xref: /freebsd/stand/efi/loader/main.c (revision 2a58b312)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #ifdef EFI_ZFS_BOOT
40 #include <sys/zfs_bootenv.h>
41 #endif
42 #include <paths.h>
43 #include <netinet/in.h>
44 #include <netinet/in_systm.h>
45 #include <stdint.h>
46 #include <string.h>
47 #include <setjmp.h>
48 #include <disk.h>
49 #include <dev_net.h>
50 #include <net.h>
51 
52 #include <efi.h>
53 #include <efilib.h>
54 #include <efichar.h>
55 #include <efirng.h>
56 
57 #include <uuid.h>
58 
59 #include <bootstrap.h>
60 #include <smbios.h>
61 
62 #include "efizfs.h"
63 #include "framebuffer.h"
64 
65 #include "loader_efi.h"
66 
67 struct arch_switch archsw;	/* MI/MD interface boundary */
68 
69 EFI_GUID acpi = ACPI_TABLE_GUID;
70 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
71 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
72 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
73 EFI_GUID mps = MPS_TABLE_GUID;
74 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
75 EFI_GUID smbios = SMBIOS_TABLE_GUID;
76 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
77 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
78 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
79 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
80 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
81 EFI_GUID esrt = ESRT_TABLE_GUID;
82 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
83 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
84 EFI_GUID fdtdtb = FDT_TABLE_GUID;
85 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
86 
87 /*
88  * Number of seconds to wait for a keystroke before exiting with failure
89  * in the event no currdev is found. -2 means always break, -1 means
90  * never break, 0 means poll once and then reboot, > 0 means wait for
91  * that many seconds. "fail_timeout" can be set in the environment as
92  * well.
93  */
94 static int fail_timeout = 5;
95 
96 /*
97  * Current boot variable
98  */
99 UINT16 boot_current;
100 
101 /*
102  * Image that we booted from.
103  */
104 EFI_LOADED_IMAGE *boot_img;
105 
106 static bool
107 has_keyboard(void)
108 {
109 	EFI_STATUS status;
110 	EFI_DEVICE_PATH *path;
111 	EFI_HANDLE *hin, *hin_end, *walker;
112 	UINTN sz;
113 	bool retval = false;
114 
115 	/*
116 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
117 	 * do the typical dance to get the right sized buffer.
118 	 */
119 	sz = 0;
120 	hin = NULL;
121 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
122 	if (status == EFI_BUFFER_TOO_SMALL) {
123 		hin = (EFI_HANDLE *)malloc(sz);
124 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
125 		    hin);
126 		if (EFI_ERROR(status))
127 			free(hin);
128 	}
129 	if (EFI_ERROR(status))
130 		return retval;
131 
132 	/*
133 	 * Look at each of the handles. If it supports the device path protocol,
134 	 * use it to get the device path for this handle. Then see if that
135 	 * device path matches either the USB device path for keyboards or the
136 	 * legacy device path for keyboards.
137 	 */
138 	hin_end = &hin[sz / sizeof(*hin)];
139 	for (walker = hin; walker < hin_end; walker++) {
140 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
141 		if (EFI_ERROR(status))
142 			continue;
143 
144 		while (!IsDevicePathEnd(path)) {
145 			/*
146 			 * Check for the ACPI keyboard node. All PNP3xx nodes
147 			 * are keyboards of different flavors. Note: It is
148 			 * unclear of there's always a keyboard node when
149 			 * there's a keyboard controller, or if there's only one
150 			 * when a keyboard is detected at boot.
151 			 */
152 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
153 			    (DevicePathSubType(path) == ACPI_DP ||
154 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
155 				ACPI_HID_DEVICE_PATH  *acpi;
156 
157 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
158 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
159 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
160 					retval = true;
161 					goto out;
162 				}
163 			/*
164 			 * Check for USB keyboard node, if present. Unlike a
165 			 * PS/2 keyboard, these definitely only appear when
166 			 * connected to the system.
167 			 */
168 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
169 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
170 				USB_CLASS_DEVICE_PATH *usb;
171 
172 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
173 				if (usb->DeviceClass == 3 && /* HID */
174 				    usb->DeviceSubClass == 1 && /* Boot devices */
175 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
176 					retval = true;
177 					goto out;
178 				}
179 			}
180 			path = NextDevicePathNode(path);
181 		}
182 	}
183 out:
184 	free(hin);
185 	return retval;
186 }
187 
188 static void
189 set_currdev_devdesc(struct devdesc *currdev)
190 {
191 	const char *devname;
192 
193 	devname = devformat(currdev);
194 	printf("Setting currdev to %s\n", devname);
195 	set_currdev(devname);
196 }
197 
198 static void
199 set_currdev_devsw(struct devsw *dev, int unit)
200 {
201 	struct devdesc currdev;
202 
203 	currdev.d_dev = dev;
204 	currdev.d_unit = unit;
205 
206 	set_currdev_devdesc(&currdev);
207 }
208 
209 static void
210 set_currdev_pdinfo(pdinfo_t *dp)
211 {
212 
213 	/*
214 	 * Disks are special: they have partitions. if the parent
215 	 * pointer is non-null, we're a partition not a full disk
216 	 * and we need to adjust currdev appropriately.
217 	 */
218 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
219 		struct disk_devdesc currdev;
220 
221 		currdev.dd.d_dev = dp->pd_devsw;
222 		if (dp->pd_parent == NULL) {
223 			currdev.dd.d_unit = dp->pd_unit;
224 			currdev.d_slice = D_SLICENONE;
225 			currdev.d_partition = D_PARTNONE;
226 		} else {
227 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
228 			currdev.d_slice = dp->pd_unit;
229 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
230 		}
231 		set_currdev_devdesc((struct devdesc *)&currdev);
232 	} else {
233 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
234 	}
235 }
236 
237 static bool
238 sanity_check_currdev(void)
239 {
240 	struct stat st;
241 
242 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
243 #ifdef PATH_BOOTABLE_TOKEN
244 	    stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
245 #endif
246 	    stat(PATH_KERNEL, &st) == 0);
247 }
248 
249 #ifdef EFI_ZFS_BOOT
250 static bool
251 probe_zfs_currdev(uint64_t guid)
252 {
253 	char *devname;
254 	struct zfs_devdesc currdev;
255 	char *buf = NULL;
256 	bool bootable;
257 
258 	currdev.dd.d_dev = &zfs_dev;
259 	currdev.dd.d_unit = 0;
260 	currdev.pool_guid = guid;
261 	currdev.root_guid = 0;
262 	set_currdev_devdesc((struct devdesc *)&currdev);
263 	devname = devformat(&currdev.dd);
264 	init_zfs_boot_options(devname);
265 
266 	bootable = sanity_check_currdev();
267 	if (bootable) {
268 		buf = malloc(VDEV_PAD_SIZE);
269 		if (buf != NULL) {
270 			if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf,
271 			    VDEV_PAD_SIZE) == 0) {
272 				printf("zfs bootonce: %s\n", buf);
273 				set_currdev(buf);
274 				setenv("zfs-bootonce", buf, 1);
275 			}
276 			free(buf);
277 			(void) zfs_attach_nvstore(&currdev);
278 		}
279 	}
280 	return (bootable);
281 }
282 #endif
283 
284 #ifdef MD_IMAGE_SIZE
285 static bool
286 probe_md_currdev(void)
287 {
288 	extern struct devsw md_dev;
289 	bool rv;
290 
291 	set_currdev_devsw(&md_dev, 0);
292 	rv = sanity_check_currdev();
293 	if (!rv)
294 		printf("MD not present\n");
295 	return (rv);
296 }
297 #endif
298 
299 static bool
300 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
301 {
302 	uint64_t guid;
303 
304 #ifdef EFI_ZFS_BOOT
305 	/*
306 	 * If there's a zpool on this device, try it as a ZFS
307 	 * filesystem, which has somewhat different setup than all
308 	 * other types of fs due to imperfect loader integration.
309 	 * This all stems from ZFS being both a device (zpool) and
310 	 * a filesystem, plus the boot env feature.
311 	 */
312 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
313 		return (probe_zfs_currdev(guid));
314 #endif
315 	/*
316 	 * All other filesystems just need the pdinfo
317 	 * initialized in the standard way.
318 	 */
319 	set_currdev_pdinfo(pp);
320 	return (sanity_check_currdev());
321 }
322 
323 /*
324  * Sometimes we get filenames that are all upper case
325  * and/or have backslashes in them. Filter all this out
326  * if it looks like we need to do so.
327  */
328 static void
329 fix_dosisms(char *p)
330 {
331 	while (*p) {
332 		if (isupper(*p))
333 			*p = tolower(*p);
334 		else if (*p == '\\')
335 			*p = '/';
336 		p++;
337 	}
338 }
339 
340 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
341 
342 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
343 static int
344 match_boot_info(char *boot_info, size_t bisz)
345 {
346 	uint32_t attr;
347 	uint16_t fplen;
348 	size_t len;
349 	char *walker, *ep;
350 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
351 	pdinfo_t *pp;
352 	CHAR16 *descr;
353 	char *kernel = NULL;
354 	FILEPATH_DEVICE_PATH  *fp;
355 	struct stat st;
356 	CHAR16 *text;
357 
358 	/*
359 	 * FreeBSD encodes its boot loading path into the boot loader
360 	 * BootXXXX variable. We look for the last one in the path
361 	 * and use that to load the kernel. However, if we only find
362 	 * one DEVICE_PATH, then there's nothing specific and we should
363 	 * fall back.
364 	 *
365 	 * In an ideal world, we'd look at the image handle we were
366 	 * passed, match up with the loader we are and then return the
367 	 * next one in the path. This would be most flexible and cover
368 	 * many chain booting scenarios where you need to use this
369 	 * boot loader to get to the next boot loader. However, that
370 	 * doesn't work. We rarely have the path to the image booted
371 	 * (just the device) so we can't count on that. So, we do the
372 	 * next best thing: we look through the device path(s) passed
373 	 * in the BootXXXX variable. If there's only one, we return
374 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
375 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
376 	 * return BAD_CHOICE for the caller to sort out.
377 	 */
378 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
379 		return NOT_SPECIFIC;
380 	walker = boot_info;
381 	ep = walker + bisz;
382 	memcpy(&attr, walker, sizeof(attr));
383 	walker += sizeof(attr);
384 	memcpy(&fplen, walker, sizeof(fplen));
385 	walker += sizeof(fplen);
386 	descr = (CHAR16 *)(intptr_t)walker;
387 	len = ucs2len(descr);
388 	walker += (len + 1) * sizeof(CHAR16);
389 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
390 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
391 	if ((char *)edp > ep)
392 		return NOT_SPECIFIC;
393 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
394 		text = efi_devpath_name(dp);
395 		if (text != NULL) {
396 			printf("   BootInfo Path: %S\n", text);
397 			efi_free_devpath_name(text);
398 		}
399 		last_dp = dp;
400 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
401 	}
402 
403 	/*
404 	 * If there's only one item in the list, then nothing was
405 	 * specified. Or if the last path doesn't have a media
406 	 * path in it. Those show up as various VenHw() nodes
407 	 * which are basically opaque to us. Don't count those
408 	 * as something specifc.
409 	 */
410 	if (last_dp == first_dp) {
411 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
412 		return NOT_SPECIFIC;
413 	}
414 	if (efi_devpath_to_media_path(last_dp) == NULL) {
415 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
416 		return NOT_SPECIFIC;
417 	}
418 
419 	/*
420 	 * OK. At this point we either have a good path or a bad one.
421 	 * Let's check.
422 	 */
423 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
424 	if (pp == NULL) {
425 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
426 		return BAD_CHOICE;
427 	}
428 	set_currdev_pdinfo(pp);
429 	if (!sanity_check_currdev()) {
430 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
431 		return BAD_CHOICE;
432 	}
433 
434 	/*
435 	 * OK. We've found a device that matches, next we need to check the last
436 	 * component of the path. If it's a file, then we set the default kernel
437 	 * to that. Otherwise, just use this as the default root.
438 	 *
439 	 * Reminder: we're running very early, before we've parsed the defaults
440 	 * file, so we may need to have a hack override.
441 	 */
442 	dp = efi_devpath_last_node(last_dp);
443 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
444 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
445 		printf("Using Boot%04x for root partition\n", boot_current);
446 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
447 	}
448 	fp = (FILEPATH_DEVICE_PATH *)dp;
449 	ucs2_to_utf8(fp->PathName, &kernel);
450 	if (kernel == NULL) {
451 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
452 		return (BAD_CHOICE);
453 	}
454 	if (*kernel == '\\' || isupper(*kernel))
455 		fix_dosisms(kernel);
456 	if (stat(kernel, &st) != 0) {
457 		free(kernel);
458 		printf("Not using Boot%04x: can't find %s\n", boot_current,
459 		    kernel);
460 		return (BAD_CHOICE);
461 	}
462 	setenv("kernel", kernel, 1);
463 	free(kernel);
464 	text = efi_devpath_name(last_dp);
465 	if (text) {
466 		printf("Using Boot%04x %S + %s\n", boot_current, text,
467 		    kernel);
468 		efi_free_devpath_name(text);
469 	}
470 
471 	return (BOOT_INFO_OK);
472 }
473 
474 /*
475  * Look at the passed-in boot_info, if any. If we find it then we need
476  * to see if we can find ourselves in the boot chain. If we can, and
477  * there's another specified thing to boot next, assume that the file
478  * is loaded from / and use that for the root filesystem. If can't
479  * find the specified thing, we must fail the boot. If we're last on
480  * the list, then we fallback to looking for the first available /
481  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
482  * partition that has either /boot/defaults/loader.conf on it or
483  * /boot/kernel/kernel (the default kernel) that we can use.
484  *
485  * We always fail if we can't find the right thing. However, as
486  * a concession to buggy UEFI implementations, like u-boot, if
487  * we have determined that the host is violating the UEFI boot
488  * manager protocol, we'll signal the rest of the program that
489  * a drop to the OK boot loader prompt is possible.
490  */
491 static int
492 find_currdev(bool do_bootmgr, bool is_last,
493     char *boot_info, size_t boot_info_sz)
494 {
495 	pdinfo_t *dp, *pp;
496 	EFI_DEVICE_PATH *devpath, *copy;
497 	EFI_HANDLE h;
498 	CHAR16 *text;
499 	struct devsw *dev;
500 	int unit;
501 	uint64_t extra;
502 	int rv;
503 	char *rootdev;
504 
505 	/*
506 	 * First choice: if rootdev is already set, use that, even if
507 	 * it's wrong.
508 	 */
509 	rootdev = getenv("rootdev");
510 	if (rootdev != NULL) {
511 		printf("    Setting currdev to configured rootdev %s\n",
512 		    rootdev);
513 		set_currdev(rootdev);
514 		return (0);
515 	}
516 
517 	/*
518 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
519 	 * path to the loader's internal name and use that.
520 	 */
521 	do {
522 		rootdev = getenv("uefi_rootdev");
523 		if (rootdev == NULL)
524 			break;
525 		devpath = efi_name_to_devpath(rootdev);
526 		if (devpath == NULL)
527 			break;
528 		dp = efiblk_get_pdinfo_by_device_path(devpath);
529 		efi_devpath_free(devpath);
530 		if (dp == NULL)
531 			break;
532 		printf("    Setting currdev to UEFI path %s\n",
533 		    rootdev);
534 		set_currdev_pdinfo(dp);
535 		return (0);
536 	} while (0);
537 
538 	/*
539 	 * Third choice: If we can find out image boot_info, and there's
540 	 * a follow-on boot image in that boot_info, use that. In this
541 	 * case root will be the partition specified in that image and
542 	 * we'll load the kernel specified by the file path. Should there
543 	 * not be a filepath, we use the default. This filepath overrides
544 	 * loader.conf.
545 	 */
546 	if (do_bootmgr) {
547 		rv = match_boot_info(boot_info, boot_info_sz);
548 		switch (rv) {
549 		case BOOT_INFO_OK:	/* We found it */
550 			return (0);
551 		case BAD_CHOICE:	/* specified file not found -> error */
552 			/* XXX do we want to have an escape hatch for last in boot order? */
553 			return (ENOENT);
554 		} /* Nothing specified, try normal match */
555 	}
556 
557 #ifdef EFI_ZFS_BOOT
558 	/*
559 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
560 	 * it found, if it's sane. ZFS is the only thing that looks for
561 	 * disks and pools to boot. This may change in the future, however,
562 	 * if we allow specifying which pool to boot from via UEFI variables
563 	 * rather than the bootenv stuff that FreeBSD uses today.
564 	 */
565 	if (pool_guid != 0) {
566 		printf("Trying ZFS pool\n");
567 		if (probe_zfs_currdev(pool_guid))
568 			return (0);
569 	}
570 #endif /* EFI_ZFS_BOOT */
571 
572 #ifdef MD_IMAGE_SIZE
573 	/*
574 	 * If there is an embedded MD, try to use that.
575 	 */
576 	printf("Trying MD\n");
577 	if (probe_md_currdev())
578 		return (0);
579 #endif /* MD_IMAGE_SIZE */
580 
581 	/*
582 	 * Try to find the block device by its handle based on the
583 	 * image we're booting. If we can't find a sane partition,
584 	 * search all the other partitions of the disk. We do not
585 	 * search other disks because it's a violation of the UEFI
586 	 * boot protocol to do so. We fail and let UEFI go on to
587 	 * the next candidate.
588 	 */
589 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
590 	if (dp != NULL) {
591 		text = efi_devpath_name(dp->pd_devpath);
592 		if (text != NULL) {
593 			printf("Trying ESP: %S\n", text);
594 			efi_free_devpath_name(text);
595 		}
596 		set_currdev_pdinfo(dp);
597 		if (sanity_check_currdev())
598 			return (0);
599 		if (dp->pd_parent != NULL) {
600 			pdinfo_t *espdp = dp;
601 			dp = dp->pd_parent;
602 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
603 				/* Already tried the ESP */
604 				if (espdp == pp)
605 					continue;
606 				/*
607 				 * Roll up the ZFS special case
608 				 * for those partitions that have
609 				 * zpools on them.
610 				 */
611 				text = efi_devpath_name(pp->pd_devpath);
612 				if (text != NULL) {
613 					printf("Trying: %S\n", text);
614 					efi_free_devpath_name(text);
615 				}
616 				if (try_as_currdev(dp, pp))
617 					return (0);
618 			}
619 		}
620 	}
621 
622 	/*
623 	 * Try the device handle from our loaded image first.  If that
624 	 * fails, use the device path from the loaded image and see if
625 	 * any of the nodes in that path match one of the enumerated
626 	 * handles. Currently, this handle list is only for netboot.
627 	 */
628 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
629 		set_currdev_devsw(dev, unit);
630 		if (sanity_check_currdev())
631 			return (0);
632 	}
633 
634 	copy = NULL;
635 	devpath = efi_lookup_image_devpath(IH);
636 	while (devpath != NULL) {
637 		h = efi_devpath_handle(devpath);
638 		if (h == NULL)
639 			break;
640 
641 		free(copy);
642 		copy = NULL;
643 
644 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
645 			set_currdev_devsw(dev, unit);
646 			if (sanity_check_currdev())
647 				return (0);
648 		}
649 
650 		devpath = efi_lookup_devpath(h);
651 		if (devpath != NULL) {
652 			copy = efi_devpath_trim(devpath);
653 			devpath = copy;
654 		}
655 	}
656 	free(copy);
657 
658 	return (ENOENT);
659 }
660 
661 static bool
662 interactive_interrupt(const char *msg)
663 {
664 	time_t now, then, last;
665 
666 	last = 0;
667 	now = then = getsecs();
668 	printf("%s\n", msg);
669 	if (fail_timeout == -2)		/* Always break to OK */
670 		return (true);
671 	if (fail_timeout == -1)		/* Never break to OK */
672 		return (false);
673 	do {
674 		if (last != now) {
675 			printf("press any key to interrupt reboot in %d seconds\r",
676 			    fail_timeout - (int)(now - then));
677 			last = now;
678 		}
679 
680 		/* XXX no pause or timeout wait for char */
681 		if (ischar())
682 			return (true);
683 		now = getsecs();
684 	} while (now - then < fail_timeout);
685 	return (false);
686 }
687 
688 static int
689 parse_args(int argc, CHAR16 *argv[])
690 {
691 	int i, howto;
692 	char var[128];
693 
694 	/*
695 	 * Parse the args to set the console settings, etc
696 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
697 	 * or iPXE may be setup to pass these in. Or the optional argument in the
698 	 * boot environment was used to pass these arguments in (in which case
699 	 * neither /boot.config nor /boot/config are consulted).
700 	 *
701 	 * Loop through the args, and for each one that contains an '=' that is
702 	 * not the first character, add it to the environment.  This allows
703 	 * loader and kernel env vars to be passed on the command line.  Convert
704 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
705 	 * method is flawed for non-ASCII characters).
706 	 */
707 	howto = 0;
708 	for (i = 0; i < argc; i++) {
709 		cpy16to8(argv[i], var, sizeof(var));
710 		howto |= boot_parse_arg(var);
711 	}
712 
713 	return (howto);
714 }
715 
716 static void
717 setenv_int(const char *key, int val)
718 {
719 	char buf[20];
720 
721 	snprintf(buf, sizeof(buf), "%d", val);
722 	setenv(key, buf, 1);
723 }
724 
725 /*
726  * Parse ConOut (the list of consoles active) and see if we can find a
727  * serial port and/or a video port. It would be nice to also walk the
728  * ACPI name space to map the UID for the serial port to a port. The
729  * latter is especially hard.
730  */
731 int
732 parse_uefi_con_out(void)
733 {
734 	int how, rv;
735 	int vid_seen = 0, com_seen = 0, seen = 0;
736 	size_t sz;
737 	char buf[4096], *ep;
738 	EFI_DEVICE_PATH *node;
739 	ACPI_HID_DEVICE_PATH  *acpi;
740 	UART_DEVICE_PATH  *uart;
741 	bool pci_pending;
742 
743 	how = 0;
744 	sz = sizeof(buf);
745 	rv = efi_global_getenv("ConOut", buf, &sz);
746 	if (rv != EFI_SUCCESS)
747 		rv = efi_global_getenv("ConOutDev", buf, &sz);
748 	if (rv != EFI_SUCCESS) {
749 		/*
750 		 * If we don't have any ConOut default to both. If we have GOP
751 		 * make video primary, otherwise just make serial primary. In
752 		 * either case, try to use both the 'efi' console which will use
753 		 * the GOP, if present and serial. If there's an EFI BIOS that
754 		 * omits this, but has a serial port redirect, we'll
755 		 * unavioidably get doubled characters (but we'll be right in
756 		 * all the other more common cases).
757 		 */
758 		if (efi_has_gop())
759 			how = RB_MULTIPLE;
760 		else
761 			how = RB_MULTIPLE | RB_SERIAL;
762 		setenv("console", "efi,comconsole", 1);
763 		goto out;
764 	}
765 	ep = buf + sz;
766 	node = (EFI_DEVICE_PATH *)buf;
767 	while ((char *)node < ep) {
768 		if (IsDevicePathEndType(node)) {
769 			if (pci_pending && vid_seen == 0)
770 				vid_seen = ++seen;
771 		}
772 		pci_pending = false;
773 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
774 		    (DevicePathSubType(node) == ACPI_DP ||
775 		    DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
776 			/* Check for Serial node */
777 			acpi = (void *)node;
778 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
779 				setenv_int("efi_8250_uid", acpi->UID);
780 				com_seen = ++seen;
781 			}
782 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
783 		    DevicePathSubType(node) == MSG_UART_DP) {
784 			com_seen = ++seen;
785 			uart = (void *)node;
786 			setenv_int("efi_com_speed", uart->BaudRate);
787 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
788 		    DevicePathSubType(node) == ACPI_ADR_DP) {
789 			/* Check for AcpiAdr() Node for video */
790 			vid_seen = ++seen;
791 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
792 		    DevicePathSubType(node) == HW_PCI_DP) {
793 			/*
794 			 * Note, vmware fusion has a funky console device
795 			 *	PciRoot(0x0)/Pci(0xf,0x0)
796 			 * which we can only detect at the end since we also
797 			 * have to cope with:
798 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
799 			 * so only match it if it's last.
800 			 */
801 			pci_pending = true;
802 		}
803 		node = NextDevicePathNode(node);
804 	}
805 
806 	/*
807 	 * Truth table for RB_MULTIPLE | RB_SERIAL
808 	 * Value		Result
809 	 * 0			Use only video console
810 	 * RB_SERIAL		Use only serial console
811 	 * RB_MULTIPLE		Use both video and serial console
812 	 *			(but video is primary so gets rc messages)
813 	 * both			Use both video and serial console
814 	 *			(but serial is primary so gets rc messages)
815 	 *
816 	 * Try to honor this as best we can. If only one of serial / video
817 	 * found, then use that. Otherwise, use the first one we found.
818 	 * This also implies if we found nothing, default to video.
819 	 */
820 	how = 0;
821 	if (vid_seen && com_seen) {
822 		how |= RB_MULTIPLE;
823 		if (com_seen < vid_seen)
824 			how |= RB_SERIAL;
825 	} else if (com_seen)
826 		how |= RB_SERIAL;
827 out:
828 	return (how);
829 }
830 
831 void
832 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
833 {
834 	pdinfo_t *dp;
835 	struct stat st;
836 	int fd = -1;
837 	char *env = NULL;
838 
839 	dp = efiblk_get_pdinfo_by_handle(h);
840 	if (dp == NULL)
841 		return;
842 	set_currdev_pdinfo(dp);
843 	if (stat(env_fn, &st) != 0)
844 		return;
845 	fd = open(env_fn, O_RDONLY);
846 	if (fd == -1)
847 		return;
848 	env = malloc(st.st_size + 1);
849 	if (env == NULL)
850 		goto out;
851 	if (read(fd, env, st.st_size) != st.st_size)
852 		goto out;
853 	env[st.st_size] = '\0';
854 	boot_parse_cmdline(env);
855 out:
856 	free(env);
857 	close(fd);
858 }
859 
860 static void
861 read_loader_env(const char *name, char *def_fn, bool once)
862 {
863 	UINTN len;
864 	char *fn, *freeme = NULL;
865 
866 	len = 0;
867 	fn = def_fn;
868 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
869 		freeme = fn = malloc(len + 1);
870 		if (fn != NULL) {
871 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
872 				free(fn);
873 				fn = NULL;
874 				printf(
875 			    "Can't fetch FreeBSD::%s we know is there\n", name);
876 			} else {
877 				/*
878 				 * if tagged as 'once' delete the env variable so we
879 				 * only use it once.
880 				 */
881 				if (once)
882 					efi_freebsd_delenv(name);
883 				/*
884 				 * We malloced 1 more than len above, then redid the call.
885 				 * so now we have room at the end of the string to NUL terminate
886 				 * it here, even if the typical idium would have '- 1' here to
887 				 * not overflow. len should be the same on return both times.
888 				 */
889 				fn[len] = '\0';
890 			}
891 		} else {
892 			printf(
893 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
894 			    len, name);
895 		}
896 	}
897 	if (fn) {
898 		printf("    Reading loader env vars from %s\n", fn);
899 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
900 	}
901 }
902 
903 caddr_t
904 ptov(uintptr_t x)
905 {
906 	return ((caddr_t)x);
907 }
908 
909 EFI_STATUS
910 main(int argc, CHAR16 *argv[])
911 {
912 	EFI_GUID *guid;
913 	int howto, i, uhowto;
914 	UINTN k;
915 	bool has_kbd, is_last;
916 	char *s;
917 	EFI_DEVICE_PATH *imgpath;
918 	CHAR16 *text;
919 	EFI_STATUS rv;
920 	size_t sz, bosz = 0, bisz = 0;
921 	UINT16 boot_order[100];
922 	char boot_info[4096];
923 	char buf[32];
924 	bool uefi_boot_mgr;
925 
926 	archsw.arch_autoload = efi_autoload;
927 	archsw.arch_getdev = efi_getdev;
928 	archsw.arch_copyin = efi_copyin;
929 	archsw.arch_copyout = efi_copyout;
930 #ifdef __amd64__
931 	archsw.arch_hypervisor = x86_hypervisor;
932 #endif
933 	archsw.arch_readin = efi_readin;
934 	archsw.arch_zfs_probe = efi_zfs_probe;
935 
936         /* Get our loaded image protocol interface structure. */
937 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
938 
939 	/*
940 	 * Chicken-and-egg problem; we want to have console output early, but
941 	 * some console attributes may depend on reading from eg. the boot
942 	 * device, which we can't do yet.  We can use printf() etc. once this is
943 	 * done. So, we set it to the efi console, then call console init. This
944 	 * gets us printf early, but also primes the pump for all future console
945 	 * changes to take effect, regardless of where they come from.
946 	 */
947 	setenv("console", "efi", 1);
948 	uhowto = parse_uefi_con_out();
949 #if defined(__riscv)
950 	/*
951 	 * This workaround likely is papering over a real issue
952 	 */
953 	if ((uhowto & RB_SERIAL) != 0)
954 		setenv("console", "comconsole", 1);
955 #endif
956 	cons_probe();
957 
958 	/* Set up currdev variable to have hooks in place. */
959 	env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
960 
961 	/* Init the time source */
962 	efi_time_init();
963 
964 	/*
965 	 * Initialise the block cache. Set the upper limit.
966 	 */
967 	bcache_init(32768, 512);
968 
969 	/*
970 	 * Scan the BLOCK IO MEDIA handles then
971 	 * march through the device switch probing for things.
972 	 */
973 	i = efipart_inithandles();
974 	if (i != 0 && i != ENOENT) {
975 		printf("efipart_inithandles failed with ERRNO %d, expect "
976 		    "failures\n", i);
977 	}
978 
979 	devinit();
980 
981 	/*
982 	 * Detect console settings two different ways: one via the command
983 	 * args (eg -h) or via the UEFI ConOut variable.
984 	 */
985 	has_kbd = has_keyboard();
986 	howto = parse_args(argc, argv);
987 	if (!has_kbd && (howto & RB_PROBE))
988 		howto |= RB_SERIAL | RB_MULTIPLE;
989 	howto &= ~RB_PROBE;
990 
991 	/*
992 	 * Read additional environment variables from the boot device's
993 	 * "LoaderEnv" file. Any boot loader environment variable may be set
994 	 * there, which are subtly different than loader.conf variables. Only
995 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
996 	 * for two reasons.  First, the parser is simplistic and doesn't grok
997 	 * quotes.  Second, because the variables that cause an action to happen
998 	 * are parsed by the lua, 4th or whatever code that's not yet
999 	 * loaded. This is relative to the root directory when loader.efi is
1000 	 * loaded off the UFS root drive (when chain booted), or from the ESP
1001 	 * when directly loaded by the BIOS.
1002 	 *
1003 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
1004 	 * functionality to be implemented and to override anything in LoaderEnv.
1005 	 */
1006 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1007 	read_loader_env("NextLoaderEnv", NULL, true);
1008 
1009 	/*
1010 	 * We now have two notions of console. howto should be viewed as
1011 	 * overrides. If console is already set, don't set it again.
1012 	 */
1013 #define	VIDEO_ONLY	0
1014 #define	SERIAL_ONLY	RB_SERIAL
1015 #define	VID_SER_BOTH	RB_MULTIPLE
1016 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
1017 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
1018 	if (strcmp(getenv("console"), "efi") == 0) {
1019 		if ((howto & CON_MASK) == 0) {
1020 			/* No override, uhowto is controlling and efi cons is perfect */
1021 			howto = howto | (uhowto & CON_MASK);
1022 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1023 			/* override matches what UEFI told us, efi console is perfect */
1024 		} else if ((uhowto & (CON_MASK)) != 0) {
1025 			/*
1026 			 * We detected a serial console on ConOut. All possible
1027 			 * overrides include serial. We can't really override what efi
1028 			 * gives us, so we use it knowing it's the best choice.
1029 			 */
1030 			/* Do nothing */
1031 		} else {
1032 			/*
1033 			 * We detected some kind of serial in the override, but ConOut
1034 			 * has no serial, so we have to sort out which case it really is.
1035 			 */
1036 			switch (howto & CON_MASK) {
1037 			case SERIAL_ONLY:
1038 				setenv("console", "comconsole", 1);
1039 				break;
1040 			case VID_SER_BOTH:
1041 				setenv("console", "efi comconsole", 1);
1042 				break;
1043 			case SER_VID_BOTH:
1044 				setenv("console", "comconsole efi", 1);
1045 				break;
1046 				/* case VIDEO_ONLY can't happen -- it's the first if above */
1047 			}
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * howto is set now how we want to export the flags to the kernel, so
1053 	 * set the env based on it.
1054 	 */
1055 	boot_howto_to_env(howto);
1056 
1057 	if (efi_copy_init()) {
1058 		printf("failed to allocate staging area\n");
1059 		return (EFI_BUFFER_TOO_SMALL);
1060 	}
1061 
1062 	if ((s = getenv("fail_timeout")) != NULL)
1063 		fail_timeout = strtol(s, NULL, 10);
1064 
1065 	printf("%s\n", bootprog_info);
1066 	printf("   Command line arguments:");
1067 	for (i = 0; i < argc; i++)
1068 		printf(" %S", argv[i]);
1069 	printf("\n");
1070 
1071 	printf("   Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1072 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1073 	    ST->Hdr.Revision & 0xffff);
1074 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1075 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1076 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
1077 
1078 	/* Determine the devpath of our image so we can prefer it. */
1079 	text = efi_devpath_name(boot_img->FilePath);
1080 	if (text != NULL) {
1081 		printf("   Load Path: %S\n", text);
1082 		efi_setenv_freebsd_wcs("LoaderPath", text);
1083 		efi_free_devpath_name(text);
1084 	}
1085 
1086 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1087 	    (void **)&imgpath);
1088 	if (rv == EFI_SUCCESS) {
1089 		text = efi_devpath_name(imgpath);
1090 		if (text != NULL) {
1091 			printf("   Load Device: %S\n", text);
1092 			efi_setenv_freebsd_wcs("LoaderDev", text);
1093 			efi_free_devpath_name(text);
1094 		}
1095 	}
1096 
1097 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1098 		printf("    Ignoring UEFI boot manager\n");
1099 		uefi_boot_mgr = false;
1100 	} else {
1101 		uefi_boot_mgr = true;
1102 		boot_current = 0;
1103 		sz = sizeof(boot_current);
1104 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1105 		if (rv == EFI_SUCCESS)
1106 			printf("   BootCurrent: %04x\n", boot_current);
1107 		else {
1108 			boot_current = 0xffff;
1109 			uefi_boot_mgr = false;
1110 		}
1111 
1112 		sz = sizeof(boot_order);
1113 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1114 		if (rv == EFI_SUCCESS) {
1115 			printf("   BootOrder:");
1116 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1117 				printf(" %04x%s", boot_order[i],
1118 				    boot_order[i] == boot_current ? "[*]" : "");
1119 			printf("\n");
1120 			is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1121 			bosz = sz;
1122 		} else if (uefi_boot_mgr) {
1123 			/*
1124 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1125 			 * boot manager protocol. So we fake it here and don't consider it
1126 			 * a failure.
1127 			 */
1128 			bosz = sizeof(boot_order[0]);
1129 			boot_order[0] = boot_current;
1130 			is_last = true;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Next, find the boot info structure the UEFI boot manager is
1136 	 * supposed to setup. We need this so we can walk through it to
1137 	 * find where we are in the booting process and what to try to
1138 	 * boot next.
1139 	 */
1140 	if (uefi_boot_mgr) {
1141 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1142 		sz = sizeof(boot_info);
1143 		rv = efi_global_getenv(buf, &boot_info, &sz);
1144 		if (rv == EFI_SUCCESS)
1145 			bisz = sz;
1146 		else
1147 			uefi_boot_mgr = false;
1148 	}
1149 
1150 	/*
1151 	 * Disable the watchdog timer. By default the boot manager sets
1152 	 * the timer to 5 minutes before invoking a boot option. If we
1153 	 * want to return to the boot manager, we have to disable the
1154 	 * watchdog timer and since we're an interactive program, we don't
1155 	 * want to wait until the user types "quit". The timer may have
1156 	 * fired by then. We don't care if this fails. It does not prevent
1157 	 * normal functioning in any way...
1158 	 */
1159 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1160 
1161 	/*
1162 	 * Initialize the trusted/forbidden certificates from UEFI.
1163 	 * They will be later used to verify the manifest(s),
1164 	 * which should contain hashes of verified files.
1165 	 * This needs to be initialized before any configuration files
1166 	 * are loaded.
1167 	 */
1168 #ifdef EFI_SECUREBOOT
1169 	ve_efi_init();
1170 #endif
1171 
1172 	/*
1173 	 * Try and find a good currdev based on the image that was booted.
1174 	 * It might be desirable here to have a short pause to allow falling
1175 	 * through to the boot loader instead of returning instantly to follow
1176 	 * the boot protocol and also allow an escape hatch for users wishing
1177 	 * to try something different.
1178 	 */
1179 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1180 		if (uefi_boot_mgr &&
1181 		    !interactive_interrupt("Failed to find bootable partition"))
1182 			return (EFI_NOT_FOUND);
1183 
1184 	autoload_font(false);	/* Set up the font list for console. */
1185 	efi_init_environment();
1186 
1187 #if !defined(__arm__)
1188 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1189 		guid = &ST->ConfigurationTable[k].VendorGuid;
1190 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID)) ||
1191 		    !memcmp(guid, &smbios3, sizeof(EFI_GUID))) {
1192 			char buf[40];
1193 
1194 			snprintf(buf, sizeof(buf), "%p",
1195 			    ST->ConfigurationTable[k].VendorTable);
1196 			setenv("hint.smbios.0.mem", buf, 1);
1197 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
1198 			break;
1199 		}
1200 	}
1201 #endif
1202 
1203 	interact();			/* doesn't return */
1204 
1205 	return (EFI_SUCCESS);		/* keep compiler happy */
1206 }
1207 
1208 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1209 
1210 static int
1211 command_seed_entropy(int argc, char *argv[])
1212 {
1213 	EFI_STATUS status;
1214 	EFI_RNG_PROTOCOL *rng;
1215 	unsigned int size = 2048;
1216 	void *buf;
1217 
1218 	if (argc > 1) {
1219 		size = strtol(argv[1], NULL, 0);
1220 	}
1221 
1222 	status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1223 	if (status != EFI_SUCCESS) {
1224 		command_errmsg = "RNG protocol not found";
1225 		return (CMD_ERROR);
1226 	}
1227 
1228 	if ((buf = malloc(size)) == NULL) {
1229 		command_errmsg = "out of memory";
1230 		return (CMD_ERROR);
1231 	}
1232 
1233 	status = rng->GetRNG(rng, NULL, size, (UINT8 *)buf);
1234 	if (status != EFI_SUCCESS) {
1235 		free(buf);
1236 		command_errmsg = "GetRNG failed";
1237 		return (CMD_ERROR);
1238 	}
1239 
1240 	if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1241 		free(buf);
1242 		return (CMD_ERROR);
1243 	}
1244 
1245 	free(buf);
1246 	return (CMD_OK);
1247 }
1248 
1249 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1250 
1251 static int
1252 command_poweroff(int argc __unused, char *argv[] __unused)
1253 {
1254 	int i;
1255 
1256 	for (i = 0; devsw[i] != NULL; ++i)
1257 		if (devsw[i]->dv_cleanup != NULL)
1258 			(devsw[i]->dv_cleanup)();
1259 
1260 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1261 
1262 	/* NOTREACHED */
1263 	return (CMD_ERROR);
1264 }
1265 
1266 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1267 
1268 static int
1269 command_reboot(int argc, char *argv[])
1270 {
1271 	int i;
1272 
1273 	for (i = 0; devsw[i] != NULL; ++i)
1274 		if (devsw[i]->dv_cleanup != NULL)
1275 			(devsw[i]->dv_cleanup)();
1276 
1277 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1278 
1279 	/* NOTREACHED */
1280 	return (CMD_ERROR);
1281 }
1282 
1283 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1284 
1285 static int
1286 command_memmap(int argc __unused, char *argv[] __unused)
1287 {
1288 	UINTN sz;
1289 	EFI_MEMORY_DESCRIPTOR *map, *p;
1290 	UINTN key, dsz;
1291 	UINT32 dver;
1292 	EFI_STATUS status;
1293 	int i, ndesc;
1294 	char line[80];
1295 
1296 	sz = 0;
1297 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1298 	if (status != EFI_BUFFER_TOO_SMALL) {
1299 		printf("Can't determine memory map size\n");
1300 		return (CMD_ERROR);
1301 	}
1302 	map = malloc(sz);
1303 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1304 	if (EFI_ERROR(status)) {
1305 		printf("Can't read memory map\n");
1306 		return (CMD_ERROR);
1307 	}
1308 
1309 	ndesc = sz / dsz;
1310 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1311 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1312 	pager_open();
1313 	if (pager_output(line)) {
1314 		pager_close();
1315 		return (CMD_OK);
1316 	}
1317 
1318 	for (i = 0, p = map; i < ndesc;
1319 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1320 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1321 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1322 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1323 		if (pager_output(line))
1324 			break;
1325 
1326 		if (p->Attribute & EFI_MEMORY_UC)
1327 			printf("UC ");
1328 		if (p->Attribute & EFI_MEMORY_WC)
1329 			printf("WC ");
1330 		if (p->Attribute & EFI_MEMORY_WT)
1331 			printf("WT ");
1332 		if (p->Attribute & EFI_MEMORY_WB)
1333 			printf("WB ");
1334 		if (p->Attribute & EFI_MEMORY_UCE)
1335 			printf("UCE ");
1336 		if (p->Attribute & EFI_MEMORY_WP)
1337 			printf("WP ");
1338 		if (p->Attribute & EFI_MEMORY_RP)
1339 			printf("RP ");
1340 		if (p->Attribute & EFI_MEMORY_XP)
1341 			printf("XP ");
1342 		if (p->Attribute & EFI_MEMORY_NV)
1343 			printf("NV ");
1344 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1345 			printf("MR ");
1346 		if (p->Attribute & EFI_MEMORY_RO)
1347 			printf("RO ");
1348 		if (pager_output("\n"))
1349 			break;
1350 	}
1351 
1352 	pager_close();
1353 	return (CMD_OK);
1354 }
1355 
1356 COMMAND_SET(configuration, "configuration", "print configuration tables",
1357     command_configuration);
1358 
1359 static int
1360 command_configuration(int argc, char *argv[])
1361 {
1362 	UINTN i;
1363 	char *name;
1364 
1365 	printf("NumberOfTableEntries=%lu\n",
1366 		(unsigned long)ST->NumberOfTableEntries);
1367 
1368 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1369 		EFI_GUID *guid;
1370 
1371 		printf("  ");
1372 		guid = &ST->ConfigurationTable[i].VendorGuid;
1373 
1374 		if (efi_guid_to_name(guid, &name) == true) {
1375 			printf(name);
1376 			free(name);
1377 		} else {
1378 			printf("Error while translating UUID to name");
1379 		}
1380 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1381 	}
1382 
1383 	return (CMD_OK);
1384 }
1385 
1386 
1387 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1388 
1389 static int
1390 command_mode(int argc, char *argv[])
1391 {
1392 	UINTN cols, rows;
1393 	unsigned int mode;
1394 	int i;
1395 	char *cp;
1396 	EFI_STATUS status;
1397 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1398 
1399 	conout = ST->ConOut;
1400 
1401 	if (argc > 1) {
1402 		mode = strtol(argv[1], &cp, 0);
1403 		if (cp[0] != '\0') {
1404 			printf("Invalid mode\n");
1405 			return (CMD_ERROR);
1406 		}
1407 		status = conout->QueryMode(conout, mode, &cols, &rows);
1408 		if (EFI_ERROR(status)) {
1409 			printf("invalid mode %d\n", mode);
1410 			return (CMD_ERROR);
1411 		}
1412 		status = conout->SetMode(conout, mode);
1413 		if (EFI_ERROR(status)) {
1414 			printf("couldn't set mode %d\n", mode);
1415 			return (CMD_ERROR);
1416 		}
1417 		(void) cons_update_mode(true);
1418 		return (CMD_OK);
1419 	}
1420 
1421 	printf("Current mode: %d\n", conout->Mode->Mode);
1422 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1423 		status = conout->QueryMode(conout, i, &cols, &rows);
1424 		if (EFI_ERROR(status))
1425 			continue;
1426 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1427 		    (unsigned)rows);
1428 	}
1429 
1430 	if (i != 0)
1431 		printf("Select a mode with the command \"mode <number>\"\n");
1432 
1433 	return (CMD_OK);
1434 }
1435 
1436 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1437 
1438 static void
1439 lsefi_print_handle_info(EFI_HANDLE handle)
1440 {
1441 	EFI_DEVICE_PATH *devpath;
1442 	EFI_DEVICE_PATH *imagepath;
1443 	CHAR16 *dp_name;
1444 
1445 	imagepath = efi_lookup_image_devpath(handle);
1446 	if (imagepath != NULL) {
1447 		dp_name = efi_devpath_name(imagepath);
1448 		printf("Handle for image %S", dp_name);
1449 		efi_free_devpath_name(dp_name);
1450 		return;
1451 	}
1452 	devpath = efi_lookup_devpath(handle);
1453 	if (devpath != NULL) {
1454 		dp_name = efi_devpath_name(devpath);
1455 		printf("Handle for device %S", dp_name);
1456 		efi_free_devpath_name(dp_name);
1457 		return;
1458 	}
1459 	printf("Handle %p", handle);
1460 }
1461 
1462 static int
1463 command_lsefi(int argc __unused, char *argv[] __unused)
1464 {
1465 	char *name;
1466 	EFI_HANDLE *buffer = NULL;
1467 	EFI_HANDLE handle;
1468 	UINTN bufsz = 0, i, j;
1469 	EFI_STATUS status;
1470 	int ret = 0;
1471 
1472 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1473 	if (status != EFI_BUFFER_TOO_SMALL) {
1474 		snprintf(command_errbuf, sizeof (command_errbuf),
1475 		    "unexpected error: %lld", (long long)status);
1476 		return (CMD_ERROR);
1477 	}
1478 	if ((buffer = malloc(bufsz)) == NULL) {
1479 		sprintf(command_errbuf, "out of memory");
1480 		return (CMD_ERROR);
1481 	}
1482 
1483 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1484 	if (EFI_ERROR(status)) {
1485 		free(buffer);
1486 		snprintf(command_errbuf, sizeof (command_errbuf),
1487 		    "LocateHandle() error: %lld", (long long)status);
1488 		return (CMD_ERROR);
1489 	}
1490 
1491 	pager_open();
1492 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1493 		UINTN nproto = 0;
1494 		EFI_GUID **protocols = NULL;
1495 
1496 		handle = buffer[i];
1497 		lsefi_print_handle_info(handle);
1498 		if (pager_output("\n"))
1499 			break;
1500 		/* device path */
1501 
1502 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1503 		if (EFI_ERROR(status)) {
1504 			snprintf(command_errbuf, sizeof (command_errbuf),
1505 			    "ProtocolsPerHandle() error: %lld",
1506 			    (long long)status);
1507 			continue;
1508 		}
1509 
1510 		for (j = 0; j < nproto; j++) {
1511 			if (efi_guid_to_name(protocols[j], &name) == true) {
1512 				printf("  %s", name);
1513 				free(name);
1514 			} else {
1515 				printf("Error while translating UUID to name");
1516 			}
1517 			if ((ret = pager_output("\n")) != 0)
1518 				break;
1519 		}
1520 		BS->FreePool(protocols);
1521 		if (ret != 0)
1522 			break;
1523 	}
1524 	pager_close();
1525 	free(buffer);
1526 	return (CMD_OK);
1527 }
1528 
1529 #ifdef LOADER_FDT_SUPPORT
1530 extern int command_fdt_internal(int argc, char *argv[]);
1531 
1532 /*
1533  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1534  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1535  * (which uses static pointer), we're defining wrapper function, which
1536  * calls the proper fdt handling routine.
1537  */
1538 static int
1539 command_fdt(int argc, char *argv[])
1540 {
1541 
1542 	return (command_fdt_internal(argc, argv));
1543 }
1544 
1545 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1546 #endif
1547 
1548 /*
1549  * Chain load another efi loader.
1550  */
1551 static int
1552 command_chain(int argc, char *argv[])
1553 {
1554 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1555 	EFI_HANDLE loaderhandle;
1556 	EFI_LOADED_IMAGE *loaded_image;
1557 	EFI_STATUS status;
1558 	struct stat st;
1559 	struct devdesc *dev;
1560 	char *name, *path;
1561 	void *buf;
1562 	int fd;
1563 
1564 	if (argc < 2) {
1565 		command_errmsg = "wrong number of arguments";
1566 		return (CMD_ERROR);
1567 	}
1568 
1569 	name = argv[1];
1570 
1571 	if ((fd = open(name, O_RDONLY)) < 0) {
1572 		command_errmsg = "no such file";
1573 		return (CMD_ERROR);
1574 	}
1575 
1576 #ifdef LOADER_VERIEXEC
1577 	if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1578 		sprintf(command_errbuf, "can't verify: %s", name);
1579 		close(fd);
1580 		return (CMD_ERROR);
1581 	}
1582 #endif
1583 
1584 	if (fstat(fd, &st) < -1) {
1585 		command_errmsg = "stat failed";
1586 		close(fd);
1587 		return (CMD_ERROR);
1588 	}
1589 
1590 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1591 	if (status != EFI_SUCCESS) {
1592 		command_errmsg = "failed to allocate buffer";
1593 		close(fd);
1594 		return (CMD_ERROR);
1595 	}
1596 	if (read(fd, buf, st.st_size) != st.st_size) {
1597 		command_errmsg = "error while reading the file";
1598 		(void)BS->FreePool(buf);
1599 		close(fd);
1600 		return (CMD_ERROR);
1601 	}
1602 	close(fd);
1603 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1604 	(void)BS->FreePool(buf);
1605 	if (status != EFI_SUCCESS) {
1606 		command_errmsg = "LoadImage failed";
1607 		return (CMD_ERROR);
1608 	}
1609 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1610 	    (void **)&loaded_image);
1611 
1612 	if (argc > 2) {
1613 		int i, len = 0;
1614 		CHAR16 *argp;
1615 
1616 		for (i = 2; i < argc; i++)
1617 			len += strlen(argv[i]) + 1;
1618 
1619 		len *= sizeof (*argp);
1620 		loaded_image->LoadOptions = argp = malloc (len);
1621 		loaded_image->LoadOptionsSize = len;
1622 		for (i = 2; i < argc; i++) {
1623 			char *ptr = argv[i];
1624 			while (*ptr)
1625 				*(argp++) = *(ptr++);
1626 			*(argp++) = ' ';
1627 		}
1628 		*(--argv) = 0;
1629 	}
1630 
1631 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1632 #ifdef EFI_ZFS_BOOT
1633 		struct zfs_devdesc *z_dev;
1634 #endif
1635 		struct disk_devdesc *d_dev;
1636 		pdinfo_t *hd, *pd;
1637 
1638 		switch (dev->d_dev->dv_type) {
1639 #ifdef EFI_ZFS_BOOT
1640 		case DEVT_ZFS:
1641 			z_dev = (struct zfs_devdesc *)dev;
1642 			loaded_image->DeviceHandle =
1643 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1644 			break;
1645 #endif
1646 		case DEVT_NET:
1647 			loaded_image->DeviceHandle =
1648 			    efi_find_handle(dev->d_dev, dev->d_unit);
1649 			break;
1650 		default:
1651 			hd = efiblk_get_pdinfo(dev);
1652 			if (STAILQ_EMPTY(&hd->pd_part)) {
1653 				loaded_image->DeviceHandle = hd->pd_handle;
1654 				break;
1655 			}
1656 			d_dev = (struct disk_devdesc *)dev;
1657 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1658 				/*
1659 				 * d_partition should be 255
1660 				 */
1661 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1662 					loaded_image->DeviceHandle =
1663 					    pd->pd_handle;
1664 					break;
1665 				}
1666 			}
1667 			break;
1668 		}
1669 	}
1670 
1671 	dev_cleanup();
1672 	status = BS->StartImage(loaderhandle, NULL, NULL);
1673 	if (status != EFI_SUCCESS) {
1674 		command_errmsg = "StartImage failed";
1675 		free(loaded_image->LoadOptions);
1676 		loaded_image->LoadOptions = NULL;
1677 		status = BS->UnloadImage(loaded_image);
1678 		return (CMD_ERROR);
1679 	}
1680 
1681 	return (CMD_ERROR);	/* not reached */
1682 }
1683 
1684 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1685 
1686 extern struct in_addr servip;
1687 static int
1688 command_netserver(int argc, char *argv[])
1689 {
1690 	char *proto;
1691 	n_long rootaddr;
1692 
1693 	if (argc > 2) {
1694 		command_errmsg = "wrong number of arguments";
1695 		return (CMD_ERROR);
1696 	}
1697 	if (argc < 2) {
1698 		proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
1699 		printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
1700 		    rootpath);
1701 		return (CMD_OK);
1702 	}
1703 	if (argc == 2) {
1704 		strncpy(rootpath, argv[1], sizeof(rootpath));
1705 		rootpath[sizeof(rootpath) -1] = '\0';
1706 		if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
1707 			servip.s_addr = rootip.s_addr = rootaddr;
1708 		return (CMD_OK);
1709 	}
1710 	return (CMD_ERROR);	/* not reached */
1711 
1712 }
1713 
1714 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
1715     command_netserver);
1716