xref: /freebsd/sbin/newfs/mkfs.c (revision e28a4053)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <err.h>
48 #include <grp.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <stdint.h>
54 #include <stdio.h>
55 #include <unistd.h>
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/types.h>
59 #include <sys/wait.h>
60 #include <sys/resource.h>
61 #include <sys/stat.h>
62 #include <ufs/ufs/dinode.h>
63 #include <ufs/ufs/dir.h>
64 #include <ufs/ffs/fs.h>
65 #include <sys/disklabel.h>
66 #include <sys/file.h>
67 #include <sys/mman.h>
68 #include <sys/ioctl.h>
69 #include "newfs.h"
70 
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK		0755
75 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
76 
77 static struct	csum *fscs;
78 #define	sblock	disk.d_fs
79 #define	acg	disk.d_cg
80 
81 union dinode {
82 	struct ufs1_dinode dp1;
83 	struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87 	(dp)->dp1.field : (dp)->dp2.field)
88 
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static u_int32_t newfs_random(void);
103 
104 static int
105 do_sbwrite(struct uufsd *disk)
106 {
107 	if (!disk->d_sblock)
108 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
109 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
110 	    disk->d_sblock) * disk->d_bsize)));
111 }
112 
113 void
114 mkfs(struct partition *pp, char *fsys)
115 {
116 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
117 	long i, j, csfrags;
118 	uint cg;
119 	time_t utime;
120 	quad_t sizepb;
121 	int width;
122 	ino_t maxinum;
123 	int minfragsperinode;	/* minimum ratio of frags to inodes */
124 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
125 	union {
126 		struct fs fdummy;
127 		char cdummy[SBLOCKSIZE];
128 	} dummy;
129 #define fsdummy dummy.fdummy
130 #define chdummy dummy.cdummy
131 
132 	/*
133 	 * Our blocks == sector size, and the version of UFS we are using is
134 	 * specified by Oflag.
135 	 */
136 	disk.d_bsize = sectorsize;
137 	disk.d_ufs = Oflag;
138 	if (Rflag) {
139 		utime = 1000000000;
140 	} else {
141 		time(&utime);
142 		arc4random_stir();
143 	}
144 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
145 	sblock.fs_flags = 0;
146 	if (Uflag)
147 		sblock.fs_flags |= FS_DOSOFTDEP;
148 	if (Lflag)
149 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
150 	if (Jflag)
151 		sblock.fs_flags |= FS_GJOURNAL;
152 	if (lflag)
153 		sblock.fs_flags |= FS_MULTILABEL;
154 	/*
155 	 * Validate the given file system size.
156 	 * Verify that its last block can actually be accessed.
157 	 * Convert to file system fragment sized units.
158 	 */
159 	if (fssize <= 0) {
160 		printf("preposterous size %jd\n", (intmax_t)fssize);
161 		exit(13);
162 	}
163 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
164 	    (char *)&sblock);
165 	/*
166 	 * collect and verify the file system density info
167 	 */
168 	sblock.fs_avgfilesize = avgfilesize;
169 	sblock.fs_avgfpdir = avgfilesperdir;
170 	if (sblock.fs_avgfilesize <= 0)
171 		printf("illegal expected average file size %d\n",
172 		    sblock.fs_avgfilesize), exit(14);
173 	if (sblock.fs_avgfpdir <= 0)
174 		printf("illegal expected number of files per directory %d\n",
175 		    sblock.fs_avgfpdir), exit(15);
176 
177 restart:
178 	/*
179 	 * collect and verify the block and fragment sizes
180 	 */
181 	sblock.fs_bsize = bsize;
182 	sblock.fs_fsize = fsize;
183 	if (!POWEROF2(sblock.fs_bsize)) {
184 		printf("block size must be a power of 2, not %d\n",
185 		    sblock.fs_bsize);
186 		exit(16);
187 	}
188 	if (!POWEROF2(sblock.fs_fsize)) {
189 		printf("fragment size must be a power of 2, not %d\n",
190 		    sblock.fs_fsize);
191 		exit(17);
192 	}
193 	if (sblock.fs_fsize < sectorsize) {
194 		printf("increasing fragment size from %d to sector size (%d)\n",
195 		    sblock.fs_fsize, sectorsize);
196 		sblock.fs_fsize = sectorsize;
197 	}
198 	if (sblock.fs_bsize > MAXBSIZE) {
199 		printf("decreasing block size from %d to maximum (%d)\n",
200 		    sblock.fs_bsize, MAXBSIZE);
201 		sblock.fs_bsize = MAXBSIZE;
202 	}
203 	if (sblock.fs_bsize < MINBSIZE) {
204 		printf("increasing block size from %d to minimum (%d)\n",
205 		    sblock.fs_bsize, MINBSIZE);
206 		sblock.fs_bsize = MINBSIZE;
207 	}
208 	if (sblock.fs_fsize > MAXBSIZE) {
209 		printf("decreasing fragment size from %d to maximum (%d)\n",
210 		    sblock.fs_fsize, MAXBSIZE);
211 		sblock.fs_fsize = MAXBSIZE;
212 	}
213 	if (sblock.fs_bsize < sblock.fs_fsize) {
214 		printf("increasing block size from %d to fragment size (%d)\n",
215 		    sblock.fs_bsize, sblock.fs_fsize);
216 		sblock.fs_bsize = sblock.fs_fsize;
217 	}
218 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
219 		printf(
220 		"increasing fragment size from %d to block size / %d (%d)\n",
221 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
222 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
223 	}
224 	if (maxbsize == 0)
225 		maxbsize = bsize;
226 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
227 		sblock.fs_maxbsize = sblock.fs_bsize;
228 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
229 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
230 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
231 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
232 	} else {
233 		sblock.fs_maxbsize = maxbsize;
234 	}
235 	/*
236 	 * Maxcontig sets the default for the maximum number of blocks
237 	 * that may be allocated sequentially. With file system clustering
238 	 * it is possible to allocate contiguous blocks up to the maximum
239 	 * transfer size permitted by the controller or buffering.
240 	 */
241 	if (maxcontig == 0)
242 		maxcontig = MAX(1, MAXPHYS / bsize);
243 	sblock.fs_maxcontig = maxcontig;
244 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
245 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
246 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
247 	}
248 	if (sblock.fs_maxcontig > 1)
249 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
250 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
251 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
252 	sblock.fs_qbmask = ~sblock.fs_bmask;
253 	sblock.fs_qfmask = ~sblock.fs_fmask;
254 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
255 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
256 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
257 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
258 	if (sblock.fs_frag > MAXFRAG) {
259 		printf("fragment size %d is still too small (can't happen)\n",
260 		    sblock.fs_bsize / MAXFRAG);
261 		exit(21);
262 	}
263 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
264 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
265 
266 	/*
267 	 * Before the filesystem is finally initialized, mark it
268 	 * as incompletely initialized.
269 	 */
270 	sblock.fs_magic = FS_BAD_MAGIC;
271 
272 	if (Oflag == 1) {
273 		sblock.fs_sblockloc = SBLOCK_UFS1;
274 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
275 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
276 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
277 		    sizeof(ufs1_daddr_t));
278 		sblock.fs_old_inodefmt = FS_44INODEFMT;
279 		sblock.fs_old_cgoffset = 0;
280 		sblock.fs_old_cgmask = 0xffffffff;
281 		sblock.fs_old_size = sblock.fs_size;
282 		sblock.fs_old_rotdelay = 0;
283 		sblock.fs_old_rps = 60;
284 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
285 		sblock.fs_old_cpg = 1;
286 		sblock.fs_old_interleave = 1;
287 		sblock.fs_old_trackskew = 0;
288 		sblock.fs_old_cpc = 0;
289 		sblock.fs_old_postblformat = 1;
290 		sblock.fs_old_nrpos = 1;
291 	} else {
292 		sblock.fs_sblockloc = SBLOCK_UFS2;
293 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
294 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
295 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
296 		    sizeof(ufs2_daddr_t));
297 	}
298 	sblock.fs_sblkno =
299 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
300 		sblock.fs_frag);
301 	sblock.fs_cblkno = sblock.fs_sblkno +
302 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
303 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
304 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
305 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
306 		sizepb *= NINDIR(&sblock);
307 		sblock.fs_maxfilesize += sizepb;
308 	}
309 
310 	/*
311 	 * It's impossible to create a snapshot in case that fs_maxfilesize
312 	 * is smaller than the fssize.
313 	 */
314 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
315 		warnx("WARNING: You will be unable to create snapshots on this "
316 		      "file system.  Correct by using a larger blocksize.");
317 	}
318 
319 	/*
320 	 * Calculate the number of blocks to put into each cylinder group.
321 	 *
322 	 * This algorithm selects the number of blocks per cylinder
323 	 * group. The first goal is to have at least enough data blocks
324 	 * in each cylinder group to meet the density requirement. Once
325 	 * this goal is achieved we try to expand to have at least
326 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
327 	 * pack as many blocks into each cylinder group map as will fit.
328 	 *
329 	 * We start by calculating the smallest number of blocks that we
330 	 * can put into each cylinder group. If this is too big, we reduce
331 	 * the density until it fits.
332 	 */
333 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
334 	minfragsperinode = 1 + fssize / maxinum;
335 	if (density == 0) {
336 		density = MAX(NFPI, minfragsperinode) * fsize;
337 	} else if (density < minfragsperinode * fsize) {
338 		origdensity = density;
339 		density = minfragsperinode * fsize;
340 		fprintf(stderr, "density increased from %d to %d\n",
341 		    origdensity, density);
342 	}
343 	origdensity = density;
344 	for (;;) {
345 		fragsperinode = MAX(numfrags(&sblock, density), 1);
346 		if (fragsperinode < minfragsperinode) {
347 			bsize <<= 1;
348 			fsize <<= 1;
349 			printf("Block size too small for a file system %s %d\n",
350 			     "of this size. Increasing blocksize to", bsize);
351 			goto restart;
352 		}
353 		minfpg = fragsperinode * INOPB(&sblock);
354 		if (minfpg > sblock.fs_size)
355 			minfpg = sblock.fs_size;
356 		sblock.fs_ipg = INOPB(&sblock);
357 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
358 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
359 		if (sblock.fs_fpg < minfpg)
360 			sblock.fs_fpg = minfpg;
361 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
362 		    INOPB(&sblock));
363 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
364 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
365 		if (sblock.fs_fpg < minfpg)
366 			sblock.fs_fpg = minfpg;
367 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
368 		    INOPB(&sblock));
369 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
370 			break;
371 		density -= sblock.fs_fsize;
372 	}
373 	if (density != origdensity)
374 		printf("density reduced from %d to %d\n", origdensity, density);
375 	/*
376 	 * Start packing more blocks into the cylinder group until
377 	 * it cannot grow any larger, the number of cylinder groups
378 	 * drops below MINCYLGRPS, or we reach the size requested.
379 	 * For UFS1 inodes per cylinder group are stored in an int16_t
380 	 * so fs_ipg is limited to 2^15 - 1.
381 	 */
382 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
383 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
384 		    INOPB(&sblock));
385 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
386 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
387 				break;
388 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
389 				continue;
390 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
391 				break;
392 		}
393 		sblock.fs_fpg -= sblock.fs_frag;
394 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
395 		    INOPB(&sblock));
396 		break;
397 	}
398 	/*
399 	 * Check to be sure that the last cylinder group has enough blocks
400 	 * to be viable. If it is too small, reduce the number of blocks
401 	 * per cylinder group which will have the effect of moving more
402 	 * blocks into the last cylinder group.
403 	 */
404 	optimalfpg = sblock.fs_fpg;
405 	for (;;) {
406 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
407 		lastminfpg = roundup(sblock.fs_iblkno +
408 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
409 		if (sblock.fs_size < lastminfpg) {
410 			printf("Filesystem size %jd < minimum size of %d\n",
411 			    (intmax_t)sblock.fs_size, lastminfpg);
412 			exit(28);
413 		}
414 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
415 		    sblock.fs_size % sblock.fs_fpg == 0)
416 			break;
417 		sblock.fs_fpg -= sblock.fs_frag;
418 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
419 		    INOPB(&sblock));
420 	}
421 	if (optimalfpg != sblock.fs_fpg)
422 		printf("Reduced frags per cylinder group from %d to %d %s\n",
423 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
424 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
425 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
426 	if (Oflag == 1) {
427 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
428 		sblock.fs_old_nsect = sblock.fs_old_spc;
429 		sblock.fs_old_npsect = sblock.fs_old_spc;
430 		sblock.fs_old_ncyl = sblock.fs_ncg;
431 	}
432 	/*
433 	 * fill in remaining fields of the super block
434 	 */
435 	sblock.fs_csaddr = cgdmin(&sblock, 0);
436 	sblock.fs_cssize =
437 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
438 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
439 	if (fscs == NULL)
440 		errx(31, "calloc failed");
441 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
442 	if (sblock.fs_sbsize > SBLOCKSIZE)
443 		sblock.fs_sbsize = SBLOCKSIZE;
444 	sblock.fs_minfree = minfree;
445 	if (maxbpg == 0)
446 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
447 	else
448 		sblock.fs_maxbpg = maxbpg;
449 	sblock.fs_optim = opt;
450 	sblock.fs_cgrotor = 0;
451 	sblock.fs_pendingblocks = 0;
452 	sblock.fs_pendinginodes = 0;
453 	sblock.fs_fmod = 0;
454 	sblock.fs_ronly = 0;
455 	sblock.fs_state = 0;
456 	sblock.fs_clean = 1;
457 	sblock.fs_id[0] = (long)utime;
458 	sblock.fs_id[1] = newfs_random();
459 	sblock.fs_fsmnt[0] = '\0';
460 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
461 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
462 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
463 	sblock.fs_cstotal.cs_nbfree =
464 	    fragstoblks(&sblock, sblock.fs_dsize) -
465 	    howmany(csfrags, sblock.fs_frag);
466 	sblock.fs_cstotal.cs_nffree =
467 	    fragnum(&sblock, sblock.fs_size) +
468 	    (fragnum(&sblock, csfrags) > 0 ?
469 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
470 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
471 	sblock.fs_cstotal.cs_ndir = 0;
472 	sblock.fs_dsize -= csfrags;
473 	sblock.fs_time = utime;
474 	if (Oflag == 1) {
475 		sblock.fs_old_time = utime;
476 		sblock.fs_old_dsize = sblock.fs_dsize;
477 		sblock.fs_old_csaddr = sblock.fs_csaddr;
478 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
479 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
480 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
481 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
482 	}
483 
484 	/*
485 	 * Dump out summary information about file system.
486 	 */
487 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
488 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
489 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
490 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
491 	    sblock.fs_fsize);
492 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
493 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
494 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
495 	if (sblock.fs_flags & FS_DOSOFTDEP)
496 		printf("\twith soft updates\n");
497 #	undef B2MBFACTOR
498 
499 	if (Eflag && !Nflag) {
500 		printf("Erasing sectors [%jd...%jd]\n",
501 		    sblock.fs_sblockloc / disk.d_bsize,
502 		    fsbtodb(&sblock, sblock.fs_size) - 1);
503 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
504 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
505 	}
506 	/*
507 	 * Wipe out old UFS1 superblock(s) if necessary.
508 	 */
509 	if (!Nflag && Oflag != 1) {
510 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
511 		if (i == -1)
512 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
513 
514 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
515 			fsdummy.fs_magic = 0;
516 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
517 			    chdummy, SBLOCKSIZE);
518 			for (cg = 0; cg < fsdummy.fs_ncg; cg++)
519 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
520 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
521 		}
522 	}
523 	if (!Nflag)
524 		do_sbwrite(&disk);
525 	if (Xflag == 1) {
526 		printf("** Exiting on Xflag 1\n");
527 		exit(0);
528 	}
529 	if (Xflag == 2)
530 		printf("** Leaving BAD MAGIC on Xflag 2\n");
531 	else
532 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
533 
534 	/*
535 	 * Now build the cylinders group blocks and
536 	 * then print out indices of cylinder groups.
537 	 */
538 	printf("super-block backups (for fsck -b #) at:\n");
539 	i = 0;
540 	width = charsperline();
541 	/*
542 	 * allocate space for superblock, cylinder group map, and
543 	 * two sets of inode blocks.
544 	 */
545 	if (sblock.fs_bsize < SBLOCKSIZE)
546 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
547 	else
548 		iobufsize = 4 * sblock.fs_bsize;
549 	if ((iobuf = calloc(1, iobufsize)) == 0) {
550 		printf("Cannot allocate I/O buffer\n");
551 		exit(38);
552 	}
553 	/*
554 	 * Make a copy of the superblock into the buffer that we will be
555 	 * writing out in each cylinder group.
556 	 */
557 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
558 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
559 		initcg(cg, utime);
560 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
561 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
562 		    cg < (sblock.fs_ncg-1) ? "," : "");
563 		if (j < 0)
564 			tmpbuf[j = 0] = '\0';
565 		if (i + j >= width) {
566 			printf("\n");
567 			i = 0;
568 		}
569 		i += j;
570 		printf("%s", tmpbuf);
571 		fflush(stdout);
572 	}
573 	printf("\n");
574 	if (Nflag)
575 		exit(0);
576 	/*
577 	 * Now construct the initial file system,
578 	 * then write out the super-block.
579 	 */
580 	fsinit(utime);
581 	if (Oflag == 1) {
582 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
583 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
584 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
585 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
586 	}
587 	if (Xflag == 3) {
588 		printf("** Exiting on Xflag 3\n");
589 		exit(0);
590 	}
591 	if (!Nflag) {
592 		do_sbwrite(&disk);
593 		/*
594 		 * For UFS1 filesystems with a blocksize of 64K, the first
595 		 * alternate superblock resides at the location used for
596 		 * the default UFS2 superblock. As there is a valid
597 		 * superblock at this location, the boot code will use
598 		 * it as its first choice. Thus we have to ensure that
599 		 * all of its statistcs on usage are correct.
600 		 */
601 		if (Oflag == 1 && sblock.fs_bsize == 65536)
602 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
603 			    sblock.fs_bsize, (char *)&sblock);
604 	}
605 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
606 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
607 			sblock.fs_cssize - i < sblock.fs_bsize ?
608 			sblock.fs_cssize - i : sblock.fs_bsize,
609 			((char *)fscs) + i);
610 	/*
611 	 * Update information about this partition in pack
612 	 * label, to that it may be updated on disk.
613 	 */
614 	if (pp != NULL) {
615 		pp->p_fstype = FS_BSDFFS;
616 		pp->p_fsize = sblock.fs_fsize;
617 		pp->p_frag = sblock.fs_frag;
618 		pp->p_cpg = sblock.fs_fpg;
619 	}
620 }
621 
622 /*
623  * Initialize a cylinder group.
624  */
625 void
626 initcg(int cylno, time_t utime)
627 {
628 	long blkno, start;
629 	uint i, j, d, dlower, dupper;
630 	ufs2_daddr_t cbase, dmax;
631 	struct ufs1_dinode *dp1;
632 	struct ufs2_dinode *dp2;
633 	struct csum *cs;
634 
635 	/*
636 	 * Determine block bounds for cylinder group.
637 	 * Allow space for super block summary information in first
638 	 * cylinder group.
639 	 */
640 	cbase = cgbase(&sblock, cylno);
641 	dmax = cbase + sblock.fs_fpg;
642 	if (dmax > sblock.fs_size)
643 		dmax = sblock.fs_size;
644 	dlower = cgsblock(&sblock, cylno) - cbase;
645 	dupper = cgdmin(&sblock, cylno) - cbase;
646 	if (cylno == 0)
647 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
648 	cs = &fscs[cylno];
649 	memset(&acg, 0, sblock.fs_cgsize);
650 	acg.cg_time = utime;
651 	acg.cg_magic = CG_MAGIC;
652 	acg.cg_cgx = cylno;
653 	acg.cg_niblk = sblock.fs_ipg;
654 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
655 	    sblock.fs_ipg : 2 * INOPB(&sblock);
656 	acg.cg_ndblk = dmax - cbase;
657 	if (sblock.fs_contigsumsize > 0)
658 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
659 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
660 	if (Oflag == 2) {
661 		acg.cg_iusedoff = start;
662 	} else {
663 		acg.cg_old_ncyl = sblock.fs_old_cpg;
664 		acg.cg_old_time = acg.cg_time;
665 		acg.cg_time = 0;
666 		acg.cg_old_niblk = acg.cg_niblk;
667 		acg.cg_niblk = 0;
668 		acg.cg_initediblk = 0;
669 		acg.cg_old_btotoff = start;
670 		acg.cg_old_boff = acg.cg_old_btotoff +
671 		    sblock.fs_old_cpg * sizeof(int32_t);
672 		acg.cg_iusedoff = acg.cg_old_boff +
673 		    sblock.fs_old_cpg * sizeof(u_int16_t);
674 	}
675 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
676 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
677 	if (sblock.fs_contigsumsize > 0) {
678 		acg.cg_clustersumoff =
679 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
680 		acg.cg_clustersumoff -= sizeof(u_int32_t);
681 		acg.cg_clusteroff = acg.cg_clustersumoff +
682 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
683 		acg.cg_nextfreeoff = acg.cg_clusteroff +
684 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
685 	}
686 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
687 		printf("Panic: cylinder group too big\n");
688 		exit(37);
689 	}
690 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
691 	if (cylno == 0)
692 		for (i = 0; i < (long)ROOTINO; i++) {
693 			setbit(cg_inosused(&acg), i);
694 			acg.cg_cs.cs_nifree--;
695 		}
696 	if (cylno > 0) {
697 		/*
698 		 * In cylno 0, beginning space is reserved
699 		 * for boot and super blocks.
700 		 */
701 		for (d = 0; d < dlower; d += sblock.fs_frag) {
702 			blkno = d / sblock.fs_frag;
703 			setblock(&sblock, cg_blksfree(&acg), blkno);
704 			if (sblock.fs_contigsumsize > 0)
705 				setbit(cg_clustersfree(&acg), blkno);
706 			acg.cg_cs.cs_nbfree++;
707 		}
708 	}
709 	if ((i = dupper % sblock.fs_frag)) {
710 		acg.cg_frsum[sblock.fs_frag - i]++;
711 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
712 			setbit(cg_blksfree(&acg), dupper);
713 			acg.cg_cs.cs_nffree++;
714 		}
715 	}
716 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
717 	     d += sblock.fs_frag) {
718 		blkno = d / sblock.fs_frag;
719 		setblock(&sblock, cg_blksfree(&acg), blkno);
720 		if (sblock.fs_contigsumsize > 0)
721 			setbit(cg_clustersfree(&acg), blkno);
722 		acg.cg_cs.cs_nbfree++;
723 	}
724 	if (d < acg.cg_ndblk) {
725 		acg.cg_frsum[acg.cg_ndblk - d]++;
726 		for (; d < acg.cg_ndblk; d++) {
727 			setbit(cg_blksfree(&acg), d);
728 			acg.cg_cs.cs_nffree++;
729 		}
730 	}
731 	if (sblock.fs_contigsumsize > 0) {
732 		int32_t *sump = cg_clustersum(&acg);
733 		u_char *mapp = cg_clustersfree(&acg);
734 		int map = *mapp++;
735 		int bit = 1;
736 		int run = 0;
737 
738 		for (i = 0; i < acg.cg_nclusterblks; i++) {
739 			if ((map & bit) != 0)
740 				run++;
741 			else if (run != 0) {
742 				if (run > sblock.fs_contigsumsize)
743 					run = sblock.fs_contigsumsize;
744 				sump[run]++;
745 				run = 0;
746 			}
747 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
748 				bit <<= 1;
749 			else {
750 				map = *mapp++;
751 				bit = 1;
752 			}
753 		}
754 		if (run != 0) {
755 			if (run > sblock.fs_contigsumsize)
756 				run = sblock.fs_contigsumsize;
757 			sump[run]++;
758 		}
759 	}
760 	*cs = acg.cg_cs;
761 	/*
762 	 * Write out the duplicate super block, the cylinder group map
763 	 * and two blocks worth of inodes in a single write.
764 	 */
765 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
766 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
767 	start += sblock.fs_bsize;
768 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
769 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
770 	for (i = 0; i < acg.cg_initediblk; i++) {
771 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
772 			dp1->di_gen = newfs_random();
773 			dp1++;
774 		} else {
775 			dp2->di_gen = newfs_random();
776 			dp2++;
777 		}
778 	}
779 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
780 	/*
781 	 * For the old file system, we have to initialize all the inodes.
782 	 */
783 	if (Oflag == 1) {
784 		for (i = 2 * sblock.fs_frag;
785 		     i < sblock.fs_ipg / INOPF(&sblock);
786 		     i += sblock.fs_frag) {
787 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
788 			for (j = 0; j < INOPB(&sblock); j++) {
789 				dp1->di_gen = newfs_random();
790 				dp1++;
791 			}
792 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
793 			    sblock.fs_bsize, &iobuf[start]);
794 		}
795 	}
796 }
797 
798 /*
799  * initialize the file system
800  */
801 #define ROOTLINKCNT 3
802 
803 struct direct root_dir[] = {
804 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
805 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
806 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
807 };
808 
809 #define SNAPLINKCNT 2
810 
811 struct direct snap_dir[] = {
812 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
813 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
814 };
815 
816 void
817 fsinit(time_t utime)
818 {
819 	union dinode node;
820 	struct group *grp;
821 	gid_t gid;
822 	int entries;
823 
824 	memset(&node, 0, sizeof node);
825 	if ((grp = getgrnam("operator")) != NULL) {
826 		gid = grp->gr_gid;
827 	} else {
828 		warnx("Cannot retrieve operator gid, using gid 0.");
829 		gid = 0;
830 	}
831 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
832 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
833 		/*
834 		 * initialize the node
835 		 */
836 		node.dp1.di_atime = utime;
837 		node.dp1.di_mtime = utime;
838 		node.dp1.di_ctime = utime;
839 		/*
840 		 * create the root directory
841 		 */
842 		node.dp1.di_mode = IFDIR | UMASK;
843 		node.dp1.di_nlink = entries;
844 		node.dp1.di_size = makedir(root_dir, entries);
845 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
846 		node.dp1.di_blocks =
847 		    btodb(fragroundup(&sblock, node.dp1.di_size));
848 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
849 		    iobuf);
850 		iput(&node, ROOTINO);
851 		if (!nflag) {
852 			/*
853 			 * create the .snap directory
854 			 */
855 			node.dp1.di_mode |= 020;
856 			node.dp1.di_gid = gid;
857 			node.dp1.di_nlink = SNAPLINKCNT;
858 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
859 				node.dp1.di_db[0] =
860 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
861 			node.dp1.di_blocks =
862 			    btodb(fragroundup(&sblock, node.dp1.di_size));
863 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
864 				    sblock.fs_fsize, iobuf);
865 			iput(&node, ROOTINO + 1);
866 		}
867 	} else {
868 		/*
869 		 * initialize the node
870 		 */
871 		node.dp2.di_atime = utime;
872 		node.dp2.di_mtime = utime;
873 		node.dp2.di_ctime = utime;
874 		node.dp2.di_birthtime = utime;
875 		/*
876 		 * create the root directory
877 		 */
878 		node.dp2.di_mode = IFDIR | UMASK;
879 		node.dp2.di_nlink = entries;
880 		node.dp2.di_size = makedir(root_dir, entries);
881 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
882 		node.dp2.di_blocks =
883 		    btodb(fragroundup(&sblock, node.dp2.di_size));
884 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
885 		    iobuf);
886 		iput(&node, ROOTINO);
887 		if (!nflag) {
888 			/*
889 			 * create the .snap directory
890 			 */
891 			node.dp2.di_mode |= 020;
892 			node.dp2.di_gid = gid;
893 			node.dp2.di_nlink = SNAPLINKCNT;
894 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
895 				node.dp2.di_db[0] =
896 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
897 			node.dp2.di_blocks =
898 			    btodb(fragroundup(&sblock, node.dp2.di_size));
899 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
900 				    sblock.fs_fsize, iobuf);
901 			iput(&node, ROOTINO + 1);
902 		}
903 	}
904 }
905 
906 /*
907  * construct a set of directory entries in "iobuf".
908  * return size of directory.
909  */
910 int
911 makedir(struct direct *protodir, int entries)
912 {
913 	char *cp;
914 	int i, spcleft;
915 
916 	spcleft = DIRBLKSIZ;
917 	memset(iobuf, 0, DIRBLKSIZ);
918 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
919 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
920 		memmove(cp, &protodir[i], protodir[i].d_reclen);
921 		cp += protodir[i].d_reclen;
922 		spcleft -= protodir[i].d_reclen;
923 	}
924 	protodir[i].d_reclen = spcleft;
925 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
926 	return (DIRBLKSIZ);
927 }
928 
929 /*
930  * allocate a block or frag
931  */
932 ufs2_daddr_t
933 alloc(int size, int mode)
934 {
935 	int i, blkno, frag;
936 	uint d;
937 
938 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
939 	    sblock.fs_cgsize);
940 	if (acg.cg_magic != CG_MAGIC) {
941 		printf("cg 0: bad magic number\n");
942 		exit(38);
943 	}
944 	if (acg.cg_cs.cs_nbfree == 0) {
945 		printf("first cylinder group ran out of space\n");
946 		exit(39);
947 	}
948 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
949 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
950 			goto goth;
951 	printf("internal error: can't find block in cyl 0\n");
952 	exit(40);
953 goth:
954 	blkno = fragstoblks(&sblock, d);
955 	clrblock(&sblock, cg_blksfree(&acg), blkno);
956 	if (sblock.fs_contigsumsize > 0)
957 		clrbit(cg_clustersfree(&acg), blkno);
958 	acg.cg_cs.cs_nbfree--;
959 	sblock.fs_cstotal.cs_nbfree--;
960 	fscs[0].cs_nbfree--;
961 	if (mode & IFDIR) {
962 		acg.cg_cs.cs_ndir++;
963 		sblock.fs_cstotal.cs_ndir++;
964 		fscs[0].cs_ndir++;
965 	}
966 	if (size != sblock.fs_bsize) {
967 		frag = howmany(size, sblock.fs_fsize);
968 		fscs[0].cs_nffree += sblock.fs_frag - frag;
969 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
970 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
971 		acg.cg_frsum[sblock.fs_frag - frag]++;
972 		for (i = frag; i < sblock.fs_frag; i++)
973 			setbit(cg_blksfree(&acg), d + i);
974 	}
975 	/* XXX cgwrite(&disk, 0)??? */
976 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
977 	    (char *)&acg);
978 	return ((ufs2_daddr_t)d);
979 }
980 
981 /*
982  * Allocate an inode on the disk
983  */
984 void
985 iput(union dinode *ip, ino_t ino)
986 {
987 	ufs2_daddr_t d;
988 	int c;
989 
990 	c = ino_to_cg(&sblock, ino);
991 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
992 	    sblock.fs_cgsize);
993 	if (acg.cg_magic != CG_MAGIC) {
994 		printf("cg 0: bad magic number\n");
995 		exit(31);
996 	}
997 	acg.cg_cs.cs_nifree--;
998 	setbit(cg_inosused(&acg), ino);
999 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1000 	    (char *)&acg);
1001 	sblock.fs_cstotal.cs_nifree--;
1002 	fscs[0].cs_nifree--;
1003 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1004 		printf("fsinit: inode value out of range (%d).\n", ino);
1005 		exit(32);
1006 	}
1007 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1008 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1009 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1010 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1011 		    ip->dp1;
1012 	else
1013 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1014 		    ip->dp2;
1015 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1016 }
1017 
1018 /*
1019  * possibly write to disk
1020  */
1021 static void
1022 wtfs(ufs2_daddr_t bno, int size, char *bf)
1023 {
1024 	if (Nflag)
1025 		return;
1026 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1027 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1028 }
1029 
1030 /*
1031  * check if a block is available
1032  */
1033 static int
1034 isblock(struct fs *fs, unsigned char *cp, int h)
1035 {
1036 	unsigned char mask;
1037 
1038 	switch (fs->fs_frag) {
1039 	case 8:
1040 		return (cp[h] == 0xff);
1041 	case 4:
1042 		mask = 0x0f << ((h & 0x1) << 2);
1043 		return ((cp[h >> 1] & mask) == mask);
1044 	case 2:
1045 		mask = 0x03 << ((h & 0x3) << 1);
1046 		return ((cp[h >> 2] & mask) == mask);
1047 	case 1:
1048 		mask = 0x01 << (h & 0x7);
1049 		return ((cp[h >> 3] & mask) == mask);
1050 	default:
1051 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1052 		return (0);
1053 	}
1054 }
1055 
1056 /*
1057  * take a block out of the map
1058  */
1059 static void
1060 clrblock(struct fs *fs, unsigned char *cp, int h)
1061 {
1062 	switch ((fs)->fs_frag) {
1063 	case 8:
1064 		cp[h] = 0;
1065 		return;
1066 	case 4:
1067 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1068 		return;
1069 	case 2:
1070 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1071 		return;
1072 	case 1:
1073 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1074 		return;
1075 	default:
1076 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1077 		return;
1078 	}
1079 }
1080 
1081 /*
1082  * put a block into the map
1083  */
1084 static void
1085 setblock(struct fs *fs, unsigned char *cp, int h)
1086 {
1087 	switch (fs->fs_frag) {
1088 	case 8:
1089 		cp[h] = 0xff;
1090 		return;
1091 	case 4:
1092 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1093 		return;
1094 	case 2:
1095 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1096 		return;
1097 	case 1:
1098 		cp[h >> 3] |= (0x01 << (h & 0x7));
1099 		return;
1100 	default:
1101 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1102 		return;
1103 	}
1104 }
1105 
1106 /*
1107  * Determine the number of characters in a
1108  * single line.
1109  */
1110 
1111 static int
1112 charsperline(void)
1113 {
1114 	int columns;
1115 	char *cp;
1116 	struct winsize ws;
1117 
1118 	columns = 0;
1119 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1120 		columns = ws.ws_col;
1121 	if (columns == 0 && (cp = getenv("COLUMNS")))
1122 		columns = atoi(cp);
1123 	if (columns == 0)
1124 		columns = 80;	/* last resort */
1125 	return (columns);
1126 }
1127 
1128 static int
1129 ilog2(int val)
1130 {
1131 	u_int n;
1132 
1133 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1134 		if (1 << n == val)
1135 			return (n);
1136 	errx(1, "ilog2: %d is not a power of 2\n", val);
1137 }
1138 
1139 /*
1140  * For the regression test, return predictable random values.
1141  * Otherwise use a true random number generator.
1142  */
1143 static u_int32_t
1144 newfs_random(void)
1145 {
1146 	static int nextnum = 1;
1147 
1148 	if (Rflag)
1149 		return (nextnum++);
1150 	return (arc4random());
1151 }
1152