Automatically generated by Pod::Man 4.14 (Pod::Simple 3.43)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "OPENSSL_LH_COMPFUNC 3"
OPENSSL_LH_COMPFUNC 3 "2022-03-15" "1.1.1n" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
LHASH, DECLARE_LHASH_OF, OPENSSL_LH_COMPFUNC, OPENSSL_LH_HASHFUNC, OPENSSL_LH_DOALL_FUNC, LHASH_DOALL_ARG_FN_TYPE, IMPLEMENT_LHASH_HASH_FN, IMPLEMENT_LHASH_COMP_FN, lh_TYPE_new, lh_TYPE_free, lh_TYPE_insert, lh_TYPE_delete, lh_TYPE_retrieve, lh_TYPE_doall, lh_TYPE_doall_arg, lh_TYPE_error - dynamic hash table
"SYNOPSIS"
Header "SYNOPSIS" .Vb 1 #include <openssl/lhash.h> \& DECLARE_LHASH_OF(TYPE); \& LHASH *lh_TYPE_new(OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC compare); void lh_TYPE_free(LHASH_OF(TYPE) *table); \& TYPE *lh_TYPE_insert(LHASH_OF(TYPE) *table, TYPE *data); TYPE *lh_TYPE_delete(LHASH_OF(TYPE) *table, TYPE *data); TYPE *lh_retrieve(LHASH_OF(TYPE) *table, TYPE *data); \& void lh_TYPE_doall(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNC func); void lh_TYPE_doall_arg(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNCARG func, TYPE *arg); \& int lh_TYPE_error(LHASH_OF(TYPE) *table); \& typedef int (*OPENSSL_LH_COMPFUNC)(const void *, const void *); typedef unsigned long (*OPENSSL_LH_HASHFUNC)(const void *); typedef void (*OPENSSL_LH_DOALL_FUNC)(const void *); typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); .Ve
"DESCRIPTION"
Header "DESCRIPTION" This library implements type-checked dynamic hash tables. The hash table entries can be arbitrary structures. Usually they consist of key and value fields. In the description here, \s-1TYPE\s0 is used a placeholder for any of the OpenSSL datatypes, such as \s-1SSL_SESSION\s0.

\fBlh_TYPE_new() creates a new \s-1LHASH_OF\s0(\s-1TYPE\s0) structure to store arbitrary data entries, and specifies the 'hash' and 'compare' callbacks to be used in organising the table's entries. The hash callback takes a pointer to a table entry as its argument and returns an unsigned long hash value for its key field. The hash value is normally truncated to a power of 2, so make sure that your hash function returns well mixed low order bits. The compare callback takes two arguments (pointers to two hash table entries), and returns 0 if their keys are equal, nonzero otherwise.

If your hash table will contain items of some particular type and the hash and \fBcompare callbacks hash/compare these types, then the \fB\s-1IMPLEMENT_LHASH_HASH_FN\s0 and \s-1IMPLEMENT_LHASH_COMP_FN\s0 macros can be used to create callback wrappers of the prototypes required by \fBlh_TYPE_new() as shown in this example:

.Vb 11 /* * Implement the hash and compare functions; "stuff" can be any word. */ static unsigned long stuff_hash(const TYPE *a) { ... } static int stuff_cmp(const TYPE *a, const TYPE *b) { ... } \& /* * Implement the wrapper functions. */ static IMPLEMENT_LHASH_HASH_FN(stuff, TYPE) static IMPLEMENT_LHASH_COMP_FN(stuff, TYPE) .Ve

If the type is going to be used in several places, the following macros can be used in a common header file to declare the function wrappers:

.Vb 2 DECLARE_LHASH_HASH_FN(stuff, TYPE) DECLARE_LHASH_COMP_FN(stuff, TYPE) .Ve

Then a hash table of \s-1TYPE\s0 objects can be created using this:

.Vb 1 LHASH_OF(TYPE) *htable; \& htable = lh_TYPE_new(LHASH_HASH_FN(stuff), LHASH_COMP_FN(stuff)); .Ve

\fBlh_TYPE_free() frees the \s-1LHASH_OF\s0(\s-1TYPE\s0) structure \fBtable. Allocated hash table entries will not be freed; consider using lh_TYPE_doall() to deallocate any remaining entries in the hash table (see below).

\fBlh_TYPE_insert() inserts the structure pointed to by data into \fBtable. If there already is an entry with the same key, the old value is replaced. Note that lh_TYPE_insert() stores pointers, the data are not copied.

\fBlh_TYPE_delete() deletes an entry from table.

\fBlh_TYPE_retrieve() looks up an entry in table. Normally, data is a structure with the key field(s) set; the function will return a pointer to a fully populated structure.

\fBlh_TYPE_doall() will, for every entry in the hash table, call \fBfunc with the data item as its parameter. For example:

.Vb 2 /* Cleans up resources belonging to \*(Aqa\*(Aq (this is implemented elsewhere) */ void TYPE_cleanup_doall(TYPE *a); \& /* Implement a prototype-compatible wrapper for "TYPE_cleanup" */ IMPLEMENT_LHASH_DOALL_FN(TYPE_cleanup, TYPE) \& /* Call "TYPE_cleanup" against all items in a hash table. */ lh_TYPE_doall(hashtable, LHASH_DOALL_FN(TYPE_cleanup)); \& /* Then the hash table itself can be deallocated */ lh_TYPE_free(hashtable); .Ve

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may decrease in size, moving the item that you are currently on down lower in the hash table - this could cause some entries to be skipped during the iteration. The second best solution to this problem is to set hash->down_load=0 before you start (which will stop the hash table ever decreasing in size). The best solution is probably to avoid deleting items from the hash table inside a \*(L"doall\*(R" callback!

\fBlh_TYPE_doall_arg() is the same as lh_TYPE_doall() except that \fBfunc will be called with arg as the second argument and func should be of type \s-1LHASH_DOALL_ARG_FN_TYPE\s0 (a callback prototype that is passed both the table entry and an extra argument). As with \fBlh_doall(), you can instead choose to declare your callback with a prototype matching the types you are dealing with and use the declare/implement macros to create compatible wrappers that cast variables before calling your type-specific callbacks. An example of this is demonstrated here (printing all hash table entries to a \s-1BIO\s0 that is provided by the caller):

.Vb 2 /* Prints item \*(Aqa\*(Aq to \*(Aqoutput_bio\*(Aq (this is implemented elsewhere) */ void TYPE_print_doall_arg(const TYPE *a, BIO *output_bio); \& /* Implement a prototype-compatible wrapper for "TYPE_print" */ static IMPLEMENT_LHASH_DOALL_ARG_FN(TYPE, const TYPE, BIO) \& /* Print out the entire hashtable to a particular BIO */ lh_TYPE_doall_arg(hashtable, LHASH_DOALL_ARG_FN(TYPE_print), BIO, logging_bio); .Ve

\fBlh_TYPE_error() can be used to determine if an error occurred in the last operation.

"RETURN VALUES"
Header "RETURN VALUES" \fBlh_TYPE_new() returns \s-1NULL\s0 on error, otherwise a pointer to the new \fB\s-1LHASH\s0 structure.

When a hash table entry is replaced, lh_TYPE_insert() returns the value being replaced. \s-1NULL\s0 is returned on normal operation and on error.

\fBlh_TYPE_delete() returns the entry being deleted. \s-1NULL\s0 is returned if there is no such value in the hash table.

\fBlh_TYPE_retrieve() returns the hash table entry if it has been found, \fB\s-1NULL\s0 otherwise.

\fBlh_TYPE_error() returns 1 if an error occurred in the last operation, 0 otherwise. It's meaningful only after non-retrieve operations.

\fBlh_TYPE_free(), lh_TYPE_doall() and lh_TYPE_doall_arg() return no values.

"NOTE"
Header "NOTE" The \s-1LHASH\s0 code is not thread safe. All updating operations, as well as lh_TYPE_error call must be performed under a write lock. All retrieve operations should be performed under a read lock, unless accurate usage statistics are desired. In which case, a write lock should be used for retrieve operations as well. For output of the usage statistics, using the functions from OPENSSL_LH_stats\|(3), a read lock suffices.

The \s-1LHASH\s0 code regards table entries as constant data. As such, it internally represents lh_insert()'d items with a \*(L"const void *\*(R" pointer type. This is why callbacks such as those used by lh_doall() and lh_doall_arg() declare their prototypes with \*(L"const\*(R", even for the parameters that pass back the table items' data pointers - for consistency, user-provided data is \*(L"const\*(R" at all times as far as the \s-1LHASH\s0 code is concerned. However, as callers are themselves providing these pointers, they can choose whether they too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only \*(L"const\*(R" access to the data being indexed in the hash table (i.e. it is returned as \*(L"const\*(R" from elsewhere in their code) - in this case the \s-1LHASH\s0 prototypes are appropriate as-is. Conversely, if the caller is responsible for the life-time of the data in question, then they may well wish to make modifications to table item passed back in the lh_doall() or \fBlh_doall_arg() callbacks (see the \*(L"TYPE_cleanup\*(R" example above). If so, the caller can either cast the \*(L"const\*(R" away (if they're providing the raw callbacks themselves) or use the macros to declare/implement the wrapper functions without \*(L"const\*(R" types.

Callers that only have \*(L"const\*(R" access to data they're indexing in a table, yet declare callbacks without constant types (or cast the \*(L"const\*(R" away themselves), are therefore creating their own risks/bugs without being encouraged to do so by the \s-1API.\s0 On a related note, those auditing code should pay special attention to any instances of DECLARE/IMPLEMENT_LHASH_DOALL_[\s-1ARG_\s0]_FN macros that provide types without any \*(L"const\*(R" qualifiers.

"BUGS"
Header "BUGS" \fBlh_TYPE_insert() returns \s-1NULL\s0 both for success and error.
"SEE ALSO"
Header "SEE ALSO" \fBOPENSSL_LH_stats\|(3)
"HISTORY"
Header "HISTORY" In OpenSSL 1.0.0, the lhash interface was revamped for better type checking.
"COPYRIGHT"
Header "COPYRIGHT" Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.