xref: /freebsd/stand/efi/loader/main.c (revision 4bc52338)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2018 Netflix, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <stdint.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <disk.h>
43 
44 #include <efi.h>
45 #include <efilib.h>
46 #include <efichar.h>
47 
48 #include <uuid.h>
49 
50 #include <bootstrap.h>
51 #include <smbios.h>
52 
53 #include "efizfs.h"
54 
55 #include "loader_efi.h"
56 
57 struct arch_switch archsw;	/* MI/MD interface boundary */
58 
59 EFI_GUID acpi = ACPI_TABLE_GUID;
60 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
61 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
62 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
63 EFI_GUID mps = MPS_TABLE_GUID;
64 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
65 EFI_GUID smbios = SMBIOS_TABLE_GUID;
66 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
67 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
68 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
69 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
70 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
71 EFI_GUID esrt = ESRT_TABLE_GUID;
72 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
73 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
74 EFI_GUID fdtdtb = FDT_TABLE_GUID;
75 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
76 
77 /*
78  * Number of seconds to wait for a keystroke before exiting with failure
79  * in the event no currdev is found. -2 means always break, -1 means
80  * never break, 0 means poll once and then reboot, > 0 means wait for
81  * that many seconds. "fail_timeout" can be set in the environment as
82  * well.
83  */
84 static int fail_timeout = 5;
85 
86 /*
87  * Current boot variable
88  */
89 UINT16 boot_current;
90 
91 /*
92  * Image that we booted from.
93  */
94 EFI_LOADED_IMAGE *boot_img;
95 
96 static bool
97 has_keyboard(void)
98 {
99 	EFI_STATUS status;
100 	EFI_DEVICE_PATH *path;
101 	EFI_HANDLE *hin, *hin_end, *walker;
102 	UINTN sz;
103 	bool retval = false;
104 
105 	/*
106 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
107 	 * do the typical dance to get the right sized buffer.
108 	 */
109 	sz = 0;
110 	hin = NULL;
111 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
112 	if (status == EFI_BUFFER_TOO_SMALL) {
113 		hin = (EFI_HANDLE *)malloc(sz);
114 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
115 		    hin);
116 		if (EFI_ERROR(status))
117 			free(hin);
118 	}
119 	if (EFI_ERROR(status))
120 		return retval;
121 
122 	/*
123 	 * Look at each of the handles. If it supports the device path protocol,
124 	 * use it to get the device path for this handle. Then see if that
125 	 * device path matches either the USB device path for keyboards or the
126 	 * legacy device path for keyboards.
127 	 */
128 	hin_end = &hin[sz / sizeof(*hin)];
129 	for (walker = hin; walker < hin_end; walker++) {
130 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
131 		if (EFI_ERROR(status))
132 			continue;
133 
134 		while (!IsDevicePathEnd(path)) {
135 			/*
136 			 * Check for the ACPI keyboard node. All PNP3xx nodes
137 			 * are keyboards of different flavors. Note: It is
138 			 * unclear of there's always a keyboard node when
139 			 * there's a keyboard controller, or if there's only one
140 			 * when a keyboard is detected at boot.
141 			 */
142 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
143 			    (DevicePathSubType(path) == ACPI_DP ||
144 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
145 				ACPI_HID_DEVICE_PATH  *acpi;
146 
147 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
148 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
149 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
150 					retval = true;
151 					goto out;
152 				}
153 			/*
154 			 * Check for USB keyboard node, if present. Unlike a
155 			 * PS/2 keyboard, these definitely only appear when
156 			 * connected to the system.
157 			 */
158 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
159 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
160 				USB_CLASS_DEVICE_PATH *usb;
161 
162 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
163 				if (usb->DeviceClass == 3 && /* HID */
164 				    usb->DeviceSubClass == 1 && /* Boot devices */
165 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
166 					retval = true;
167 					goto out;
168 				}
169 			}
170 			path = NextDevicePathNode(path);
171 		}
172 	}
173 out:
174 	free(hin);
175 	return retval;
176 }
177 
178 static void
179 set_currdev(const char *devname)
180 {
181 
182 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
183 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
184 }
185 
186 static void
187 set_currdev_devdesc(struct devdesc *currdev)
188 {
189 	const char *devname;
190 
191 	devname = efi_fmtdev(currdev);
192 	printf("Setting currdev to %s\n", devname);
193 	set_currdev(devname);
194 }
195 
196 static void
197 set_currdev_devsw(struct devsw *dev, int unit)
198 {
199 	struct devdesc currdev;
200 
201 	currdev.d_dev = dev;
202 	currdev.d_unit = unit;
203 
204 	set_currdev_devdesc(&currdev);
205 }
206 
207 static void
208 set_currdev_pdinfo(pdinfo_t *dp)
209 {
210 
211 	/*
212 	 * Disks are special: they have partitions. if the parent
213 	 * pointer is non-null, we're a partition not a full disk
214 	 * and we need to adjust currdev appropriately.
215 	 */
216 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
217 		struct disk_devdesc currdev;
218 
219 		currdev.dd.d_dev = dp->pd_devsw;
220 		if (dp->pd_parent == NULL) {
221 			currdev.dd.d_unit = dp->pd_unit;
222 			currdev.d_slice = D_SLICENONE;
223 			currdev.d_partition = D_PARTNONE;
224 		} else {
225 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
226 			currdev.d_slice = dp->pd_unit;
227 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
228 		}
229 		set_currdev_devdesc((struct devdesc *)&currdev);
230 	} else {
231 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
232 	}
233 }
234 
235 static bool
236 sanity_check_currdev(void)
237 {
238 	struct stat st;
239 
240 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
241 	    stat("/boot/kernel/kernel", &st) == 0);
242 }
243 
244 #ifdef EFI_ZFS_BOOT
245 static bool
246 probe_zfs_currdev(uint64_t guid)
247 {
248 	char *devname;
249 	struct zfs_devdesc currdev;
250 
251 	currdev.dd.d_dev = &zfs_dev;
252 	currdev.dd.d_unit = 0;
253 	currdev.pool_guid = guid;
254 	currdev.root_guid = 0;
255 	set_currdev_devdesc((struct devdesc *)&currdev);
256 	devname = efi_fmtdev(&currdev);
257 	init_zfs_bootenv(devname);
258 
259 	return (sanity_check_currdev());
260 }
261 #endif
262 
263 static bool
264 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
265 {
266 	uint64_t guid;
267 
268 #ifdef EFI_ZFS_BOOT
269 	/*
270 	 * If there's a zpool on this device, try it as a ZFS
271 	 * filesystem, which has somewhat different setup than all
272 	 * other types of fs due to imperfect loader integration.
273 	 * This all stems from ZFS being both a device (zpool) and
274 	 * a filesystem, plus the boot env feature.
275 	 */
276 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
277 		return (probe_zfs_currdev(guid));
278 #endif
279 	/*
280 	 * All other filesystems just need the pdinfo
281 	 * initialized in the standard way.
282 	 */
283 	set_currdev_pdinfo(pp);
284 	return (sanity_check_currdev());
285 }
286 
287 /*
288  * Sometimes we get filenames that are all upper case
289  * and/or have backslashes in them. Filter all this out
290  * if it looks like we need to do so.
291  */
292 static void
293 fix_dosisms(char *p)
294 {
295 	while (*p) {
296 		if (isupper(*p))
297 			*p = tolower(*p);
298 		else if (*p == '\\')
299 			*p = '/';
300 		p++;
301 	}
302 }
303 
304 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
305 
306 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
307 static int
308 match_boot_info(char *boot_info, size_t bisz)
309 {
310 	uint32_t attr;
311 	uint16_t fplen;
312 	size_t len;
313 	char *walker, *ep;
314 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
315 	pdinfo_t *pp;
316 	CHAR16 *descr;
317 	char *kernel = NULL;
318 	FILEPATH_DEVICE_PATH  *fp;
319 	struct stat st;
320 	CHAR16 *text;
321 
322 	/*
323 	 * FreeBSD encodes it's boot loading path into the boot loader
324 	 * BootXXXX variable. We look for the last one in the path
325 	 * and use that to load the kernel. However, if we only fine
326 	 * one DEVICE_PATH, then there's nothing specific and we should
327 	 * fall back.
328 	 *
329 	 * In an ideal world, we'd look at the image handle we were
330 	 * passed, match up with the loader we are and then return the
331 	 * next one in the path. This would be most flexible and cover
332 	 * many chain booting scenarios where you need to use this
333 	 * boot loader to get to the next boot loader. However, that
334 	 * doesn't work. We rarely have the path to the image booted
335 	 * (just the device) so we can't count on that. So, we do the
336 	 * enxt best thing, we look through the device path(s) passed
337 	 * in the BootXXXX varaible. If there's only one, we return
338 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
339 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
340 	 * return BAD_CHOICE for the caller to sort out.
341 	 */
342 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
343 		return NOT_SPECIFIC;
344 	walker = boot_info;
345 	ep = walker + bisz;
346 	memcpy(&attr, walker, sizeof(attr));
347 	walker += sizeof(attr);
348 	memcpy(&fplen, walker, sizeof(fplen));
349 	walker += sizeof(fplen);
350 	descr = (CHAR16 *)(intptr_t)walker;
351 	len = ucs2len(descr);
352 	walker += (len + 1) * sizeof(CHAR16);
353 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
354 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
355 	if ((char *)edp > ep)
356 		return NOT_SPECIFIC;
357 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
358 		text = efi_devpath_name(dp);
359 		if (text != NULL) {
360 			printf("   BootInfo Path: %S\n", text);
361 			efi_free_devpath_name(text);
362 		}
363 		last_dp = dp;
364 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
365 	}
366 
367 	/*
368 	 * If there's only one item in the list, then nothing was
369 	 * specified. Or if the last path doesn't have a media
370 	 * path in it. Those show up as various VenHw() nodes
371 	 * which are basically opaque to us. Don't count those
372 	 * as something specifc.
373 	 */
374 	if (last_dp == first_dp) {
375 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
376 		return NOT_SPECIFIC;
377 	}
378 	if (efi_devpath_to_media_path(last_dp) == NULL) {
379 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
380 		return NOT_SPECIFIC;
381 	}
382 
383 	/*
384 	 * OK. At this point we either have a good path or a bad one.
385 	 * Let's check.
386 	 */
387 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
388 	if (pp == NULL) {
389 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
390 		return BAD_CHOICE;
391 	}
392 	set_currdev_pdinfo(pp);
393 	if (!sanity_check_currdev()) {
394 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
395 		return BAD_CHOICE;
396 	}
397 
398 	/*
399 	 * OK. We've found a device that matches, next we need to check the last
400 	 * component of the path. If it's a file, then we set the default kernel
401 	 * to that. Otherwise, just use this as the default root.
402 	 *
403 	 * Reminder: we're running very early, before we've parsed the defaults
404 	 * file, so we may need to have a hack override.
405 	 */
406 	dp = efi_devpath_last_node(last_dp);
407 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
408 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
409 		printf("Using Boot%04x for root partition\n", boot_current);
410 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
411 	}
412 	fp = (FILEPATH_DEVICE_PATH *)dp;
413 	ucs2_to_utf8(fp->PathName, &kernel);
414 	if (kernel == NULL) {
415 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
416 		return (BAD_CHOICE);
417 	}
418 	if (*kernel == '\\' || isupper(*kernel))
419 		fix_dosisms(kernel);
420 	if (stat(kernel, &st) != 0) {
421 		free(kernel);
422 		printf("Not using Boot%04x: can't find %s\n", boot_current,
423 		    kernel);
424 		return (BAD_CHOICE);
425 	}
426 	setenv("kernel", kernel, 1);
427 	free(kernel);
428 	text = efi_devpath_name(last_dp);
429 	if (text) {
430 		printf("Using Boot%04x %S + %s\n", boot_current, text,
431 		    kernel);
432 		efi_free_devpath_name(text);
433 	}
434 
435 	return (BOOT_INFO_OK);
436 }
437 
438 /*
439  * Look at the passed-in boot_info, if any. If we find it then we need
440  * to see if we can find ourselves in the boot chain. If we can, and
441  * there's another specified thing to boot next, assume that the file
442  * is loaded from / and use that for the root filesystem. If can't
443  * find the specified thing, we must fail the boot. If we're last on
444  * the list, then we fallback to looking for the first available /
445  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
446  * partition that has either /boot/defaults/loader.conf on it or
447  * /boot/kernel/kernel (the default kernel) that we can use.
448  *
449  * We always fail if we can't find the right thing. However, as
450  * a concession to buggy UEFI implementations, like u-boot, if
451  * we have determined that the host is violating the UEFI boot
452  * manager protocol, we'll signal the rest of the program that
453  * a drop to the OK boot loader prompt is possible.
454  */
455 static int
456 find_currdev(bool do_bootmgr, bool is_last,
457     char *boot_info, size_t boot_info_sz)
458 {
459 	pdinfo_t *dp, *pp;
460 	EFI_DEVICE_PATH *devpath, *copy;
461 	EFI_HANDLE h;
462 	CHAR16 *text;
463 	struct devsw *dev;
464 	int unit;
465 	uint64_t extra;
466 	int rv;
467 	char *rootdev;
468 
469 	/*
470 	 * First choice: if rootdev is already set, use that, even if
471 	 * it's wrong.
472 	 */
473 	rootdev = getenv("rootdev");
474 	if (rootdev != NULL) {
475 		printf("Setting currdev to configured rootdev %s\n", rootdev);
476 		set_currdev(rootdev);
477 		return (0);
478 	}
479 
480 	/*
481 	 * Second choice: If we can find out image boot_info, and there's
482 	 * a follow-on boot image in that boot_info, use that. In this
483 	 * case root will be the partition specified in that image and
484 	 * we'll load the kernel specified by the file path. Should there
485 	 * not be a filepath, we use the default. This filepath overrides
486 	 * loader.conf.
487 	 */
488 	if (do_bootmgr) {
489 		rv = match_boot_info(boot_info, boot_info_sz);
490 		switch (rv) {
491 		case BOOT_INFO_OK:	/* We found it */
492 			return (0);
493 		case BAD_CHOICE:	/* specified file not found -> error */
494 			/* XXX do we want to have an escape hatch for last in boot order? */
495 			return (ENOENT);
496 		} /* Nothing specified, try normal match */
497 	}
498 
499 #ifdef EFI_ZFS_BOOT
500 	/*
501 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
502 	 * it found, if it's sane. ZFS is the only thing that looks for
503 	 * disks and pools to boot. This may change in the future, however,
504 	 * if we allow specifying which pool to boot from via UEFI variables
505 	 * rather than the bootenv stuff that FreeBSD uses today.
506 	 */
507 	if (pool_guid != 0) {
508 		printf("Trying ZFS pool\n");
509 		if (probe_zfs_currdev(pool_guid))
510 			return (0);
511 	}
512 #endif /* EFI_ZFS_BOOT */
513 
514 	/*
515 	 * Try to find the block device by its handle based on the
516 	 * image we're booting. If we can't find a sane partition,
517 	 * search all the other partitions of the disk. We do not
518 	 * search other disks because it's a violation of the UEFI
519 	 * boot protocol to do so. We fail and let UEFI go on to
520 	 * the next candidate.
521 	 */
522 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
523 	if (dp != NULL) {
524 		text = efi_devpath_name(dp->pd_devpath);
525 		if (text != NULL) {
526 			printf("Trying ESP: %S\n", text);
527 			efi_free_devpath_name(text);
528 		}
529 		set_currdev_pdinfo(dp);
530 		if (sanity_check_currdev())
531 			return (0);
532 		if (dp->pd_parent != NULL) {
533 			pdinfo_t *espdp = dp;
534 			dp = dp->pd_parent;
535 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
536 				/* Already tried the ESP */
537 				if (espdp == pp)
538 					continue;
539 				/*
540 				 * Roll up the ZFS special case
541 				 * for those partitions that have
542 				 * zpools on them.
543 				 */
544 				text = efi_devpath_name(pp->pd_devpath);
545 				if (text != NULL) {
546 					printf("Trying: %S\n", text);
547 					efi_free_devpath_name(text);
548 				}
549 				if (try_as_currdev(dp, pp))
550 					return (0);
551 			}
552 		}
553 	}
554 
555 	/*
556 	 * Try the device handle from our loaded image first.  If that
557 	 * fails, use the device path from the loaded image and see if
558 	 * any of the nodes in that path match one of the enumerated
559 	 * handles. Currently, this handle list is only for netboot.
560 	 */
561 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
562 		set_currdev_devsw(dev, unit);
563 		if (sanity_check_currdev())
564 			return (0);
565 	}
566 
567 	copy = NULL;
568 	devpath = efi_lookup_image_devpath(IH);
569 	while (devpath != NULL) {
570 		h = efi_devpath_handle(devpath);
571 		if (h == NULL)
572 			break;
573 
574 		free(copy);
575 		copy = NULL;
576 
577 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
578 			set_currdev_devsw(dev, unit);
579 			if (sanity_check_currdev())
580 				return (0);
581 		}
582 
583 		devpath = efi_lookup_devpath(h);
584 		if (devpath != NULL) {
585 			copy = efi_devpath_trim(devpath);
586 			devpath = copy;
587 		}
588 	}
589 	free(copy);
590 
591 	return (ENOENT);
592 }
593 
594 static bool
595 interactive_interrupt(const char *msg)
596 {
597 	time_t now, then, last;
598 
599 	last = 0;
600 	now = then = getsecs();
601 	printf("%s\n", msg);
602 	if (fail_timeout == -2)		/* Always break to OK */
603 		return (true);
604 	if (fail_timeout == -1)		/* Never break to OK */
605 		return (false);
606 	do {
607 		if (last != now) {
608 			printf("press any key to interrupt reboot in %d seconds\r",
609 			    fail_timeout - (int)(now - then));
610 			last = now;
611 		}
612 
613 		/* XXX no pause or timeout wait for char */
614 		if (ischar())
615 			return (true);
616 		now = getsecs();
617 	} while (now - then < fail_timeout);
618 	return (false);
619 }
620 
621 static int
622 parse_args(int argc, CHAR16 *argv[])
623 {
624 	int i, j, howto;
625 	bool vargood;
626 	char var[128];
627 
628 	/*
629 	 * Parse the args to set the console settings, etc
630 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
631 	 * or iPXE may be setup to pass these in. Or the optional argument in the
632 	 * boot environment was used to pass these arguments in (in which case
633 	 * neither /boot.config nor /boot/config are consulted).
634 	 *
635 	 * Loop through the args, and for each one that contains an '=' that is
636 	 * not the first character, add it to the environment.  This allows
637 	 * loader and kernel env vars to be passed on the command line.  Convert
638 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
639 	 * method is flawed for non-ASCII characters).
640 	 */
641 	howto = 0;
642 	for (i = 1; i < argc; i++) {
643 		cpy16to8(argv[i], var, sizeof(var));
644 		howto |= boot_parse_arg(var);
645 	}
646 
647 	return (howto);
648 }
649 
650 static void
651 setenv_int(const char *key, int val)
652 {
653 	char buf[20];
654 
655 	snprintf(buf, sizeof(buf), "%d", val);
656 	setenv(key, buf, 1);
657 }
658 
659 /*
660  * Parse ConOut (the list of consoles active) and see if we can find a
661  * serial port and/or a video port. It would be nice to also walk the
662  * ACPI name space to map the UID for the serial port to a port. The
663  * latter is especially hard.
664  */
665 static int
666 parse_uefi_con_out(void)
667 {
668 	int how, rv;
669 	int vid_seen = 0, com_seen = 0, seen = 0;
670 	size_t sz;
671 	char buf[4096], *ep;
672 	EFI_DEVICE_PATH *node;
673 	ACPI_HID_DEVICE_PATH  *acpi;
674 	UART_DEVICE_PATH  *uart;
675 	bool pci_pending;
676 
677 	how = 0;
678 	sz = sizeof(buf);
679 	rv = efi_global_getenv("ConOut", buf, &sz);
680 	if (rv != EFI_SUCCESS)
681 		goto out;
682 	ep = buf + sz;
683 	node = (EFI_DEVICE_PATH *)buf;
684 	while ((char *)node < ep) {
685 		pci_pending = false;
686 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
687 		    DevicePathSubType(node) == ACPI_DP) {
688 			/* Check for Serial node */
689 			acpi = (void *)node;
690 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
691 				setenv_int("efi_8250_uid", acpi->UID);
692 				com_seen = ++seen;
693 			}
694 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
695 		    DevicePathSubType(node) == MSG_UART_DP) {
696 
697 			uart = (void *)node;
698 			setenv_int("efi_com_speed", uart->BaudRate);
699 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
700 		    DevicePathSubType(node) == ACPI_ADR_DP) {
701 			/* Check for AcpiAdr() Node for video */
702 			vid_seen = ++seen;
703 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
704 		    DevicePathSubType(node) == HW_PCI_DP) {
705 			/*
706 			 * Note, vmware fusion has a funky console device
707 			 *	PciRoot(0x0)/Pci(0xf,0x0)
708 			 * which we can only detect at the end since we also
709 			 * have to cope with:
710 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
711 			 * so only match it if it's last.
712 			 */
713 			pci_pending = true;
714 		}
715 		node = NextDevicePathNode(node); /* Skip the end node */
716 	}
717 	if (pci_pending && vid_seen == 0)
718 		vid_seen = ++seen;
719 
720 	/*
721 	 * Truth table for RB_MULTIPLE | RB_SERIAL
722 	 * Value		Result
723 	 * 0			Use only video console
724 	 * RB_SERIAL		Use only serial console
725 	 * RB_MULTIPLE		Use both video and serial console
726 	 *			(but video is primary so gets rc messages)
727 	 * both			Use both video and serial console
728 	 *			(but serial is primary so gets rc messages)
729 	 *
730 	 * Try to honor this as best we can. If only one of serial / video
731 	 * found, then use that. Otherwise, use the first one we found.
732 	 * This also implies if we found nothing, default to video.
733 	 */
734 	how = 0;
735 	if (vid_seen && com_seen) {
736 		how |= RB_MULTIPLE;
737 		if (com_seen < vid_seen)
738 			how |= RB_SERIAL;
739 	} else if (com_seen)
740 		how |= RB_SERIAL;
741 out:
742 	return (how);
743 }
744 
745 EFI_STATUS
746 main(int argc, CHAR16 *argv[])
747 {
748 	EFI_GUID *guid;
749 	int howto, i, uhowto;
750 	UINTN k;
751 	bool has_kbd, is_last;
752 	char *s;
753 	EFI_DEVICE_PATH *imgpath;
754 	CHAR16 *text;
755 	EFI_STATUS rv;
756 	size_t sz, bosz = 0, bisz = 0;
757 	UINT16 boot_order[100];
758 	char boot_info[4096];
759 	char buf[32];
760 	bool uefi_boot_mgr;
761 
762 	archsw.arch_autoload = efi_autoload;
763 	archsw.arch_getdev = efi_getdev;
764 	archsw.arch_copyin = efi_copyin;
765 	archsw.arch_copyout = efi_copyout;
766 	archsw.arch_readin = efi_readin;
767 	archsw.arch_zfs_probe = efi_zfs_probe;
768 
769         /* Get our loaded image protocol interface structure. */
770 	BS->HandleProtocol(IH, &imgid, (VOID**)&boot_img);
771 
772 	/*
773 	 * Chicken-and-egg problem; we want to have console output early, but
774 	 * some console attributes may depend on reading from eg. the boot
775 	 * device, which we can't do yet.  We can use printf() etc. once this is
776 	 * done. So, we set it to the efi console, then call console init. This
777 	 * gets us printf early, but also primes the pump for all future console
778 	 * changes to take effect, regardless of where they come from.
779 	 */
780 	setenv("console", "efi", 1);
781 	cons_probe();
782 
783 	/* Init the time source */
784 	efi_time_init();
785 
786 	has_kbd = has_keyboard();
787 
788 	/*
789 	 * Initialise the block cache. Set the upper limit.
790 	 */
791 	bcache_init(32768, 512);
792 
793 	howto = parse_args(argc, argv);
794 	if (!has_kbd && (howto & RB_PROBE))
795 		howto |= RB_SERIAL | RB_MULTIPLE;
796 	howto &= ~RB_PROBE;
797 	uhowto = parse_uefi_con_out();
798 
799 	/*
800 	 * We now have two notions of console. howto should be viewed as
801 	 * overrides. If console is already set, don't set it again.
802 	 */
803 #define	VIDEO_ONLY	0
804 #define	SERIAL_ONLY	RB_SERIAL
805 #define	VID_SER_BOTH	RB_MULTIPLE
806 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
807 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
808 	if (strcmp(getenv("console"), "efi") == 0) {
809 		if ((howto & CON_MASK) == 0) {
810 			/* No override, uhowto is controlling and efi cons is perfect */
811 			howto = howto | (uhowto & CON_MASK);
812 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
813 			/* override matches what UEFI told us, efi console is perfect */
814 		} else if ((uhowto & (CON_MASK)) != 0) {
815 			/*
816 			 * We detected a serial console on ConOut. All possible
817 			 * overrides include serial. We can't really override what efi
818 			 * gives us, so we use it knowing it's the best choice.
819 			 */
820 			/* Do nothing */
821 		} else {
822 			/*
823 			 * We detected some kind of serial in the override, but ConOut
824 			 * has no serial, so we have to sort out which case it really is.
825 			 */
826 			switch (howto & CON_MASK) {
827 			case SERIAL_ONLY:
828 				setenv("console", "comconsole", 1);
829 				break;
830 			case VID_SER_BOTH:
831 				setenv("console", "efi comconsole", 1);
832 				break;
833 			case SER_VID_BOTH:
834 				setenv("console", "comconsole efi", 1);
835 				break;
836 				/* case VIDEO_ONLY can't happen -- it's the first if above */
837 			}
838 		}
839 	}
840 
841 	/*
842 	 * howto is set now how we want to export the flags to the kernel, so
843 	 * set the env based on it.
844 	 */
845 	boot_howto_to_env(howto);
846 
847 	if (efi_copy_init()) {
848 		printf("failed to allocate staging area\n");
849 		return (EFI_BUFFER_TOO_SMALL);
850 	}
851 
852 	if ((s = getenv("fail_timeout")) != NULL)
853 		fail_timeout = strtol(s, NULL, 10);
854 
855 	/*
856 	 * Scan the BLOCK IO MEDIA handles then
857 	 * march through the device switch probing for things.
858 	 */
859 	i = efipart_inithandles();
860 	if (i != 0 && i != ENOENT) {
861 		printf("efipart_inithandles failed with ERRNO %d, expect "
862 		    "failures\n", i);
863 	}
864 
865 	for (i = 0; devsw[i] != NULL; i++)
866 		if (devsw[i]->dv_init != NULL)
867 			(devsw[i]->dv_init)();
868 
869 	printf("%s\n", bootprog_info);
870 	printf("   Command line arguments:");
871 	for (i = 0; i < argc; i++)
872 		printf(" %S", argv[i]);
873 	printf("\n");
874 
875 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
876 	    ST->Hdr.Revision & 0xffff);
877 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
878 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
879 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
880 
881 
882 
883 	/* Determine the devpath of our image so we can prefer it. */
884 	text = efi_devpath_name(boot_img->FilePath);
885 	if (text != NULL) {
886 		printf("   Load Path: %S\n", text);
887 		efi_setenv_freebsd_wcs("LoaderPath", text);
888 		efi_free_devpath_name(text);
889 	}
890 
891 	rv = BS->HandleProtocol(boot_img->DeviceHandle, &devid, (void **)&imgpath);
892 	if (rv == EFI_SUCCESS) {
893 		text = efi_devpath_name(imgpath);
894 		if (text != NULL) {
895 			printf("   Load Device: %S\n", text);
896 			efi_setenv_freebsd_wcs("LoaderDev", text);
897 			efi_free_devpath_name(text);
898 		}
899 	}
900 
901 	uefi_boot_mgr = true;
902 	boot_current = 0;
903 	sz = sizeof(boot_current);
904 	rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
905 	if (rv == EFI_SUCCESS)
906 		printf("   BootCurrent: %04x\n", boot_current);
907 	else {
908 		boot_current = 0xffff;
909 		uefi_boot_mgr = false;
910 	}
911 
912 	sz = sizeof(boot_order);
913 	rv = efi_global_getenv("BootOrder", &boot_order, &sz);
914 	if (rv == EFI_SUCCESS) {
915 		printf("   BootOrder:");
916 		for (i = 0; i < sz / sizeof(boot_order[0]); i++)
917 			printf(" %04x%s", boot_order[i],
918 			    boot_order[i] == boot_current ? "[*]" : "");
919 		printf("\n");
920 		is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
921 		bosz = sz;
922 	} else if (uefi_boot_mgr) {
923 		/*
924 		 * u-boot doesn't set BootOrder, but otherwise participates in the
925 		 * boot manager protocol. So we fake it here and don't consider it
926 		 * a failure.
927 		 */
928 		bosz = sizeof(boot_order[0]);
929 		boot_order[0] = boot_current;
930 		is_last = true;
931 	}
932 
933 	/*
934 	 * Next, find the boot info structure the UEFI boot manager is
935 	 * supposed to setup. We need this so we can walk through it to
936 	 * find where we are in the booting process and what to try to
937 	 * boot next.
938 	 */
939 	if (uefi_boot_mgr) {
940 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
941 		sz = sizeof(boot_info);
942 		rv = efi_global_getenv(buf, &boot_info, &sz);
943 		if (rv == EFI_SUCCESS)
944 			bisz = sz;
945 		else
946 			uefi_boot_mgr = false;
947 	}
948 
949 	/*
950 	 * Disable the watchdog timer. By default the boot manager sets
951 	 * the timer to 5 minutes before invoking a boot option. If we
952 	 * want to return to the boot manager, we have to disable the
953 	 * watchdog timer and since we're an interactive program, we don't
954 	 * want to wait until the user types "quit". The timer may have
955 	 * fired by then. We don't care if this fails. It does not prevent
956 	 * normal functioning in any way...
957 	 */
958 	BS->SetWatchdogTimer(0, 0, 0, NULL);
959 
960 	/*
961 	 * Initialize the trusted/forbidden certificates from UEFI.
962 	 * They will be later used to verify the manifest(s),
963 	 * which should contain hashes of verified files.
964 	 * This needs to be initialized before any configuration files
965 	 * are loaded.
966 	 */
967 #ifdef EFI_SECUREBOOT
968 	ve_efi_init();
969 #endif
970 
971 	/*
972 	 * Try and find a good currdev based on the image that was booted.
973 	 * It might be desirable here to have a short pause to allow falling
974 	 * through to the boot loader instead of returning instantly to follow
975 	 * the boot protocol and also allow an escape hatch for users wishing
976 	 * to try something different.
977 	 */
978 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
979 		if (!interactive_interrupt("Failed to find bootable partition"))
980 			return (EFI_NOT_FOUND);
981 
982 	efi_init_environment();
983 
984 #if !defined(__arm__)
985 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
986 		guid = &ST->ConfigurationTable[k].VendorGuid;
987 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
988 			char buf[40];
989 
990 			snprintf(buf, sizeof(buf), "%p",
991 			    ST->ConfigurationTable[k].VendorTable);
992 			setenv("hint.smbios.0.mem", buf, 1);
993 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
994 			break;
995 		}
996 	}
997 #endif
998 
999 	interact();			/* doesn't return */
1000 
1001 	return (EFI_SUCCESS);		/* keep compiler happy */
1002 }
1003 
1004 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1005 
1006 static int
1007 command_poweroff(int argc __unused, char *argv[] __unused)
1008 {
1009 	int i;
1010 
1011 	for (i = 0; devsw[i] != NULL; ++i)
1012 		if (devsw[i]->dv_cleanup != NULL)
1013 			(devsw[i]->dv_cleanup)();
1014 
1015 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1016 
1017 	/* NOTREACHED */
1018 	return (CMD_ERROR);
1019 }
1020 
1021 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1022 
1023 static int
1024 command_reboot(int argc, char *argv[])
1025 {
1026 	int i;
1027 
1028 	for (i = 0; devsw[i] != NULL; ++i)
1029 		if (devsw[i]->dv_cleanup != NULL)
1030 			(devsw[i]->dv_cleanup)();
1031 
1032 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1033 
1034 	/* NOTREACHED */
1035 	return (CMD_ERROR);
1036 }
1037 
1038 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1039 
1040 static int
1041 command_quit(int argc, char *argv[])
1042 {
1043 	exit(0);
1044 	return (CMD_OK);
1045 }
1046 
1047 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1048 
1049 static int
1050 command_memmap(int argc __unused, char *argv[] __unused)
1051 {
1052 	UINTN sz;
1053 	EFI_MEMORY_DESCRIPTOR *map, *p;
1054 	UINTN key, dsz;
1055 	UINT32 dver;
1056 	EFI_STATUS status;
1057 	int i, ndesc;
1058 	char line[80];
1059 
1060 	sz = 0;
1061 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1062 	if (status != EFI_BUFFER_TOO_SMALL) {
1063 		printf("Can't determine memory map size\n");
1064 		return (CMD_ERROR);
1065 	}
1066 	map = malloc(sz);
1067 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1068 	if (EFI_ERROR(status)) {
1069 		printf("Can't read memory map\n");
1070 		return (CMD_ERROR);
1071 	}
1072 
1073 	ndesc = sz / dsz;
1074 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1075 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1076 	pager_open();
1077 	if (pager_output(line)) {
1078 		pager_close();
1079 		return (CMD_OK);
1080 	}
1081 
1082 	for (i = 0, p = map; i < ndesc;
1083 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1084 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1085 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1086 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1087 		if (pager_output(line))
1088 			break;
1089 
1090 		if (p->Attribute & EFI_MEMORY_UC)
1091 			printf("UC ");
1092 		if (p->Attribute & EFI_MEMORY_WC)
1093 			printf("WC ");
1094 		if (p->Attribute & EFI_MEMORY_WT)
1095 			printf("WT ");
1096 		if (p->Attribute & EFI_MEMORY_WB)
1097 			printf("WB ");
1098 		if (p->Attribute & EFI_MEMORY_UCE)
1099 			printf("UCE ");
1100 		if (p->Attribute & EFI_MEMORY_WP)
1101 			printf("WP ");
1102 		if (p->Attribute & EFI_MEMORY_RP)
1103 			printf("RP ");
1104 		if (p->Attribute & EFI_MEMORY_XP)
1105 			printf("XP ");
1106 		if (p->Attribute & EFI_MEMORY_NV)
1107 			printf("NV ");
1108 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1109 			printf("MR ");
1110 		if (p->Attribute & EFI_MEMORY_RO)
1111 			printf("RO ");
1112 		if (pager_output("\n"))
1113 			break;
1114 	}
1115 
1116 	pager_close();
1117 	return (CMD_OK);
1118 }
1119 
1120 COMMAND_SET(configuration, "configuration", "print configuration tables",
1121     command_configuration);
1122 
1123 static int
1124 command_configuration(int argc, char *argv[])
1125 {
1126 	UINTN i;
1127 	char *name;
1128 
1129 	printf("NumberOfTableEntries=%lu\n",
1130 		(unsigned long)ST->NumberOfTableEntries);
1131 
1132 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1133 		EFI_GUID *guid;
1134 
1135 		printf("  ");
1136 		guid = &ST->ConfigurationTable[i].VendorGuid;
1137 
1138 		if (efi_guid_to_name(guid, &name) == true) {
1139 			printf(name);
1140 			free(name);
1141 		} else {
1142 			printf("Error while translating UUID to name");
1143 		}
1144 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1145 	}
1146 
1147 	return (CMD_OK);
1148 }
1149 
1150 
1151 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1152 
1153 static int
1154 command_mode(int argc, char *argv[])
1155 {
1156 	UINTN cols, rows;
1157 	unsigned int mode;
1158 	int i;
1159 	char *cp;
1160 	char rowenv[8];
1161 	EFI_STATUS status;
1162 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1163 	extern void HO(void);
1164 
1165 	conout = ST->ConOut;
1166 
1167 	if (argc > 1) {
1168 		mode = strtol(argv[1], &cp, 0);
1169 		if (cp[0] != '\0') {
1170 			printf("Invalid mode\n");
1171 			return (CMD_ERROR);
1172 		}
1173 		status = conout->QueryMode(conout, mode, &cols, &rows);
1174 		if (EFI_ERROR(status)) {
1175 			printf("invalid mode %d\n", mode);
1176 			return (CMD_ERROR);
1177 		}
1178 		status = conout->SetMode(conout, mode);
1179 		if (EFI_ERROR(status)) {
1180 			printf("couldn't set mode %d\n", mode);
1181 			return (CMD_ERROR);
1182 		}
1183 		sprintf(rowenv, "%u", (unsigned)rows);
1184 		setenv("LINES", rowenv, 1);
1185 		HO();		/* set cursor */
1186 		return (CMD_OK);
1187 	}
1188 
1189 	printf("Current mode: %d\n", conout->Mode->Mode);
1190 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1191 		status = conout->QueryMode(conout, i, &cols, &rows);
1192 		if (EFI_ERROR(status))
1193 			continue;
1194 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1195 		    (unsigned)rows);
1196 	}
1197 
1198 	if (i != 0)
1199 		printf("Select a mode with the command \"mode <number>\"\n");
1200 
1201 	return (CMD_OK);
1202 }
1203 
1204 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1205 
1206 static int
1207 command_lsefi(int argc __unused, char *argv[] __unused)
1208 {
1209 	char *name;
1210 	EFI_HANDLE *buffer = NULL;
1211 	EFI_HANDLE handle;
1212 	UINTN bufsz = 0, i, j;
1213 	EFI_STATUS status;
1214 	int ret = 0;
1215 
1216 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1217 	if (status != EFI_BUFFER_TOO_SMALL) {
1218 		snprintf(command_errbuf, sizeof (command_errbuf),
1219 		    "unexpected error: %lld", (long long)status);
1220 		return (CMD_ERROR);
1221 	}
1222 	if ((buffer = malloc(bufsz)) == NULL) {
1223 		sprintf(command_errbuf, "out of memory");
1224 		return (CMD_ERROR);
1225 	}
1226 
1227 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1228 	if (EFI_ERROR(status)) {
1229 		free(buffer);
1230 		snprintf(command_errbuf, sizeof (command_errbuf),
1231 		    "LocateHandle() error: %lld", (long long)status);
1232 		return (CMD_ERROR);
1233 	}
1234 
1235 	pager_open();
1236 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1237 		UINTN nproto = 0;
1238 		EFI_GUID **protocols = NULL;
1239 
1240 		handle = buffer[i];
1241 		printf("Handle %p", handle);
1242 		if (pager_output("\n"))
1243 			break;
1244 		/* device path */
1245 
1246 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1247 		if (EFI_ERROR(status)) {
1248 			snprintf(command_errbuf, sizeof (command_errbuf),
1249 			    "ProtocolsPerHandle() error: %lld",
1250 			    (long long)status);
1251 			continue;
1252 		}
1253 
1254 		for (j = 0; j < nproto; j++) {
1255 			if (efi_guid_to_name(protocols[j], &name) == true) {
1256 				printf("  %s", name);
1257 				free(name);
1258 			} else {
1259 				printf("Error while translating UUID to name");
1260 			}
1261 			if ((ret = pager_output("\n")) != 0)
1262 				break;
1263 		}
1264 		BS->FreePool(protocols);
1265 		if (ret != 0)
1266 			break;
1267 	}
1268 	pager_close();
1269 	free(buffer);
1270 	return (CMD_OK);
1271 }
1272 
1273 #ifdef LOADER_FDT_SUPPORT
1274 extern int command_fdt_internal(int argc, char *argv[]);
1275 
1276 /*
1277  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1278  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1279  * (which uses static pointer), we're defining wrapper function, which
1280  * calls the proper fdt handling routine.
1281  */
1282 static int
1283 command_fdt(int argc, char *argv[])
1284 {
1285 
1286 	return (command_fdt_internal(argc, argv));
1287 }
1288 
1289 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1290 #endif
1291 
1292 /*
1293  * Chain load another efi loader.
1294  */
1295 static int
1296 command_chain(int argc, char *argv[])
1297 {
1298 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1299 	EFI_HANDLE loaderhandle;
1300 	EFI_LOADED_IMAGE *loaded_image;
1301 	EFI_STATUS status;
1302 	struct stat st;
1303 	struct devdesc *dev;
1304 	char *name, *path;
1305 	void *buf;
1306 	int fd;
1307 
1308 	if (argc < 2) {
1309 		command_errmsg = "wrong number of arguments";
1310 		return (CMD_ERROR);
1311 	}
1312 
1313 	name = argv[1];
1314 
1315 	if ((fd = open(name, O_RDONLY)) < 0) {
1316 		command_errmsg = "no such file";
1317 		return (CMD_ERROR);
1318 	}
1319 
1320 	if (fstat(fd, &st) < -1) {
1321 		command_errmsg = "stat failed";
1322 		close(fd);
1323 		return (CMD_ERROR);
1324 	}
1325 
1326 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1327 	if (status != EFI_SUCCESS) {
1328 		command_errmsg = "failed to allocate buffer";
1329 		close(fd);
1330 		return (CMD_ERROR);
1331 	}
1332 	if (read(fd, buf, st.st_size) != st.st_size) {
1333 		command_errmsg = "error while reading the file";
1334 		(void)BS->FreePool(buf);
1335 		close(fd);
1336 		return (CMD_ERROR);
1337 	}
1338 	close(fd);
1339 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1340 	(void)BS->FreePool(buf);
1341 	if (status != EFI_SUCCESS) {
1342 		command_errmsg = "LoadImage failed";
1343 		return (CMD_ERROR);
1344 	}
1345 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1346 	    (void **)&loaded_image);
1347 
1348 	if (argc > 2) {
1349 		int i, len = 0;
1350 		CHAR16 *argp;
1351 
1352 		for (i = 2; i < argc; i++)
1353 			len += strlen(argv[i]) + 1;
1354 
1355 		len *= sizeof (*argp);
1356 		loaded_image->LoadOptions = argp = malloc (len);
1357 		loaded_image->LoadOptionsSize = len;
1358 		for (i = 2; i < argc; i++) {
1359 			char *ptr = argv[i];
1360 			while (*ptr)
1361 				*(argp++) = *(ptr++);
1362 			*(argp++) = ' ';
1363 		}
1364 		*(--argv) = 0;
1365 	}
1366 
1367 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1368 #ifdef EFI_ZFS_BOOT
1369 		struct zfs_devdesc *z_dev;
1370 #endif
1371 		struct disk_devdesc *d_dev;
1372 		pdinfo_t *hd, *pd;
1373 
1374 		switch (dev->d_dev->dv_type) {
1375 #ifdef EFI_ZFS_BOOT
1376 		case DEVT_ZFS:
1377 			z_dev = (struct zfs_devdesc *)dev;
1378 			loaded_image->DeviceHandle =
1379 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1380 			break;
1381 #endif
1382 		case DEVT_NET:
1383 			loaded_image->DeviceHandle =
1384 			    efi_find_handle(dev->d_dev, dev->d_unit);
1385 			break;
1386 		default:
1387 			hd = efiblk_get_pdinfo(dev);
1388 			if (STAILQ_EMPTY(&hd->pd_part)) {
1389 				loaded_image->DeviceHandle = hd->pd_handle;
1390 				break;
1391 			}
1392 			d_dev = (struct disk_devdesc *)dev;
1393 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1394 				/*
1395 				 * d_partition should be 255
1396 				 */
1397 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1398 					loaded_image->DeviceHandle =
1399 					    pd->pd_handle;
1400 					break;
1401 				}
1402 			}
1403 			break;
1404 		}
1405 	}
1406 
1407 	dev_cleanup();
1408 	status = BS->StartImage(loaderhandle, NULL, NULL);
1409 	if (status != EFI_SUCCESS) {
1410 		command_errmsg = "StartImage failed";
1411 		free(loaded_image->LoadOptions);
1412 		loaded_image->LoadOptions = NULL;
1413 		status = BS->UnloadImage(loaded_image);
1414 		return (CMD_ERROR);
1415 	}
1416 
1417 	return (CMD_ERROR);	/* not reached */
1418 }
1419 
1420 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1421