xref: /freebsd/stand/efi/loader/main.c (revision e17f5b1d)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <paths.h>
40 #include <stdint.h>
41 #include <string.h>
42 #include <setjmp.h>
43 #include <disk.h>
44 
45 #include <efi.h>
46 #include <efilib.h>
47 #include <efichar.h>
48 
49 #include <uuid.h>
50 
51 #include <bootstrap.h>
52 #include <smbios.h>
53 
54 #include "efizfs.h"
55 
56 #include "loader_efi.h"
57 
58 struct arch_switch archsw;	/* MI/MD interface boundary */
59 
60 EFI_GUID acpi = ACPI_TABLE_GUID;
61 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
62 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
63 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
64 EFI_GUID mps = MPS_TABLE_GUID;
65 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
66 EFI_GUID smbios = SMBIOS_TABLE_GUID;
67 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
68 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
69 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
70 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
71 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
72 EFI_GUID esrt = ESRT_TABLE_GUID;
73 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
74 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
75 EFI_GUID fdtdtb = FDT_TABLE_GUID;
76 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
77 
78 /*
79  * Number of seconds to wait for a keystroke before exiting with failure
80  * in the event no currdev is found. -2 means always break, -1 means
81  * never break, 0 means poll once and then reboot, > 0 means wait for
82  * that many seconds. "fail_timeout" can be set in the environment as
83  * well.
84  */
85 static int fail_timeout = 5;
86 
87 /*
88  * Current boot variable
89  */
90 UINT16 boot_current;
91 
92 /*
93  * Image that we booted from.
94  */
95 EFI_LOADED_IMAGE *boot_img;
96 
97 static bool
98 has_keyboard(void)
99 {
100 	EFI_STATUS status;
101 	EFI_DEVICE_PATH *path;
102 	EFI_HANDLE *hin, *hin_end, *walker;
103 	UINTN sz;
104 	bool retval = false;
105 
106 	/*
107 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
108 	 * do the typical dance to get the right sized buffer.
109 	 */
110 	sz = 0;
111 	hin = NULL;
112 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
113 	if (status == EFI_BUFFER_TOO_SMALL) {
114 		hin = (EFI_HANDLE *)malloc(sz);
115 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
116 		    hin);
117 		if (EFI_ERROR(status))
118 			free(hin);
119 	}
120 	if (EFI_ERROR(status))
121 		return retval;
122 
123 	/*
124 	 * Look at each of the handles. If it supports the device path protocol,
125 	 * use it to get the device path for this handle. Then see if that
126 	 * device path matches either the USB device path for keyboards or the
127 	 * legacy device path for keyboards.
128 	 */
129 	hin_end = &hin[sz / sizeof(*hin)];
130 	for (walker = hin; walker < hin_end; walker++) {
131 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
132 		if (EFI_ERROR(status))
133 			continue;
134 
135 		while (!IsDevicePathEnd(path)) {
136 			/*
137 			 * Check for the ACPI keyboard node. All PNP3xx nodes
138 			 * are keyboards of different flavors. Note: It is
139 			 * unclear of there's always a keyboard node when
140 			 * there's a keyboard controller, or if there's only one
141 			 * when a keyboard is detected at boot.
142 			 */
143 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
144 			    (DevicePathSubType(path) == ACPI_DP ||
145 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
146 				ACPI_HID_DEVICE_PATH  *acpi;
147 
148 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
149 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
150 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
151 					retval = true;
152 					goto out;
153 				}
154 			/*
155 			 * Check for USB keyboard node, if present. Unlike a
156 			 * PS/2 keyboard, these definitely only appear when
157 			 * connected to the system.
158 			 */
159 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
160 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
161 				USB_CLASS_DEVICE_PATH *usb;
162 
163 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
164 				if (usb->DeviceClass == 3 && /* HID */
165 				    usb->DeviceSubClass == 1 && /* Boot devices */
166 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
167 					retval = true;
168 					goto out;
169 				}
170 			}
171 			path = NextDevicePathNode(path);
172 		}
173 	}
174 out:
175 	free(hin);
176 	return retval;
177 }
178 
179 static void
180 set_currdev(const char *devname)
181 {
182 
183 	/*
184 	 * Don't execute hooks here; we may need to try setting these more than
185 	 * once here if we're probing for the ZFS pool we're supposed to boot.
186 	 * The currdev hook is intended to just validate user input anyways,
187 	 * while the loaddev hook makes it immutable once we've determined what
188 	 * the proper currdev is.
189 	 */
190 	env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev,
191 	    env_nounset);
192 	env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset,
193 	    env_nounset);
194 }
195 
196 static void
197 set_currdev_devdesc(struct devdesc *currdev)
198 {
199 	const char *devname;
200 
201 	devname = efi_fmtdev(currdev);
202 	printf("Setting currdev to %s\n", devname);
203 	set_currdev(devname);
204 }
205 
206 static void
207 set_currdev_devsw(struct devsw *dev, int unit)
208 {
209 	struct devdesc currdev;
210 
211 	currdev.d_dev = dev;
212 	currdev.d_unit = unit;
213 
214 	set_currdev_devdesc(&currdev);
215 }
216 
217 static void
218 set_currdev_pdinfo(pdinfo_t *dp)
219 {
220 
221 	/*
222 	 * Disks are special: they have partitions. if the parent
223 	 * pointer is non-null, we're a partition not a full disk
224 	 * and we need to adjust currdev appropriately.
225 	 */
226 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
227 		struct disk_devdesc currdev;
228 
229 		currdev.dd.d_dev = dp->pd_devsw;
230 		if (dp->pd_parent == NULL) {
231 			currdev.dd.d_unit = dp->pd_unit;
232 			currdev.d_slice = D_SLICENONE;
233 			currdev.d_partition = D_PARTNONE;
234 		} else {
235 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
236 			currdev.d_slice = dp->pd_unit;
237 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
238 		}
239 		set_currdev_devdesc((struct devdesc *)&currdev);
240 	} else {
241 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
242 	}
243 }
244 
245 static bool
246 sanity_check_currdev(void)
247 {
248 	struct stat st;
249 
250 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
251 #ifdef PATH_BOOTABLE_TOKEN
252 	    stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
253 #endif
254 	    stat(PATH_KERNEL, &st) == 0);
255 }
256 
257 #ifdef EFI_ZFS_BOOT
258 static bool
259 probe_zfs_currdev(uint64_t guid)
260 {
261 	char *devname;
262 	struct zfs_devdesc currdev;
263 	char *buf = NULL;
264 	bool rv;
265 
266 	currdev.dd.d_dev = &zfs_dev;
267 	currdev.dd.d_unit = 0;
268 	currdev.pool_guid = guid;
269 	currdev.root_guid = 0;
270 	set_currdev_devdesc((struct devdesc *)&currdev);
271 	devname = efi_fmtdev(&currdev);
272 	init_zfs_bootenv(devname);
273 
274 	rv = sanity_check_currdev();
275 	if (rv) {
276 		buf = malloc(VDEV_PAD_SIZE);
277 		if (buf != NULL) {
278 			if (zfs_nextboot(&currdev, buf, VDEV_PAD_SIZE) == 0) {
279 				printf("zfs nextboot: %s\n", buf);
280 				set_currdev(buf);
281 			}
282 			free(buf);
283 		}
284 	}
285 	return (rv);
286 }
287 #endif
288 
289 static bool
290 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
291 {
292 	uint64_t guid;
293 
294 #ifdef EFI_ZFS_BOOT
295 	/*
296 	 * If there's a zpool on this device, try it as a ZFS
297 	 * filesystem, which has somewhat different setup than all
298 	 * other types of fs due to imperfect loader integration.
299 	 * This all stems from ZFS being both a device (zpool) and
300 	 * a filesystem, plus the boot env feature.
301 	 */
302 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
303 		return (probe_zfs_currdev(guid));
304 #endif
305 	/*
306 	 * All other filesystems just need the pdinfo
307 	 * initialized in the standard way.
308 	 */
309 	set_currdev_pdinfo(pp);
310 	return (sanity_check_currdev());
311 }
312 
313 /*
314  * Sometimes we get filenames that are all upper case
315  * and/or have backslashes in them. Filter all this out
316  * if it looks like we need to do so.
317  */
318 static void
319 fix_dosisms(char *p)
320 {
321 	while (*p) {
322 		if (isupper(*p))
323 			*p = tolower(*p);
324 		else if (*p == '\\')
325 			*p = '/';
326 		p++;
327 	}
328 }
329 
330 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
331 
332 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
333 static int
334 match_boot_info(char *boot_info, size_t bisz)
335 {
336 	uint32_t attr;
337 	uint16_t fplen;
338 	size_t len;
339 	char *walker, *ep;
340 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
341 	pdinfo_t *pp;
342 	CHAR16 *descr;
343 	char *kernel = NULL;
344 	FILEPATH_DEVICE_PATH  *fp;
345 	struct stat st;
346 	CHAR16 *text;
347 
348 	/*
349 	 * FreeBSD encodes it's boot loading path into the boot loader
350 	 * BootXXXX variable. We look for the last one in the path
351 	 * and use that to load the kernel. However, if we only fine
352 	 * one DEVICE_PATH, then there's nothing specific and we should
353 	 * fall back.
354 	 *
355 	 * In an ideal world, we'd look at the image handle we were
356 	 * passed, match up with the loader we are and then return the
357 	 * next one in the path. This would be most flexible and cover
358 	 * many chain booting scenarios where you need to use this
359 	 * boot loader to get to the next boot loader. However, that
360 	 * doesn't work. We rarely have the path to the image booted
361 	 * (just the device) so we can't count on that. So, we do the
362 	 * enxt best thing, we look through the device path(s) passed
363 	 * in the BootXXXX varaible. If there's only one, we return
364 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
365 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
366 	 * return BAD_CHOICE for the caller to sort out.
367 	 */
368 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
369 		return NOT_SPECIFIC;
370 	walker = boot_info;
371 	ep = walker + bisz;
372 	memcpy(&attr, walker, sizeof(attr));
373 	walker += sizeof(attr);
374 	memcpy(&fplen, walker, sizeof(fplen));
375 	walker += sizeof(fplen);
376 	descr = (CHAR16 *)(intptr_t)walker;
377 	len = ucs2len(descr);
378 	walker += (len + 1) * sizeof(CHAR16);
379 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
380 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
381 	if ((char *)edp > ep)
382 		return NOT_SPECIFIC;
383 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
384 		text = efi_devpath_name(dp);
385 		if (text != NULL) {
386 			printf("   BootInfo Path: %S\n", text);
387 			efi_free_devpath_name(text);
388 		}
389 		last_dp = dp;
390 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
391 	}
392 
393 	/*
394 	 * If there's only one item in the list, then nothing was
395 	 * specified. Or if the last path doesn't have a media
396 	 * path in it. Those show up as various VenHw() nodes
397 	 * which are basically opaque to us. Don't count those
398 	 * as something specifc.
399 	 */
400 	if (last_dp == first_dp) {
401 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
402 		return NOT_SPECIFIC;
403 	}
404 	if (efi_devpath_to_media_path(last_dp) == NULL) {
405 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
406 		return NOT_SPECIFIC;
407 	}
408 
409 	/*
410 	 * OK. At this point we either have a good path or a bad one.
411 	 * Let's check.
412 	 */
413 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
414 	if (pp == NULL) {
415 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
416 		return BAD_CHOICE;
417 	}
418 	set_currdev_pdinfo(pp);
419 	if (!sanity_check_currdev()) {
420 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
421 		return BAD_CHOICE;
422 	}
423 
424 	/*
425 	 * OK. We've found a device that matches, next we need to check the last
426 	 * component of the path. If it's a file, then we set the default kernel
427 	 * to that. Otherwise, just use this as the default root.
428 	 *
429 	 * Reminder: we're running very early, before we've parsed the defaults
430 	 * file, so we may need to have a hack override.
431 	 */
432 	dp = efi_devpath_last_node(last_dp);
433 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
434 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
435 		printf("Using Boot%04x for root partition\n", boot_current);
436 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
437 	}
438 	fp = (FILEPATH_DEVICE_PATH *)dp;
439 	ucs2_to_utf8(fp->PathName, &kernel);
440 	if (kernel == NULL) {
441 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
442 		return (BAD_CHOICE);
443 	}
444 	if (*kernel == '\\' || isupper(*kernel))
445 		fix_dosisms(kernel);
446 	if (stat(kernel, &st) != 0) {
447 		free(kernel);
448 		printf("Not using Boot%04x: can't find %s\n", boot_current,
449 		    kernel);
450 		return (BAD_CHOICE);
451 	}
452 	setenv("kernel", kernel, 1);
453 	free(kernel);
454 	text = efi_devpath_name(last_dp);
455 	if (text) {
456 		printf("Using Boot%04x %S + %s\n", boot_current, text,
457 		    kernel);
458 		efi_free_devpath_name(text);
459 	}
460 
461 	return (BOOT_INFO_OK);
462 }
463 
464 /*
465  * Look at the passed-in boot_info, if any. If we find it then we need
466  * to see if we can find ourselves in the boot chain. If we can, and
467  * there's another specified thing to boot next, assume that the file
468  * is loaded from / and use that for the root filesystem. If can't
469  * find the specified thing, we must fail the boot. If we're last on
470  * the list, then we fallback to looking for the first available /
471  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
472  * partition that has either /boot/defaults/loader.conf on it or
473  * /boot/kernel/kernel (the default kernel) that we can use.
474  *
475  * We always fail if we can't find the right thing. However, as
476  * a concession to buggy UEFI implementations, like u-boot, if
477  * we have determined that the host is violating the UEFI boot
478  * manager protocol, we'll signal the rest of the program that
479  * a drop to the OK boot loader prompt is possible.
480  */
481 static int
482 find_currdev(bool do_bootmgr, bool is_last,
483     char *boot_info, size_t boot_info_sz)
484 {
485 	pdinfo_t *dp, *pp;
486 	EFI_DEVICE_PATH *devpath, *copy;
487 	EFI_HANDLE h;
488 	CHAR16 *text;
489 	struct devsw *dev;
490 	int unit;
491 	uint64_t extra;
492 	int rv;
493 	char *rootdev;
494 
495 	/*
496 	 * First choice: if rootdev is already set, use that, even if
497 	 * it's wrong.
498 	 */
499 	rootdev = getenv("rootdev");
500 	if (rootdev != NULL) {
501 		printf("    Setting currdev to configured rootdev %s\n",
502 		    rootdev);
503 		set_currdev(rootdev);
504 		return (0);
505 	}
506 
507 	/*
508 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
509 	 * path to the loader's internal name and use that.
510 	 */
511 	do {
512 		rootdev = getenv("uefi_rootdev");
513 		if (rootdev == NULL)
514 			break;
515 		devpath = efi_name_to_devpath(rootdev);
516 		if (devpath == NULL)
517 			break;
518 		dp = efiblk_get_pdinfo_by_device_path(devpath);
519 		efi_devpath_free(devpath);
520 		if (dp == NULL)
521 			break;
522 		printf("    Setting currdev to UEFI path %s\n",
523 		    rootdev);
524 		set_currdev_pdinfo(dp);
525 		return (0);
526 	} while (0);
527 
528 	/*
529 	 * Third choice: If we can find out image boot_info, and there's
530 	 * a follow-on boot image in that boot_info, use that. In this
531 	 * case root will be the partition specified in that image and
532 	 * we'll load the kernel specified by the file path. Should there
533 	 * not be a filepath, we use the default. This filepath overrides
534 	 * loader.conf.
535 	 */
536 	if (do_bootmgr) {
537 		rv = match_boot_info(boot_info, boot_info_sz);
538 		switch (rv) {
539 		case BOOT_INFO_OK:	/* We found it */
540 			return (0);
541 		case BAD_CHOICE:	/* specified file not found -> error */
542 			/* XXX do we want to have an escape hatch for last in boot order? */
543 			return (ENOENT);
544 		} /* Nothing specified, try normal match */
545 	}
546 
547 #ifdef EFI_ZFS_BOOT
548 	/*
549 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
550 	 * it found, if it's sane. ZFS is the only thing that looks for
551 	 * disks and pools to boot. This may change in the future, however,
552 	 * if we allow specifying which pool to boot from via UEFI variables
553 	 * rather than the bootenv stuff that FreeBSD uses today.
554 	 */
555 	if (pool_guid != 0) {
556 		printf("Trying ZFS pool\n");
557 		if (probe_zfs_currdev(pool_guid))
558 			return (0);
559 	}
560 #endif /* EFI_ZFS_BOOT */
561 
562 	/*
563 	 * Try to find the block device by its handle based on the
564 	 * image we're booting. If we can't find a sane partition,
565 	 * search all the other partitions of the disk. We do not
566 	 * search other disks because it's a violation of the UEFI
567 	 * boot protocol to do so. We fail and let UEFI go on to
568 	 * the next candidate.
569 	 */
570 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
571 	if (dp != NULL) {
572 		text = efi_devpath_name(dp->pd_devpath);
573 		if (text != NULL) {
574 			printf("Trying ESP: %S\n", text);
575 			efi_free_devpath_name(text);
576 		}
577 		set_currdev_pdinfo(dp);
578 		if (sanity_check_currdev())
579 			return (0);
580 		if (dp->pd_parent != NULL) {
581 			pdinfo_t *espdp = dp;
582 			dp = dp->pd_parent;
583 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
584 				/* Already tried the ESP */
585 				if (espdp == pp)
586 					continue;
587 				/*
588 				 * Roll up the ZFS special case
589 				 * for those partitions that have
590 				 * zpools on them.
591 				 */
592 				text = efi_devpath_name(pp->pd_devpath);
593 				if (text != NULL) {
594 					printf("Trying: %S\n", text);
595 					efi_free_devpath_name(text);
596 				}
597 				if (try_as_currdev(dp, pp))
598 					return (0);
599 			}
600 		}
601 	}
602 
603 	/*
604 	 * Try the device handle from our loaded image first.  If that
605 	 * fails, use the device path from the loaded image and see if
606 	 * any of the nodes in that path match one of the enumerated
607 	 * handles. Currently, this handle list is only for netboot.
608 	 */
609 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
610 		set_currdev_devsw(dev, unit);
611 		if (sanity_check_currdev())
612 			return (0);
613 	}
614 
615 	copy = NULL;
616 	devpath = efi_lookup_image_devpath(IH);
617 	while (devpath != NULL) {
618 		h = efi_devpath_handle(devpath);
619 		if (h == NULL)
620 			break;
621 
622 		free(copy);
623 		copy = NULL;
624 
625 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
626 			set_currdev_devsw(dev, unit);
627 			if (sanity_check_currdev())
628 				return (0);
629 		}
630 
631 		devpath = efi_lookup_devpath(h);
632 		if (devpath != NULL) {
633 			copy = efi_devpath_trim(devpath);
634 			devpath = copy;
635 		}
636 	}
637 	free(copy);
638 
639 	return (ENOENT);
640 }
641 
642 static bool
643 interactive_interrupt(const char *msg)
644 {
645 	time_t now, then, last;
646 
647 	last = 0;
648 	now = then = getsecs();
649 	printf("%s\n", msg);
650 	if (fail_timeout == -2)		/* Always break to OK */
651 		return (true);
652 	if (fail_timeout == -1)		/* Never break to OK */
653 		return (false);
654 	do {
655 		if (last != now) {
656 			printf("press any key to interrupt reboot in %d seconds\r",
657 			    fail_timeout - (int)(now - then));
658 			last = now;
659 		}
660 
661 		/* XXX no pause or timeout wait for char */
662 		if (ischar())
663 			return (true);
664 		now = getsecs();
665 	} while (now - then < fail_timeout);
666 	return (false);
667 }
668 
669 static int
670 parse_args(int argc, CHAR16 *argv[])
671 {
672 	int i, j, howto;
673 	bool vargood;
674 	char var[128];
675 
676 	/*
677 	 * Parse the args to set the console settings, etc
678 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
679 	 * or iPXE may be setup to pass these in. Or the optional argument in the
680 	 * boot environment was used to pass these arguments in (in which case
681 	 * neither /boot.config nor /boot/config are consulted).
682 	 *
683 	 * Loop through the args, and for each one that contains an '=' that is
684 	 * not the first character, add it to the environment.  This allows
685 	 * loader and kernel env vars to be passed on the command line.  Convert
686 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
687 	 * method is flawed for non-ASCII characters).
688 	 */
689 	howto = 0;
690 	for (i = 1; i < argc; i++) {
691 		cpy16to8(argv[i], var, sizeof(var));
692 		howto |= boot_parse_arg(var);
693 	}
694 
695 	return (howto);
696 }
697 
698 static void
699 setenv_int(const char *key, int val)
700 {
701 	char buf[20];
702 
703 	snprintf(buf, sizeof(buf), "%d", val);
704 	setenv(key, buf, 1);
705 }
706 
707 /*
708  * Parse ConOut (the list of consoles active) and see if we can find a
709  * serial port and/or a video port. It would be nice to also walk the
710  * ACPI name space to map the UID for the serial port to a port. The
711  * latter is especially hard.
712  */
713 int
714 parse_uefi_con_out(void)
715 {
716 	int how, rv;
717 	int vid_seen = 0, com_seen = 0, seen = 0;
718 	size_t sz;
719 	char buf[4096], *ep;
720 	EFI_DEVICE_PATH *node;
721 	ACPI_HID_DEVICE_PATH  *acpi;
722 	UART_DEVICE_PATH  *uart;
723 	bool pci_pending;
724 
725 	how = 0;
726 	sz = sizeof(buf);
727 	rv = efi_global_getenv("ConOut", buf, &sz);
728 	if (rv != EFI_SUCCESS) {
729 		/* If we don't have any ConOut default to serial */
730 		how = RB_SERIAL;
731 		goto out;
732 	}
733 	ep = buf + sz;
734 	node = (EFI_DEVICE_PATH *)buf;
735 	while ((char *)node < ep) {
736 		pci_pending = false;
737 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
738 		    (DevicePathSubType(node) == ACPI_DP ||
739 		    DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
740 			/* Check for Serial node */
741 			acpi = (void *)node;
742 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
743 				setenv_int("efi_8250_uid", acpi->UID);
744 				com_seen = ++seen;
745 			}
746 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
747 		    DevicePathSubType(node) == MSG_UART_DP) {
748 			com_seen = ++seen;
749 			uart = (void *)node;
750 			setenv_int("efi_com_speed", uart->BaudRate);
751 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
752 		    DevicePathSubType(node) == ACPI_ADR_DP) {
753 			/* Check for AcpiAdr() Node for video */
754 			vid_seen = ++seen;
755 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
756 		    DevicePathSubType(node) == HW_PCI_DP) {
757 			/*
758 			 * Note, vmware fusion has a funky console device
759 			 *	PciRoot(0x0)/Pci(0xf,0x0)
760 			 * which we can only detect at the end since we also
761 			 * have to cope with:
762 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
763 			 * so only match it if it's last.
764 			 */
765 			pci_pending = true;
766 		}
767 		node = NextDevicePathNode(node);
768 	}
769 	if (pci_pending && vid_seen == 0)
770 		vid_seen = ++seen;
771 
772 	/*
773 	 * Truth table for RB_MULTIPLE | RB_SERIAL
774 	 * Value		Result
775 	 * 0			Use only video console
776 	 * RB_SERIAL		Use only serial console
777 	 * RB_MULTIPLE		Use both video and serial console
778 	 *			(but video is primary so gets rc messages)
779 	 * both			Use both video and serial console
780 	 *			(but serial is primary so gets rc messages)
781 	 *
782 	 * Try to honor this as best we can. If only one of serial / video
783 	 * found, then use that. Otherwise, use the first one we found.
784 	 * This also implies if we found nothing, default to video.
785 	 */
786 	how = 0;
787 	if (vid_seen && com_seen) {
788 		how |= RB_MULTIPLE;
789 		if (com_seen < vid_seen)
790 			how |= RB_SERIAL;
791 	} else if (com_seen)
792 		how |= RB_SERIAL;
793 out:
794 	return (how);
795 }
796 
797 void
798 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
799 {
800 	pdinfo_t *dp;
801 	struct stat st;
802 	int fd = -1;
803 	char *env = NULL;
804 
805 	dp = efiblk_get_pdinfo_by_handle(h);
806 	if (dp == NULL)
807 		return;
808 	set_currdev_pdinfo(dp);
809 	if (stat(env_fn, &st) != 0)
810 		return;
811 	fd = open(env_fn, O_RDONLY);
812 	if (fd == -1)
813 		return;
814 	env = malloc(st.st_size + 1);
815 	if (env == NULL)
816 		goto out;
817 	if (read(fd, env, st.st_size) != st.st_size)
818 		goto out;
819 	env[st.st_size] = '\0';
820 	boot_parse_cmdline(env);
821 out:
822 	free(env);
823 	close(fd);
824 }
825 
826 static void
827 read_loader_env(const char *name, char *def_fn, bool once)
828 {
829 	UINTN len;
830 	char *fn, *freeme = NULL;
831 
832 	len = 0;
833 	fn = def_fn;
834 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
835 		freeme = fn = malloc(len + 1);
836 		if (fn != NULL) {
837 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
838 				free(fn);
839 				fn = NULL;
840 				printf(
841 			    "Can't fetch FreeBSD::%s we know is there\n", name);
842 			} else {
843 				/*
844 				 * if tagged as 'once' delete the env variable so we
845 				 * only use it once.
846 				 */
847 				if (once)
848 					efi_freebsd_delenv(name);
849 				/*
850 				 * We malloced 1 more than len above, then redid the call.
851 				 * so now we have room at the end of the string to NUL terminate
852 				 * it here, even if the typical idium would have '- 1' here to
853 				 * not overflow. len should be the same on return both times.
854 				 */
855 				fn[len] = '\0';
856 			}
857 		} else {
858 			printf(
859 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
860 			    len, name);
861 		}
862 	}
863 	if (fn) {
864 		printf("    Reading loader env vars from %s\n", fn);
865 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
866 	}
867 }
868 
869 caddr_t
870 ptov(uintptr_t x)
871 {
872 	return ((caddr_t)x);
873 }
874 
875 EFI_STATUS
876 main(int argc, CHAR16 *argv[])
877 {
878 	EFI_GUID *guid;
879 	int howto, i, uhowto;
880 	UINTN k;
881 	bool has_kbd, is_last;
882 	char *s;
883 	EFI_DEVICE_PATH *imgpath;
884 	CHAR16 *text;
885 	EFI_STATUS rv;
886 	size_t sz, bosz = 0, bisz = 0;
887 	UINT16 boot_order[100];
888 	char boot_info[4096];
889 	char buf[32];
890 	bool uefi_boot_mgr;
891 
892 	archsw.arch_autoload = efi_autoload;
893 	archsw.arch_getdev = efi_getdev;
894 	archsw.arch_copyin = efi_copyin;
895 	archsw.arch_copyout = efi_copyout;
896 #ifdef __amd64__
897 	archsw.arch_hypervisor = x86_hypervisor;
898 #endif
899 	archsw.arch_readin = efi_readin;
900 	archsw.arch_zfs_probe = efi_zfs_probe;
901 
902         /* Get our loaded image protocol interface structure. */
903 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
904 
905 	/*
906 	 * Chicken-and-egg problem; we want to have console output early, but
907 	 * some console attributes may depend on reading from eg. the boot
908 	 * device, which we can't do yet.  We can use printf() etc. once this is
909 	 * done. So, we set it to the efi console, then call console init. This
910 	 * gets us printf early, but also primes the pump for all future console
911 	 * changes to take effect, regardless of where they come from.
912 	 */
913 	setenv("console", "efi", 1);
914 	uhowto = parse_uefi_con_out();
915 #if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
916 	if ((uhowto & RB_SERIAL) != 0)
917 		setenv("console", "comconsole", 1);
918 #endif
919 	cons_probe();
920 
921 	/* Init the time source */
922 	efi_time_init();
923 
924 	/*
925 	 * Initialise the block cache. Set the upper limit.
926 	 */
927 	bcache_init(32768, 512);
928 
929 	/*
930 	 * Scan the BLOCK IO MEDIA handles then
931 	 * march through the device switch probing for things.
932 	 */
933 	i = efipart_inithandles();
934 	if (i != 0 && i != ENOENT) {
935 		printf("efipart_inithandles failed with ERRNO %d, expect "
936 		    "failures\n", i);
937 	}
938 
939 	for (i = 0; devsw[i] != NULL; i++)
940 		if (devsw[i]->dv_init != NULL)
941 			(devsw[i]->dv_init)();
942 
943 	/*
944 	 * Detect console settings two different ways: one via the command
945 	 * args (eg -h) or via the UEFI ConOut variable.
946 	 */
947 	has_kbd = has_keyboard();
948 	howto = parse_args(argc, argv);
949 	if (!has_kbd && (howto & RB_PROBE))
950 		howto |= RB_SERIAL | RB_MULTIPLE;
951 	howto &= ~RB_PROBE;
952 
953 	/*
954 	 * Read additional environment variables from the boot device's
955 	 * "LoaderEnv" file. Any boot loader environment variable may be set
956 	 * there, which are subtly different than loader.conf variables. Only
957 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
958 	 * for two reasons.  First, the parser is simplistic and doesn't grok
959 	 * quotes.  Second, because the variables that cause an action to happen
960 	 * are parsed by the lua, 4th or whatever code that's not yet
961 	 * loaded. This is relative to the root directory when loader.efi is
962 	 * loaded off the UFS root drive (when chain booted), or from the ESP
963 	 * when directly loaded by the BIOS.
964 	 *
965 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
966 	 * functionality to be implemented and to override anything in LoaderEnv.
967 	 */
968 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
969 	read_loader_env("NextLoaderEnv", NULL, true);
970 
971 	/*
972 	 * We now have two notions of console. howto should be viewed as
973 	 * overrides. If console is already set, don't set it again.
974 	 */
975 #define	VIDEO_ONLY	0
976 #define	SERIAL_ONLY	RB_SERIAL
977 #define	VID_SER_BOTH	RB_MULTIPLE
978 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
979 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
980 	if (strcmp(getenv("console"), "efi") == 0) {
981 		if ((howto & CON_MASK) == 0) {
982 			/* No override, uhowto is controlling and efi cons is perfect */
983 			howto = howto | (uhowto & CON_MASK);
984 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
985 			/* override matches what UEFI told us, efi console is perfect */
986 		} else if ((uhowto & (CON_MASK)) != 0) {
987 			/*
988 			 * We detected a serial console on ConOut. All possible
989 			 * overrides include serial. We can't really override what efi
990 			 * gives us, so we use it knowing it's the best choice.
991 			 */
992 			/* Do nothing */
993 		} else {
994 			/*
995 			 * We detected some kind of serial in the override, but ConOut
996 			 * has no serial, so we have to sort out which case it really is.
997 			 */
998 			switch (howto & CON_MASK) {
999 			case SERIAL_ONLY:
1000 				setenv("console", "comconsole", 1);
1001 				break;
1002 			case VID_SER_BOTH:
1003 				setenv("console", "efi comconsole", 1);
1004 				break;
1005 			case SER_VID_BOTH:
1006 				setenv("console", "comconsole efi", 1);
1007 				break;
1008 				/* case VIDEO_ONLY can't happen -- it's the first if above */
1009 			}
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * howto is set now how we want to export the flags to the kernel, so
1015 	 * set the env based on it.
1016 	 */
1017 	boot_howto_to_env(howto);
1018 
1019 	if (efi_copy_init()) {
1020 		printf("failed to allocate staging area\n");
1021 		return (EFI_BUFFER_TOO_SMALL);
1022 	}
1023 
1024 	if ((s = getenv("fail_timeout")) != NULL)
1025 		fail_timeout = strtol(s, NULL, 10);
1026 
1027 	printf("%s\n", bootprog_info);
1028 	printf("   Command line arguments:");
1029 	for (i = 0; i < argc; i++)
1030 		printf(" %S", argv[i]);
1031 	printf("\n");
1032 
1033 	printf("   Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1034 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1035 	    ST->Hdr.Revision & 0xffff);
1036 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1037 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1038 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
1039 
1040 	/* Determine the devpath of our image so we can prefer it. */
1041 	text = efi_devpath_name(boot_img->FilePath);
1042 	if (text != NULL) {
1043 		printf("   Load Path: %S\n", text);
1044 		efi_setenv_freebsd_wcs("LoaderPath", text);
1045 		efi_free_devpath_name(text);
1046 	}
1047 
1048 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1049 	    (void **)&imgpath);
1050 	if (rv == EFI_SUCCESS) {
1051 		text = efi_devpath_name(imgpath);
1052 		if (text != NULL) {
1053 			printf("   Load Device: %S\n", text);
1054 			efi_setenv_freebsd_wcs("LoaderDev", text);
1055 			efi_free_devpath_name(text);
1056 		}
1057 	}
1058 
1059 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1060 		printf("    Ignoring UEFI boot manager\n");
1061 		uefi_boot_mgr = false;
1062 	} else {
1063 		uefi_boot_mgr = true;
1064 		boot_current = 0;
1065 		sz = sizeof(boot_current);
1066 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1067 		if (rv == EFI_SUCCESS)
1068 			printf("   BootCurrent: %04x\n", boot_current);
1069 		else {
1070 			boot_current = 0xffff;
1071 			uefi_boot_mgr = false;
1072 		}
1073 
1074 		sz = sizeof(boot_order);
1075 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1076 		if (rv == EFI_SUCCESS) {
1077 			printf("   BootOrder:");
1078 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1079 				printf(" %04x%s", boot_order[i],
1080 				    boot_order[i] == boot_current ? "[*]" : "");
1081 			printf("\n");
1082 			is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1083 			bosz = sz;
1084 		} else if (uefi_boot_mgr) {
1085 			/*
1086 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1087 			 * boot manager protocol. So we fake it here and don't consider it
1088 			 * a failure.
1089 			 */
1090 			bosz = sizeof(boot_order[0]);
1091 			boot_order[0] = boot_current;
1092 			is_last = true;
1093 		}
1094 	}
1095 
1096 	/*
1097 	 * Next, find the boot info structure the UEFI boot manager is
1098 	 * supposed to setup. We need this so we can walk through it to
1099 	 * find where we are in the booting process and what to try to
1100 	 * boot next.
1101 	 */
1102 	if (uefi_boot_mgr) {
1103 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1104 		sz = sizeof(boot_info);
1105 		rv = efi_global_getenv(buf, &boot_info, &sz);
1106 		if (rv == EFI_SUCCESS)
1107 			bisz = sz;
1108 		else
1109 			uefi_boot_mgr = false;
1110 	}
1111 
1112 	/*
1113 	 * Disable the watchdog timer. By default the boot manager sets
1114 	 * the timer to 5 minutes before invoking a boot option. If we
1115 	 * want to return to the boot manager, we have to disable the
1116 	 * watchdog timer and since we're an interactive program, we don't
1117 	 * want to wait until the user types "quit". The timer may have
1118 	 * fired by then. We don't care if this fails. It does not prevent
1119 	 * normal functioning in any way...
1120 	 */
1121 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1122 
1123 	/*
1124 	 * Initialize the trusted/forbidden certificates from UEFI.
1125 	 * They will be later used to verify the manifest(s),
1126 	 * which should contain hashes of verified files.
1127 	 * This needs to be initialized before any configuration files
1128 	 * are loaded.
1129 	 */
1130 #ifdef EFI_SECUREBOOT
1131 	ve_efi_init();
1132 #endif
1133 
1134 	/*
1135 	 * Try and find a good currdev based on the image that was booted.
1136 	 * It might be desirable here to have a short pause to allow falling
1137 	 * through to the boot loader instead of returning instantly to follow
1138 	 * the boot protocol and also allow an escape hatch for users wishing
1139 	 * to try something different.
1140 	 */
1141 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1142 		if (uefi_boot_mgr &&
1143 		    !interactive_interrupt("Failed to find bootable partition"))
1144 			return (EFI_NOT_FOUND);
1145 
1146 	efi_init_environment();
1147 
1148 #if !defined(__arm__)
1149 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1150 		guid = &ST->ConfigurationTable[k].VendorGuid;
1151 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
1152 			char buf[40];
1153 
1154 			snprintf(buf, sizeof(buf), "%p",
1155 			    ST->ConfigurationTable[k].VendorTable);
1156 			setenv("hint.smbios.0.mem", buf, 1);
1157 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
1158 			break;
1159 		}
1160 	}
1161 #endif
1162 
1163 	interact();			/* doesn't return */
1164 
1165 	return (EFI_SUCCESS);		/* keep compiler happy */
1166 }
1167 
1168 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1169 
1170 static int
1171 command_poweroff(int argc __unused, char *argv[] __unused)
1172 {
1173 	int i;
1174 
1175 	for (i = 0; devsw[i] != NULL; ++i)
1176 		if (devsw[i]->dv_cleanup != NULL)
1177 			(devsw[i]->dv_cleanup)();
1178 
1179 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1180 
1181 	/* NOTREACHED */
1182 	return (CMD_ERROR);
1183 }
1184 
1185 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1186 
1187 static int
1188 command_reboot(int argc, char *argv[])
1189 {
1190 	int i;
1191 
1192 	for (i = 0; devsw[i] != NULL; ++i)
1193 		if (devsw[i]->dv_cleanup != NULL)
1194 			(devsw[i]->dv_cleanup)();
1195 
1196 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1197 
1198 	/* NOTREACHED */
1199 	return (CMD_ERROR);
1200 }
1201 
1202 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1203 
1204 static int
1205 command_quit(int argc, char *argv[])
1206 {
1207 	exit(0);
1208 	return (CMD_OK);
1209 }
1210 
1211 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1212 
1213 static int
1214 command_memmap(int argc __unused, char *argv[] __unused)
1215 {
1216 	UINTN sz;
1217 	EFI_MEMORY_DESCRIPTOR *map, *p;
1218 	UINTN key, dsz;
1219 	UINT32 dver;
1220 	EFI_STATUS status;
1221 	int i, ndesc;
1222 	char line[80];
1223 
1224 	sz = 0;
1225 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1226 	if (status != EFI_BUFFER_TOO_SMALL) {
1227 		printf("Can't determine memory map size\n");
1228 		return (CMD_ERROR);
1229 	}
1230 	map = malloc(sz);
1231 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1232 	if (EFI_ERROR(status)) {
1233 		printf("Can't read memory map\n");
1234 		return (CMD_ERROR);
1235 	}
1236 
1237 	ndesc = sz / dsz;
1238 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1239 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1240 	pager_open();
1241 	if (pager_output(line)) {
1242 		pager_close();
1243 		return (CMD_OK);
1244 	}
1245 
1246 	for (i = 0, p = map; i < ndesc;
1247 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1248 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1249 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1250 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1251 		if (pager_output(line))
1252 			break;
1253 
1254 		if (p->Attribute & EFI_MEMORY_UC)
1255 			printf("UC ");
1256 		if (p->Attribute & EFI_MEMORY_WC)
1257 			printf("WC ");
1258 		if (p->Attribute & EFI_MEMORY_WT)
1259 			printf("WT ");
1260 		if (p->Attribute & EFI_MEMORY_WB)
1261 			printf("WB ");
1262 		if (p->Attribute & EFI_MEMORY_UCE)
1263 			printf("UCE ");
1264 		if (p->Attribute & EFI_MEMORY_WP)
1265 			printf("WP ");
1266 		if (p->Attribute & EFI_MEMORY_RP)
1267 			printf("RP ");
1268 		if (p->Attribute & EFI_MEMORY_XP)
1269 			printf("XP ");
1270 		if (p->Attribute & EFI_MEMORY_NV)
1271 			printf("NV ");
1272 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1273 			printf("MR ");
1274 		if (p->Attribute & EFI_MEMORY_RO)
1275 			printf("RO ");
1276 		if (pager_output("\n"))
1277 			break;
1278 	}
1279 
1280 	pager_close();
1281 	return (CMD_OK);
1282 }
1283 
1284 COMMAND_SET(configuration, "configuration", "print configuration tables",
1285     command_configuration);
1286 
1287 static int
1288 command_configuration(int argc, char *argv[])
1289 {
1290 	UINTN i;
1291 	char *name;
1292 
1293 	printf("NumberOfTableEntries=%lu\n",
1294 		(unsigned long)ST->NumberOfTableEntries);
1295 
1296 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1297 		EFI_GUID *guid;
1298 
1299 		printf("  ");
1300 		guid = &ST->ConfigurationTable[i].VendorGuid;
1301 
1302 		if (efi_guid_to_name(guid, &name) == true) {
1303 			printf(name);
1304 			free(name);
1305 		} else {
1306 			printf("Error while translating UUID to name");
1307 		}
1308 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1309 	}
1310 
1311 	return (CMD_OK);
1312 }
1313 
1314 
1315 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1316 
1317 static int
1318 command_mode(int argc, char *argv[])
1319 {
1320 	UINTN cols, rows;
1321 	unsigned int mode;
1322 	int i;
1323 	char *cp;
1324 	EFI_STATUS status;
1325 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1326 
1327 	conout = ST->ConOut;
1328 
1329 	if (argc > 1) {
1330 		mode = strtol(argv[1], &cp, 0);
1331 		if (cp[0] != '\0') {
1332 			printf("Invalid mode\n");
1333 			return (CMD_ERROR);
1334 		}
1335 		status = conout->QueryMode(conout, mode, &cols, &rows);
1336 		if (EFI_ERROR(status)) {
1337 			printf("invalid mode %d\n", mode);
1338 			return (CMD_ERROR);
1339 		}
1340 		status = conout->SetMode(conout, mode);
1341 		if (EFI_ERROR(status)) {
1342 			printf("couldn't set mode %d\n", mode);
1343 			return (CMD_ERROR);
1344 		}
1345 		(void) efi_cons_update_mode();
1346 		return (CMD_OK);
1347 	}
1348 
1349 	printf("Current mode: %d\n", conout->Mode->Mode);
1350 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1351 		status = conout->QueryMode(conout, i, &cols, &rows);
1352 		if (EFI_ERROR(status))
1353 			continue;
1354 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1355 		    (unsigned)rows);
1356 	}
1357 
1358 	if (i != 0)
1359 		printf("Select a mode with the command \"mode <number>\"\n");
1360 
1361 	return (CMD_OK);
1362 }
1363 
1364 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1365 
1366 static int
1367 command_lsefi(int argc __unused, char *argv[] __unused)
1368 {
1369 	char *name;
1370 	EFI_HANDLE *buffer = NULL;
1371 	EFI_HANDLE handle;
1372 	UINTN bufsz = 0, i, j;
1373 	EFI_STATUS status;
1374 	int ret = 0;
1375 
1376 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1377 	if (status != EFI_BUFFER_TOO_SMALL) {
1378 		snprintf(command_errbuf, sizeof (command_errbuf),
1379 		    "unexpected error: %lld", (long long)status);
1380 		return (CMD_ERROR);
1381 	}
1382 	if ((buffer = malloc(bufsz)) == NULL) {
1383 		sprintf(command_errbuf, "out of memory");
1384 		return (CMD_ERROR);
1385 	}
1386 
1387 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1388 	if (EFI_ERROR(status)) {
1389 		free(buffer);
1390 		snprintf(command_errbuf, sizeof (command_errbuf),
1391 		    "LocateHandle() error: %lld", (long long)status);
1392 		return (CMD_ERROR);
1393 	}
1394 
1395 	pager_open();
1396 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1397 		UINTN nproto = 0;
1398 		EFI_GUID **protocols = NULL;
1399 
1400 		handle = buffer[i];
1401 		printf("Handle %p", handle);
1402 		if (pager_output("\n"))
1403 			break;
1404 		/* device path */
1405 
1406 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1407 		if (EFI_ERROR(status)) {
1408 			snprintf(command_errbuf, sizeof (command_errbuf),
1409 			    "ProtocolsPerHandle() error: %lld",
1410 			    (long long)status);
1411 			continue;
1412 		}
1413 
1414 		for (j = 0; j < nproto; j++) {
1415 			if (efi_guid_to_name(protocols[j], &name) == true) {
1416 				printf("  %s", name);
1417 				free(name);
1418 			} else {
1419 				printf("Error while translating UUID to name");
1420 			}
1421 			if ((ret = pager_output("\n")) != 0)
1422 				break;
1423 		}
1424 		BS->FreePool(protocols);
1425 		if (ret != 0)
1426 			break;
1427 	}
1428 	pager_close();
1429 	free(buffer);
1430 	return (CMD_OK);
1431 }
1432 
1433 #ifdef LOADER_FDT_SUPPORT
1434 extern int command_fdt_internal(int argc, char *argv[]);
1435 
1436 /*
1437  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1438  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1439  * (which uses static pointer), we're defining wrapper function, which
1440  * calls the proper fdt handling routine.
1441  */
1442 static int
1443 command_fdt(int argc, char *argv[])
1444 {
1445 
1446 	return (command_fdt_internal(argc, argv));
1447 }
1448 
1449 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1450 #endif
1451 
1452 /*
1453  * Chain load another efi loader.
1454  */
1455 static int
1456 command_chain(int argc, char *argv[])
1457 {
1458 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1459 	EFI_HANDLE loaderhandle;
1460 	EFI_LOADED_IMAGE *loaded_image;
1461 	EFI_STATUS status;
1462 	struct stat st;
1463 	struct devdesc *dev;
1464 	char *name, *path;
1465 	void *buf;
1466 	int fd;
1467 
1468 	if (argc < 2) {
1469 		command_errmsg = "wrong number of arguments";
1470 		return (CMD_ERROR);
1471 	}
1472 
1473 	name = argv[1];
1474 
1475 	if ((fd = open(name, O_RDONLY)) < 0) {
1476 		command_errmsg = "no such file";
1477 		return (CMD_ERROR);
1478 	}
1479 
1480 #ifdef LOADER_VERIEXEC
1481 	if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1482 		sprintf(command_errbuf, "can't verify: %s", name);
1483 		close(fd);
1484 		return (CMD_ERROR);
1485 	}
1486 #endif
1487 
1488 	if (fstat(fd, &st) < -1) {
1489 		command_errmsg = "stat failed";
1490 		close(fd);
1491 		return (CMD_ERROR);
1492 	}
1493 
1494 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1495 	if (status != EFI_SUCCESS) {
1496 		command_errmsg = "failed to allocate buffer";
1497 		close(fd);
1498 		return (CMD_ERROR);
1499 	}
1500 	if (read(fd, buf, st.st_size) != st.st_size) {
1501 		command_errmsg = "error while reading the file";
1502 		(void)BS->FreePool(buf);
1503 		close(fd);
1504 		return (CMD_ERROR);
1505 	}
1506 	close(fd);
1507 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1508 	(void)BS->FreePool(buf);
1509 	if (status != EFI_SUCCESS) {
1510 		command_errmsg = "LoadImage failed";
1511 		return (CMD_ERROR);
1512 	}
1513 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1514 	    (void **)&loaded_image);
1515 
1516 	if (argc > 2) {
1517 		int i, len = 0;
1518 		CHAR16 *argp;
1519 
1520 		for (i = 2; i < argc; i++)
1521 			len += strlen(argv[i]) + 1;
1522 
1523 		len *= sizeof (*argp);
1524 		loaded_image->LoadOptions = argp = malloc (len);
1525 		loaded_image->LoadOptionsSize = len;
1526 		for (i = 2; i < argc; i++) {
1527 			char *ptr = argv[i];
1528 			while (*ptr)
1529 				*(argp++) = *(ptr++);
1530 			*(argp++) = ' ';
1531 		}
1532 		*(--argv) = 0;
1533 	}
1534 
1535 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1536 #ifdef EFI_ZFS_BOOT
1537 		struct zfs_devdesc *z_dev;
1538 #endif
1539 		struct disk_devdesc *d_dev;
1540 		pdinfo_t *hd, *pd;
1541 
1542 		switch (dev->d_dev->dv_type) {
1543 #ifdef EFI_ZFS_BOOT
1544 		case DEVT_ZFS:
1545 			z_dev = (struct zfs_devdesc *)dev;
1546 			loaded_image->DeviceHandle =
1547 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1548 			break;
1549 #endif
1550 		case DEVT_NET:
1551 			loaded_image->DeviceHandle =
1552 			    efi_find_handle(dev->d_dev, dev->d_unit);
1553 			break;
1554 		default:
1555 			hd = efiblk_get_pdinfo(dev);
1556 			if (STAILQ_EMPTY(&hd->pd_part)) {
1557 				loaded_image->DeviceHandle = hd->pd_handle;
1558 				break;
1559 			}
1560 			d_dev = (struct disk_devdesc *)dev;
1561 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1562 				/*
1563 				 * d_partition should be 255
1564 				 */
1565 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1566 					loaded_image->DeviceHandle =
1567 					    pd->pd_handle;
1568 					break;
1569 				}
1570 			}
1571 			break;
1572 		}
1573 	}
1574 
1575 	dev_cleanup();
1576 	status = BS->StartImage(loaderhandle, NULL, NULL);
1577 	if (status != EFI_SUCCESS) {
1578 		command_errmsg = "StartImage failed";
1579 		free(loaded_image->LoadOptions);
1580 		loaded_image->LoadOptions = NULL;
1581 		status = BS->UnloadImage(loaded_image);
1582 		return (CMD_ERROR);
1583 	}
1584 
1585 	return (CMD_ERROR);	/* not reached */
1586 }
1587 
1588 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1589