpy(temp + 1, val);
1184 		sdl.sdl_len = sizeof(sdl);
1185 		link_addr(temp, &sdl);
1186 		free(temp);
1187 		if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1188 			errx(1, "malformed link-level address");
1189 		set80211(ctx, IEEE80211_IOC_BSSID, 0,
1190 			IEEE80211_ADDR_LEN, LLADDR(&sdl));
1191 	} else {
1192 		uint8_t zerobssid[IEEE80211_ADDR_LEN];
1193 		memset(zerobssid, 0, sizeof(zerobssid));
1194 		set80211(ctx, IEEE80211_IOC_BSSID, 0,
1195 			IEEE80211_ADDR_LEN, zerobssid);
1196 	}
1197 }
1198 
1199 static int
1200 getac(const char *ac)
1201 {
1202 	if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0)
1203 		return WME_AC_BE;
1204 	if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0)
1205 		return WME_AC_BK;
1206 	if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0)
1207 		return WME_AC_VI;
1208 	if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0)
1209 		return WME_AC_VO;
1210 	errx(1, "unknown wme access class %s", ac);
1211 }
1212 
1213 static void
1214 set80211cwmin(if_ctx *ctx, const char *ac, const char *val)
1215 {
1216 	set80211(ctx, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL);
1217 }
1218 
1219 static void
1220 set80211cwmax(if_ctx *ctx, const char *ac, const char *val)
1221 {
1222 	set80211(ctx, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL);
1223 }
1224 
1225 static void
1226 set80211aifs(if_ctx *ctx, const char *ac, const char *val)
1227 {
1228 	set80211(ctx, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL);
1229 }
1230 
1231 static void
1232 set80211txoplimit(if_ctx *ctx, const char *ac, const char *val)
1233 {
1234 	set80211(ctx, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL);
1235 }
1236 
1237 static void
1238 set80211acm(if_ctx *ctx, const char *ac, int dummy __unused)
1239 {
1240 	set80211(ctx, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL);
1241 }
1242 
1243 static void
1244 set80211noacm(if_ctx *ctx, const char *ac, int dummy __unused)
1245 {
1246 	set80211(ctx, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL);
1247 }
1248 
1249 static void
1250 set80211ackpolicy(if_ctx *ctx, const char *ac, int dummy __unused)
1251 {
1252 	set80211(ctx, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL);
1253 }
1254 static void
1255 set80211noackpolicy(if_ctx *ctx, const char *ac, int dummy __unused)
1256 {
1257 	set80211(ctx, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL);
1258 }
1259 
1260 static void
1261 set80211bsscwmin(if_ctx *ctx, const char *ac, const char *val)
1262 {
1263 	set80211(ctx, IEEE80211_IOC_WME_CWMIN, atoi(val),
1264 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1265 }
1266 
1267 static void
1268 set80211bsscwmax(if_ctx *ctx, const char *ac, const char *val)
1269 {
1270 	set80211(ctx, IEEE80211_IOC_WME_CWMAX, atoi(val),
1271 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1272 }
1273 
1274 static void
1275 set80211bssaifs(if_ctx *ctx, const char *ac, const char *val)
1276 {
1277 	set80211(ctx, IEEE80211_IOC_WME_AIFS, atoi(val),
1278 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1279 }
1280 
1281 static void
1282 set80211bsstxoplimit(if_ctx *ctx, const char *ac, const char *val)
1283 {
1284 	set80211(ctx, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val),
1285 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1286 }
1287 
1288 static void
1289 set80211dtimperiod(if_ctx *ctx, const char *val, int dummy __unused)
1290 {
1291 	set80211(ctx, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL);
1292 }
1293 
1294 static void
1295 set80211bintval(if_ctx *ctx, const char *val, int dummy __unused)
1296 {
1297 	set80211(ctx, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL);
1298 }
1299 
1300 static void
1301 set80211macmac(if_ctx *ctx, int op, const char *val)
1302 {
1303 	char *temp;
1304 	struct sockaddr_dl sdl;
1305 
1306 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1307 	if (temp == NULL)
1308 		errx(1, "malloc failed");
1309 	temp[0] = ':';
1310 	strcpy(temp + 1, val);
1311 	sdl.sdl_len = sizeof(sdl);
1312 	link_addr(temp, &sdl);
1313 	free(temp);
1314 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1315 		errx(1, "malformed link-level address");
1316 	set80211(ctx, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl));
1317 }
1318 
1319 static void
1320 set80211addmac(if_ctx *ctx, const char *val, int dummy __unused)
1321 {
1322 	set80211macmac(ctx, IEEE80211_IOC_ADDMAC, val);
1323 }
1324 
1325 static void
1326 set80211delmac(if_ctx *ctx, const char *val, int dummy __unused)
1327 {
1328 	set80211macmac(ctx, IEEE80211_IOC_DELMAC, val);
1329 }
1330 
1331 static void
1332 set80211kickmac(if_ctx *ctx, const char *val, int dummy __unused)
1333 {
1334 	char *temp;
1335 	struct sockaddr_dl sdl;
1336 	struct ieee80211req_mlme mlme;
1337 
1338 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1339 	if (temp == NULL)
1340 		errx(1, "malloc failed");
1341 	temp[0] = ':';
1342 	strcpy(temp + 1, val);
1343 	sdl.sdl_len = sizeof(sdl);
1344 	link_addr(temp, &sdl);
1345 	free(temp);
1346 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1347 		errx(1, "malformed link-level address");
1348 	memset(&mlme, 0, sizeof(mlme));
1349 	mlme.im_op = IEEE80211_MLME_DEAUTH;
1350 	mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE;
1351 	memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN);
1352 	set80211(ctx, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme);
1353 }
1354 
1355 static void
1356 set80211maccmd(if_ctx *ctx, const char *val __unused, int d)
1357 {
1358 	set80211(ctx, IEEE80211_IOC_MACCMD, d, 0, NULL);
1359 }
1360 
1361 static void
1362 set80211meshrtmac(if_ctx *ctx, int req, const char *val)
1363 {
1364 	char *temp;
1365 	struct sockaddr_dl sdl;
1366 
1367 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1368 	if (temp == NULL)
1369 		errx(1, "malloc failed");
1370 	temp[0] = ':';
1371 	strcpy(temp + 1, val);
1372 	sdl.sdl_len = sizeof(sdl);
1373 	link_addr(temp, &sdl);
1374 	free(temp);
1375 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1376 		errx(1, "malformed link-level address");
1377 	set80211(ctx, IEEE80211_IOC_MESH_RTCMD, req,
1378 	    IEEE80211_ADDR_LEN, LLADDR(&sdl));
1379 }
1380 
1381 static void
1382 set80211addmeshrt(if_ctx *ctx, const char *val, int dummy __unused)
1383 {
1384 	set80211meshrtmac(ctx, IEEE80211_MESH_RTCMD_ADD, val);
1385 }
1386 
1387 static void
1388 set80211delmeshrt(if_ctx *ctx, const char *val, int dummy __unused)
1389 {
1390 	set80211meshrtmac(ctx, IEEE80211_MESH_RTCMD_DELETE, val);
1391 }
1392 
1393 static void
1394 set80211meshrtcmd(if_ctx *ctx, const char *val __unused, int d)
1395 {
1396 	set80211(ctx, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL);
1397 }
1398 
1399 static void
1400 set80211hwmprootmode(if_ctx *ctx, const char *val, int dummy __unused)
1401 {
1402 	int mode;
1403 
1404 	if (strcasecmp(val, "normal") == 0)
1405 		mode = IEEE80211_HWMP_ROOTMODE_NORMAL;
1406 	else if (strcasecmp(val, "proactive") == 0)
1407 		mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE;
1408 	else if (strcasecmp(val, "rann") == 0)
1409 		mode = IEEE80211_HWMP_ROOTMODE_RANN;
1410 	else
1411 		mode = IEEE80211_HWMP_ROOTMODE_DISABLED;
1412 	set80211(ctx, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL);
1413 }
1414 
1415 static void
1416 set80211hwmpmaxhops(if_ctx *ctx, const char *val, int dummy __unused)
1417 {
1418 	set80211(ctx, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL);
1419 }
1420 
1421 static void
1422 set80211pureg(if_ctx *ctx, const char *val __unused, int d)
1423 {
1424 	set80211(ctx, IEEE80211_IOC_PUREG, d, 0, NULL);
1425 }
1426 
1427 static void
1428 set80211quiet(if_ctx *ctx, const char *val __unused, int d)
1429 {
1430 	set80211(ctx, IEEE80211_IOC_QUIET, d, 0, NULL);
1431 }
1432 
1433 static void
1434 set80211quietperiod(if_ctx *ctx, const char *val, int dummy __unused)
1435 {
1436 	set80211(ctx, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL);
1437 }
1438 
1439 static void
1440 set80211quietcount(if_ctx *ctx, const char *val, int dummy __unused)
1441 {
1442 	set80211(ctx, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL);
1443 }
1444 
1445 static void
1446 set80211quietduration(if_ctx *ctx, const char *val, int dummy __unused)
1447 {
1448 	set80211(ctx, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL);
1449 }
1450 
1451 static void
1452 set80211quietoffset(if_ctx *ctx, const char *val, int dummy __unused)
1453 {
1454 	set80211(ctx, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL);
1455 }
1456 
1457 static void
1458 set80211bgscan(if_ctx *ctx, const char *val __unused, int d)
1459 {
1460 	set80211(ctx, IEEE80211_IOC_BGSCAN, d, 0, NULL);
1461 }
1462 
1463 static void
1464 set80211bgscanidle(if_ctx *ctx, const char *val, int dummy __unused)
1465 {
1466 	set80211(ctx, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL);
1467 }
1468 
1469 static void
1470 set80211bgscanintvl(if_ctx *ctx, const char *val, int dummy __unused)
1471 {
1472 	set80211(ctx, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL);
1473 }
1474 
1475 static void
1476 set80211scanvalid(if_ctx *ctx, const char *val, int dummy __unused)
1477 {
1478 	set80211(ctx, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL);
1479 }
1480 
1481 /*
1482  * Parse an optional trailing specification of which netbands
1483  * to apply a parameter to.  This is basically the same syntax
1484  * as used for channels but you can concatenate to specify
1485  * multiple.  For example:
1486  *	14:abg		apply to 11a, 11b, and 11g
1487  *	6:ht		apply to 11na and 11ng
1488  * We don't make a big effort to catch silly things; this is
1489  * really a convenience mechanism.
1490  */
1491 static int
1492 getmodeflags(const char *val)
1493 {
1494 	const char *cp;
1495 	int flags;
1496 
1497 	flags = 0;
1498 
1499 	cp = strchr(val, ':');
1500 	if (cp != NULL) {
1501 		for (cp++; isalpha((int) *cp); cp++) {
1502 			/* accept mixed case */
1503 			int c = *cp;
1504 			if (isupper(c))
1505 				c = tolower(c);
1506 			switch (c) {
1507 			case 'a':		/* 802.11a */
1508 				flags |= IEEE80211_CHAN_A;
1509 				break;
1510 			case 'b':		/* 802.11b */
1511 				flags |= IEEE80211_CHAN_B;
1512 				break;
1513 			case 'g':		/* 802.11g */
1514 				flags |= IEEE80211_CHAN_G;
1515 				break;
1516 			case 'n':		/* 802.11n */
1517 				flags |= IEEE80211_CHAN_HT;
1518 				break;
1519 			case 'd':		/* dt = Atheros Dynamic Turbo */
1520 				flags |= IEEE80211_CHAN_TURBO;
1521 				break;
1522 			case 't':		/* ht, dt, st, t */
1523 				/* dt and unadorned t specify Dynamic Turbo */
1524 				if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0)
1525 					flags |= IEEE80211_CHAN_TURBO;
1526 				break;
1527 			case 's':		/* st = Atheros Static Turbo */
1528 				flags |= IEEE80211_CHAN_STURBO;
1529 				break;
1530 			case 'h':		/* 1/2-width channels */
1531 				flags |= IEEE80211_CHAN_HALF;
1532 				break;
1533 			case 'q':		/* 1/4-width channels */
1534 				flags |= IEEE80211_CHAN_QUARTER;
1535 				break;
1536 			case 'v':
1537 				/* XXX set HT too? */
1538 				flags |= IEEE80211_CHAN_VHT;
1539 				break;
1540 			default:
1541 				errx(-1, "%s: Invalid mode attribute %c\n",
1542 				    val, *cp);
1543 			}
1544 		}
1545 	}
1546 	return flags;
1547 }
1548 
1549 #define	_APPLY(_flags, _base, _param, _v) do {				\
1550     if (_flags & IEEE80211_CHAN_HT) {					\
1551 	    if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1552 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1553 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1554 	    } else if (_flags & IEEE80211_CHAN_5GHZ)			\
1555 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1556 	    else							\
1557 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1558     }									\
1559     if (_flags & IEEE80211_CHAN_TURBO) {				\
1560 	    if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1561 		    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;	\
1562 		    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;	\
1563 	    } else if (_flags & IEEE80211_CHAN_5GHZ)			\
1564 		    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;	\
1565 	    else							\
1566 		    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;	\
1567     }									\
1568     if (_flags & IEEE80211_CHAN_STURBO)					\
1569 	    _base.params[IEEE80211_MODE_STURBO_A]._param = _v;		\
1570     if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)		\
1571 	    _base.params[IEEE80211_MODE_11A]._param = _v;		\
1572     if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)		\
1573 	    _base.params[IEEE80211_MODE_11G]._param = _v;		\
1574     if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)		\
1575 	    _base.params[IEEE80211_MODE_11B]._param = _v;		\
1576     if (_flags & IEEE80211_CHAN_HALF)					\
1577 	    _base.params[IEEE80211_MODE_HALF]._param = _v;		\
1578     if (_flags & IEEE80211_CHAN_QUARTER)				\
1579 	    _base.params[IEEE80211_MODE_QUARTER]._param = _v;		\
1580 } while (0)
1581 #define	_APPLY1(_flags, _base, _param, _v) do {				\
1582     if (_flags & IEEE80211_CHAN_HT) {					\
1583 	    if (_flags & IEEE80211_CHAN_5GHZ)				\
1584 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1585 	    else							\
1586 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1587     } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A)	\
1588 	    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;		\
1589     else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G)	\
1590 	    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;		\
1591     else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST)		\
1592 	    _base.params[IEEE80211_MODE_STURBO_A]._param = _v;		\
1593     else if (_flags & IEEE80211_CHAN_HALF)				\
1594 	    _base.params[IEEE80211_MODE_HALF]._param = _v;		\
1595     else if (_flags & IEEE80211_CHAN_QUARTER)				\
1596 	    _base.params[IEEE80211_MODE_QUARTER]._param = _v;		\
1597     else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)		\
1598 	    _base.params[IEEE80211_MODE_11A]._param = _v;		\
1599     else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)		\
1600 	    _base.params[IEEE80211_MODE_11G]._param = _v;		\
1601     else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)		\
1602 	    _base.params[IEEE80211_MODE_11B]._param = _v;		\
1603 } while (0)
1604 #define	_APPLY_RATE(_flags, _base, _param, _v) do {			\
1605     if (_flags & IEEE80211_CHAN_HT) {					\
1606 	(_v) = (_v / 2) | IEEE80211_RATE_MCS;				\
1607     }									\
1608     _APPLY(_flags, _base, _param, _v);					\
1609 } while (0)
1610 #define	_APPLY_RATE1(_flags, _base, _param, _v) do {			\
1611     if (_flags & IEEE80211_CHAN_HT) {					\
1612 	(_v) = (_v / 2) | IEEE80211_RATE_MCS;				\
1613     }									\
1614     _APPLY1(_flags, _base, _param, _v);					\
1615 } while (0)
1616 
1617 static void
1618 set80211roamrssi(if_ctx *ctx, const char *val, int dummy __unused)
1619 {
1620 	double v = atof(val);
1621 	int rssi, flags;
1622 
1623 	rssi = (int) (2*v);
1624 	if (rssi != 2*v)
1625 		errx(-1, "invalid rssi (must be .5 dBm units)");
1626 	flags = getmodeflags(val);
1627 	getroam(ctx);
1628 	if (flags == 0) {		/* NB: no flags => current channel */
1629 		flags = getcurchan(ctx)->ic_flags;
1630 		_APPLY1(flags, roamparams, rssi, rssi);
1631 	} else
1632 		_APPLY(flags, roamparams, rssi, rssi);
1633 	callback_register(setroam_cb, &roamparams);
1634 }
1635 
1636 static int
1637 getrate(const char *val, const char *tag)
1638 {
1639 	double v = atof(val);
1640 	int rate;
1641 
1642 	rate = (int) (2*v);
1643 	if (rate != 2*v)
1644 		errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag);
1645 	return rate;		/* NB: returns 2x the specified value */
1646 }
1647 
1648 static void
1649 set80211roamrate(if_ctx *ctx, const char *val, int dummy __unused)
1650 {
1651 	int rate, flags;
1652 
1653 	rate = getrate(val, "roam");
1654 	flags = getmodeflags(val);
1655 	getroam(ctx);
1656 	if (flags == 0) {		/* NB: no flags => current channel */
1657 		flags = getcurchan(ctx)->ic_flags;
1658 		_APPLY_RATE1(flags, roamparams, rate, rate);
1659 	} else
1660 		_APPLY_RATE(flags, roamparams, rate, rate);
1661 	callback_register(setroam_cb, &roamparams);
1662 }
1663 
1664 static void
1665 set80211mcastrate(if_ctx *ctx, const char *val, int dummy __unused)
1666 {
1667 	int rate, flags;
1668 
1669 	rate = getrate(val, "mcast");
1670 	flags = getmodeflags(val);
1671 	gettxparams(ctx);
1672 	if (flags == 0) {		/* NB: no flags => current channel */
1673 		flags = getcurchan(ctx)->ic_flags;
1674 		_APPLY_RATE1(flags, txparams, mcastrate, rate);
1675 	} else
1676 		_APPLY_RATE(flags, txparams, mcastrate, rate);
1677 	callback_register(settxparams_cb, &txparams);
1678 }
1679 
1680 static void
1681 set80211mgtrate(if_ctx *ctx, const char *val, int dummy __unused)
1682 {
1683 	int rate, flags;
1684 
1685 	rate = getrate(val, "mgmt");
1686 	flags = getmodeflags(val);
1687 	gettxparams(ctx);
1688 	if (flags == 0) {		/* NB: no flags => current channel */
1689 		flags = getcurchan(ctx)->ic_flags;
1690 		_APPLY_RATE1(flags, txparams, mgmtrate, rate);
1691 	} else
1692 		_APPLY_RATE(flags, txparams, mgmtrate, rate);
1693 	callback_register(settxparams_cb, &txparams);
1694 }
1695 
1696 static void
1697 set80211ucastrate(if_ctx *ctx, const char *val, int dummy __unused)
1698 {
1699 	int flags;
1700 
1701 	gettxparams(ctx);
1702 	flags = getmodeflags(val);
1703 	if (isanyarg(val)) {
1704 		if (flags == 0) {	/* NB: no flags => current channel */
1705 			flags = getcurchan(ctx)->ic_flags;
1706 			_APPLY1(flags, txparams, ucastrate,
1707 			    IEEE80211_FIXED_RATE_NONE);
1708 		} else
1709 			_APPLY(flags, txparams, ucastrate,
1710 			    IEEE80211_FIXED_RATE_NONE);
1711 	} else {
1712 		int rate = getrate(val, "ucast");
1713 		if (flags == 0) {	/* NB: no flags => current channel */
1714 			flags = getcurchan(ctx)->ic_flags;
1715 			_APPLY_RATE1(flags, txparams, ucastrate, rate);
1716 		} else
1717 			_APPLY_RATE(flags, txparams, ucastrate, rate);
1718 	}
1719 	callback_register(settxparams_cb, &txparams);
1720 }
1721 
1722 static void
1723 set80211maxretry(if_ctx *ctx, const char *val, int dummy __unused)
1724 {
1725 	int v = atoi(val), flags;
1726 
1727 	flags = getmodeflags(val);
1728 	gettxparams(ctx);
1729 	if (flags == 0) {		/* NB: no flags => current channel */
1730 		flags = getcurchan(ctx)->ic_flags;
1731 		_APPLY1(flags, txparams, maxretry, v);
1732 	} else
1733 		_APPLY(flags, txparams, maxretry, v);
1734 	callback_register(settxparams_cb, &txparams);
1735 }
1736 #undef _APPLY_RATE
1737 #undef _APPLY
1738 
1739 static void
1740 set80211fragthreshold(if_ctx *ctx, const char *val, int dummy __unused)
1741 {
1742 	set80211(ctx, IEEE80211_IOC_FRAGTHRESHOLD,
1743 		isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL);
1744 }
1745 
1746 static void
1747 set80211bmissthreshold(if_ctx *ctx, const char *val, int dummy __unused)
1748 {
1749 	set80211(ctx, IEEE80211_IOC_BMISSTHRESHOLD,
1750 		isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL);
1751 }
1752 
1753 static void
1754 set80211burst(if_ctx *ctx, const char *val __unused, int d)
1755 {
1756 	set80211(ctx, IEEE80211_IOC_BURST, d, 0, NULL);
1757 }
1758 
1759 static void
1760 set80211doth(if_ctx *ctx, const char *val __unused, int d)
1761 {
1762 	set80211(ctx, IEEE80211_IOC_DOTH, d, 0, NULL);
1763 }
1764 
1765 static void
1766 set80211dfs(if_ctx *ctx, const char *val __unused, int d)
1767 {
1768 	set80211(ctx, IEEE80211_IOC_DFS, d, 0, NULL);
1769 }
1770 
1771 static void
1772 set80211shortgi(if_ctx *ctx, const char *val __unused, int d)
1773 {
1774 	set80211(ctx, IEEE80211_IOC_SHORTGI,
1775 		d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0,
1776 		0, NULL);
1777 }
1778 
1779 /* XXX 11ac density/size is different */
1780 static void
1781 set80211ampdu(if_ctx *ctx, const char *val __unused, int d)
1782 {
1783 	int ampdu;
1784 
1785 	if (get80211val(ctx, IEEE80211_IOC_AMPDU, &ampdu) < 0)
1786 		errx(-1, "cannot set AMPDU setting");
1787 	if (d < 0) {
1788 		d = -d;
1789 		ampdu &= ~d;
1790 	} else
1791 		ampdu |= d;
1792 	set80211(ctx, IEEE80211_IOC_AMPDU, ampdu, 0, NULL);
1793 }
1794 
1795 static void
1796 set80211stbc(if_ctx *ctx, const char *val __unused, int d)
1797 {
1798 	int stbc;
1799 
1800 	if (get80211val(ctx, IEEE80211_IOC_STBC, &stbc) < 0)
1801 		errx(-1, "cannot set STBC setting");
1802 	if (d < 0) {
1803 		d = -d;
1804 		stbc &= ~d;
1805 	} else
1806 		stbc |= d;
1807 	set80211(ctx, IEEE80211_IOC_STBC, stbc, 0, NULL);
1808 }
1809 
1810 static void
1811 set80211ldpc(if_ctx *ctx, const char *val __unused, int d)
1812 {
1813         int ldpc;
1814 
1815         if (get80211val(ctx, IEEE80211_IOC_LDPC, &ldpc) < 0)
1816                 errx(-1, "cannot set LDPC setting");
1817         if (d < 0) {
1818                 d = -d;
1819                 ldpc &= ~d;
1820         } else
1821                 ldpc |= d;
1822         set80211(ctx, IEEE80211_IOC_LDPC, ldpc, 0, NULL);
1823 }
1824 
1825 static void
1826 set80211uapsd(if_ctx *ctx, const char *val __unused, int d)
1827 {
1828 	set80211(ctx, IEEE80211_IOC_UAPSD, d, 0, NULL);
1829 }
1830 
1831 static void
1832 set80211ampdulimit(if_ctx *ctx, const char *val, int dummy __unused)
1833 {
1834 	int v;
1835 
1836 	switch (atoi(val)) {
1837 	case 8:
1838 	case 8*1024:
1839 		v = IEEE80211_HTCAP_MAXRXAMPDU_8K;
1840 		break;
1841 	case 16:
1842 	case 16*1024:
1843 		v = IEEE80211_HTCAP_MAXRXAMPDU_16K;
1844 		break;
1845 	case 32:
1846 	case 32*1024:
1847 		v = IEEE80211_HTCAP_MAXRXAMPDU_32K;
1848 		break;
1849 	case 64:
1850 	case 64*1024:
1851 		v = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1852 		break;
1853 	default:
1854 		errx(-1, "invalid A-MPDU limit %s", val);
1855 	}
1856 	set80211(ctx, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL);
1857 }
1858 
1859 /* XXX 11ac density/size is different */
1860 static void
1861 set80211ampdudensity(if_ctx *ctx, const char *val, int dummy __unused)
1862 {
1863 	int v;
1864 
1865 	if (isanyarg(val) || strcasecmp(val, "na") == 0)
1866 		v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1867 	else switch ((int)(atof(val)*4)) {
1868 	case 0:
1869 		v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1870 		break;
1871 	case 1:
1872 		v = IEEE80211_HTCAP_MPDUDENSITY_025;
1873 		break;
1874 	case 2:
1875 		v = IEEE80211_HTCAP_MPDUDENSITY_05;
1876 		break;
1877 	case 4:
1878 		v = IEEE80211_HTCAP_MPDUDENSITY_1;
1879 		break;
1880 	case 8:
1881 		v = IEEE80211_HTCAP_MPDUDENSITY_2;
1882 		break;
1883 	case 16:
1884 		v = IEEE80211_HTCAP_MPDUDENSITY_4;
1885 		break;
1886 	case 32:
1887 		v = IEEE80211_HTCAP_MPDUDENSITY_8;
1888 		break;
1889 	case 64:
1890 		v = IEEE80211_HTCAP_MPDUDENSITY_16;
1891 		break;
1892 	default:
1893 		errx(-1, "invalid A-MPDU density %s", val);
1894 	}
1895 	set80211(ctx, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL);
1896 }
1897 
1898 static void
1899 set80211amsdu(if_ctx *ctx, const char *val __unused, int d)
1900 {
1901 	int amsdu;
1902 
1903 	if (get80211val(ctx, IEEE80211_IOC_AMSDU, &amsdu) < 0)
1904 		err(-1, "cannot get AMSDU setting");
1905 	if (d < 0) {
1906 		d = -d;
1907 		amsdu &= ~d;
1908 	} else
1909 		amsdu |= d;
1910 	set80211(ctx, IEEE80211_IOC_AMSDU, amsdu, 0, NULL);
1911 }
1912 
1913 static void
1914 set80211amsdulimit(if_ctx *ctx, const char *val, int dummy __unused)
1915 {
1916 	set80211(ctx, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL);
1917 }
1918 
1919 static void
1920 set80211puren(if_ctx *ctx, const char *val __unused, int d)
1921 {
1922 	set80211(ctx, IEEE80211_IOC_PUREN, d, 0, NULL);
1923 }
1924 
1925 static void
1926 set80211htcompat(if_ctx *ctx, const char *val __unused, int d)
1927 {
1928 	set80211(ctx, IEEE80211_IOC_HTCOMPAT, d, 0, NULL);
1929 }
1930 
1931 static void
1932 set80211htconf(if_ctx *ctx, const char *val __unused, int d)
1933 {
1934 	set80211(ctx, IEEE80211_IOC_HTCONF, d, 0, NULL);
1935 	htconf = d;
1936 }
1937 
1938 static void
1939 set80211dwds(if_ctx *ctx, const char *val __unused, int d)
1940 {
1941 	set80211(ctx, IEEE80211_IOC_DWDS, d, 0, NULL);
1942 }
1943 
1944 static void
1945 set80211inact(if_ctx *ctx, const char *val __unused, int d)
1946 {
1947 	set80211(ctx, IEEE80211_IOC_INACTIVITY, d, 0, NULL);
1948 }
1949 
1950 static void
1951 set80211tsn(if_ctx *ctx, const char *val __unused, int d)
1952 {
1953 	set80211(ctx, IEEE80211_IOC_TSN, d, 0, NULL);
1954 }
1955 
1956 static void
1957 set80211dotd(if_ctx *ctx, const char *val __unused, int d)
1958 {
1959 	set80211(ctx, IEEE80211_IOC_DOTD, d, 0, NULL);
1960 }
1961 
1962 static void
1963 set80211smps(if_ctx *ctx, const char *val __unused, int d)
1964 {
1965 	set80211(ctx, IEEE80211_IOC_SMPS, d, 0, NULL);
1966 }
1967 
1968 static void
1969 set80211rifs(if_ctx *ctx, const char *val __unused, int d)
1970 {
1971 	set80211(ctx, IEEE80211_IOC_RIFS, d, 0, NULL);
1972 }
1973 
1974 static void
1975 set80211vhtconf(if_ctx *ctx, const char *val __unused, int d)
1976 {
1977 	if (get80211val(ctx, IEEE80211_IOC_VHTCONF, &vhtconf) < 0)
1978 		errx(-1, "cannot set VHT setting");
1979 	printf("%s: vhtconf=0x%08x, d=%d\n", __func__, vhtconf, d);
1980 	if (d < 0) {
1981 		d = -d;
1982 		vhtconf &= ~d;
1983 	} else
1984 		vhtconf |= d;
1985 	printf("%s: vhtconf is now 0x%08x\n", __func__, vhtconf);
1986 	set80211(ctx, IEEE80211_IOC_VHTCONF, vhtconf, 0, NULL);
1987 }
1988 
1989 static void
1990 set80211tdmaslot(if_ctx *ctx, const char *val, int dummy __unused)
1991 {
1992 	set80211(ctx, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL);
1993 }
1994 
1995 static void
1996 set80211tdmaslotcnt(if_ctx *ctx, const char *val, int dummy __unused)
1997 {
1998 	set80211(ctx, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL);
1999 }
2000 
2001 static void
2002 set80211tdmaslotlen(if_ctx *ctx, const char *val, int dummy __unused)
2003 {
2004 	set80211(ctx, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL);
2005 }
2006 
2007 static void
2008 set80211tdmabintval(if_ctx *ctx, const char *val, int dummy __unused)
2009 {
2010 	set80211(ctx, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL);
2011 }
2012 
2013 static void
2014 set80211meshttl(if_ctx *ctx, const char *val, int dummy __unused)
2015 {
2016 	set80211(ctx, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL);
2017 }
2018 
2019 static void
2020 set80211meshforward(if_ctx *ctx, const char *val __unused, int d)
2021 {
2022 	set80211(ctx, IEEE80211_IOC_MESH_FWRD, d, 0, NULL);
2023 }
2024 
2025 static void
2026 set80211meshgate(if_ctx *ctx, const char *val __unused, int d)
2027 {
2028 	set80211(ctx, IEEE80211_IOC_MESH_GATE, d, 0, NULL);
2029 }
2030 
2031 static void
2032 set80211meshpeering(if_ctx *ctx, const char *val __unused, int d)
2033 {
2034 	set80211(ctx, IEEE80211_IOC_MESH_AP, d, 0, NULL);
2035 }
2036 
2037 static void
2038 set80211meshmetric(if_ctx *ctx, const char *val, int dummy __unused)
2039 {
2040 	char v[12];
2041 
2042 	memcpy(v, val, sizeof(v));
2043 	set80211(ctx, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v);
2044 }
2045 
2046 static void
2047 set80211meshpath(if_ctx *ctx, const char *val, int dummy __unused)
2048 {
2049 	char v[12];
2050 
2051 	memcpy(v, val, sizeof(v));
2052 	set80211(ctx, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v);
2053 }
2054 
2055 static int
2056 regdomain_sort(const void *a, const void *b)
2057 {
2058 #define	CHAN_ALL \
2059 	(IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)
2060 	const struct ieee80211_channel *ca = a;
2061 	const struct ieee80211_channel *cb = b;
2062 
2063 	return ca->ic_freq == cb->ic_freq ?
2064 	    (int)(ca->ic_flags & CHAN_ALL) - (int)(cb->ic_flags & CHAN_ALL) :
2065 	    ca->ic_freq - cb->ic_freq;
2066 #undef CHAN_ALL
2067 }
2068 
2069 static const struct ieee80211_channel *
2070 chanlookup(const struct ieee80211_channel chans[], int nchans,
2071 	int freq, uint32_t flags)
2072 {
2073 	int i;
2074 
2075 	flags &= IEEE80211_CHAN_ALLTURBO;
2076 	for (i = 0; i < nchans; i++) {
2077 		const struct ieee80211_channel *c = &chans[i];
2078 		if (c->ic_freq == freq &&
2079 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
2080 			return c;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 static int
2086 chanfind(const struct ieee80211_channel chans[], int nchans, uint32_t flags)
2087 {
2088 	for (int i = 0; i < nchans; i++) {
2089 		const struct ieee80211_channel *c = &chans[i];
2090 		if ((c->ic_flags & flags) == flags)
2091 			return 1;
2092 	}
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Check channel compatibility.
2098  */
2099 static int
2100 checkchan(const struct ieee80211req_chaninfo *avail, int freq, uint32_t flags)
2101 {
2102 	flags &= ~REQ_FLAGS;
2103 	/*
2104 	 * Check if exact channel is in the calibration table;
2105 	 * everything below is to deal with channels that we
2106 	 * want to include but that are not explicitly listed.
2107 	 */
2108 	if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL)
2109 		return 1;
2110 	if (flags & IEEE80211_CHAN_GSM) {
2111 		/*
2112 		 * XXX GSM frequency mapping is handled in the kernel
2113 		 * so we cannot find them in the calibration table;
2114 		 * just accept the channel and the kernel will reject
2115 		 * the channel list if it's wrong.
2116 		 */
2117 		return 1;
2118 	}
2119 	/*
2120 	 * If this is a 1/2 or 1/4 width channel allow it if a full
2121 	 * width channel is present for this frequency, and the device
2122 	 * supports fractional channels on this band.  This is a hack
2123 	 * that avoids bloating the calibration table; it may be better
2124 	 * by per-band attributes though (we are effectively calculating
2125 	 * this attribute by scanning the channel list ourself).
2126 	 */
2127 	if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0)
2128 		return 0;
2129 	if (chanlookup(avail->ic_chans, avail->ic_nchans, freq,
2130 	    flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL)
2131 		return 0;
2132 	if (flags & IEEE80211_CHAN_HALF) {
2133 		return chanfind(avail->ic_chans, avail->ic_nchans,
2134 		    IEEE80211_CHAN_HALF |
2135 		       (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
2136 	} else {
2137 		return chanfind(avail->ic_chans, avail->ic_nchans,
2138 		    IEEE80211_CHAN_QUARTER |
2139 			(flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
2140 	}
2141 }
2142 
2143 static void
2144 regdomain_addchans(if_ctx *ctx, struct ieee80211req_chaninfo *ci,
2145 	const netband_head *bands,
2146 	const struct ieee80211_regdomain *reg,
2147 	uint32_t chanFlags,
2148 	const struct ieee80211req_chaninfo *avail)
2149 {
2150 	const struct netband *nb;
2151 	const struct freqband *b;
2152 	struct ieee80211_channel *c, *prev;
2153 	int freq, hi_adj, lo_adj, channelSep;
2154 	uint32_t flags;
2155 	const int verbose = ctx->args->verbose;
2156 
2157 	hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0;
2158 	lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0;
2159 	channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40;
2160 
2161 	LIST_FOREACH(nb, bands, next) {
2162 		b = nb->band;
2163 		if (verbose) {
2164 			printf("%s:", __func__);
2165 			printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS);
2166 			printb(" bandFlags", nb->flags | b->flags,
2167 			    IEEE80211_CHAN_BITS);
2168 			putchar('\n');
2169 		}
2170 		prev = NULL;
2171 
2172 		for (freq = b->freqStart + lo_adj;
2173 		     freq <= b->freqEnd + hi_adj; freq += b->chanSep) {
2174 			/*
2175 			 * Construct flags for the new channel.  We take
2176 			 * the attributes from the band descriptions except
2177 			 * for HT40 which is enabled generically (i.e. +/-
2178 			 * extension channel) in the band description and
2179 			 * then constrained according by channel separation.
2180 			 */
2181 			flags = nb->flags | b->flags;
2182 
2183 			/*
2184 			 * VHT first - HT is a subset.
2185 			 */
2186 			if (flags & IEEE80211_CHAN_VHT) {
2187 				if ((chanFlags & IEEE80211_CHAN_VHT20) &&
2188 				    (flags & IEEE80211_CHAN_VHT20) == 0) {
2189 					if (verbose)
2190 						printf("%u: skip, not a "
2191 						    "VHT20 channel\n", freq);
2192 					continue;
2193 				}
2194 				if ((chanFlags & IEEE80211_CHAN_VHT40) &&
2195 				    (flags & IEEE80211_CHAN_VHT40) == 0) {
2196 					if (verbose)
2197 						printf("%u: skip, not a "
2198 						    "VHT40 channel\n", freq);
2199 					continue;
2200 				}
2201 				if ((chanFlags & IEEE80211_CHAN_VHT80) &&
2202 				    (flags & IEEE80211_CHAN_VHT80) == 0) {
2203 					if (verbose)
2204 						printf("%u: skip, not a "
2205 						    "VHT80 channel\n", freq);
2206 					continue;
2207 				}
2208 				if ((chanFlags & IEEE80211_CHAN_VHT160) &&
2209 				    (flags & IEEE80211_CHAN_VHT160) == 0) {
2210 					if (verbose)
2211 						printf("%u: skip, not a "
2212 						    "VHT160 channel\n", freq);
2213 					continue;
2214 				}
2215 				if ((chanFlags & IEEE80211_CHAN_VHT80P80) &&
2216 				    (flags & IEEE80211_CHAN_VHT80P80) == 0) {
2217 					if (verbose)
2218 						printf("%u: skip, not a "
2219 						    "VHT80+80 channel\n", freq);
2220 					continue;
2221 				}
2222 				flags &= ~IEEE80211_CHAN_VHT;
2223 				flags |= chanFlags & IEEE80211_CHAN_VHT;
2224 			}
2225 
2226 			/* Now, constrain HT */
2227 			if (flags & IEEE80211_CHAN_HT) {
2228 				/*
2229 				 * HT channels are generated specially; we're
2230 				 * called to add HT20, HT40+, and HT40- chan's
2231 				 * so we need to expand only band specs for
2232 				 * the HT channel type being added.
2233 				 */
2234 				if ((chanFlags & IEEE80211_CHAN_HT20) &&
2235 				    (flags & IEEE80211_CHAN_HT20) == 0) {
2236 					if (verbose)
2237 						printf("%u: skip, not an "
2238 						    "HT20 channel\n", freq);
2239 					continue;
2240 				}
2241 				if ((chanFlags & IEEE80211_CHAN_HT40) &&
2242 				    (flags & IEEE80211_CHAN_HT40) == 0) {
2243 					if (verbose)
2244 						printf("%u: skip, not an "
2245 						    "HT40 channel\n", freq);
2246 					continue;
2247 				}
2248 				/* NB: HT attribute comes from caller */
2249 				flags &= ~IEEE80211_CHAN_HT;
2250 				flags |= chanFlags & IEEE80211_CHAN_HT;
2251 			}
2252 			/*
2253 			 * Check if device can operate on this frequency.
2254 			 */
2255 			if (!checkchan(avail, freq, flags)) {
2256 				if (verbose) {
2257 					printf("%u: skip, ", freq);
2258 					printb("flags", flags,
2259 					    IEEE80211_CHAN_BITS);
2260 					printf(" not available\n");
2261 				}
2262 				continue;
2263 			}
2264 			if ((flags & REQ_ECM) && !reg->ecm) {
2265 				if (verbose)
2266 					printf("%u: skip, ECM channel\n", freq);
2267 				continue;
2268 			}
2269 			if ((flags & REQ_INDOOR) && reg->location == 'O') {
2270 				if (verbose)
2271 					printf("%u: skip, indoor channel\n",
2272 					    freq);
2273 				continue;
2274 			}
2275 			if ((flags & REQ_OUTDOOR) && reg->location == 'I') {
2276 				if (verbose)
2277 					printf("%u: skip, outdoor channel\n",
2278 					    freq);
2279 				continue;
2280 			}
2281 			if ((flags & IEEE80211_CHAN_HT40) &&
2282 			    prev != NULL && (freq - prev->ic_freq) < channelSep) {
2283 				if (verbose)
2284 					printf("%u: skip, only %u channel "
2285 					    "separation, need %d\n", freq,
2286 					    freq - prev->ic_freq, channelSep);
2287 				continue;
2288 			}
2289 			if (ci->ic_nchans == IEEE80211_CHAN_MAX) {
2290 				if (verbose)
2291 					printf("%u: skip, channel table full\n",
2292 					    freq);
2293 				break;
2294 			}
2295 			c = &ci->ic_chans[ci->ic_nchans++];
2296 			memset(c, 0, sizeof(*c));
2297 			c->ic_freq = freq;
2298 			c->ic_flags = flags;
2299 		if (c->ic_flags & IEEE80211_CHAN_DFS)
2300 				c->ic_maxregpower = nb->maxPowerDFS;
2301 			else
2302 				c->ic_maxregpower = nb->maxPower;
2303 			if (verbose) {
2304 				printf("[%3d] add freq %u ",
2305 				    ci->ic_nchans-1, c->ic_freq);
2306 				printb("flags", c->ic_flags, IEEE80211_CHAN_BITS);
2307 				printf(" power %u\n", c->ic_maxregpower);
2308 			}
2309 			/* NB: kernel fills in other fields */
2310 			prev = c;
2311 		}
2312 	}
2313 }
2314 
2315 static void
2316 regdomain_makechannels(
2317 	if_ctx *ctx,
2318 	struct ieee80211_regdomain_req *req,
2319 	const struct ieee80211_devcaps_req *dc)
2320 {
2321 	struct regdata *rdp = getregdata();
2322 	const struct country *cc;
2323 	const struct ieee80211_regdomain *reg = &req->rd;
2324 	struct ieee80211req_chaninfo *ci = &req->chaninfo;
2325 	const struct regdomain *rd;
2326 
2327 	/*
2328 	 * Locate construction table for new channel list.  We treat
2329 	 * the regdomain/SKU as definitive so a country can be in
2330 	 * multiple with different properties (e.g. US in FCC+FCC3).
2331 	 * If no regdomain is specified then we fallback on the country
2332 	 * code to find the associated regdomain since countries always
2333 	 * belong to at least one regdomain.
2334 	 */
2335 	if (reg->regdomain == 0) {
2336 		cc = lib80211_country_findbycc(rdp, reg->country);
2337 		if (cc == NULL)
2338 			errx(1, "internal error, country %d not found",
2339 			    reg->country);
2340 		rd = cc->rd;
2341 	} else
2342 		rd = lib80211_regdomain_findbysku(rdp, reg->regdomain);
2343 	if (rd == NULL)
2344 		errx(1, "internal error, regdomain %d not found",
2345 			    reg->regdomain);
2346 	if (rd->sku != SKU_DEBUG) {
2347 		/*
2348 		 * regdomain_addchans incrememnts the channel count for
2349 		 * each channel it adds so initialize ic_nchans to zero.
2350 		 * Note that we know we have enough space to hold all possible
2351 		 * channels because the devcaps list size was used to
2352 		 * allocate our request.
2353 		 */
2354 		ci->ic_nchans = 0;
2355 		if (!LIST_EMPTY(&rd->bands_11b))
2356 			regdomain_addchans(ctx, ci, &rd->bands_11b, reg,
2357 			    IEEE80211_CHAN_B, &dc->dc_chaninfo);
2358 		if (!LIST_EMPTY(&rd->bands_11g))
2359 			regdomain_addchans(ctx, ci, &rd->bands_11g, reg,
2360 			    IEEE80211_CHAN_G, &dc->dc_chaninfo);
2361 		if (!LIST_EMPTY(&rd->bands_11a))
2362 			regdomain_addchans(ctx, ci, &rd->bands_11a, reg,
2363 			    IEEE80211_CHAN_A, &dc->dc_chaninfo);
2364 		if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) {
2365 			regdomain_addchans(ctx, ci, &rd->bands_11na, reg,
2366 			    IEEE80211_CHAN_A | IEEE80211_CHAN_HT20,
2367 			    &dc->dc_chaninfo);
2368 			if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2369 				regdomain_addchans(ctx, ci, &rd->bands_11na, reg,
2370 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U,
2371 				    &dc->dc_chaninfo);
2372 				regdomain_addchans(ctx, ci, &rd->bands_11na, reg,
2373 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D,
2374 				    &dc->dc_chaninfo);
2375 			}
2376 		}
2377 		if (!LIST_EMPTY(&rd->bands_11ac) && dc->dc_vhtcaps != 0) {
2378 			regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2379 			    IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
2380 			    IEEE80211_CHAN_VHT20,
2381 			    &dc->dc_chaninfo);
2382 
2383 			/* VHT40 is a function of HT40.. */
2384 			if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2385 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2386 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
2387 				    IEEE80211_CHAN_VHT40U,
2388 				    &dc->dc_chaninfo);
2389 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2390 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
2391 				    IEEE80211_CHAN_VHT40D,
2392 				    &dc->dc_chaninfo);
2393 			}
2394 
2395 			/* VHT80 is mandatory (and so should be VHT40 above). */
2396 			if (1) {
2397 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2398 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
2399 				    IEEE80211_CHAN_VHT80,
2400 				    &dc->dc_chaninfo);
2401 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2402 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
2403 				    IEEE80211_CHAN_VHT80,
2404 				    &dc->dc_chaninfo);
2405 			}
2406 
2407 			/* VHT160 */
2408 			if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(
2409 			    dc->dc_vhtcaps)) {
2410 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2411 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
2412 				    IEEE80211_CHAN_VHT160,
2413 				    &dc->dc_chaninfo);
2414 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2415 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
2416 				    IEEE80211_CHAN_VHT160,
2417 				    &dc->dc_chaninfo);
2418 			}
2419 
2420 			/* VHT80P80 */
2421 			if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(
2422 			    dc->dc_vhtcaps)) {
2423 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2424 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
2425 				    IEEE80211_CHAN_VHT80P80,
2426 				    &dc->dc_chaninfo);
2427 				regdomain_addchans(ctx, ci, &rd->bands_11ac, reg,
2428 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
2429 				    IEEE80211_CHAN_VHT80P80,
2430 				    &dc->dc_chaninfo);
2431 			}
2432 		}
2433 
2434 		if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) {
2435 			regdomain_addchans(ctx, ci, &rd->bands_11ng, reg,
2436 			    IEEE80211_CHAN_G | IEEE80211_CHAN_HT20,
2437 			    &dc->dc_chaninfo);
2438 			if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2439 				regdomain_addchans(ctx, ci, &rd->bands_11ng, reg,
2440 				    IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U,
2441 				    &dc->dc_chaninfo);
2442 				regdomain_addchans(ctx, ci, &rd->bands_11ng, reg,
2443 				    IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D,
2444 				    &dc->dc_chaninfo);
2445 			}
2446 		}
2447 		qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]),
2448 		    regdomain_sort);
2449 	} else
2450 		memcpy(ci, &dc->dc_chaninfo,
2451 		    IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
2452 }
2453 
2454 static void
2455 list_countries(void)
2456 {
2457 	struct regdata *rdp = getregdata();
2458 	const struct country *cp;
2459 	const struct regdomain *dp;
2460 	int i;
2461 
2462 	i = 0;
2463 	printf("\nCountry codes:\n");
2464 	LIST_FOREACH(cp, &rdp->countries, next) {
2465 		printf("%2s %-15.15s%s", cp->isoname,
2466 		    cp->name, ((i+1)%4) == 0 ? "\n" : " ");
2467 		i++;
2468 	}
2469 	i = 0;
2470 	printf("\nRegulatory domains:\n");
2471 	LIST_FOREACH(dp, &rdp->domains, next) {
2472 		printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " ");
2473 		i++;
2474 	}
2475 	printf("\n");
2476 }
2477 
2478 static void
2479 defaultcountry(const struct regdomain *rd)
2480 {
2481 	struct regdata *rdp = getregdata();
2482 	const struct country *cc;
2483 
2484 	cc = lib80211_country_findbycc(rdp, rd->cc->code);
2485 	if (cc == NULL)
2486 		errx(1, "internal error, ISO country code %d not "
2487 		    "defined for regdomain %s", rd->cc->code, rd->name);
2488 	regdomain.country = cc->code;
2489 	regdomain.isocc[0] = cc->isoname[0];
2490 	regdomain.isocc[1] = cc->isoname[1];
2491 }
2492 
2493 static void
2494 set80211regdomain(if_ctx *ctx, const char *val, int dummy __unused)
2495 {
2496 	struct regdata *rdp = getregdata();
2497 	const struct regdomain *rd;
2498 
2499 	rd = lib80211_regdomain_findbyname(rdp, val);
2500 	if (rd == NULL) {
2501 		char *eptr;
2502 		long sku = strtol(val, &eptr, 0);
2503 
2504 		if (eptr != val)
2505 			rd = lib80211_regdomain_findbysku(rdp, sku);
2506 		if (eptr == val || rd == NULL)
2507 			errx(1, "unknown regdomain %s", val);
2508 	}
2509 	getregdomain(ctx);
2510 	regdomain.regdomain = rd->sku;
2511 	if (regdomain.country == 0 && rd->cc != NULL) {
2512 		/*
2513 		 * No country code setup and there's a default
2514 		 * one for this regdomain fill it in.
2515 		 */
2516 		defaultcountry(rd);
2517 	}
2518 	callback_register(setregdomain_cb, &regdomain);
2519 }
2520 
2521 static void
2522 set80211country(if_ctx *ctx, const char *val, int dummy __unused)
2523 {
2524 	struct regdata *rdp = getregdata();
2525 	const struct country *cc;
2526 
2527 	cc = lib80211_country_findbyname(rdp, val);
2528 	if (cc == NULL) {
2529 		char *eptr;
2530 		long code = strtol(val, &eptr, 0);
2531 
2532 		if (eptr != val)
2533 			cc = lib80211_country_findbycc(rdp, code);
2534 		if (eptr == val || cc == NULL)
2535 			errx(1, "unknown ISO country code %s", val);
2536 	}
2537 	getregdomain(ctx);
2538 	regdomain.regdomain = cc->rd->sku;
2539 	regdomain.country = cc->code;
2540 	regdomain.isocc[0] = cc->isoname[0];
2541 	regdomain.isocc[1] = cc->isoname[1];
2542 	callback_register(setregdomain_cb, &regdomain);
2543 }
2544 
2545 static void
2546 set80211location(if_ctx *ctx, const char *val __unused, int d)
2547 {
2548 	getregdomain(ctx);
2549 	regdomain.location = d;
2550 	callback_register(setregdomain_cb, &regdomain);
2551 }
2552 
2553 static void
2554 set80211ecm(if_ctx *ctx, const char *val __unused, int d)
2555 {
2556 	getregdomain(ctx);
2557 	regdomain.ecm = d;
2558 	callback_register(setregdomain_cb, &regdomain);
2559 }
2560 
2561 static void
2562 LINE_INIT(char c)
2563 {
2564 	spacer = c;
2565 	if (c == '\t')
2566 		col = 8;
2567 	else
2568 		col = 1;
2569 }
2570 
2571 static void
2572 LINE_BREAK(void)
2573 {
2574 	if (spacer != '\t') {
2575 		printf("\n");
2576 		spacer = '\t';
2577 	}
2578 	col = 8;		/* 8-col tab */
2579 }
2580 
2581 static void
2582 LINE_CHECK(const char *fmt, ...)
2583 {
2584 	char buf[80];
2585 	va_list ap;
2586 	int n;
2587 
2588 	va_start(ap, fmt);
2589 	n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap);
2590 	va_end(ap);
2591 	col += 1+n;
2592 	if (col > MAXCOL) {
2593 		LINE_BREAK();
2594 		col += n;
2595 	}
2596 	buf[0] = spacer;
2597 	printf("%s", buf);
2598 	spacer = ' ';
2599 }
2600 
2601 static int
2602 getmaxrate(const uint8_t rates[15], uint8_t nrates)
2603 {
2604 	int i, maxrate = -1;
2605 
2606 	for (i = 0; i < nrates; i++) {
2607 		int rate = rates[i] & IEEE80211_RATE_VAL;
2608 		if (rate > maxrate)
2609 			maxrate = rate;
2610 	}
2611 	return maxrate / 2;
2612 }
2613 
2614 static const char *
2615 getcaps(int capinfo)
2616 {
2617 	static char capstring[32];
2618 	char *cp = capstring;
2619 
2620 	if (capinfo & IEEE80211_CAPINFO_ESS)
2621 		*cp++ = 'E';
2622 	if (capinfo & IEEE80211_CAPINFO_IBSS)
2623 		*cp++ = 'I';
2624 	if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE)
2625 		*cp++ = 'c';
2626 	if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ)
2627 		*cp++ = 'C';
2628 	if (capinfo & IEEE80211_CAPINFO_PRIVACY)
2629 		*cp++ = 'P';
2630 	if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
2631 		*cp++ = 'S';
2632 	if (capinfo & IEEE80211_CAPINFO_PBCC)
2633 		*cp++ = 'B';
2634 	if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY)
2635 		*cp++ = 'A';
2636 	if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2637 		*cp++ = 's';
2638 	if (capinfo & IEEE80211_CAPINFO_RSN)
2639 		*cp++ = 'R';
2640 	if (capinfo & IEEE80211_CAPINFO_DSSSOFDM)
2641 		*cp++ = 'D';
2642 	*cp = '\0';
2643 	return capstring;
2644 }
2645 
2646 static const char *
2647 getflags(int flags)
2648 {
2649 	static char flagstring[32];
2650 	char *cp = flagstring;
2651 
2652 	if (flags & IEEE80211_NODE_AUTH)
2653 		*cp++ = 'A';
2654 	if (flags & IEEE80211_NODE_QOS)
2655 		*cp++ = 'Q';
2656 	if (flags & IEEE80211_NODE_ERP)
2657 		*cp++ = 'E';
2658 	if (flags & IEEE80211_NODE_PWR_MGT)
2659 		*cp++ = 'P';
2660 	if (flags & IEEE80211_NODE_HT) {
2661 		*cp++ = 'H';
2662 		if (flags & IEEE80211_NODE_HTCOMPAT)
2663 			*cp++ = '+';
2664 	}
2665 	if (flags & IEEE80211_NODE_VHT)
2666 		*cp++ = 'V';
2667 	if (flags & IEEE80211_NODE_WPS)
2668 		*cp++ = 'W';
2669 	if (flags & IEEE80211_NODE_TSN)
2670 		*cp++ = 'N';
2671 	if (flags & IEEE80211_NODE_AMPDU_TX)
2672 		*cp++ = 'T';
2673 	if (flags & IEEE80211_NODE_AMPDU_RX)
2674 		*cp++ = 'R';
2675 	if (flags & IEEE80211_NODE_MIMO_PS) {
2676 		*cp++ = 'M';
2677 		if (flags & IEEE80211_NODE_MIMO_RTS)
2678 			*cp++ = '+';
2679 	}
2680 	if (flags & IEEE80211_NODE_RIFS)
2681 		*cp++ = 'I';
2682 	if (flags & IEEE80211_NODE_SGI40) {
2683 		*cp++ = 'S';
2684 		if (flags & IEEE80211_NODE_SGI20)
2685 			*cp++ = '+';
2686 	} else if (flags & IEEE80211_NODE_SGI20)
2687 		*cp++ = 's';
2688 	if (flags & IEEE80211_NODE_AMSDU_TX)
2689 		*cp++ = 't';
2690 	if (flags & IEEE80211_NODE_AMSDU_RX)
2691 		*cp++ = 'r';
2692 	if (flags & IEEE80211_NODE_UAPSD)
2693 		*cp++ = 'U';
2694 	if (flags & IEEE80211_NODE_LDPC)
2695 		*cp++ = 'L';
2696 	*cp = '\0';
2697 	return flagstring;
2698 }
2699 
2700 static void
2701 printie(if_ctx *ctx, const char* tag, const uint8_t *ie, size_t ielen, unsigned int maxlen)
2702 {
2703 	printf("%s", tag);
2704 	if (ctx->args->verbose) {
2705 		maxlen -= strlen(tag)+2;
2706 		if (2*ielen > maxlen)
2707 			maxlen--;
2708 		printf("<");
2709 		for (; ielen > 0; ie++, ielen--) {
2710 			if (maxlen-- <= 0)
2711 				break;
2712 			printf("%02x", *ie);
2713 		}
2714 		if (ielen != 0)
2715 			printf("-");
2716 		printf(">");
2717 	}
2718 }
2719 
2720 #define LE_READ_2(p)					\
2721 	((u_int16_t)					\
2722 	 ((((const u_int8_t *)(p))[0]      ) |		\
2723 	  (((const u_int8_t *)(p))[1] <<  8)))
2724 #define LE_READ_4(p)					\
2725 	((u_int32_t)					\
2726 	 ((((const u_int8_t *)(p))[0]      ) |		\
2727 	  (((const u_int8_t *)(p))[1] <<  8) |		\
2728 	  (((const u_int8_t *)(p))[2] << 16) |		\
2729 	  (((const u_int8_t *)(p))[3] << 24)))
2730 
2731 /*
2732  * NB: The decoding routines assume a properly formatted ie
2733  *     which should be safe as the kernel only retains them
2734  *     if they parse ok.
2735  */
2736 
2737 static void
2738 printwmeparam(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2739 {
2740 	static const char *acnames[] = { "BE", "BK", "VO", "VI" };
2741 	const struct ieee80211_wme_param *wme =
2742 	    (const struct ieee80211_wme_param *) ie;
2743 	int i;
2744 
2745 	printf("%s", tag);
2746 	if (!ctx->args->verbose)
2747 		return;
2748 	printf("<qosinfo 0x%x", wme->param_qosInfo);
2749 	ie += offsetof(struct ieee80211_wme_param, params_acParams);
2750 	for (i = 0; i < WME_NUM_AC; i++) {
2751 		const struct ieee80211_wme_acparams *ac =
2752 		    &wme->params_acParams[i];
2753 
2754 		printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]", acnames[i],
2755 		    _IEEE80211_MASKSHIFT(ac->acp_aci_aifsn, WME_PARAM_ACM) ?
2756 			"acm " : "",
2757 		    _IEEE80211_MASKSHIFT(ac->acp_aci_aifsn, WME_PARAM_AIFSN),
2758 		    _IEEE80211_MASKSHIFT(ac->acp_logcwminmax,
2759 			WME_PARAM_LOGCWMIN),
2760 		    _IEEE80211_MASKSHIFT(ac->acp_logcwminmax,
2761 			WME_PARAM_LOGCWMAX),
2762 		    LE_READ_2(&ac->acp_txop));
2763 	}
2764 	printf(">");
2765 }
2766 
2767 static void
2768 printwmeinfo(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2769 {
2770 	printf("%s", tag);
2771 	if (ctx->args->verbose) {
2772 		const struct ieee80211_wme_info *wme =
2773 		    (const struct ieee80211_wme_info *) ie;
2774 		printf("<version 0x%x info 0x%x>",
2775 		    wme->wme_version, wme->wme_info);
2776 	}
2777 }
2778 
2779 static void
2780 printvhtcap(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2781 {
2782 	printf("%s", tag);
2783 	if (ctx->args->verbose) {
2784 		const struct ieee80211_vht_cap *vhtcap;
2785 		uint32_t vhtcap_info;
2786 
2787 		/* Check that the the right size. */
2788 		if (ie[1] != sizeof(*vhtcap)) {
2789 			printf("<err: vht_cap inval. length>");
2790 			return;
2791 		}
2792 		/* Skip Element ID and Length. */
2793 		vhtcap = (const struct ieee80211_vht_cap *)(ie + 2);
2794 
2795 		vhtcap_info = LE_READ_4(&vhtcap->vht_cap_info);
2796 		printf("<cap 0x%08x", vhtcap_info);
2797 		printf(" rx_mcs_map 0x%x",
2798 		    LE_READ_2(&vhtcap->supp_mcs.rx_mcs_map));
2799 		printf(" rx_highest %d",
2800 		    LE_READ_2(&vhtcap->supp_mcs.rx_highest) & 0x1fff);
2801 		printf(" tx_mcs_map 0x%x",
2802 		    LE_READ_2(&vhtcap->supp_mcs.tx_mcs_map));
2803 		printf(" tx_highest %d",
2804 		    LE_READ_2(&vhtcap->supp_mcs.tx_highest) & 0x1fff);
2805 
2806 		printf(">");
2807 	}
2808 }
2809 
2810 static void
2811 printvhtinfo(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2812 {
2813 	printf("%s", tag);
2814 	if (ctx->args->verbose) {
2815 		const struct ieee80211_vht_operation *vhtinfo;
2816 
2817 		/* Check that the the right size. */
2818 		if (ie[1] != sizeof(*vhtinfo)) {
2819 			printf("<err: vht_operation inval. length>");
2820 			return;
2821 		}
2822 		/* Skip Element ID and Length. */
2823 		vhtinfo = (const struct ieee80211_vht_operation *)(ie + 2);
2824 
2825 		printf("<chw %d freq0_idx %d freq1_idx %d basic_mcs_set 0x%04x>",
2826 		    vhtinfo->chan_width,
2827 		    vhtinfo->center_freq_seq0_idx,
2828 		    vhtinfo->center_freq_seq1_idx,
2829 		    LE_READ_2(&vhtinfo->basic_mcs_set));
2830 	}
2831 }
2832 
2833 static void
2834 printvhtpwrenv(if_ctx *ctx, const char *tag, const u_int8_t *ie, size_t ielen)
2835 {
2836 	printf("%s", tag);
2837 	static const char *txpwrmap[] = {
2838 		"20",
2839 		"40",
2840 		"80",
2841 		"160",
2842 	};
2843 	if (ctx->args->verbose) {
2844 		const struct ieee80211_ie_vht_txpwrenv *vhtpwr =
2845 		    (const struct ieee80211_ie_vht_txpwrenv *) ie;
2846 		size_t i, n;
2847 		const char *sep = "";
2848 
2849 		/* Get count; trim at ielen */
2850 		n = (vhtpwr->tx_info &
2851 		    IEEE80211_VHT_TXPWRENV_INFO_COUNT_MASK) + 1;
2852 		/* Trim at ielen */
2853 		if (n + 3 > ielen)
2854 			n = ielen - 3;
2855 		printf("<tx_info 0x%02x pwr:[", vhtpwr->tx_info);
2856 		for (i = 0; i < n; i++) {
2857 			printf("%s%s:%.2f", sep, txpwrmap[i],
2858 			    ((float) ((int8_t) ie[i+3])) / 2.0);
2859 			sep = " ";
2860 		}
2861 
2862 		printf("]>");
2863 	}
2864 }
2865 
2866 static void
2867 printhtcap(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2868 {
2869 	printf("%s", tag);
2870 	if (ctx->args->verbose) {
2871 		const struct ieee80211_ie_htcap *htcap =
2872 		    (const struct ieee80211_ie_htcap *) ie;
2873 		const char *sep;
2874 		int i, j;
2875 
2876 		printf("<cap 0x%x param 0x%x",
2877 		    LE_READ_2(&htcap->hc_cap), htcap->hc_param);
2878 		printf(" mcsset[");
2879 		sep = "";
2880 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2881 			if (isset(htcap->hc_mcsset, i)) {
2882 				for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2883 					if (isclr(htcap->hc_mcsset, j))
2884 						break;
2885 				j--;
2886 				if (i == j)
2887 					printf("%s%u", sep, i);
2888 				else
2889 					printf("%s%u-%u", sep, i, j);
2890 				i += j-i;
2891 				sep = ",";
2892 			}
2893 		printf("] extcap 0x%x txbf 0x%x antenna 0x%x>",
2894 		    LE_READ_2(&htcap->hc_extcap),
2895 		    LE_READ_4(&htcap->hc_txbf),
2896 		    htcap->hc_antenna);
2897 	}
2898 }
2899 
2900 static void
2901 printhtinfo(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2902 {
2903 	printf("%s", tag);
2904 	if (ctx->args->verbose) {
2905 		const struct ieee80211_ie_htinfo *htinfo =
2906 		    (const struct ieee80211_ie_htinfo *) ie;
2907 		const char *sep;
2908 		int i, j;
2909 
2910 		printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel,
2911 		    htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3,
2912 		    LE_READ_2(&htinfo->hi_byte45));
2913 		printf(" basicmcs[");
2914 		sep = "";
2915 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2916 			if (isset(htinfo->hi_basicmcsset, i)) {
2917 				for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2918 					if (isclr(htinfo->hi_basicmcsset, j))
2919 						break;
2920 				j--;
2921 				if (i == j)
2922 					printf("%s%u", sep, i);
2923 				else
2924 					printf("%s%u-%u", sep, i, j);
2925 				i += j-i;
2926 				sep = ",";
2927 			}
2928 		printf("]>");
2929 	}
2930 }
2931 
2932 static void
2933 printathie(if_ctx *ctx, const char *tag, const u_int8_t *ie)
2934 {
2935 
2936 	printf("%s", tag);
2937 	if (ctx->args->verbose) {
2938 		const struct ieee80211_ath_ie *ath =
2939 			(const struct ieee80211_ath_ie *)ie;
2940 
2941 		printf("<");
2942 		if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME)
2943 			printf("DTURBO,");
2944 		if (ath->ath_capability & ATHEROS_CAP_COMPRESSION)
2945 			printf("COMP,");
2946 		if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME)
2947 			printf("FF,");
2948 		if (ath->ath_capability & ATHEROS_CAP_XR)
2949 			printf("XR,");
2950 		if (ath->ath_capability & ATHEROS_CAP_AR)
2951 			printf("AR,");
2952 		if (ath->ath_capability & ATHEROS_CAP_BURST)
2953 			printf("BURST,");
2954 		if (ath->ath_capability & ATHEROS_CAP_WME)
2955 			printf("WME,");
2956 		if (ath->ath_capability & ATHEROS_CAP_BOOST)
2957 			printf("BOOST,");
2958 		printf("0x%x>", LE_READ_2(ath->ath_defkeyix));
2959 	}
2960 }
2961 
2962 
2963 static void
2964 printmeshconf(if_ctx *ctx, const char *tag, const uint8_t *ie)
2965 {
2966 
2967 	printf("%s", tag);
2968 	if (ctx->args->verbose) {
2969 		const struct ieee80211_meshconf_ie *mconf =
2970 			(const struct ieee80211_meshconf_ie *)ie;
2971 		printf("<PATH:");
2972 		if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP)
2973 			printf("HWMP");
2974 		else
2975 			printf("UNKNOWN");
2976 		printf(" LINK:");
2977 		if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME)
2978 			printf("AIRTIME");
2979 		else
2980 			printf("UNKNOWN");
2981 		printf(" CONGESTION:");
2982 		if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED)
2983 			printf("DISABLED");
2984 		else
2985 			printf("UNKNOWN");
2986 		printf(" SYNC:");
2987 		if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF)
2988 			printf("NEIGHOFF");
2989 		else
2990 			printf("UNKNOWN");
2991 		printf(" AUTH:");
2992 		if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED)
2993 			printf("DISABLED");
2994 		else
2995 			printf("UNKNOWN");
2996 		printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form,
2997 		    mconf->conf_cap);
2998 	}
2999 }
3000 
3001 static void
3002 printbssload(if_ctx *ctx, const char *tag, const uint8_t *ie)
3003 {
3004 	printf("%s", tag);
3005 	if (ctx->args->verbose) {
3006 		const struct ieee80211_bss_load_ie *bssload =
3007 		    (const struct ieee80211_bss_load_ie *) ie;
3008 		printf("<sta count %d, chan load %d, aac %d>",
3009 		    LE_READ_2(&bssload->sta_count),
3010 		    bssload->chan_load,
3011 		    bssload->aac);
3012 	}
3013 }
3014 
3015 static void
3016 printapchanrep(if_ctx *ctx, const char *tag, const u_int8_t *ie, size_t ielen)
3017 {
3018 	printf("%s", tag);
3019 	if (ctx->args->verbose) {
3020 		const struct ieee80211_ap_chan_report_ie *ap =
3021 		    (const struct ieee80211_ap_chan_report_ie *) ie;
3022 		const char *sep = "";
3023 
3024 		printf("<class %u, chan:[", ap->i_class);
3025 
3026 		for (size_t i = 3; i < ielen; i++) {
3027 			printf("%s%u", sep, ie[i]);
3028 			sep = ",";
3029 		}
3030 		printf("]>");
3031 	}
3032 }
3033 
3034 static const char *
3035 wpa_cipher(const u_int8_t *sel)
3036 {
3037 #define	WPA_SEL(x)	(((x)<<24)|WPA_OUI)
3038 	u_int32_t w = LE_READ_4(sel);
3039 
3040 	switch (w) {
3041 	case WPA_SEL(WPA_CSE_NULL):
3042 		return "NONE";
3043 	case WPA_SEL(WPA_CSE_WEP40):
3044 		return "WEP40";
3045 	case WPA_SEL(WPA_CSE_WEP104):
3046 		return "WEP104";
3047 	case WPA_SEL(WPA_CSE_TKIP):
3048 		return "TKIP";
3049 	case WPA_SEL(WPA_CSE_CCMP):
3050 		return "AES-CCMP";
3051 	}
3052 	return "?";		/* NB: so 1<< is discarded */
3053 #undef WPA_SEL
3054 }
3055 
3056 static const char *
3057 wpa_keymgmt(const u_int8_t *sel)
3058 {
3059 #define	WPA_SEL(x)	(((x)<<24)|WPA_OUI)
3060 	u_int32_t w = LE_READ_4(sel);
3061 
3062 	switch (w) {
3063 	case WPA_SEL(WPA_ASE_8021X_UNSPEC):
3064 		return "8021X-UNSPEC";
3065 	case WPA_SEL(WPA_ASE_8021X_PSK):
3066 		return "8021X-PSK";
3067 	case WPA_SEL(WPA_ASE_NONE):
3068 		return "NONE";
3069 	}
3070 	return "?";
3071 #undef WPA_SEL
3072 }
3073 
3074 static void
3075 printwpaie(if_ctx *ctx, const char *tag, const u_int8_t *ie)
3076 {
3077 	u_int8_t len = ie[1];
3078 
3079 	printf("%s", tag);
3080 	if (ctx->args->verbose) {
3081 		const char *sep;
3082 		int n;
3083 
3084 		ie += 6, len -= 4;		/* NB: len is payload only */
3085 
3086 		printf("<v%u", LE_READ_2(ie));
3087 		ie += 2, len -= 2;
3088 
3089 		printf(" mc:%s", wpa_cipher(ie));
3090 		ie += 4, len -= 4;
3091 
3092 		/* unicast ciphers */
3093 		n = LE_READ_2(ie);
3094 		ie += 2, len -= 2;
3095 		sep = " uc:";
3096 		for (; n > 0; n--) {
3097 			printf("%s%s", sep, wpa_cipher(ie));
3098 			ie += 4, len -= 4;
3099 			sep = "+";
3100 		}
3101 
3102 		/* key management algorithms */
3103 		n = LE_READ_2(ie);
3104 		ie += 2, len -= 2;
3105 		sep = " km:";
3106 		for (; n > 0; n--) {
3107 			printf("%s%s", sep, wpa_keymgmt(ie));
3108 			ie += 4, len -= 4;
3109 			sep = "+";
3110 		}
3111 
3112 		if (len > 2)		/* optional capabilities */
3113 			printf(", caps 0x%x", LE_READ_2(ie));
3114 		printf(">");
3115 	}
3116 }
3117 
3118 static const char *
3119 rsn_cipher(const u_int8_t *sel)
3120 {
3121 #define	RSN_SEL(x)	(((x)<<24)|RSN_OUI)
3122 	u_int32_t w = LE_READ_4(sel);
3123 
3124 	switch (w) {
3125 	case RSN_SEL(RSN_CSE_NULL):
3126 		return "NONE";
3127 	case RSN_SEL(RSN_CSE_WEP40):
3128 		return "WEP40";
3129 	case RSN_SEL(RSN_CSE_WEP104):
3130 		return "WEP104";
3131 	case RSN_SEL(RSN_CSE_TKIP):
3132 		return "TKIP";
3133 	case RSN_SEL(RSN_CSE_CCMP):
3134 		return "AES-CCMP";
3135 	case RSN_SEL(RSN_CSE_WRAP):
3136 		return "AES-OCB";
3137 	}
3138 	return "?";
3139 #undef WPA_SEL
3140 }
3141 
3142 static const char *
3143 rsn_keymgmt(const u_int8_t *sel)
3144 {
3145 #define	RSN_SEL(x)	(((x)<<24)|RSN_OUI)
3146 	u_int32_t w = LE_READ_4(sel);
3147 
3148 	switch (w) {
3149 	case RSN_SEL(RSN_ASE_8021X_UNSPEC):
3150 		return "8021X-UNSPEC";
3151 	case RSN_SEL(RSN_ASE_8021X_PSK):
3152 		return "8021X-PSK";
3153 	case RSN_SEL(RSN_ASE_NONE):
3154 		return "NONE";
3155 	}
3156 	return "?";
3157 #undef RSN_SEL
3158 }
3159 
3160 static void
3161 printrsnie(if_ctx *ctx, const char *tag, const u_int8_t *ie, size_t ielen)
3162 {
3163 	printf("%s", tag);
3164 	if (ctx->args->verbose) {
3165 		const char *sep;
3166 		int n;
3167 
3168 		ie += 2, ielen -= 2;
3169 
3170 		printf("<v%u", LE_READ_2(ie));
3171 		ie += 2, ielen -= 2;
3172 
3173 		printf(" mc:%s", rsn_cipher(ie));
3174 		ie += 4, ielen -= 4;
3175 
3176 		/* unicast ciphers */
3177 		n = LE_READ_2(ie);
3178 		ie += 2, ielen -= 2;
3179 		sep = " uc:";
3180 		for (; n > 0; n--) {
3181 			printf("%s%s", sep, rsn_cipher(ie));
3182 			ie += 4, ielen -= 4;
3183 			sep = "+";
3184 		}
3185 
3186 		/* key management algorithms */
3187 		n = LE_READ_2(ie);
3188 		ie += 2, ielen -= 2;
3189 		sep = " km:";
3190 		for (; n > 0; n--) {
3191 			printf("%s%s", sep, rsn_keymgmt(ie));
3192 			ie += 4, ielen -= 4;
3193 			sep = "+";
3194 		}
3195 
3196 		if (ielen > 2)		/* optional capabilities */
3197 			printf(", caps 0x%x", LE_READ_2(ie));
3198 		/* XXXPMKID */
3199 		printf(">");
3200 	}
3201 }
3202 
3203 #define BE_READ_2(p)					\
3204 	((u_int16_t)					\
3205 	 ((((const u_int8_t *)(p))[1]      ) |		\
3206 	  (((const u_int8_t *)(p))[0] <<  8)))
3207 
3208 static void
3209 printwpsie(if_ctx *ctx, const char *tag, const u_int8_t *ie)
3210 {
3211 	u_int8_t len = ie[1];
3212 
3213 	printf("%s", tag);
3214 	if (ctx->args->verbose) {
3215 		static const char *dev_pass_id[] = {
3216 			"D",	/* Default (PIN) */
3217 			"U",	/* User-specified */
3218 			"M",	/* Machine-specified */
3219 			"K",	/* Rekey */
3220 			"P",	/* PushButton */
3221 			"R"	/* Registrar-specified */
3222 		};
3223 		int n;
3224 		int f;
3225 
3226 		ie +=6, len -= 4;		/* NB: len is payload only */
3227 
3228 		/* WPS IE in Beacon and Probe Resp frames have different fields */
3229 		printf("<");
3230 		while (len) {
3231 			uint16_t tlv_type = BE_READ_2(ie);
3232 			uint16_t tlv_len  = BE_READ_2(ie + 2);
3233 			uint16_t cfg_mthd;
3234 
3235 			/* some devices broadcast invalid WPS frames */
3236 			if (tlv_len > len) {
3237 				printf("bad frame length tlv_type=0x%02x "
3238 				    "tlv_len=%d len=%d", tlv_type, tlv_len,
3239 				    len);
3240 				break;
3241 			}
3242 
3243 			ie += 4, len -= 4;
3244 
3245 			switch (tlv_type) {
3246 			case IEEE80211_WPS_ATTR_VERSION:
3247 				printf("v:%d.%d", *ie >> 4, *ie & 0xf);
3248 				break;
3249 			case IEEE80211_WPS_ATTR_AP_SETUP_LOCKED:
3250 				printf(" ap_setup:%s", *ie ? "locked" :
3251 				    "unlocked");
3252 				break;
3253 			case IEEE80211_WPS_ATTR_CONFIG_METHODS:
3254 			case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS:
3255 				if (tlv_type == IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS)
3256 					printf(" sel_reg_cfg_mthd:");
3257 				else
3258 					printf(" cfg_mthd:" );
3259 				cfg_mthd = BE_READ_2(ie);
3260 				f = 0;
3261 				for (n = 15; n >= 0; n--) {
3262 					if (f) {
3263 						printf(",");
3264 						f = 0;
3265 					}
3266 					switch (cfg_mthd & (1 << n)) {
3267 					case 0:
3268 						break;
3269 					case IEEE80211_WPS_CONFIG_USBA:
3270 						printf("usba");
3271 						f++;
3272 						break;
3273 					case IEEE80211_WPS_CONFIG_ETHERNET:
3274 						printf("ethernet");
3275 						f++;
3276 						break;
3277 					case IEEE80211_WPS_CONFIG_LABEL:
3278 						printf("label");
3279 						f++;
3280 						break;
3281 					case IEEE80211_WPS_CONFIG_DISPLAY:
3282 						if (!(cfg_mthd &
3283 						    (IEEE80211_WPS_CONFIG_VIRT_DISPLAY |
3284 						    IEEE80211_WPS_CONFIG_PHY_DISPLAY)))
3285 						    {
3286 							printf("display");
3287 							f++;
3288 						}
3289 						break;
3290 					case IEEE80211_WPS_CONFIG_EXT_NFC_TOKEN:
3291 						printf("ext_nfc_tokenk");
3292 						f++;
3293 						break;
3294 					case IEEE80211_WPS_CONFIG_INT_NFC_TOKEN:
3295 						printf("int_nfc_token");
3296 						f++;
3297 						break;
3298 					case IEEE80211_WPS_CONFIG_NFC_INTERFACE:
3299 						printf("nfc_interface");
3300 						f++;
3301 						break;
3302 					case IEEE80211_WPS_CONFIG_PUSHBUTTON:
3303 						if (!(cfg_mthd &
3304 						    (IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON |
3305 						    IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON))) {
3306 							printf("push_button");
3307 							f++;
3308 						}
3309 						break;
3310 					case IEEE80211_WPS_CONFIG_KEYPAD:
3311 						printf("keypad");
3312 						f++;
3313 						break;
3314 					case IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON:
3315 						printf("virtual_push_button");
3316 						f++;
3317 						break;
3318 					case IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON:
3319 						printf("physical_push_button");
3320 						f++;
3321 						break;
3322 					case IEEE80211_WPS_CONFIG_P2PS:
3323 						printf("p2ps");
3324 						f++;
3325 						break;
3326 					case IEEE80211_WPS_CONFIG_VIRT_DISPLAY:
3327 						printf("virtual_display");
3328 						f++;
3329 						break;
3330 					case IEEE80211_WPS_CONFIG_PHY_DISPLAY:
3331 						printf("physical_display");
3332 						f++;
3333 						break;
3334 					default:
3335 						printf("unknown_wps_config<%04x>",
3336 						    cfg_mthd & (1 << n));
3337 						f++;
3338 						break;
3339 					}
3340 				}
3341 				break;
3342 			case IEEE80211_WPS_ATTR_DEV_NAME:
3343 				printf(" device_name:<%.*s>", tlv_len, ie);
3344 				break;
3345 			case IEEE80211_WPS_ATTR_DEV_PASSWORD_ID:
3346 				n = LE_READ_2(ie);
3347 				if (n < (int)nitems(dev_pass_id))
3348 					printf(" dpi:%s", dev_pass_id[n]);
3349 				break;
3350 			case IEEE80211_WPS_ATTR_MANUFACTURER:
3351 				printf(" manufacturer:<%.*s>", tlv_len, ie);
3352 				break;
3353 			case IEEE80211_WPS_ATTR_MODEL_NAME:
3354 				printf(" model_name:<%.*s>", tlv_len, ie);
3355 				break;
3356 			case IEEE80211_WPS_ATTR_MODEL_NUMBER:
3357 				printf(" model_number:<%.*s>", tlv_len, ie);
3358 				break;
3359 			case IEEE80211_WPS_ATTR_PRIMARY_DEV_TYPE:
3360 				printf(" prim_dev:");
3361 				for (n = 0; n < tlv_len; n++)
3362 					printf("%02x", ie[n]);
3363 				break;
3364 			case IEEE80211_WPS_ATTR_RF_BANDS:
3365 				printf(" rf:");
3366 				f = 0;
3367 				for (n = 7; n >= 0; n--) {
3368 					if (f) {
3369 						printf(",");
3370 						f = 0;
3371 					}
3372 					switch (*ie & (1 << n)) {
3373 					case 0:
3374 						break;
3375 					case IEEE80211_WPS_RF_BAND_24GHZ:
3376 						printf("2.4Ghz");
3377 						f++;
3378 						break;
3379 					case IEEE80211_WPS_RF_BAND_50GHZ:
3380 						printf("5Ghz");
3381 						f++;
3382 						break;
3383 					case IEEE80211_WPS_RF_BAND_600GHZ:
3384 						printf("60Ghz");
3385 						f++;
3386 						break;
3387 					default:
3388 						printf("unknown<%02x>",
3389 						    *ie & (1 << n));
3390 						f++;
3391 						break;
3392 					}
3393 				}
3394 				break;
3395 			case IEEE80211_WPS_ATTR_RESPONSE_TYPE:
3396 				printf(" resp_type:0x%02x", *ie);
3397 				break;
3398 			case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR:
3399 				printf(" sel:%s", *ie ? "T" : "F");
3400 				break;
3401 			case IEEE80211_WPS_ATTR_SERIAL_NUMBER:
3402 				printf(" serial_number:<%.*s>", tlv_len, ie);
3403 				break;
3404 			case IEEE80211_WPS_ATTR_UUID_E:
3405 				printf(" uuid-e:");
3406 				for (n = 0; n < (tlv_len - 1); n++)
3407 					printf("%02x-", ie[n]);
3408 				printf("%02x", ie[n]);
3409 				break;
3410 			case IEEE80211_WPS_ATTR_VENDOR_EXT:
3411 				printf(" vendor:");
3412 				for (n = 0; n < tlv_len; n++)
3413 					printf("%02x", ie[n]);
3414 				break;
3415 			case IEEE80211_WPS_ATTR_WPS_STATE:
3416 				switch (*ie) {
3417 				case IEEE80211_WPS_STATE_NOT_CONFIGURED:
3418 					printf(" state:N");
3419 					break;
3420 				case IEEE80211_WPS_STATE_CONFIGURED:
3421 					printf(" state:C");
3422 					break;
3423 				default:
3424 					printf(" state:B<%02x>", *ie);
3425 					break;
3426 				}
3427 				break;
3428 			default:
3429 				printf(" unknown_wps_attr:0x%x", tlv_type);
3430 				break;
3431 			}
3432 			ie += tlv_len, len -= tlv_len;
3433 		}
3434 		printf(">");
3435 	}
3436 }
3437 
3438 static void
3439 printtdmaie(if_ctx *ctx, const char *tag, const u_int8_t *ie, size_t ielen)
3440 {
3441 	printf("%s", tag);
3442 	if (ctx->args->verbose && ielen >= sizeof(struct ieee80211_tdma_param)) {
3443 		const struct ieee80211_tdma_param *tdma =
3444 		   (const struct ieee80211_tdma_param *) ie;
3445 
3446 		/* XXX tstamp */
3447 		printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>",
3448 		    tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt,
3449 		    LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval,
3450 		    tdma->tdma_inuse[0]);
3451 	}
3452 }
3453 
3454 /*
3455  * Copy the ssid string contents into buf, truncating to fit.  If the
3456  * ssid is entirely printable then just copy intact.  Otherwise convert
3457  * to hexadecimal.  If the result is truncated then replace the last
3458  * three characters with "...".
3459  */
3460 static int
3461 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len)
3462 {
3463 	const u_int8_t *p;
3464 	size_t maxlen;
3465 	u_int i;
3466 
3467 	if (essid_len > bufsize)
3468 		maxlen = bufsize;
3469 	else
3470 		maxlen = essid_len;
3471 	/* determine printable or not */
3472 	for (i = 0, p = essid; i < maxlen; i++, p++) {
3473 		if (*p < ' ' || *p > 0x7e)
3474 			break;
3475 	}
3476 	if (i != maxlen) {		/* not printable, print as hex */
3477 		if (bufsize < 3)
3478 			return 0;
3479 		strlcpy(buf, "0x", bufsize);
3480 		bufsize -= 2;
3481 		p = essid;
3482 		for (i = 0; i < maxlen && bufsize >= 2; i++) {
3483 			sprintf(&buf[2+2*i], "%02x", p[i]);
3484 			bufsize -= 2;
3485 		}
3486 		if (i != essid_len)
3487 			memcpy(&buf[2+2*i-3], "...", 3);
3488 	} else {			/* printable, truncate as needed */
3489 		memcpy(buf, essid, maxlen);
3490 		if (maxlen != essid_len)
3491 			memcpy(&buf[maxlen-3], "...", 3);
3492 	}
3493 	return maxlen;
3494 }
3495 
3496 static void
3497 printssid(const char *tag, const u_int8_t *ie, int maxlen)
3498 {
3499 	char ssid[2*IEEE80211_NWID_LEN+1];
3500 
3501 	printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid);
3502 }
3503 
3504 static void
3505 printrates(const char *tag, const u_int8_t *ie, size_t ielen)
3506 {
3507 	const char *sep;
3508 
3509 	printf("%s", tag);
3510 	sep = "<";
3511 	for (size_t i = 2; i < ielen; i++) {
3512 		printf("%s%s%d", sep,
3513 		    ie[i] & IEEE80211_RATE_BASIC ? "B" : "",
3514 		    ie[i] & IEEE80211_RATE_VAL);
3515 		sep = ",";
3516 	}
3517 	printf(">");
3518 }
3519 
3520 static void
3521 printcountry(const char *tag, const u_int8_t *ie)
3522 {
3523 	const struct ieee80211_country_ie *cie =
3524 	   (const struct ieee80211_country_ie *) ie;
3525 	int i, nbands, schan, nchan;
3526 
3527 	printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]);
3528 	nbands = (cie->len - 3) / sizeof(cie->band[0]);
3529 	for (i = 0; i < nbands; i++) {
3530 		schan = cie->band[i].schan;
3531 		nchan = cie->band[i].nchan;
3532 		if (nchan != 1)
3533 			printf(" %u-%u,%u", schan, schan + nchan-1,
3534 			    cie->band[i].maxtxpwr);
3535 		else
3536 			printf(" %u,%u", schan, cie->band[i].maxtxpwr);
3537 	}
3538 	printf(">");
3539 }
3540 
3541 static __inline int
3542 iswpaoui(const u_int8_t *frm)
3543 {
3544 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
3545 }
3546 
3547 static __inline int
3548 iswmeinfo(const u_int8_t *frm)
3549 {
3550 	return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3551 		frm[6] == WME_INFO_OUI_SUBTYPE;
3552 }
3553 
3554 static __inline int
3555 iswmeparam(const u_int8_t *frm)
3556 {
3557 	return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3558 		frm[6] == WME_PARAM_OUI_SUBTYPE;
3559 }
3560 
3561 static __inline int
3562 isatherosoui(const u_int8_t *frm)
3563 {
3564 	return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI);
3565 }
3566 
3567 static __inline int
3568 istdmaoui(const uint8_t *frm)
3569 {
3570 	return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI);
3571 }
3572 
3573 static __inline int
3574 iswpsoui(const uint8_t *frm)
3575 {
3576 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI);
3577 }
3578 
3579 static const char *
3580 iename(int elemid)
3581 {
3582 	static char iename_buf[64];
3583 	switch (elemid) {
3584 	case IEEE80211_ELEMID_FHPARMS:	return " FHPARMS";
3585 	case IEEE80211_ELEMID_CFPARMS:	return " CFPARMS";
3586 	case IEEE80211_ELEMID_TIM:	return " TIM";
3587 	case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS";
3588 	case IEEE80211_ELEMID_BSSLOAD:	return " BSSLOAD";
3589 	case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE";
3590 	case IEEE80211_ELEMID_PWRCNSTR:	return " PWRCNSTR";
3591 	case IEEE80211_ELEMID_PWRCAP:	return " PWRCAP";
3592 	case IEEE80211_ELEMID_TPCREQ:	return " TPCREQ";
3593 	case IEEE80211_ELEMID_TPCREP:	return " TPCREP";
3594 	case IEEE80211_ELEMID_SUPPCHAN:	return " SUPPCHAN";
3595 	case IEEE80211_ELEMID_CSA:	return " CSA";
3596 	case IEEE80211_ELEMID_MEASREQ:	return " MEASREQ";
3597 	case IEEE80211_ELEMID_MEASREP:	return " MEASREP";
3598 	case IEEE80211_ELEMID_QUIET:	return " QUIET";
3599 	case IEEE80211_ELEMID_IBSSDFS:	return " IBSSDFS";
3600 	case IEEE80211_ELEMID_RESERVED_47:
3601 					return " RESERVED_47";
3602 	case IEEE80211_ELEMID_MOBILITY_DOMAIN:
3603 					return " MOBILITY_DOMAIN";
3604 	case IEEE80211_ELEMID_RRM_ENACAPS:
3605 					return " RRM_ENCAPS";
3606 	case IEEE80211_ELEMID_OVERLAP_BSS_SCAN_PARAM:
3607 					return " OVERLAP_BSS";
3608 	case IEEE80211_ELEMID_TPC:	return " TPC";
3609 	case IEEE80211_ELEMID_CCKM:	return " CCKM";
3610 	case IEEE80211_ELEMID_EXTCAP:	return " EXTCAP";
3611 	}
3612 	snprintf(iename_buf, sizeof(iename_buf), " UNKNOWN_ELEMID_%d",
3613 	    elemid);
3614 	return (const char *) iename_buf;
3615 }
3616 
3617 static void
3618 printies(if_ctx *ctx, const u_int8_t *vp, int ielen, unsigned int maxcols)
3619 {
3620 	const int verbose = ctx->args->verbose;
3621 
3622 	while (ielen > 0) {
3623 		switch (vp[0]) {
3624 		case IEEE80211_ELEMID_SSID:
3625 			if (verbose)
3626 				printssid(" SSID", vp, maxcols);
3627 			break;
3628 		case IEEE80211_ELEMID_RATES:
3629 		case IEEE80211_ELEMID_XRATES:
3630 			if (verbose)
3631 				printrates(vp[0] == IEEE80211_ELEMID_RATES ?
3632 				    " RATES" : " XRATES", vp, 2+vp[1]);
3633 			break;
3634 		case IEEE80211_ELEMID_DSPARMS:
3635 			if (verbose)
3636 				printf(" DSPARMS<%u>", vp[2]);
3637 			break;
3638 		case IEEE80211_ELEMID_COUNTRY:
3639 			if (verbose)
3640 				printcountry(" COUNTRY", vp);
3641 			break;
3642 		case IEEE80211_ELEMID_ERP:
3643 			if (verbose)
3644 				printf(" ERP<0x%x>", vp[2]);
3645 			break;
3646 		case IEEE80211_ELEMID_VENDOR:
3647 			if (iswpaoui(vp))
3648 				printwpaie(ctx, " WPA", vp);
3649 			else if (iswmeinfo(vp))
3650 				printwmeinfo(ctx, " WME", vp);
3651 			else if (iswmeparam(vp))
3652 				printwmeparam(ctx, " WME", vp);
3653 			else if (isatherosoui(vp))
3654 				printathie(ctx, " ATH", vp);
3655 			else if (iswpsoui(vp))
3656 				printwpsie(ctx, " WPS", vp);
3657 			else if (istdmaoui(vp))
3658 				printtdmaie(ctx, " TDMA", vp, 2+vp[1]);
3659 			else if (verbose)
3660 					printie(ctx, " VEN", vp, 2+vp[1], maxcols);
3661 				break;
3662 		case IEEE80211_ELEMID_RSN:
3663 			printrsnie(ctx, " RSN", vp, 2+vp[1]);
3664 			break;
3665 		case IEEE80211_ELEMID_HTCAP:
3666 			printhtcap(ctx, " HTCAP", vp);
3667 			break;
3668 		case IEEE80211_ELEMID_HTINFO:
3669 			if (verbose)
3670 				printhtinfo(ctx, " HTINFO", vp);
3671 			break;
3672 		case IEEE80211_ELEMID_MESHID:
3673 			if (verbose)
3674 				printssid(" MESHID", vp, maxcols);
3675 			break;
3676 		case IEEE80211_ELEMID_MESHCONF:
3677 			printmeshconf(ctx, " MESHCONF", vp);
3678 			break;
3679 		case IEEE80211_ELEMID_VHT_CAP:
3680 			printvhtcap(ctx, " VHTCAP", vp);
3681 			break;
3682 		case IEEE80211_ELEMID_VHT_OPMODE:
3683 			printvhtinfo(ctx, " VHTOPMODE", vp);
3684 			break;
3685 		case IEEE80211_ELEMID_VHT_PWR_ENV:
3686 			printvhtpwrenv(ctx, " VHTPWRENV", vp, 2+vp[1]);
3687 			break;
3688 		case IEEE80211_ELEMID_BSSLOAD:
3689 			printbssload(ctx, " BSSLOAD", vp);
3690 			break;
3691 		case IEEE80211_ELEMID_APCHANREP:
3692 			printapchanrep(ctx, " APCHANREP", vp, 2+vp[1]);
3693 			break;
3694 		default:
3695 			if (verbose)
3696 				printie(ctx, iename(vp[0]), vp, 2+vp[1], maxcols);
3697 			break;
3698 		}
3699 		ielen -= 2+vp[1];
3700 		vp += 2+vp[1];
3701 	}
3702 }
3703 
3704 static void
3705 printmimo(const struct ieee80211_mimo_info *mi)
3706 {
3707 	int i;
3708 	int r = 0;
3709 
3710 	for (i = 0; i < IEEE80211_MAX_CHAINS; i++) {
3711 		if (mi->ch[i].rssi[0] != 0) {
3712 			r = 1;
3713 			break;
3714 		}
3715 	}
3716 
3717 	/* NB: don't muddy display unless there's something to show */
3718 	if (r == 0)
3719 		return;
3720 
3721 	/* XXX TODO: ignore EVM; secondary channels for now */
3722 	printf(" (rssi %.1f:%.1f:%.1f:%.1f nf %d:%d:%d:%d)",
3723 	    mi->ch[0].rssi[0] / 2.0,
3724 	    mi->ch[1].rssi[0] / 2.0,
3725 	    mi->ch[2].rssi[0] / 2.0,
3726 	    mi->ch[3].rssi[0] / 2.0,
3727 	    mi->ch[0].noise[0],
3728 	    mi->ch[1].noise[0],
3729 	    mi->ch[2].noise[0],
3730 	    mi->ch[3].noise[0]);
3731 }
3732 
3733 static void
3734 printbssidname(const struct ether_addr *n)
3735 {
3736 	char name[MAXHOSTNAMELEN + 1];
3737 
3738 	if (ether_ntohost(name, n) != 0)
3739 		return;
3740 
3741 	printf(" (%s)", name);
3742 }
3743 
3744 static void
3745 list_scan(if_ctx *ctx)
3746 {
3747 	uint8_t buf[24*1024];
3748 	char ssid[IEEE80211_NWID_LEN+1];
3749 	const uint8_t *cp;
3750 	int len, idlen;
3751 
3752 	if (get80211len(ctx, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0)
3753 		errx(1, "unable to get scan results");
3754 	if (len < (int)sizeof(struct ieee80211req_scan_result))
3755 		return;
3756 
3757 	getchaninfo(ctx);
3758 
3759 	printf("%-*.*s  %-17.17s  %4s %4s   %-7s  %3s %4s\n"
3760 		, IEEE80211_NWID_LEN, IEEE80211_NWID_LEN, "SSID/MESH ID"
3761 		, "BSSID"
3762 		, "CHAN"
3763 		, "RATE"
3764 		, " S:N"
3765 		, "INT"
3766 		, "CAPS"
3767 	);
3768 	cp = buf;
3769 	do {
3770 		const struct ieee80211req_scan_result *sr;
3771 		const uint8_t *vp, *idp;
3772 
3773 		sr = (const struct ieee80211req_scan_result *)(const void *) cp;
3774 		vp = cp + sr->isr_ie_off;
3775 		if (sr->isr_meshid_len) {
3776 			idp = vp + sr->isr_ssid_len;
3777 			idlen = sr->isr_meshid_len;
3778 		} else {
3779 			idp = vp;
3780 			idlen = sr->isr_ssid_len;
3781 		}
3782 		printf("%-*.*s  %s  %3d  %3dM %4d:%-4d %4d %-4.4s"
3783 			, IEEE80211_NWID_LEN
3784 			  , copy_essid(ssid, IEEE80211_NWID_LEN, idp, idlen)
3785 			  , ssid
3786 			, ether_ntoa((const struct ether_addr *) sr->isr_bssid)
3787 			, ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags)
3788 			, getmaxrate(sr->isr_rates, sr->isr_nrates)
3789 			, (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise
3790 			, sr->isr_intval
3791 			, getcaps(sr->isr_capinfo)
3792 		);
3793 		printies(ctx, vp + sr->isr_ssid_len + sr->isr_meshid_len,
3794 		    sr->isr_ie_len, 24);
3795 		printbssidname((const struct ether_addr *)sr->isr_bssid);
3796 		printf("\n");
3797 		cp += sr->isr_len, len -= sr->isr_len;
3798 	} while (len >= (int)sizeof(struct ieee80211req_scan_result));
3799 }
3800 
3801 static void
3802 scan_and_wait(if_ctx *ctx)
3803 {
3804 	struct ieee80211_scan_req sr;
3805 	struct ieee80211req ireq;
3806 	int sroute;
3807 
3808 	sroute = socket(PF_ROUTE, SOCK_RAW, 0);
3809 	if (sroute < 0) {
3810 		perror("socket(PF_ROUTE,SOCK_RAW)");
3811 		return;
3812 	}
3813 	memset(&ireq, 0, sizeof(ireq));
3814 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name));
3815 	ireq.i_type = IEEE80211_IOC_SCAN_REQ;
3816 
3817 	memset(&sr, 0, sizeof(sr));
3818 	sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE
3819 		    | IEEE80211_IOC_SCAN_BGSCAN
3820 		    | IEEE80211_IOC_SCAN_NOPICK
3821 		    | IEEE80211_IOC_SCAN_ONCE;
3822 	sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER;
3823 	sr.sr_nssid = 0;
3824 
3825 	ireq.i_data = &sr;
3826 	ireq.i_len = sizeof(sr);
3827 	/*
3828 	 * NB: only root can trigger a scan so ignore errors. Also ignore
3829 	 * possible errors from net80211, even if no new scan could be
3830 	 * started there might still be a valid scan cache.
3831 	 */
3832 	if (ioctl_ctx(ctx, SIOCS80211, &ireq) == 0) {
3833 		char buf[2048];
3834 		struct if_announcemsghdr *ifan;
3835 		struct rt_msghdr *rtm;
3836 
3837 		do {
3838 			if (read(sroute, buf, sizeof(buf)) < 0) {
3839 				perror("read(PF_ROUTE)");
3840 				break;
3841 			}
3842 			rtm = (struct rt_msghdr *)(void *)buf;
3843 			if (rtm->rtm_version != RTM_VERSION)
3844 				break;
3845 			ifan = (struct if_announcemsghdr *) rtm;
3846 		} while (rtm->rtm_type != RTM_IEEE80211 ||
3847 		    ifan->ifan_what != RTM_IEEE80211_SCAN);
3848 	}
3849 	close(sroute);
3850 }
3851 
3852 static void
3853 set80211scan(if_ctx *ctx, const char *val __unused, int dummy __unused)
3854 {
3855 	scan_and_wait(ctx);
3856 	list_scan(ctx);
3857 }
3858 
3859 static enum ieee80211_opmode get80211opmode(if_ctx *ctx);
3860 
3861 static int
3862 gettxseq(const struct ieee80211req_sta_info *si)
3863 {
3864 	int i, txseq;
3865 
3866 	if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3867 		return si->isi_txseqs[0];
3868 	/* XXX not right but usually what folks want */
3869 	txseq = 0;
3870 	for (i = 0; i < IEEE80211_TID_SIZE; i++)
3871 		if (si->isi_txseqs[i] > txseq)
3872 			txseq = si->isi_txseqs[i];
3873 	return txseq;
3874 }
3875 
3876 static int
3877 getrxseq(const struct ieee80211req_sta_info *si)
3878 {
3879 	int rxseq;
3880 
3881 	if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3882 		return si->isi_rxseqs[0];
3883 	/* XXX not right but usually what folks want */
3884 	rxseq = 0;
3885 	for (unsigned int i = 0; i < IEEE80211_TID_SIZE; i++)
3886 		if (si->isi_rxseqs[i] > rxseq)
3887 			rxseq = si->isi_rxseqs[i];
3888 	return rxseq;
3889 }
3890 
3891 static void
3892 list_stations(if_ctx *ctx)
3893 {
3894 	union {
3895 		struct ieee80211req_sta_req req;
3896 		uint8_t buf[24*1024];
3897 	} u;
3898 	enum ieee80211_opmode opmode = get80211opmode(ctx);
3899 	const uint8_t *cp;
3900 	int len;
3901 
3902 	/* broadcast address =>'s get all stations */
3903 	(void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN);
3904 	if (opmode == IEEE80211_M_STA) {
3905 		/*
3906 		 * Get information about the associated AP.
3907 		 */
3908 		(void) get80211(ctx, IEEE80211_IOC_BSSID,
3909 		    u.req.is_u.macaddr, IEEE80211_ADDR_LEN);
3910 	}
3911 	if (get80211len(ctx, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0)
3912 		errx(1, "unable to get station information");
3913 	if (len < (int)sizeof(struct ieee80211req_sta_info))
3914 		return;
3915 
3916 	getchaninfo(ctx);
3917 
3918 	if (opmode == IEEE80211_M_MBSS)
3919 		printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n"
3920 			, "ADDR"
3921 			, "CHAN"
3922 			, "LOCAL"
3923 			, "PEER"
3924 			, "STATE"
3925 			, "RATE"
3926 			, "RSSI"
3927 			, "IDLE"
3928 			, "TXSEQ"
3929 			, "RXSEQ"
3930 		);
3931 	else
3932 		printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-12s\n"
3933 			, "ADDR"
3934 			, "AID"
3935 			, "CHAN"
3936 			, "RATE"
3937 			, "RSSI"
3938 			, "IDLE"
3939 			, "TXSEQ"
3940 			, "RXSEQ"
3941 			, "CAPS"
3942 			, "FLAG"
3943 		);
3944 	cp = (const uint8_t *) u.req.info;
3945 	do {
3946 		const struct ieee80211req_sta_info *si;
3947 
3948 		si = (const struct ieee80211req_sta_info *)(const void *)cp;
3949 		if (si->isi_len < sizeof(*si))
3950 			break;
3951 		if (opmode == IEEE80211_M_MBSS)
3952 			printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d"
3953 				, ether_ntoa((const struct ether_addr*)
3954 				    si->isi_macaddr)
3955 				, ieee80211_mhz2ieee(si->isi_freq,
3956 				    si->isi_flags)
3957 				, si->isi_localid
3958 				, si->isi_peerid
3959 				, mesh_linkstate_string(si->isi_peerstate)
3960 				, si->isi_txmbps/2
3961 				, si->isi_rssi/2.
3962 				, si->isi_inact
3963 				, gettxseq(si)
3964 				, getrxseq(si)
3965 			);
3966 		else
3967 			printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-12.12s"
3968 				, ether_ntoa((const struct ether_addr*)
3969 				    si->isi_macaddr)
3970 				, IEEE80211_AID(si->isi_associd)
3971 				, ieee80211_mhz2ieee(si->isi_freq,
3972 				    si->isi_flags)
3973 				, si->isi_txmbps/2
3974 				, si->isi_rssi/2.
3975 				, si->isi_inact
3976 				, gettxseq(si)
3977 				, getrxseq(si)
3978 				, getcaps(si->isi_capinfo)
3979 				, getflags(si->isi_state)
3980 			);
3981 		printies(ctx, cp + si->isi_ie_off, si->isi_ie_len, 24);
3982 		printmimo(&si->isi_mimo);
3983 		printf("\n");
3984 		cp += si->isi_len, len -= si->isi_len;
3985 	} while (len >= (int)sizeof(struct ieee80211req_sta_info));
3986 }
3987 
3988 static const char *
3989 mesh_linkstate_string(uint8_t state)
3990 {
3991 	static const char *state_names[] = {
3992 	    [0] = "IDLE",
3993 	    [1] = "OPEN-TX",
3994 	    [2] = "OPEN-RX",
3995 	    [3] = "CONF-RX",
3996 	    [4] = "ESTAB",
3997 	    [5] = "HOLDING",
3998 	};
3999 
4000 	if (state >= nitems(state_names)) {
4001 		static char buf[10];
4002 		snprintf(buf, sizeof(buf), "#%u", state);
4003 		return buf;
4004 	} else
4005 		return state_names[state];
4006 }
4007 
4008 static const char *
4009 get_chaninfo(const struct ieee80211_channel *c, int precise,
4010 	char buf[], size_t bsize)
4011 {
4012 	buf[0] = '\0';
4013 	if (IEEE80211_IS_CHAN_FHSS(c))
4014 		strlcat(buf, " FHSS", bsize);
4015 	if (IEEE80211_IS_CHAN_A(c))
4016 		strlcat(buf, " 11a", bsize);
4017 	else if (IEEE80211_IS_CHAN_ANYG(c))
4018 		strlcat(buf, " 11g", bsize);
4019 	else if (IEEE80211_IS_CHAN_B(c))
4020 		strlcat(buf, " 11b", bsize);
4021 	if (IEEE80211_IS_CHAN_HALF(c))
4022 		strlcat(buf, "/10MHz", bsize);
4023 	if (IEEE80211_IS_CHAN_QUARTER(c))
4024 		strlcat(buf, "/5MHz", bsize);
4025 	if (IEEE80211_IS_CHAN_TURBO(c))
4026 		strlcat(buf, " Turbo", bsize);
4027 	if (precise) {
4028 		if (IEEE80211_IS_CHAN_VHT80P80(c))
4029 			strlcat(buf, " vht/80p80", bsize);
4030 		else if (IEEE80211_IS_CHAN_VHT160(c))
4031 			strlcat(buf, " vht/160", bsize);
4032 		else if (IEEE80211_IS_CHAN_VHT80(c) &&
4033 		    IEEE80211_IS_CHAN_HT40D(c))
4034 			strlcat(buf, " vht/80-", bsize);
4035 		else if (IEEE80211_IS_CHAN_VHT80(c) &&
4036 		    IEEE80211_IS_CHAN_HT40U(c))
4037 			strlcat(buf, " vht/80+", bsize);
4038 		else if (IEEE80211_IS_CHAN_VHT80(c))
4039 			strlcat(buf, " vht/80", bsize);
4040 		else if (IEEE80211_IS_CHAN_VHT40D(c))
4041 			strlcat(buf, " vht/40-", bsize);
4042 		else if (IEEE80211_IS_CHAN_VHT40U(c))
4043 			strlcat(buf, " vht/40+", bsize);
4044 		else if (IEEE80211_IS_CHAN_VHT20(c))
4045 			strlcat(buf, " vht/20", bsize);
4046 		else if (IEEE80211_IS_CHAN_HT20(c))
4047 			strlcat(buf, " ht/20", bsize);
4048 		else if (IEEE80211_IS_CHAN_HT40D(c))
4049 			strlcat(buf, " ht/40-", bsize);
4050 		else if (IEEE80211_IS_CHAN_HT40U(c))
4051 			strlcat(buf, " ht/40+", bsize);
4052 	} else {
4053 		if (IEEE80211_IS_CHAN_VHT(c))
4054 			strlcat(buf, " vht", bsize);
4055 		else if (IEEE80211_IS_CHAN_HT(c))
4056 			strlcat(buf, " ht", bsize);
4057 	}
4058 	return buf;
4059 }
4060 
4061 static void
4062 print_chaninfo(const struct ieee80211_channel *c, int verb)
4063 {
4064 	char buf[14];
4065 
4066 	if (verb)
4067 		printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s",
4068 		    ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq,
4069 		    IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ',
4070 		    IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ',
4071 		    IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ',
4072 		    IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ',
4073 		    IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ',
4074 		    get_chaninfo(c, verb, buf, sizeof(buf)));
4075 	else
4076 	printf("Channel %3u : %u%c MHz%-14.14s",
4077 	    ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq,
4078 	    IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ',
4079 	    get_chaninfo(c, verb, buf, sizeof(buf)));
4080 
4081 }
4082 
4083 static int
4084 chanpref(const struct ieee80211_channel *c)
4085 {
4086 
4087 	if (IEEE80211_IS_CHAN_VHT80P80(c))
4088 		return 90;
4089 	if (IEEE80211_IS_CHAN_VHT160(c))
4090 		return 80;
4091 	if (IEEE80211_IS_CHAN_VHT80(c))
4092 		return 70;
4093 	if (IEEE80211_IS_CHAN_VHT40(c))
4094 		return 60;
4095 	if (IEEE80211_IS_CHAN_VHT20(c))
4096 		return 50;
4097 	if (IEEE80211_IS_CHAN_HT40(c))
4098 		return 40;
4099 	if (IEEE80211_IS_CHAN_HT20(c))
4100 		return 30;
4101 	if (IEEE80211_IS_CHAN_HALF(c))
4102 		return 10;
4103 	if (IEEE80211_IS_CHAN_QUARTER(c))
4104 		return 5;
4105 	if (IEEE80211_IS_CHAN_TURBO(c))
4106 		return 25;
4107 	if (IEEE80211_IS_CHAN_A(c))
4108 		return 20;
4109 	if (IEEE80211_IS_CHAN_G(c))
4110 		return 20;
4111 	if (IEEE80211_IS_CHAN_B(c))
4112 		return 15;
4113 	if (IEEE80211_IS_CHAN_PUREG(c))
4114 		return 15;
4115 	return 0;
4116 }
4117 
4118 static void
4119 print_channels(if_ctx *ctx, const struct ieee80211req_chaninfo *chans,
4120 	int allchans, int verb)
4121 {
4122 	struct ieee80211req_chaninfo *achans;
4123 	uint8_t reported[IEEE80211_CHAN_BYTES];
4124 	const struct ieee80211_channel *c;
4125 	unsigned int i, half;
4126 
4127 	achans = malloc(IEEE80211_CHANINFO_SPACE(chans));
4128 	if (achans == NULL)
4129 		errx(1, "no space for active channel list");
4130 	achans->ic_nchans = 0;
4131 	memset(reported, 0, sizeof(reported));
4132 	if (!allchans) {
4133 		struct ieee80211req_chanlist active;
4134 
4135 		if (get80211(ctx, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0)
4136 			errx(1, "unable to get active channel list");
4137 		for (i = 0; i < chans->ic_nchans; i++) {
4138 			c = &chans->ic_chans[i];
4139 			if (!isset(active.ic_channels, c->ic_ieee))
4140 				continue;
4141 			/*
4142 			 * Suppress compatible duplicates unless
4143 			 * verbose.  The kernel gives us it's
4144 			 * complete channel list which has separate
4145 			 * entries for 11g/11b and 11a/turbo.
4146 			 */
4147 			if (isset(reported, c->ic_ieee) && !verb) {
4148 				/* XXX we assume duplicates are adjacent */
4149 				achans->ic_chans[achans->ic_nchans-1] = *c;
4150 			} else {
4151 				achans->ic_chans[achans->ic_nchans++] = *c;
4152 				setbit(reported, c->ic_ieee);
4153 			}
4154 		}
4155 	} else {
4156 		for (i = 0; i < chans->ic_nchans; i++) {
4157 			c = &chans->ic_chans[i];
4158 			/* suppress duplicates as above */
4159 			if (isset(reported, c->ic_ieee) && !verb) {
4160 				/* XXX we assume duplicates are adjacent */
4161 				struct ieee80211_channel *a =
4162 				    &achans->ic_chans[achans->ic_nchans-1];
4163 				if (chanpref(c) > chanpref(a))
4164 					*a = *c;
4165 			} else {
4166 				achans->ic_chans[achans->ic_nchans++] = *c;
4167 				setbit(reported, c->ic_ieee);
4168 			}
4169 		}
4170 	}
4171 	half = achans->ic_nchans / 2;
4172 	if (achans->ic_nchans % 2)
4173 		half++;
4174 
4175 	for (i = 0; i < achans->ic_nchans / 2; i++) {
4176 		print_chaninfo(&achans->ic_chans[i], verb);
4177 		print_chaninfo(&achans->ic_chans[half+i], verb);
4178 		printf("\n");
4179 	}
4180 	if (achans->ic_nchans % 2) {
4181 		print_chaninfo(&achans->ic_chans[i], verb);
4182 		printf("\n");
4183 	}
4184 	free(achans);
4185 }
4186 
4187 static void
4188 list_channels(if_ctx *ctx, int allchans)
4189 {
4190 	getchaninfo(ctx);
4191 	print_channels(ctx, chaninfo, allchans, ctx->args->verbose);
4192 }
4193 
4194 static void
4195 print_txpow(const struct ieee80211_channel *c)
4196 {
4197 	printf("Channel %3u : %u MHz %3.1f reg %2d  ",
4198 	    c->ic_ieee, c->ic_freq,
4199 	    c->ic_maxpower/2., c->ic_maxregpower);
4200 }
4201 
4202 static void
4203 print_txpow_verbose(const struct ieee80211_channel *c)
4204 {
4205 	print_chaninfo(c, 1);
4206 	printf("min %4.1f dBm  max %3.1f dBm  reg %2d dBm",
4207 	    c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower);
4208 	/* indicate where regulatory cap limits power use */
4209 	if (c->ic_maxpower > 2*c->ic_maxregpower)
4210 		printf(" <");
4211 }
4212 
4213 static void
4214 list_txpow(if_ctx *ctx)
4215 {
4216 	struct ieee80211req_chaninfo *achans;
4217 	uint8_t reported[IEEE80211_CHAN_BYTES];
4218 	struct ieee80211_channel *c, *prev;
4219 	unsigned int i, half;
4220 
4221 	getchaninfo(ctx);
4222 	achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo));
4223 	if (achans == NULL)
4224 		errx(1, "no space for active channel list");
4225 	achans->ic_nchans = 0;
4226 	memset(reported, 0, sizeof(reported));
4227 	for (i = 0; i < chaninfo->ic_nchans; i++) {
4228 		c = &chaninfo->ic_chans[i];
4229 		/* suppress duplicates as above */
4230 		if (isset(reported, c->ic_ieee) && !ctx->args->verbose) {
4231 			/* XXX we assume duplicates are adjacent */
4232 			assert(achans->ic_nchans > 0);
4233 			prev = &achans->ic_chans[achans->ic_nchans-1];
4234 			/* display highest power on channel */
4235 			if (c->ic_maxpower > prev->ic_maxpower)
4236 				*prev = *c;
4237 		} else {
4238 			achans->ic_chans[achans->ic_nchans++] = *c;
4239 			setbit(reported, c->ic_ieee);
4240 		}
4241 	}
4242 	if (!ctx->args->verbose) {
4243 		half = achans->ic_nchans / 2;
4244 		if (achans->ic_nchans % 2)
4245 			half++;
4246 
4247 		for (i = 0; i < achans->ic_nchans / 2; i++) {
4248 			print_txpow(&achans->ic_chans[i]);
4249 			print_txpow(&achans->ic_chans[half+i]);
4250 			printf("\n");
4251 		}
4252 		if (achans->ic_nchans % 2) {
4253 			print_txpow(&achans->ic_chans[i]);
4254 			printf("\n");
4255 		}
4256 	} else {
4257 		for (i = 0; i < achans->ic_nchans; i++) {
4258 			print_txpow_verbose(&achans->ic_chans[i]);
4259 			printf("\n");
4260 		}
4261 	}
4262 	free(achans);
4263 }
4264 
4265 static void
4266 list_keys(int s __unused)
4267 {
4268 }
4269 
4270 static void
4271 list_capabilities(if_ctx *ctx)
4272 {
4273 	struct ieee80211_devcaps_req *dc;
4274 	const int verbose = ctx->args->verbose;
4275 
4276 	if (verbose)
4277 		dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN));
4278 	else
4279 		dc = malloc(IEEE80211_DEVCAPS_SIZE(1));
4280 	if (dc == NULL)
4281 		errx(1, "no space for device capabilities");
4282 	dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1;
4283 	getdevcaps(ctx, dc);
4284 	printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS);
4285 	if (dc->dc_cryptocaps != 0 || verbose) {
4286 		putchar('\n');
4287 		printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS);
4288 	}
4289 	if (dc->dc_htcaps != 0 || verbose) {
4290 		putchar('\n');
4291 		printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS);
4292 	}
4293 	if (dc->dc_vhtcaps != 0 || verbose) {
4294 		putchar('\n');
4295 		printb("vhtcaps", dc->dc_vhtcaps, IEEE80211_VHTCAP_BITS);
4296 	}
4297 
4298 	putchar('\n');
4299 	if (verbose) {
4300 		chaninfo = &dc->dc_chaninfo;	/* XXX */
4301 		print_channels(ctx, &dc->dc_chaninfo, 1/*allchans*/, verbose);
4302 	}
4303 	free(dc);
4304 }
4305 
4306 static int
4307 get80211wme(if_ctx *ctx, int param, int ac, int *val)
4308 {
4309 	struct ieee80211req ireq = {};
4310 
4311 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name));
4312 	ireq.i_type = param;
4313 	ireq.i_len = ac;
4314 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0) {
4315 		warn("cannot get WME parameter %d, ac %d%s",
4316 		    param, ac & IEEE80211_WMEPARAM_VAL,
4317 		    ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : "");
4318 		return -1;
4319 	}
4320 	*val = ireq.i_val;
4321 	return 0;
4322 }
4323 
4324 static void
4325 list_wme_aci(if_ctx *ctx, const char *tag, int ac)
4326 {
4327 	int val;
4328 
4329 	printf("\t%s", tag);
4330 
4331 	/* show WME BSS parameters */
4332 	if (get80211wme(ctx, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1)
4333 		printf(" cwmin %2u", val);
4334 	if (get80211wme(ctx, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1)
4335 		printf(" cwmax %2u", val);
4336 	if (get80211wme(ctx, IEEE80211_IOC_WME_AIFS, ac, &val) != -1)
4337 		printf(" aifs %2u", val);
4338 	if (get80211wme(ctx, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1)
4339 		printf(" txopLimit %3u", val);
4340 	if (get80211wme(ctx, IEEE80211_IOC_WME_ACM, ac, &val) != -1) {
4341 		if (val)
4342 			printf(" acm");
4343 		else if (ctx->args->verbose)
4344 			printf(" -acm");
4345 	}
4346 	/* !BSS only */
4347 	if ((ac & IEEE80211_WMEPARAM_BSS) == 0) {
4348 		if (get80211wme(ctx, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) {
4349 			if (!val)
4350 				printf(" -ack");
4351 			else if (ctx->args->verbose)
4352 				printf(" ack");
4353 		}
4354 	}
4355 	printf("\n");
4356 }
4357 
4358 static void
4359 list_wme(if_ctx *ctx)
4360 {
4361 	static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" };
4362 	int ac;
4363 
4364 	if (ctx->args->verbose) {
4365 		/* display both BSS and local settings */
4366 		for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) {
4367 	again:
4368 			if (ac & IEEE80211_WMEPARAM_BSS)
4369 				list_wme_aci(ctx, "     ", ac);
4370 			else
4371 				list_wme_aci(ctx, acnames[ac], ac);
4372 			if ((ac & IEEE80211_WMEPARAM_BSS) == 0) {
4373 				ac |= IEEE80211_WMEPARAM_BSS;
4374 				goto again;
4375 			} else
4376 				ac &= ~IEEE80211_WMEPARAM_BSS;
4377 		}
4378 	} else {
4379 		/* display only channel settings */
4380 		for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++)
4381 			list_wme_aci(ctx, acnames[ac], ac);
4382 	}
4383 }
4384 
4385 static void
4386 list_roam(if_ctx *ctx)
4387 {
4388 	const struct ieee80211_roamparam *rp;
4389 	int mode;
4390 
4391 	getroam(ctx);
4392 	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
4393 		rp = &roamparams.params[mode];
4394 		if (rp->rssi == 0 && rp->rate == 0)
4395 			continue;
4396 		if (mode == IEEE80211_MODE_11NA ||
4397 		    mode == IEEE80211_MODE_11NG ||
4398 		    mode == IEEE80211_MODE_VHT_2GHZ ||
4399 		    mode == IEEE80211_MODE_VHT_5GHZ) {
4400 			if (rp->rssi & 1)
4401 				LINE_CHECK("roam:%-7.7s rssi %2u.5dBm  MCS %2u    ",
4402 				    modename[mode], rp->rssi/2,
4403 				    rp->rate &~ IEEE80211_RATE_MCS);
4404 			else
4405 				LINE_CHECK("roam:%-7.7s rssi %4udBm  MCS %2u    ",
4406 				    modename[mode], rp->rssi/2,
4407 				    rp->rate &~ IEEE80211_RATE_MCS);
4408 		} else {
4409 			if (rp->rssi & 1)
4410 				LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s",
4411 				    modename[mode], rp->rssi/2, rp->rate/2);
4412 			else
4413 				LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s",
4414 				    modename[mode], rp->rssi/2, rp->rate/2);
4415 		}
4416 	}
4417 }
4418 
4419 /* XXX TODO: rate-to-string method... */
4420 static const char*
4421 get_mcs_mbs_rate_str(uint8_t rate)
4422 {
4423 	return (rate & IEEE80211_RATE_MCS) ? "MCS " : "Mb/s";
4424 }
4425 
4426 static uint8_t
4427 get_rate_value(uint8_t rate)
4428 {
4429 	if (rate & IEEE80211_RATE_MCS)
4430 		return (rate &~ IEEE80211_RATE_MCS);
4431 	return (rate / 2);
4432 }
4433 
4434 static void
4435 list_txparams(if_ctx *ctx)
4436 {
4437 	const struct ieee80211_txparam *tp;
4438 	int mode;
4439 
4440 	gettxparams(ctx);
4441 	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
4442 		tp = &txparams.params[mode];
4443 		if (tp->mgmtrate == 0 && tp->mcastrate == 0)
4444 			continue;
4445 		if (mode == IEEE80211_MODE_11NA ||
4446 		    mode == IEEE80211_MODE_11NG ||
4447 		    mode == IEEE80211_MODE_VHT_2GHZ ||
4448 		    mode == IEEE80211_MODE_VHT_5GHZ) {
4449 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
4450 				LINE_CHECK("%-7.7s ucast NONE    mgmt %2u %s "
4451 				    "mcast %2u %s maxretry %u",
4452 				    modename[mode],
4453 				    get_rate_value(tp->mgmtrate),
4454 				    get_mcs_mbs_rate_str(tp->mgmtrate),
4455 				    get_rate_value(tp->mcastrate),
4456 				    get_mcs_mbs_rate_str(tp->mcastrate),
4457 				    tp->maxretry);
4458 			else
4459 				LINE_CHECK("%-7.7s ucast %2u MCS  mgmt %2u %s "
4460 				    "mcast %2u %s maxretry %u",
4461 				    modename[mode],
4462 				    tp->ucastrate &~ IEEE80211_RATE_MCS,
4463 				    get_rate_value(tp->mgmtrate),
4464 				    get_mcs_mbs_rate_str(tp->mgmtrate),
4465 				    get_rate_value(tp->mcastrate),
4466 				    get_mcs_mbs_rate_str(tp->mcastrate),
4467 				    tp->maxretry);
4468 		} else {
4469 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
4470 				LINE_CHECK("%-7.7s ucast NONE    mgmt %2u Mb/s "
4471 				    "mcast %2u Mb/s maxretry %u",
4472 				    modename[mode],
4473 				    tp->mgmtrate/2,
4474 				    tp->mcastrate/2, tp->maxretry);
4475 			else
4476 				LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s "
4477 				    "mcast %2u Mb/s maxretry %u",
4478 				    modename[mode],
4479 				    tp->ucastrate/2, tp->mgmtrate/2,
4480 				    tp->mcastrate/2, tp->maxretry);
4481 		}
4482 	}
4483 }
4484 
4485 static void
4486 printpolicy(int policy)
4487 {
4488 	switch (policy) {
4489 	case IEEE80211_MACCMD_POLICY_OPEN:
4490 		printf("policy: open\n");
4491 		break;
4492 	case IEEE80211_MACCMD_POLICY_ALLOW:
4493 		printf("policy: allow\n");
4494 		break;
4495 	case IEEE80211_MACCMD_POLICY_DENY:
4496 		printf("policy: deny\n");
4497 		break;
4498 	case IEEE80211_MACCMD_POLICY_RADIUS:
4499 		printf("policy: radius\n");
4500 		break;
4501 	default:
4502 		printf("policy: unknown (%u)\n", policy);
4503 		break;
4504 	}
4505 }
4506 
4507 static void
4508 list_mac(if_ctx *ctx)
4509 {
4510 	struct ieee80211req ireq = {};
4511 	struct ieee80211req_maclist *acllist;
4512 	int i, nacls, policy, len;
4513 	uint8_t *data;
4514 	char c;
4515 
4516 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name)); /* XXX ?? */
4517 	ireq.i_type = IEEE80211_IOC_MACCMD;
4518 	ireq.i_val = IEEE80211_MACCMD_POLICY;
4519 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0) {
4520 		if (errno == EINVAL) {
4521 			printf("No acl policy loaded\n");
4522 			return;
4523 		}
4524 		err(1, "unable to get mac policy");
4525 	}
4526 	policy = ireq.i_val;
4527 	if (policy == IEEE80211_MACCMD_POLICY_OPEN) {
4528 		c = '*';
4529 	} else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) {
4530 		c = '+';
4531 	} else if (policy == IEEE80211_MACCMD_POLICY_DENY) {
4532 		c = '-';
4533 	} else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) {
4534 		c = 'r';		/* NB: should never have entries */
4535 	} else {
4536 		printf("policy: unknown (%u)\n", policy);
4537 		c = '?';
4538 	}
4539 	if (ctx->args->verbose || c == '?')
4540 		printpolicy(policy);
4541 
4542 	ireq.i_val = IEEE80211_MACCMD_LIST;
4543 	ireq.i_len = 0;
4544 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0)
4545 		err(1, "unable to get mac acl list size");
4546 	if (ireq.i_len == 0) {		/* NB: no acls */
4547 		if (!(ctx->args->verbose || c == '?'))
4548 			printpolicy(policy);
4549 		return;
4550 	}
4551 	len = ireq.i_len;
4552 
4553 	data = malloc(len);
4554 	if (data == NULL)
4555 		err(1, "out of memory for acl list");
4556 
4557 	ireq.i_data = data;
4558 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0)
4559 		err(1, "unable to get mac acl list");
4560 	nacls = len / sizeof(*acllist);
4561 	acllist = (struct ieee80211req_maclist *) data;
4562 	for (i = 0; i < nacls; i++)
4563 		printf("%c%s\n", c, ether_ntoa(
4564 			(const struct ether_addr *) acllist[i].ml_macaddr));
4565 	free(data);
4566 }
4567 
4568 static void
4569 print_regdomain(const struct ieee80211_regdomain *reg, int verb)
4570 {
4571 	if ((reg->regdomain != 0 &&
4572 	    reg->regdomain != reg->country) || verb) {
4573 		const struct regdomain *rd =
4574 		    lib80211_regdomain_findbysku(getregdata(), reg->regdomain);
4575 		if (rd == NULL)
4576 			LINE_CHECK("regdomain %d", reg->regdomain);
4577 		else
4578 			LINE_CHECK("regdomain %s", rd->name);
4579 	}
4580 	if (reg->country != 0 || verb) {
4581 		const struct country *cc =
4582 		    lib80211_country_findbycc(getregdata(), reg->country);
4583 		if (cc == NULL)
4584 			LINE_CHECK("country %d", reg->country);
4585 		else
4586 			LINE_CHECK("country %s", cc->isoname);
4587 	}
4588 	if (reg->location == 'I')
4589 		LINE_CHECK("indoor");
4590 	else if (reg->location == 'O')
4591 		LINE_CHECK("outdoor");
4592 	else if (verb)
4593 		LINE_CHECK("anywhere");
4594 	if (reg->ecm)
4595 		LINE_CHECK("ecm");
4596 	else if (verb)
4597 		LINE_CHECK("-ecm");
4598 }
4599 
4600 static void
4601 list_regdomain(if_ctx *ctx, int channelsalso)
4602 {
4603 	getregdomain(ctx);
4604 	if (channelsalso) {
4605 		getchaninfo(ctx);
4606 		spacer = ':';
4607 		print_regdomain(&regdomain, 1);
4608 		LINE_BREAK();
4609 		print_channels(ctx, chaninfo, 1/*allchans*/, 1/*verbose*/);
4610 	} else
4611 		print_regdomain(&regdomain, ctx->args->verbose);
4612 }
4613 
4614 static void
4615 list_mesh(if_ctx *ctx)
4616 {
4617 	struct ieee80211req ireq = {};
4618 	struct ieee80211req_mesh_route routes[128];
4619 	struct ieee80211req_mesh_route *rt;
4620 
4621 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name));
4622 	ireq.i_type = IEEE80211_IOC_MESH_RTCMD;
4623 	ireq.i_val = IEEE80211_MESH_RTCMD_LIST;
4624 	ireq.i_data = &routes;
4625 	ireq.i_len = sizeof(routes);
4626 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0)
4627 	 	err(1, "unable to get the Mesh routing table");
4628 
4629 	printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n"
4630 		, "DEST"
4631 		, "NEXT HOP"
4632 		, "HOPS"
4633 		, "METRIC"
4634 		, "LIFETIME"
4635 		, "MSEQ"
4636 		, "FLAGS");
4637 
4638 	for (unsigned int i = 0; i < ireq.i_len / sizeof(*rt); i++) {
4639 		rt = &routes[i];
4640 		printf("%s ",
4641 		    ether_ntoa((const struct ether_addr *)rt->imr_dest));
4642 		printf("%s %4u   %4u   %6u %6u    %c%c\n",
4643 			ether_ntoa((const struct ether_addr *)rt->imr_nexthop),
4644 			rt->imr_nhops, rt->imr_metric, rt->imr_lifetime,
4645 			rt->imr_lastmseq,
4646 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ?
4647 			    'D' :
4648 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ?
4649 			    'V' : '!',
4650 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ?
4651 			    'P' :
4652 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ?
4653 			    'G' :' ');
4654 	}
4655 }
4656 
4657 static void
4658 set80211list(if_ctx *ctx, const char *arg, int dummy __unused)
4659 {
4660 	int s = ctx->io_s;
4661 #define	iseq(a,b)	(strncasecmp(a,b,sizeof(b)-1) == 0)
4662 
4663 	LINE_INIT('\t');
4664 
4665 	if (iseq(arg, "sta"))
4666 		list_stations(ctx);
4667 	else if (iseq(arg, "scan") || iseq(arg, "ap"))
4668 		list_scan(ctx);
4669 	else if (iseq(arg, "chan") || iseq(arg, "freq"))
4670 		list_channels(ctx, 1);
4671 	else if (iseq(arg, "active"))
4672 		list_channels(ctx, 0);
4673 	else if (iseq(arg, "keys"))
4674 		list_keys(s);
4675 	else if (iseq(arg, "caps"))
4676 		list_capabilities(ctx);
4677 	else if (iseq(arg, "wme") || iseq(arg, "wmm"))
4678 		list_wme(ctx);
4679 	else if (iseq(arg, "mac"))
4680 		list_mac(ctx);
4681 	else if (iseq(arg, "txpow"))
4682 		list_txpow(ctx);
4683 	else if (iseq(arg, "roam"))
4684 		list_roam(ctx);
4685 	else if (iseq(arg, "txparam") || iseq(arg, "txparm"))
4686 		list_txparams(ctx);
4687 	else if (iseq(arg, "regdomain"))
4688 		list_regdomain(ctx, 1);
4689 	else if (iseq(arg, "countries"))
4690 		list_countries();
4691 	else if (iseq(arg, "mesh"))
4692 		list_mesh(ctx);
4693 	else
4694 		errx(1, "Don't know how to list %s for %s", arg, ctx->ifname);
4695 	LINE_BREAK();
4696 #undef iseq
4697 }
4698 
4699 static enum ieee80211_opmode
4700 get80211opmode(if_ctx *ctx)
4701 {
4702 	struct ifmediareq ifmr = {};
4703 
4704 	strlcpy(ifmr.ifm_name, ctx->ifname, sizeof(ifmr.ifm_name));
4705 
4706 	if (ioctl_ctx(ctx, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) {
4707 		if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) {
4708 			if (ifmr.ifm_current & IFM_FLAG0)
4709 				return IEEE80211_M_AHDEMO;
4710 			else
4711 				return IEEE80211_M_IBSS;
4712 		}
4713 		if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP)
4714 			return IEEE80211_M_HOSTAP;
4715 		if (ifmr.ifm_current & IFM_IEEE80211_IBSS)
4716 			return IEEE80211_M_IBSS;
4717 		if (ifmr.ifm_current & IFM_IEEE80211_MONITOR)
4718 			return IEEE80211_M_MONITOR;
4719 		if (ifmr.ifm_current & IFM_IEEE80211_MBSS)
4720 			return IEEE80211_M_MBSS;
4721 	}
4722 	return IEEE80211_M_STA;
4723 }
4724 
4725 #if 0
4726 static void
4727 printcipher(int s, struct ieee80211req *ireq, int keylenop)
4728 {
4729 	switch (ireq->i_val) {
4730 	case IEEE80211_CIPHER_WEP:
4731 		ireq->i_type = keylenop;
4732 		if (ioctl(s, SIOCG80211, ireq) != -1)
4733 			printf("WEP-%s",
4734 			    ireq->i_len <= 5 ? "40" :
4735 			    ireq->i_len <= 13 ? "104" : "128");
4736 		else
4737 			printf("WEP");
4738 		break;
4739 	case IEEE80211_CIPHER_TKIP:
4740 		printf("TKIP");
4741 		break;
4742 	case IEEE80211_CIPHER_AES_OCB:
4743 		printf("AES-OCB");
4744 		break;
4745 	case IEEE80211_CIPHER_AES_CCM:
4746 		printf("AES-CCM");
4747 		break;
4748 	case IEEE80211_CIPHER_CKIP:
4749 		printf("CKIP");
4750 		break;
4751 	case IEEE80211_CIPHER_NONE:
4752 		printf("NONE");
4753 		break;
4754 	default:
4755 		printf("UNKNOWN (0x%x)", ireq->i_val);
4756 		break;
4757 	}
4758 }
4759 #endif
4760 
4761 static void
4762 printkey(if_ctx *ctx, const struct ieee80211req_key *ik)
4763 {
4764 	static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE];
4765 	u_int keylen = ik->ik_keylen;
4766 	int printcontents;
4767 	const int verbose = ctx->args->verbose;
4768 	const bool printkeys = ctx->args->printkeys;
4769 
4770 	printcontents = printkeys &&
4771 		(memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose);
4772 	if (printcontents)
4773 		LINE_BREAK();
4774 	switch (ik->ik_type) {
4775 	case IEEE80211_CIPHER_WEP:
4776 		/* compatibility */
4777 		LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1,
4778 		    keylen <= 5 ? "40-bit" :
4779 		    keylen <= 13 ? "104-bit" : "128-bit");
4780 		break;
4781 	case IEEE80211_CIPHER_TKIP:
4782 		if (keylen > 128/8)
4783 			keylen -= 128/8;	/* ignore MIC for now */
4784 		LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4785 		break;
4786 	case IEEE80211_CIPHER_AES_OCB:
4787 		LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4788 		break;
4789 	case IEEE80211_CIPHER_AES_CCM:
4790 		LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4791 		break;
4792 	case IEEE80211_CIPHER_CKIP:
4793 		LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4794 		break;
4795 	case IEEE80211_CIPHER_NONE:
4796 		LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4797 		break;
4798 	default:
4799 		LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit",
4800 			ik->ik_type, ik->ik_keyix+1, 8*keylen);
4801 		break;
4802 	}
4803 	if (printcontents) {
4804 		u_int i;
4805 
4806 		printf(" <");
4807 		for (i = 0; i < keylen; i++)
4808 			printf("%02x", ik->ik_keydata[i]);
4809 		printf(">");
4810 		if (ik->ik_type != IEEE80211_CIPHER_WEP &&
4811 		    (ik->ik_keyrsc != 0 || verbose))
4812 			printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc);
4813 		if (ik->ik_type != IEEE80211_CIPHER_WEP &&
4814 		    (ik->ik_keytsc != 0 || verbose))
4815 			printf(" tsc %ju", (uintmax_t)ik->ik_keytsc);
4816 		if (ik->ik_flags != 0 && verbose) {
4817 			const char *sep = " ";
4818 
4819 			if (ik->ik_flags & IEEE80211_KEY_XMIT)
4820 				printf("%stx", sep), sep = "+";
4821 			if (ik->ik_flags & IEEE80211_KEY_RECV)
4822 				printf("%srx", sep), sep = "+";
4823 			if (ik->ik_flags & IEEE80211_KEY_DEFAULT)
4824 				printf("%sdef", sep), sep = "+";
4825 		}
4826 		LINE_BREAK();
4827 	}
4828 }
4829 
4830 static void
4831 printrate(const char *tag, int v, int defrate, int defmcs)
4832 {
4833 	if ((v & IEEE80211_RATE_MCS) == 0) {
4834 		if (v != defrate) {
4835 			if (v & 1)
4836 				LINE_CHECK("%s %d.5", tag, v/2);
4837 			else
4838 				LINE_CHECK("%s %d", tag, v/2);
4839 		}
4840 	} else {
4841 		if (v != defmcs)
4842 			LINE_CHECK("%s %d", tag, v &~ 0x80);
4843 	}
4844 }
4845 
4846 static int
4847 getid(if_ctx *ctx, int ix, void *data, size_t len, int *plen, int mesh)
4848 {
4849 	struct ieee80211req ireq = {};
4850 
4851 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name));
4852 	ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID;
4853 	ireq.i_val = ix;
4854 	ireq.i_data = data;
4855 	ireq.i_len = len;
4856 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0)
4857 		return -1;
4858 	*plen = ireq.i_len;
4859 	return 0;
4860 }
4861 
4862 static int
4863 getdevicename(if_ctx *ctx, void *data, size_t len, int *plen)
4864 {
4865 	struct ieee80211req ireq = {};
4866 
4867 	strlcpy(ireq.i_name, ctx->ifname, sizeof(ireq.i_name));
4868 	ireq.i_type = IEEE80211_IOC_IC_NAME;
4869 	ireq.i_val = -1;
4870 	ireq.i_data = data;
4871 	ireq.i_len = len;
4872 	if (ioctl_ctx(ctx, SIOCG80211, &ireq) < 0)
4873 		return (-1);
4874 	*plen = ireq.i_len;
4875 	return (0);
4876 }
4877 
4878 static void
4879 ieee80211_status(if_ctx *ctx)
4880 {
4881 	int s = ctx->io_s;
4882 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
4883 	enum ieee80211_opmode opmode = get80211opmode(ctx);
4884 	int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode;
4885 	uint8_t data[32];
4886 	const struct ieee80211_channel *c;
4887 	const struct ieee80211_roamparam *rp;
4888 	const struct ieee80211_txparam *tp;
4889 	const int verbose = ctx->args->verbose;
4890 
4891 	if (getid(ctx, -1, data, sizeof(data), &len, 0) < 0) {
4892 		/* If we can't get the SSID, this isn't an 802.11 device. */
4893 		return;
4894 	}
4895 
4896 	/*
4897 	 * Invalidate cached state so printing status for multiple
4898 	 * if's doesn't reuse the first interfaces' cached state.
4899 	 */
4900 	gotcurchan = 0;
4901 	gotroam = 0;
4902 	gottxparams = 0;
4903 	gothtconf = 0;
4904 	gotregdomain = 0;
4905 
4906 	printf("\t");
4907 	if (opmode == IEEE80211_M_MBSS) {
4908 		printf("meshid ");
4909 		getid(ctx, 0, data, sizeof(data), &len, 1);
4910 		print_string(data, len);
4911 	} else {
4912 		if (get80211val(ctx, IEEE80211_IOC_NUMSSIDS, &num) < 0)
4913 			num = 0;
4914 		printf("ssid ");
4915 		if (num > 1) {
4916 			for (i = 0; i < num; i++) {
4917 				if (getid(ctx, i, data, sizeof(data), &len, 0) >= 0 && len > 0) {
4918 					printf(" %d:", i + 1);
4919 					print_string(data, len);
4920 				}
4921 			}
4922 		} else
4923 			print_string(data, len);
4924 	}
4925 	c = getcurchan(ctx);
4926 	if (c->ic_freq != IEEE80211_CHAN_ANY) {
4927 		char buf[14];
4928 		printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq,
4929 			get_chaninfo(c, 1, buf, sizeof(buf)));
4930 	} else if (verbose)
4931 		printf(" channel UNDEF");
4932 
4933 	if (get80211(ctx, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 &&
4934 	    (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) {
4935 		printf(" bssid %s", ether_ntoa((struct ether_addr *)data));
4936 		printbssidname((struct ether_addr *)data);
4937 	}
4938 
4939 	if (get80211len(ctx, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) {
4940 		printf("\n\tstationname ");
4941 		print_string(data, len);
4942 	}
4943 
4944 	spacer = ' ';		/* force first break */
4945 	LINE_BREAK();
4946 
4947 	list_regdomain(ctx, 0);
4948 
4949 	wpa = 0;
4950 	if (get80211val(ctx, IEEE80211_IOC_AUTHMODE, &val) != -1) {
4951 		switch (val) {
4952 		case IEEE80211_AUTH_NONE:
4953 			LINE_CHECK("authmode NONE");
4954 			break;
4955 		case IEEE80211_AUTH_OPEN:
4956 			LINE_CHECK("authmode OPEN");
4957 			break;
4958 		case IEEE80211_AUTH_SHARED:
4959 			LINE_CHECK("authmode SHARED");
4960 			break;
4961 		case IEEE80211_AUTH_8021X:
4962 			LINE_CHECK("authmode 802.1x");
4963 			break;
4964 		case IEEE80211_AUTH_WPA:
4965 			if (get80211val(ctx, IEEE80211_IOC_WPA, &wpa) < 0)
4966 				wpa = 1;	/* default to WPA1 */
4967 			switch (wpa) {
4968 			case 2:
4969 				LINE_CHECK("authmode WPA2/802.11i");
4970 				break;
4971 			case 3:
4972 				LINE_CHECK("authmode WPA1+WPA2/802.11i");
4973 				break;
4974 			default:
4975 				LINE_CHECK("authmode WPA");
4976 				break;
4977 			}
4978 			break;
4979 		case IEEE80211_AUTH_AUTO:
4980 			LINE_CHECK("authmode AUTO");
4981 			break;
4982 		default:
4983 			LINE_CHECK("authmode UNKNOWN (0x%x)", val);
4984 			break;
4985 		}
4986 	}
4987 
4988 	if (wpa || verbose) {
4989 		if (get80211val(ctx, IEEE80211_IOC_WPS, &val) != -1) {
4990 			if (val)
4991 				LINE_CHECK("wps");
4992 			else if (verbose)
4993 				LINE_CHECK("-wps");
4994 		}
4995 		if (get80211val(ctx, IEEE80211_IOC_TSN, &val) != -1) {
4996 			if (val)
4997 				LINE_CHECK("tsn");
4998 			else if (verbose)
4999 				LINE_CHECK("-tsn");
5000 		}
5001 		if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) {
5002 			if (val)
5003 				LINE_CHECK("countermeasures");
5004 			else if (verbose)
5005 				LINE_CHECK("-countermeasures");
5006 		}
5007 #if 0
5008 		/* XXX not interesting with WPA done in user space */
5009 		ireq.i_type = IEEE80211_IOC_KEYMGTALGS;
5010 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
5011 		}
5012 
5013 		ireq.i_type = IEEE80211_IOC_MCASTCIPHER;
5014 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
5015 			LINE_CHECK("mcastcipher ");
5016 			printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN);
5017 			spacer = ' ';
5018 		}
5019 
5020 		ireq.i_type = IEEE80211_IOC_UCASTCIPHER;
5021 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
5022 			LINE_CHECK("ucastcipher ");
5023 			printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN);
5024 		}
5025 
5026 		if (wpa & 2) {
5027 			ireq.i_type = IEEE80211_IOC_RSNCAPS;
5028 			if (ioctl(s, SIOCG80211, &ireq) != -1) {
5029 				LINE_CHECK("RSN caps 0x%x", ireq.i_val);
5030 				spacer = ' ';
5031 			}
5032 		}
5033 
5034 		ireq.i_type = IEEE80211_IOC_UCASTCIPHERS;
5035 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
5036 		}
5037 #endif
5038 	}
5039 
5040 	if (get80211val(ctx, IEEE80211_IOC_WEP, &wepmode) != -1 &&
5041 	    wepmode != IEEE80211_WEP_NOSUP) {
5042 
5043 		switch (wepmode) {
5044 		case IEEE80211_WEP_OFF:
5045 			LINE_CHECK("privacy OFF");
5046 			break;
5047 		case IEEE80211_WEP_ON:
5048 			LINE_CHECK("privacy ON");
5049 			break;
5050 		case IEEE80211_WEP_MIXED:
5051 			LINE_CHECK("privacy MIXED");
5052 			break;
5053 		default:
5054 			LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode);
5055 			break;
5056 		}
5057 
5058 		/*
5059 		 * If we get here then we've got WEP support so we need
5060 		 * to print WEP status.
5061 		 */
5062 
5063 		if (get80211val(ctx, IEEE80211_IOC_WEPTXKEY, &val) < 0) {
5064 			warn("WEP support, but no tx key!");
5065 			goto end;
5066 		}
5067 		if (val != -1)
5068 			LINE_CHECK("deftxkey %d", val+1);
5069 		else if (wepmode != IEEE80211_WEP_OFF || verbose)
5070 			LINE_CHECK("deftxkey UNDEF");
5071 
5072 		if (get80211val(ctx, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) {
5073 			warn("WEP support, but no NUMWEPKEYS support!");
5074 			goto end;
5075 		}
5076 
5077 		for (i = 0; i < num; i++) {
5078 			struct ieee80211req_key ik;
5079 
5080 			memset(&ik, 0, sizeof(ik));
5081 			ik.ik_keyix = i;
5082 			if (get80211(ctx, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) {
5083 				warn("WEP support, but can get keys!");
5084 				goto end;
5085 			}
5086 			if (ik.ik_keylen != 0) {
5087 				if (verbose)
5088 					LINE_BREAK();
5089 				printkey(ctx, &ik);
5090 			}
5091 		}
5092 		if (i > 0 && verbose)
5093 			LINE_BREAK();
5094 end:
5095 		;
5096 	}
5097 
5098 	if (get80211val(ctx, IEEE80211_IOC_POWERSAVE, &val) != -1 &&
5099 	    val != IEEE80211_POWERSAVE_NOSUP ) {
5100 		if (val != IEEE80211_POWERSAVE_OFF || verbose) {
5101 			switch (val) {
5102 			case IEEE80211_POWERSAVE_OFF:
5103 				LINE_CHECK("powersavemode OFF");
5104 				break;
5105 			case IEEE80211_POWERSAVE_CAM:
5106 				LINE_CHECK("powersavemode CAM");
5107 				break;
5108 			case IEEE80211_POWERSAVE_PSP:
5109 				LINE_CHECK("powersavemode PSP");
5110 				break;
5111 			case IEEE80211_POWERSAVE_PSP_CAM:
5112 				LINE_CHECK("powersavemode PSP-CAM");
5113 				break;
5114 			}
5115 			if (get80211val(ctx, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1)
5116 				LINE_CHECK("powersavesleep %d", val);
5117 		}
5118 	}
5119 
5120 	if (get80211val(ctx, IEEE80211_IOC_TXPOWER, &val) != -1) {
5121 		if (val & 1)
5122 			LINE_CHECK("txpower %d.5", val/2);
5123 		else
5124 			LINE_CHECK("txpower %d", val/2);
5125 	}
5126 	if (verbose) {
5127 		if (get80211val(ctx, IEEE80211_IOC_TXPOWMAX, &val) != -1)
5128 			LINE_CHECK("txpowmax %.1f", val/2.);
5129 	}
5130 
5131 	if (get80211val(ctx, IEEE80211_IOC_DOTD, &val) != -1) {
5132 		if (val)
5133 			LINE_CHECK("dotd");
5134 		else if (verbose)
5135 			LINE_CHECK("-dotd");
5136 	}
5137 
5138 	if (get80211val(ctx, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) {
5139 		if (val != IEEE80211_RTS_MAX || verbose)
5140 			LINE_CHECK("rtsthreshold %d", val);
5141 	}
5142 
5143 	if (get80211val(ctx, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) {
5144 		if (val != IEEE80211_FRAG_MAX || verbose)
5145 			LINE_CHECK("fragthreshold %d", val);
5146 	}
5147 	if (opmode == IEEE80211_M_STA || verbose) {
5148 		if (get80211val(ctx, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) {
5149 			if (val != IEEE80211_HWBMISS_MAX || verbose)
5150 				LINE_CHECK("bmiss %d", val);
5151 		}
5152 	}
5153 
5154 	if (!verbose) {
5155 		gettxparams(ctx);
5156 		tp = &txparams.params[chan2mode(c)];
5157 		printrate("ucastrate", tp->ucastrate,
5158 		    IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE);
5159 		printrate("mcastrate", tp->mcastrate, 2*1,
5160 		    IEEE80211_RATE_MCS|0);
5161 		printrate("mgmtrate", tp->mgmtrate, 2*1,
5162 		    IEEE80211_RATE_MCS|0);
5163 		if (tp->maxretry != 6)		/* XXX */
5164 			LINE_CHECK("maxretry %d", tp->maxretry);
5165 	} else {
5166 		LINE_BREAK();
5167 		list_txparams(ctx);
5168 	}
5169 
5170 	bgscaninterval = -1;
5171 	(void) get80211val(ctx, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval);
5172 
5173 	if (get80211val(ctx, IEEE80211_IOC_SCANVALID, &val) != -1) {
5174 		if (val != bgscaninterval || verbose)
5175 			LINE_CHECK("scanvalid %u", val);
5176 	}
5177 
5178 	bgscan = 0;
5179 	if (get80211val(ctx, IEEE80211_IOC_BGSCAN, &bgscan) != -1) {
5180 		if (bgscan)
5181 			LINE_CHECK("bgscan");
5182 		else if (verbose)
5183 			LINE_CHECK("-bgscan");
5184 	}
5185 	if (bgscan || verbose) {
5186 		if (bgscaninterval != -1)
5187 			LINE_CHECK("bgscanintvl %u", bgscaninterval);
5188 		if (get80211val(ctx, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1)
5189 			LINE_CHECK("bgscanidle %u", val);
5190 		if (!verbose) {
5191 			getroam(ctx);
5192 			rp = &roamparams.params[chan2mode(c)];
5193 			if (rp->rssi & 1)
5194 				LINE_CHECK("roam:rssi %u.5", rp->rssi/2);
5195 			else
5196 				LINE_CHECK("roam:rssi %u", rp->rssi/2);
5197 			LINE_CHECK("roam:rate %s%u",
5198 			    (rp->rate & IEEE80211_RATE_MCS) ? "MCS " : "",
5199 			    get_rate_value(rp->rate));
5200 		} else {
5201 			LINE_BREAK();
5202 			list_roam(ctx);
5203 			LINE_BREAK();
5204 		}
5205 	}
5206 
5207 	if (IEEE80211_IS_CHAN_ANYG(c) || verbose) {
5208 		if (get80211val(ctx, IEEE80211_IOC_PUREG, &val) != -1) {
5209 			if (val)
5210 				LINE_CHECK("pureg");
5211 			else if (verbose)
5212 				LINE_CHECK("-pureg");
5213 		}
5214 		if (get80211val(ctx, IEEE80211_IOC_PROTMODE, &val) != -1) {
5215 			switch (val) {
5216 			case IEEE80211_PROTMODE_OFF:
5217 				LINE_CHECK("protmode OFF");
5218 				break;
5219 			case IEEE80211_PROTMODE_CTS:
5220 				LINE_CHECK("protmode CTS");
5221 				break;
5222 			case IEEE80211_PROTMODE_RTSCTS:
5223 				LINE_CHECK("protmode RTSCTS");
5224 				break;
5225 			default:
5226 				LINE_CHECK("protmode UNKNOWN (0x%x)", val);
5227 				break;
5228 			}
5229 		}
5230 	}
5231 
5232 	if (IEEE80211_IS_CHAN_HT(c) || verbose) {
5233 		gethtconf(ctx);
5234 		switch (htconf & 3) {
5235 		case 0:
5236 		case 2:
5237 			LINE_CHECK("-ht");
5238 			break;
5239 		case 1:
5240 			LINE_CHECK("ht20");
5241 			break;
5242 		case 3:
5243 			if (verbose)
5244 				LINE_CHECK("ht");
5245 			break;
5246 		}
5247 		if (get80211val(ctx, IEEE80211_IOC_HTCOMPAT, &val) != -1) {
5248 			if (!val)
5249 				LINE_CHECK("-htcompat");
5250 			else if (verbose)
5251 				LINE_CHECK("htcompat");
5252 		}
5253 		if (get80211val(ctx, IEEE80211_IOC_AMPDU, &val) != -1) {
5254 			switch (val) {
5255 			case 0:
5256 				LINE_CHECK("-ampdu");
5257 				break;
5258 			case 1:
5259 				LINE_CHECK("ampdutx -ampdurx");
5260 				break;
5261 			case 2:
5262 				LINE_CHECK("-ampdutx ampdurx");
5263 				break;
5264 			case 3:
5265 				if (verbose)
5266 					LINE_CHECK("ampdu");
5267 				break;
5268 			}
5269 		}
5270 		/* XXX 11ac density/size is different */
5271 		if (get80211val(ctx, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) {
5272 			switch (val) {
5273 			case IEEE80211_HTCAP_MAXRXAMPDU_8K:
5274 				LINE_CHECK("ampdulimit 8k");
5275 				break;
5276 			case IEEE80211_HTCAP_MAXRXAMPDU_16K:
5277 				LINE_CHECK("ampdulimit 16k");
5278 				break;
5279 			case IEEE80211_HTCAP_MAXRXAMPDU_32K:
5280 				LINE_CHECK("ampdulimit 32k");
5281 				break;
5282 			case IEEE80211_HTCAP_MAXRXAMPDU_64K:
5283 				LINE_CHECK("ampdulimit 64k");
5284 				break;
5285 			}
5286 		}
5287 		/* XXX 11ac density/size is different */
5288 		if (get80211val(ctx, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) {
5289 			switch (val) {
5290 			case IEEE80211_HTCAP_MPDUDENSITY_NA:
5291 				if (verbose)
5292 					LINE_CHECK("ampdudensity NA");
5293 				break;
5294 			case IEEE80211_HTCAP_MPDUDENSITY_025:
5295 				LINE_CHECK("ampdudensity .25");
5296 				break;
5297 			case IEEE80211_HTCAP_MPDUDENSITY_05:
5298 				LINE_CHECK("ampdudensity .5");
5299 				break;
5300 			case IEEE80211_HTCAP_MPDUDENSITY_1:
5301 				LINE_CHECK("ampdudensity 1");
5302 				break;
5303 			case IEEE80211_HTCAP_MPDUDENSITY_2:
5304 				LINE_CHECK("ampdudensity 2");
5305 				break;
5306 			case IEEE80211_HTCAP_MPDUDENSITY_4:
5307 				LINE_CHECK("ampdudensity 4");
5308 				break;
5309 			case IEEE80211_HTCAP_MPDUDENSITY_8:
5310 				LINE_CHECK("ampdudensity 8");
5311 				break;
5312 			case IEEE80211_HTCAP_MPDUDENSITY_16:
5313 				LINE_CHECK("ampdudensity 16");
5314 				break;
5315 			}
5316 		}
5317 		if (get80211val(ctx, IEEE80211_IOC_AMSDU, &val) != -1) {
5318 			switch (val) {
5319 			case 0:
5320 				LINE_CHECK("-amsdu");
5321 				break;
5322 			case 1:
5323 				LINE_CHECK("amsdutx -amsdurx");
5324 				break;
5325 			case 2:
5326 				LINE_CHECK("-amsdutx amsdurx");
5327 				break;
5328 			case 3:
5329 				if (verbose)
5330 					LINE_CHECK("amsdu");
5331 				break;
5332 			}
5333 		}
5334 		/* XXX amsdu limit */
5335 		if (get80211val(ctx, IEEE80211_IOC_SHORTGI, &val) != -1) {
5336 			if (val)
5337 				LINE_CHECK("shortgi");
5338 			else if (verbose)
5339 				LINE_CHECK("-shortgi");
5340 		}
5341 		if (get80211val(ctx, IEEE80211_IOC_HTPROTMODE, &val) != -1) {
5342 			if (val == IEEE80211_PROTMODE_OFF)
5343 				LINE_CHECK("htprotmode OFF");
5344 			else if (val != IEEE80211_PROTMODE_RTSCTS)
5345 				LINE_CHECK("htprotmode UNKNOWN (0x%x)", val);
5346 			else if (verbose)
5347 				LINE_CHECK("htprotmode RTSCTS");
5348 		}
5349 		if (get80211val(ctx, IEEE80211_IOC_PUREN, &val) != -1) {
5350 			if (val)
5351 				LINE_CHECK("puren");
5352 			else if (verbose)
5353 				LINE_CHECK("-puren");
5354 		}
5355 		if (get80211val(ctx, IEEE80211_IOC_SMPS, &val) != -1) {
5356 			if (val == IEEE80211_HTCAP_SMPS_DYNAMIC)
5357 				LINE_CHECK("smpsdyn");
5358 			else if (val == IEEE80211_HTCAP_SMPS_ENA)
5359 				LINE_CHECK("smps");
5360 			else if (verbose)
5361 				LINE_CHECK("-smps");
5362 		}
5363 		if (get80211val(ctx, IEEE80211_IOC_RIFS, &val) != -1) {
5364 			if (val)
5365 				LINE_CHECK("rifs");
5366 			else if (verbose)
5367 				LINE_CHECK("-rifs");
5368 		}
5369 
5370 		/* XXX VHT STBC? */
5371 		if (get80211val(ctx, IEEE80211_IOC_STBC, &val) != -1) {
5372 			switch (val) {
5373 			case 0:
5374 				LINE_CHECK("-stbc");
5375 				break;
5376 			case 1:
5377 				LINE_CHECK("stbctx -stbcrx");
5378 				break;
5379 			case 2:
5380 				LINE_CHECK("-stbctx stbcrx");
5381 				break;
5382 			case 3:
5383 				if (verbose)
5384 					LINE_CHECK("stbc");
5385 				break;
5386 			}
5387 		}
5388 		if (get80211val(ctx, IEEE80211_IOC_LDPC, &val) != -1) {
5389 			switch (val) {
5390 			case 0:
5391 				LINE_CHECK("-ldpc");
5392 				break;
5393 			case 1:
5394 				LINE_CHECK("ldpctx -ldpcrx");
5395 				break;
5396 			case 2:
5397 				LINE_CHECK("-ldpctx ldpcrx");
5398 				break;
5399 			case 3:
5400 				if (verbose)
5401 					LINE_CHECK("ldpc");
5402 				break;
5403 			}
5404 		}
5405 		if (get80211val(ctx, IEEE80211_IOC_UAPSD, &val) != -1) {
5406 			switch (val) {
5407 			case 0:
5408 				LINE_CHECK("-uapsd");
5409 				break;
5410 			case 1:
5411 				LINE_CHECK("uapsd");
5412 				break;
5413 			}
5414 		}
5415 	}
5416 
5417 	if (IEEE80211_IS_CHAN_VHT(c) || verbose) {
5418 		getvhtconf(ctx);
5419 		if (vhtconf & IEEE80211_FVHT_VHT)
5420 			LINE_CHECK("vht");
5421 		else
5422 			LINE_CHECK("-vht");
5423 		if (vhtconf & IEEE80211_FVHT_USEVHT40)
5424 			LINE_CHECK("vht40");
5425 		else
5426 			LINE_CHECK("-vht40");
5427 		if (vhtconf & IEEE80211_FVHT_USEVHT80)
5428 			LINE_CHECK("vht80");
5429 		else
5430 			LINE_CHECK("-vht80");
5431 		if (vhtconf & IEEE80211_FVHT_USEVHT160)
5432 			LINE_CHECK("vht160");
5433 		else
5434 			LINE_CHECK("-vht160");
5435 		if (vhtconf & IEEE80211_FVHT_USEVHT80P80)
5436 			LINE_CHECK("vht80p80");
5437 		else
5438 			LINE_CHECK("-vht80p80");
5439 	}
5440 
5441 	if (get80211val(ctx, IEEE80211_IOC_WME, &wme) != -1) {
5442 		if (wme)
5443 			LINE_CHECK("wme");
5444 		else if (verbose)
5445 			LINE_CHECK("-wme");
5446 	} else
5447 		wme = 0;
5448 
5449 	if (get80211val(ctx, IEEE80211_IOC_BURST, &val) != -1) {
5450 		if (val)
5451 			LINE_CHECK("burst");
5452 		else if (verbose)
5453 			LINE_CHECK("-burst");
5454 	}
5455 
5456 	if (get80211val(ctx, IEEE80211_IOC_FF, &val) != -1) {
5457 		if (val)
5458 			LINE_CHECK("ff");
5459 		else if (verbose)
5460 			LINE_CHECK("-ff");
5461 	}
5462 	if (get80211val(ctx, IEEE80211_IOC_TURBOP, &val) != -1) {
5463 		if (val)
5464 			LINE_CHECK("dturbo");
5465 		else if (verbose)
5466 			LINE_CHECK("-dturbo");
5467 	}
5468 	if (get80211val(ctx, IEEE80211_IOC_DWDS, &val) != -1) {
5469 		if (val)
5470 			LINE_CHECK("dwds");
5471 		else if (verbose)
5472 			LINE_CHECK("-dwds");
5473 	}
5474 
5475 	if (opmode == IEEE80211_M_HOSTAP) {
5476 		if (get80211val(ctx, IEEE80211_IOC_HIDESSID, &val) != -1) {
5477 			if (val)
5478 				LINE_CHECK("hidessid");
5479 			else if (verbose)
5480 				LINE_CHECK("-hidessid");
5481 		}
5482 		if (get80211val(ctx, IEEE80211_IOC_APBRIDGE, &val) != -1) {
5483 			if (!val)
5484 				LINE_CHECK("-apbridge");
5485 			else if (verbose)
5486 				LINE_CHECK("apbridge");
5487 		}
5488 		if (get80211val(ctx, IEEE80211_IOC_DTIM_PERIOD, &val) != -1)
5489 			LINE_CHECK("dtimperiod %u", val);
5490 
5491 		if (get80211val(ctx, IEEE80211_IOC_DOTH, &val) != -1) {
5492 			if (!val)
5493 				LINE_CHECK("-doth");
5494 			else if (verbose)
5495 				LINE_CHECK("doth");
5496 		}
5497 		if (get80211val(ctx, IEEE80211_IOC_DFS, &val) != -1) {
5498 			if (!val)
5499 				LINE_CHECK("-dfs");
5500 			else if (verbose)
5501 				LINE_CHECK("dfs");
5502 		}
5503 		if (get80211val(ctx, IEEE80211_IOC_INACTIVITY, &val) != -1) {
5504 			if (!val)
5505 				LINE_CHECK("-inact");
5506 			else if (verbose)
5507 				LINE_CHECK("inact");
5508 		}
5509 	} else {
5510 		if (get80211val(ctx, IEEE80211_IOC_ROAMING, &val) != -1) {
5511 			if (val != IEEE80211_ROAMING_AUTO || verbose) {
5512 				switch (val) {
5513 				case IEEE80211_ROAMING_DEVICE:
5514 					LINE_CHECK("roaming DEVICE");
5515 					break;
5516 				case IEEE80211_ROAMING_AUTO:
5517 					LINE_CHECK("roaming AUTO");
5518 					break;
5519 				case IEEE80211_ROAMING_MANUAL:
5520 					LINE_CHECK("roaming MANUAL");
5521 					break;
5522 				default:
5523 					LINE_CHECK("roaming UNKNOWN (0x%x)",
5524 						val);
5525 					break;
5526 				}
5527 			}
5528 		}
5529 	}
5530 
5531 	if (opmode == IEEE80211_M_AHDEMO) {
5532 		if (get80211val(ctx, IEEE80211_IOC_TDMA_SLOT, &val) != -1)
5533 			LINE_CHECK("tdmaslot %u", val);
5534 		if (get80211val(ctx, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1)
5535 			LINE_CHECK("tdmaslotcnt %u", val);
5536 		if (get80211val(ctx, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1)
5537 			LINE_CHECK("tdmaslotlen %u", val);
5538 		if (get80211val(ctx, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1)
5539 			LINE_CHECK("tdmabintval %u", val);
5540 	} else if (get80211val(ctx, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) {
5541 		/* XXX default define not visible */
5542 		if (val != 100 || verbose)
5543 			LINE_CHECK("bintval %u", val);
5544 	}
5545 
5546 	if (wme && verbose) {
5547 		LINE_BREAK();
5548 		list_wme(ctx);
5549 	}
5550 
5551 	if (opmode == IEEE80211_M_MBSS) {
5552 		if (get80211val(ctx, IEEE80211_IOC_MESH_TTL, &val) != -1) {
5553 			LINE_CHECK("meshttl %u", val);
5554 		}
5555 		if (get80211val(ctx, IEEE80211_IOC_MESH_AP, &val) != -1) {
5556 			if (val)
5557 				LINE_CHECK("meshpeering");
5558 			else
5559 				LINE_CHECK("-meshpeering");
5560 		}
5561 		if (get80211val(ctx, IEEE80211_IOC_MESH_FWRD, &val) != -1) {
5562 			if (val)
5563 				LINE_CHECK("meshforward");
5564 			else
5565 				LINE_CHECK("-meshforward");
5566 		}
5567 		if (get80211val(ctx, IEEE80211_IOC_MESH_GATE, &val) != -1) {
5568 			if (val)
5569 				LINE_CHECK("meshgate");
5570 			else
5571 				LINE_CHECK("-meshgate");
5572 		}
5573 		if (get80211len(ctx, IEEE80211_IOC_MESH_PR_METRIC, data, 12,
5574 		    &len) != -1) {
5575 			data[len] = '\0';
5576 			LINE_CHECK("meshmetric %s", data);
5577 		}
5578 		if (get80211len(ctx, IEEE80211_IOC_MESH_PR_PATH, data, 12,
5579 		    &len) != -1) {
5580 			data[len] = '\0';
5581 			LINE_CHECK("meshpath %s", data);
5582 		}
5583 		if (get80211val(ctx, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) {
5584 			switch (val) {
5585 			case IEEE80211_HWMP_ROOTMODE_DISABLED:
5586 				LINE_CHECK("hwmprootmode DISABLED");
5587 				break;
5588 			case IEEE80211_HWMP_ROOTMODE_NORMAL:
5589 				LINE_CHECK("hwmprootmode NORMAL");
5590 				break;
5591 			case IEEE80211_HWMP_ROOTMODE_PROACTIVE:
5592 				LINE_CHECK("hwmprootmode PROACTIVE");
5593 				break;
5594 			case IEEE80211_HWMP_ROOTMODE_RANN:
5595 				LINE_CHECK("hwmprootmode RANN");
5596 				break;
5597 			default:
5598 				LINE_CHECK("hwmprootmode UNKNOWN(%d)", val);
5599 				break;
5600 			}
5601 		}
5602 		if (get80211val(ctx, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) {
5603 			LINE_CHECK("hwmpmaxhops %u", val);
5604 		}
5605 	}
5606 
5607 	LINE_BREAK();
5608 
5609 	if (getdevicename(ctx, data, sizeof(data), &len) < 0)
5610 		return;
5611 	LINE_CHECK("parent interface: %s", data);
5612 
5613 	LINE_BREAK();
5614 }
5615 
5616 static int
5617 get80211(if_ctx *ctx, int type, void *data, int len)
5618 {
5619 
5620 	return (lib80211_get80211(ctx->io_s, ctx->ifname, type, data, len));
5621 }
5622 
5623 static int
5624 get80211len(if_ctx *ctx, int type, void *data, int len, int *plen)
5625 {
5626 
5627 	return (lib80211_get80211len(ctx->io_s, ctx->ifname, type, data, len, plen));
5628 }
5629 
5630 static int
5631 get80211val(if_ctx *ctx, int type, int *val)
5632 {
5633 
5634 	return (lib80211_get80211val(ctx->io_s, ctx->ifname, type, val));
5635 }
5636 
5637 static void
5638 set80211(if_ctx *ctx, int type, int val, int len, void *data)
5639 {
5640 	int ret;
5641 
5642 	ret = lib80211_set80211(ctx->io_s, ctx->ifname, type, val, len, data);
5643 	if (ret < 0)
5644 		err(1, "SIOCS80211");
5645 }
5646 
5647 static const char *
5648 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp)
5649 {
5650 	int len;
5651 	int hexstr;
5652 	u_int8_t *p;
5653 
5654 	len = *lenp;
5655 	p = buf;
5656 	hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x');
5657 	if (hexstr)
5658 		val += 2;
5659 	for (;;) {
5660 		if (*val == '\0')
5661 			break;
5662 		if (sep != NULL && strchr(sep, *val) != NULL) {
5663 			val++;
5664 			break;
5665 		}
5666 		if (hexstr) {
5667 			if (!isxdigit((u_char)val[0])) {
5668 				warnx("bad hexadecimal digits");
5669 				return NULL;
5670 			}
5671 			if (!isxdigit((u_char)val[1])) {
5672 				warnx("odd count hexadecimal digits");
5673 				return NULL;
5674 			}
5675 		}
5676 		if (p >= buf + len) {
5677 			if (hexstr)
5678 				warnx("hexadecimal digits too long");
5679 			else
5680 				warnx("string too long");
5681 			return NULL;
5682 		}
5683 		if (hexstr) {
5684 #define	tohex(x)	(isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10)
5685 			*p++ = (tohex((u_char)val[0]) << 4) |
5686 			    tohex((u_char)val[1]);
5687 #undef tohex
5688 			val += 2;
5689 		} else
5690 			*p++ = *val++;
5691 	}
5692 	len = p - buf;
5693 	/* The string "-" is treated as the empty string. */
5694 	if (!hexstr && len == 1 && buf[0] == '-') {
5695 		len = 0;
5696 		memset(buf, 0, *lenp);
5697 	} else if (len < *lenp)
5698 		memset(p, 0, *lenp - len);
5699 	*lenp = len;
5700 	return val;
5701 }
5702 
5703 static void
5704 print_string(const u_int8_t *buf, int len)
5705 {
5706 	int i;
5707 	int hasspc;
5708 	int utf8;
5709 
5710 	i = 0;
5711 	hasspc = 0;
5712 
5713 	setlocale(LC_CTYPE, "");
5714 	utf8 = strncmp("UTF-8", nl_langinfo(CODESET), 5) == 0;
5715 
5716 	for (; i < len; i++) {
5717 		if (!isprint(buf[i]) && buf[i] != '\0' && !utf8)
5718 			break;
5719 		if (isspace(buf[i]))
5720 			hasspc++;
5721 	}
5722 	if (i == len || utf8) {
5723 		if (hasspc || len == 0 || buf[0] == '\0')
5724 			printf("\"%.*s\"", len, buf);
5725 		else
5726 			printf("%.*s", len, buf);
5727 	} else {
5728 		printf("0x");
5729 		for (i = 0; i < len; i++)
5730 			printf("%02x", buf[i]);
5731 	}
5732 }
5733 
5734 static void
5735 setdefregdomain(if_ctx *ctx)
5736 {
5737 	struct regdata *rdp = getregdata();
5738 	const struct regdomain *rd;
5739 
5740 	/* Check if regdomain/country was already set by a previous call. */
5741 	/* XXX is it possible? */
5742 	if (regdomain.regdomain != 0 ||
5743 	    regdomain.country != CTRY_DEFAULT)
5744 		return;
5745 
5746 	getregdomain(ctx);
5747 
5748 	/* Check if it was already set by the driver. */
5749 	if (regdomain.regdomain != 0 ||
5750 	    regdomain.country != CTRY_DEFAULT)
5751 		return;
5752 
5753 	/* Set FCC/US as default. */
5754 	rd = lib80211_regdomain_findbysku(rdp, SKU_FCC);
5755 	if (rd == NULL)
5756 		errx(1, "FCC regdomain was not found");
5757 
5758 	regdomain.regdomain = rd->sku;
5759 	if (rd->cc != NULL)
5760 		defaultcountry(rd);
5761 
5762 	/* Send changes to net80211. */
5763 	setregdomain_cb(ctx, &regdomain);
5764 
5765 	/* Cleanup (so it can be overridden by subsequent parameters). */
5766 	regdomain.regdomain = 0;
5767 	regdomain.country = CTRY_DEFAULT;
5768 	regdomain.isocc[0] = 0;
5769 	regdomain.isocc[1] = 0;
5770 }
5771 
5772 /*
5773  * Virtual AP cloning support.
5774  */
5775 static struct ieee80211_clone_params params = {
5776 	.icp_opmode	= IEEE80211_M_STA,	/* default to station mode */
5777 };
5778 
5779 static void
5780 wlan_create(if_ctx *ctx, struct ifreq *ifr)
5781 {
5782 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
5783 
5784 	if (params.icp_parent[0] == '\0')
5785 		errx(1, "must specify a parent device (wlandev) when creating "
5786 		    "a wlan device");
5787 	if (params.icp_opmode == IEEE80211_M_WDS &&
5788 	    memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0)
5789 		errx(1, "no bssid specified for WDS (use wlanbssid)");
5790 	ifr->ifr_data = (caddr_t) &params;
5791 	ifcreate_ioctl(ctx, ifr);
5792 
5793 	setdefregdomain(ctx);
5794 }
5795 
5796 static void
5797 set80211clone_wlandev(if_ctx *ctx __unused, const char *arg, int dummy __unused)
5798 {
5799 	strlcpy(params.icp_parent, arg, IFNAMSIZ);
5800 }
5801 
5802 static void
5803 set80211clone_wlanbssid(if_ctx *ctx __unused, const char *arg, int dummy __unused)
5804 {
5805 	const struct ether_addr *ea;
5806 
5807 	ea = ether_aton(arg);
5808 	if (ea == NULL)
5809 		errx(1, "%s: cannot parse bssid", arg);
5810 	memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN);
5811 }
5812 
5813 static void
5814 set80211clone_wlanaddr(if_ctx *ctx __unused, const char *arg, int dummy __unused)
5815 {
5816 	const struct ether_addr *ea;
5817 
5818 	ea = ether_aton(arg);
5819 	if (ea == NULL)
5820 		errx(1, "%s: cannot parse address", arg);
5821 	memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN);
5822 	params.icp_flags |= IEEE80211_CLONE_MACADDR;
5823 }
5824 
5825 static void
5826 set80211clone_wlanmode(if_ctx *ctx, const char *arg, int dummy __unused)
5827 {
5828 #define	iseq(a,b)	(strncasecmp(a,b,sizeof(b)-1) == 0)
5829 	if (iseq(arg, "sta"))
5830 		params.icp_opmode = IEEE80211_M_STA;
5831 	else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo"))
5832 		params.icp_opmode = IEEE80211_M_AHDEMO;
5833 	else if (iseq(arg, "ibss") || iseq(arg, "adhoc"))
5834 		params.icp_opmode = IEEE80211_M_IBSS;
5835 	else if (iseq(arg, "ap") || iseq(arg, "host"))
5836 		params.icp_opmode = IEEE80211_M_HOSTAP;
5837 	else if (iseq(arg, "wds"))
5838 		params.icp_opmode = IEEE80211_M_WDS;
5839 	else if (iseq(arg, "monitor"))
5840 		params.icp_opmode = IEEE80211_M_MONITOR;
5841 	else if (iseq(arg, "tdma")) {
5842 		params.icp_opmode = IEEE80211_M_AHDEMO;
5843 		params.icp_flags |= IEEE80211_CLONE_TDMA;
5844 	} else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */
5845 		params.icp_opmode = IEEE80211_M_MBSS;
5846 	else
5847 		errx(1, "Don't know to create %s for %s", arg, ctx->ifname);
5848 #undef iseq
5849 }
5850 
5851 static void
5852 set80211clone_beacons(if_ctx *ctx __unused, const char *val __unused, int d)
5853 {
5854 	/* NB: inverted sense */
5855 	if (d)
5856 		params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS;
5857 	else
5858 		params.icp_flags |= IEEE80211_CLONE_NOBEACONS;
5859 }
5860 
5861 static void
5862 set80211clone_bssid(if_ctx *ctx __unused, const char *val __unused, int d)
5863 {
5864 	if (d)
5865 		params.icp_flags |= IEEE80211_CLONE_BSSID;
5866 	else
5867 		params.icp_flags &= ~IEEE80211_CLONE_BSSID;
5868 }
5869 
5870 static void
5871 set80211clone_wdslegacy(if_ctx *ctx __unused, const char *val __unused, int d)
5872 {
5873 	if (d)
5874 		params.icp_flags |= IEEE80211_CLONE_WDSLEGACY;
5875 	else
5876 		params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY;
5877 }
5878 
5879 static struct cmd ieee80211_cmds[] = {
5880 	DEF_CMD_ARG("ssid",		set80211ssid),
5881 	DEF_CMD_ARG("nwid",		set80211ssid),
5882 	DEF_CMD_ARG("meshid",		set80211meshid),
5883 	DEF_CMD_ARG("stationname",	set80211stationname),
5884 	DEF_CMD_ARG("station",		set80211stationname),	/* BSD/OS */
5885 	DEF_CMD_ARG("channel",		set80211channel),
5886 	DEF_CMD_ARG("authmode",		set80211authmode),
5887 	DEF_CMD_ARG("powersavemode",	set80211powersavemode),
5888 	DEF_CMD("powersave",	1,	set80211powersave),
5889 	DEF_CMD("-powersave",	0,	set80211powersave),
5890 	DEF_CMD_ARG("powersavesleep", 	set80211powersavesleep),
5891 	DEF_CMD_ARG("wepmode",		set80211wepmode),
5892 	DEF_CMD("wep",		1,	set80211wep),
5893 	DEF_CMD("-wep",		0,	set80211wep),
5894 	DEF_CMD_ARG("deftxkey",		set80211weptxkey),
5895 	DEF_CMD_ARG("weptxkey",		set80211weptxkey),
5896 	DEF_CMD_ARG("wepkey",		set80211wepkey),
5897 	DEF_CMD_ARG("nwkey",		set80211nwkey),		/* NetBSD */
5898 	DEF_CMD("-nwkey",	0,	set80211wep),		/* NetBSD */
5899 	DEF_CMD_ARG("rtsthreshold",	set80211rtsthreshold),
5900 	DEF_CMD_ARG("protmode",		set80211protmode),
5901 	DEF_CMD_ARG("txpower",		set80211txpower),
5902 	DEF_CMD_ARG("roaming",		set80211roaming),
5903 	DEF_CMD("wme",		1,	set80211wme),
5904 	DEF_CMD("-wme",		0,	set80211wme),
5905 	DEF_CMD("wmm",		1,	set80211wme),
5906 	DEF_CMD("-wmm",		0,	set80211wme),
5907 	DEF_CMD("hidessid",	1,	set80211hidessid),
5908 	DEF_CMD("-hidessid",	0,	set80211hidessid),
5909 	DEF_CMD("apbridge",	1,	set80211apbridge),
5910 	DEF_CMD("-apbridge",	0,	set80211apbridge),
5911 	DEF_CMD_ARG("chanlist",		set80211chanlist),
5912 	DEF_CMD_ARG("bssid",		set80211bssid),
5913 	DEF_CMD_ARG("ap",		set80211bssid),
5914 	DEF_CMD("scan",	0,		set80211scan),
5915 	DEF_CMD_ARG("list",		set80211list),
5916 	DEF_CMD_ARG2("cwmin",		set80211cwmin),
5917 	DEF_CMD_ARG2("cwmax",		set80211cwmax),
5918 	DEF_CMD_ARG2("aifs",		set80211aifs),
5919 	DEF_CMD_ARG2("txoplimit",	set80211txoplimit),
5920 	DEF_CMD_ARG("acm",		set80211acm),
5921 	DEF_CMD_ARG("-acm",		set80211noacm),
5922 	DEF_CMD_ARG("ack",		set80211ackpolicy),
5923 	DEF_CMD_ARG("-ack",		set80211noackpolicy),
5924 	DEF_CMD_ARG2("bss:cwmin",	set80211bsscwmin),
5925 	DEF_CMD_ARG2("bss:cwmax",	set80211bsscwmax),
5926 	DEF_CMD_ARG2("bss:aifs",	set80211bssaifs),
5927 	DEF_CMD_ARG2("bss:txoplimit",	set80211bsstxoplimit),
5928 	DEF_CMD_ARG("dtimperiod",	set80211dtimperiod),
5929 	DEF_CMD_ARG("bintval",		set80211bintval),
5930 	DEF_CMD("mac:open",	IEEE80211_MACCMD_POLICY_OPEN,	set80211maccmd),
5931 	DEF_CMD("mac:allow",	IEEE80211_MACCMD_POLICY_ALLOW,	set80211maccmd),
5932 	DEF_CMD("mac:deny",	IEEE80211_MACCMD_POLICY_DENY,	set80211maccmd),
5933 	DEF_CMD("mac:radius",	IEEE80211_MACCMD_POLICY_RADIUS,	set80211maccmd),
5934 	DEF_CMD("mac:flush",	IEEE80211_MACCMD_FLUSH,		set80211maccmd),
5935 	DEF_CMD("mac:detach",	IEEE80211_MACCMD_DETACH,	set80211maccmd),
5936 	DEF_CMD_ARG("mac:add",		set80211addmac),
5937 	DEF_CMD_ARG("mac:del",		set80211delmac),
5938 	DEF_CMD_ARG("mac:kick",		set80211kickmac),
5939 	DEF_CMD("pureg",	1,	set80211pureg),
5940 	DEF_CMD("-pureg",	0,	set80211pureg),
5941 	DEF_CMD("ff",		1,	set80211fastframes),
5942 	DEF_CMD("-ff",		0,	set80211fastframes),
5943 	DEF_CMD("dturbo",	1,	set80211dturbo),
5944 	DEF_CMD("-dturbo",	0,	set80211dturbo),
5945 	DEF_CMD("bgscan",	1,	set80211bgscan),
5946 	DEF_CMD("-bgscan",	0,	set80211bgscan),
5947 	DEF_CMD_ARG("bgscanidle",	set80211bgscanidle),
5948 	DEF_CMD_ARG("bgscanintvl",	set80211bgscanintvl),
5949 	DEF_CMD_ARG("scanvalid",	set80211scanvalid),
5950 	DEF_CMD("quiet",	1,	set80211quiet),
5951 	DEF_CMD("-quiet",	0,	set80211quiet),
5952 	DEF_CMD_ARG("quiet_count",	set80211quietcount),
5953 	DEF_CMD_ARG("quiet_period",	set80211quietperiod),
5954 	DEF_CMD_ARG("quiet_duration",	set80211quietduration),
5955 	DEF_CMD_ARG("quiet_offset",	set80211quietoffset),
5956 	DEF_CMD_ARG("roam:rssi",	set80211roamrssi),
5957 	DEF_CMD_ARG("roam:rate",	set80211roamrate),
5958 	DEF_CMD_ARG("mcastrate",	set80211mcastrate),
5959 	DEF_CMD_ARG("ucastrate",	set80211ucastrate),
5960 	DEF_CMD_ARG("mgtrate",		set80211mgtrate),
5961 	DEF_CMD_ARG("mgmtrate",		set80211mgtrate),
5962 	DEF_CMD_ARG("maxretry",		set80211maxretry),
5963 	DEF_CMD_ARG("fragthreshold",	set80211fragthreshold),
5964 	DEF_CMD("burst",	1,	set80211burst),
5965 	DEF_CMD("-burst",	0,	set80211burst),
5966 	DEF_CMD_ARG("bmiss",		set80211bmissthreshold),
5967 	DEF_CMD_ARG("bmissthreshold",	set80211bmissthreshold),
5968 	DEF_CMD("shortgi",	1,	set80211shortgi),
5969 	DEF_CMD("-shortgi",	0,	set80211shortgi),
5970 	DEF_CMD("ampdurx",	2,	set80211ampdu),
5971 	DEF_CMD("-ampdurx",	-2,	set80211ampdu),
5972 	DEF_CMD("ampdutx",	1,	set80211ampdu),
5973 	DEF_CMD("-ampdutx",	-1,	set80211ampdu),
5974 	DEF_CMD("ampdu",	3,	set80211ampdu),		/* NB: tx+rx */
5975 	DEF_CMD("-ampdu",	-3,	set80211ampdu),
5976 	DEF_CMD_ARG("ampdulimit",	set80211ampdulimit),
5977 	DEF_CMD_ARG("ampdudensity",	set80211ampdudensity),
5978 	DEF_CMD("amsdurx",	2,	set80211amsdu),
5979 	DEF_CMD("-amsdurx",	-2,	set80211amsdu),
5980 	DEF_CMD("amsdutx",	1,	set80211amsdu),
5981 	DEF_CMD("-amsdutx",	-1,	set80211amsdu),
5982 	DEF_CMD("amsdu",	3,	set80211amsdu),		/* NB: tx+rx */
5983 	DEF_CMD("-amsdu",	-3,	set80211amsdu),
5984 	DEF_CMD_ARG("amsdulimit",	set80211amsdulimit),
5985 	DEF_CMD("stbcrx",	2,	set80211stbc),
5986 	DEF_CMD("-stbcrx",	-2,	set80211stbc),
5987 	DEF_CMD("stbctx",	1,	set80211stbc),
5988 	DEF_CMD("-stbctx",	-1,	set80211stbc),
5989 	DEF_CMD("stbc",		3,	set80211stbc),		/* NB: tx+rx */
5990 	DEF_CMD("-stbc",	-3,	set80211stbc),
5991 	DEF_CMD("ldpcrx",	2,	set80211ldpc),
5992 	DEF_CMD("-ldpcrx",	-2,	set80211ldpc),
5993 	DEF_CMD("ldpctx",	1,	set80211ldpc),
5994 	DEF_CMD("-ldpctx",	-1,	set80211ldpc),
5995 	DEF_CMD("ldpc",		3,	set80211ldpc),		/* NB: tx+rx */
5996 	DEF_CMD("-ldpc",	-3,	set80211ldpc),
5997 	DEF_CMD("uapsd",	1,	set80211uapsd),
5998 	DEF_CMD("-uapsd",	0,	set80211uapsd),
5999 	DEF_CMD("puren",	1,	set80211puren),
6000 	DEF_CMD("-puren",	0,	set80211puren),
6001 	DEF_CMD("doth",		1,	set80211doth),
6002 	DEF_CMD("-doth",	0,	set80211doth),
6003 	DEF_CMD("dfs",		1,	set80211dfs),
6004 	DEF_CMD("-dfs",		0,	set80211dfs),
6005 	DEF_CMD("htcompat",	1,	set80211htcompat),
6006 	DEF_CMD("-htcompat",	0,	set80211htcompat),
6007 	DEF_CMD("dwds",		1,	set80211dwds),
6008 	DEF_CMD("-dwds",	0,	set80211dwds),
6009 	DEF_CMD("inact",	1,	set80211inact),
6010 	DEF_CMD("-inact",	0,	set80211inact),
6011 	DEF_CMD("tsn",		1,	set80211tsn),
6012 	DEF_CMD("-tsn",		0,	set80211tsn),
6013 	DEF_CMD_ARG("regdomain",	set80211regdomain),
6014 	DEF_CMD_ARG("country",		set80211country),
6015 	DEF_CMD("indoor",	'I',	set80211location),
6016 	DEF_CMD("-indoor",	'O',	set80211location),
6017 	DEF_CMD("outdoor",	'O',	set80211location),
6018 	DEF_CMD("-outdoor",	'I',	set80211location),
6019 	DEF_CMD("anywhere",	' ',	set80211location),
6020 	DEF_CMD("ecm",		1,	set80211ecm),
6021 	DEF_CMD("-ecm",		0,	set80211ecm),
6022 	DEF_CMD("dotd",		1,	set80211dotd),
6023 	DEF_CMD("-dotd",	0,	set80211dotd),
6024 	DEF_CMD_ARG("htprotmode",	set80211htprotmode),
6025 	DEF_CMD("ht20",		1,	set80211htconf),
6026 	DEF_CMD("-ht20",	0,	set80211htconf),
6027 	DEF_CMD("ht40",		3,	set80211htconf),	/* NB: 20+40 */
6028 	DEF_CMD("-ht40",	0,	set80211htconf),
6029 	DEF_CMD("ht",		3,	set80211htconf),	/* NB: 20+40 */
6030 	DEF_CMD("-ht",		0,	set80211htconf),
6031 	DEF_CMD("vht",		IEEE80211_FVHT_VHT,		set80211vhtconf),
6032 	DEF_CMD("-vht",		0,				set80211vhtconf),
6033 	DEF_CMD("vht40",	IEEE80211_FVHT_USEVHT40,	set80211vhtconf),
6034 	DEF_CMD("-vht40",	-IEEE80211_FVHT_USEVHT40,	set80211vhtconf),
6035 	DEF_CMD("vht80",	IEEE80211_FVHT_USEVHT80,	set80211vhtconf),
6036 	DEF_CMD("-vht80",	-IEEE80211_FVHT_USEVHT80,	set80211vhtconf),
6037 	DEF_CMD("vht160",	IEEE80211_FVHT_USEVHT160,	set80211vhtconf),
6038 	DEF_CMD("-vht160",	-IEEE80211_FVHT_USEVHT160,	set80211vhtconf),
6039 	DEF_CMD("vht80p80",	IEEE80211_FVHT_USEVHT80P80,	set80211vhtconf),
6040 	DEF_CMD("-vht80p80",	-IEEE80211_FVHT_USEVHT80P80,	set80211vhtconf),
6041 	DEF_CMD("rifs",		1,	set80211rifs),
6042 	DEF_CMD("-rifs",	0,	set80211rifs),
6043 	DEF_CMD("smps",		IEEE80211_HTCAP_SMPS_ENA,	set80211smps),
6044 	DEF_CMD("smpsdyn",	IEEE80211_HTCAP_SMPS_DYNAMIC,	set80211smps),
6045 	DEF_CMD("-smps",	IEEE80211_HTCAP_SMPS_OFF,	set80211smps),
6046 	/* XXX for testing */
6047 	DEF_CMD_ARG("chanswitch",	set80211chanswitch),
6048 
6049 	DEF_CMD_ARG("tdmaslot",		set80211tdmaslot),
6050 	DEF_CMD_ARG("tdmaslotcnt",	set80211tdmaslotcnt),
6051 	DEF_CMD_ARG("tdmaslotlen",	set80211tdmaslotlen),
6052 	DEF_CMD_ARG("tdmabintval",	set80211tdmabintval),
6053 
6054 	DEF_CMD_ARG("meshttl",		set80211meshttl),
6055 	DEF_CMD("meshforward",	1,	set80211meshforward),
6056 	DEF_CMD("-meshforward",	0,	set80211meshforward),
6057 	DEF_CMD("meshgate",	1,	set80211meshgate),
6058 	DEF_CMD("-meshgate",	0,	set80211meshgate),
6059 	DEF_CMD("meshpeering",	1,	set80211meshpeering),
6060 	DEF_CMD("-meshpeering",	0,	set80211meshpeering),
6061 	DEF_CMD_ARG("meshmetric",	set80211meshmetric),
6062 	DEF_CMD_ARG("meshpath",		set80211meshpath),
6063 	DEF_CMD("meshrt:flush",	IEEE80211_MESH_RTCMD_FLUSH,	set80211meshrtcmd),
6064 	DEF_CMD_ARG("meshrt:add",	set80211addmeshrt),
6065 	DEF_CMD_ARG("meshrt:del",	set80211delmeshrt),
6066 	DEF_CMD_ARG("hwmprootmode",	set80211hwmprootmode),
6067 	DEF_CMD_ARG("hwmpmaxhops",	set80211hwmpmaxhops),
6068 
6069 	/* vap cloning support */
6070 	DEF_CLONE_CMD_ARG("wlanaddr",	set80211clone_wlanaddr),
6071 	DEF_CLONE_CMD_ARG("wlanbssid",	set80211clone_wlanbssid),
6072 	DEF_CLONE_CMD_ARG("wlandev",	set80211clone_wlandev),
6073 	DEF_CLONE_CMD_ARG("wlanmode",	set80211clone_wlanmode),
6074 	DEF_CLONE_CMD("beacons", 1,	set80211clone_beacons),
6075 	DEF_CLONE_CMD("-beacons", 0,	set80211clone_beacons),
6076 	DEF_CLONE_CMD("bssid",	1,	set80211clone_bssid),
6077 	DEF_CLONE_CMD("-bssid",	0,	set80211clone_bssid),
6078 	DEF_CLONE_CMD("wdslegacy", 1,	set80211clone_wdslegacy),
6079 	DEF_CLONE_CMD("-wdslegacy", 0,	set80211clone_wdslegacy),
6080 };
6081 static struct afswtch af_ieee80211 = {
6082 	.af_name	= "af_ieee80211",
6083 	.af_af		= AF_UNSPEC,
6084 	.af_other_status = ieee80211_status,
6085 };
6086 
6087 static __constructor void
6088 ieee80211_ctor(void)
6089 {
6090 	for (size_t i = 0; i < nitems(ieee80211_cmds);  i++)
6091 		cmd_register(&ieee80211_cmds[i]);
6092 	af_register(&af_ieee80211);
6093 	clone_setdefcallback_prefix("wlan", wlan_create);
6094 }
6095