xref: /freebsd/stand/libsa/zfs/zfs.c (revision 42249ef2)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  *	Stand-alone file reading package.
34  */
35 
36 #include <stand.h>
37 #include <sys/disk.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/queue.h>
41 #include <disk.h>
42 #include <part.h>
43 #include <stddef.h>
44 #include <stdarg.h>
45 #include <string.h>
46 #include <bootstrap.h>
47 
48 #include "libzfs.h"
49 
50 #include "zfsimpl.c"
51 
52 /* Define the range of indexes to be populated with ZFS Boot Environments */
53 #define		ZFS_BE_FIRST	4
54 #define		ZFS_BE_LAST	8
55 
56 static int	zfs_open(const char *path, struct open_file *f);
57 static int	zfs_close(struct open_file *f);
58 static int	zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid);
59 static off_t	zfs_seek(struct open_file *f, off_t offset, int where);
60 static int	zfs_stat(struct open_file *f, struct stat *sb);
61 static int	zfs_readdir(struct open_file *f, struct dirent *d);
62 
63 static void	zfs_bootenv_initial(const char *);
64 
65 struct devsw zfs_dev;
66 
67 struct fs_ops zfs_fsops = {
68 	"zfs",
69 	zfs_open,
70 	zfs_close,
71 	zfs_read,
72 	null_write,
73 	zfs_seek,
74 	zfs_stat,
75 	zfs_readdir
76 };
77 
78 /*
79  * In-core open file.
80  */
81 struct file {
82 	off_t		f_seekp;	/* seek pointer */
83 	dnode_phys_t	f_dnode;
84 	uint64_t	f_zap_type;	/* zap type for readdir */
85 	uint64_t	f_num_leafs;	/* number of fzap leaf blocks */
86 	zap_leaf_phys_t	*f_zap_leaf;	/* zap leaf buffer */
87 };
88 
89 static int	zfs_env_index;
90 static int	zfs_env_count;
91 
92 SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head);
93 struct zfs_be_list *zfs_be_headp;
94 struct zfs_be_entry {
95 	const char *name;
96 	SLIST_ENTRY(zfs_be_entry) entries;
97 } *zfs_be, *zfs_be_tmp;
98 
99 /*
100  * Open a file.
101  */
102 static int
103 zfs_open(const char *upath, struct open_file *f)
104 {
105 	struct zfsmount *mount = (struct zfsmount *)f->f_devdata;
106 	struct file *fp;
107 	int rc;
108 
109 	if (f->f_dev != &zfs_dev)
110 		return (EINVAL);
111 
112 	/* allocate file system specific data structure */
113 	fp = malloc(sizeof(struct file));
114 	bzero(fp, sizeof(struct file));
115 	f->f_fsdata = (void *)fp;
116 
117 	rc = zfs_lookup(mount, upath, &fp->f_dnode);
118 	fp->f_seekp = 0;
119 	if (rc) {
120 		f->f_fsdata = NULL;
121 		free(fp);
122 	}
123 	return (rc);
124 }
125 
126 static int
127 zfs_close(struct open_file *f)
128 {
129 	struct file *fp = (struct file *)f->f_fsdata;
130 
131 	dnode_cache_obj = NULL;
132 	f->f_fsdata = (void *)0;
133 	if (fp == (struct file *)0)
134 		return (0);
135 
136 	free(fp);
137 	return (0);
138 }
139 
140 /*
141  * Copy a portion of a file into kernel memory.
142  * Cross block boundaries when necessary.
143  */
144 static int
145 zfs_read(struct open_file *f, void *start, size_t size, size_t *resid	/* out */)
146 {
147 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
148 	struct file *fp = (struct file *)f->f_fsdata;
149 	struct stat sb;
150 	size_t n;
151 	int rc;
152 
153 	rc = zfs_stat(f, &sb);
154 	if (rc)
155 		return (rc);
156 	n = size;
157 	if (fp->f_seekp + n > sb.st_size)
158 		n = sb.st_size - fp->f_seekp;
159 
160 	rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n);
161 	if (rc)
162 		return (rc);
163 
164 	if (0) {
165 	    int i;
166 	    for (i = 0; i < n; i++)
167 		putchar(((char*) start)[i]);
168 	}
169 	fp->f_seekp += n;
170 	if (resid)
171 		*resid = size - n;
172 
173 	return (0);
174 }
175 
176 static off_t
177 zfs_seek(struct open_file *f, off_t offset, int where)
178 {
179 	struct file *fp = (struct file *)f->f_fsdata;
180 
181 	switch (where) {
182 	case SEEK_SET:
183 		fp->f_seekp = offset;
184 		break;
185 	case SEEK_CUR:
186 		fp->f_seekp += offset;
187 		break;
188 	case SEEK_END:
189 	    {
190 		struct stat sb;
191 		int error;
192 
193 		error = zfs_stat(f, &sb);
194 		if (error != 0) {
195 			errno = error;
196 			return (-1);
197 		}
198 		fp->f_seekp = sb.st_size - offset;
199 		break;
200 	    }
201 	default:
202 		errno = EINVAL;
203 		return (-1);
204 	}
205 	return (fp->f_seekp);
206 }
207 
208 static int
209 zfs_stat(struct open_file *f, struct stat *sb)
210 {
211 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
212 	struct file *fp = (struct file *)f->f_fsdata;
213 
214 	return (zfs_dnode_stat(spa, &fp->f_dnode, sb));
215 }
216 
217 static int
218 zfs_readdir(struct open_file *f, struct dirent *d)
219 {
220 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
221 	struct file *fp = (struct file *)f->f_fsdata;
222 	mzap_ent_phys_t mze;
223 	struct stat sb;
224 	size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT;
225 	int rc;
226 
227 	rc = zfs_stat(f, &sb);
228 	if (rc)
229 		return (rc);
230 	if (!S_ISDIR(sb.st_mode))
231 		return (ENOTDIR);
232 
233 	/*
234 	 * If this is the first read, get the zap type.
235 	 */
236 	if (fp->f_seekp == 0) {
237 		rc = dnode_read(spa, &fp->f_dnode,
238 				0, &fp->f_zap_type, sizeof(fp->f_zap_type));
239 		if (rc)
240 			return (rc);
241 
242 		if (fp->f_zap_type == ZBT_MICRO) {
243 			fp->f_seekp = offsetof(mzap_phys_t, mz_chunk);
244 		} else {
245 			rc = dnode_read(spa, &fp->f_dnode,
246 					offsetof(zap_phys_t, zap_num_leafs),
247 					&fp->f_num_leafs,
248 					sizeof(fp->f_num_leafs));
249 			if (rc)
250 				return (rc);
251 
252 			fp->f_seekp = bsize;
253 			fp->f_zap_leaf = (zap_leaf_phys_t *)malloc(bsize);
254 			rc = dnode_read(spa, &fp->f_dnode,
255 					fp->f_seekp,
256 					fp->f_zap_leaf,
257 					bsize);
258 			if (rc)
259 				return (rc);
260 		}
261 	}
262 
263 	if (fp->f_zap_type == ZBT_MICRO) {
264 	mzap_next:
265 		if (fp->f_seekp >= bsize)
266 			return (ENOENT);
267 
268 		rc = dnode_read(spa, &fp->f_dnode,
269 				fp->f_seekp, &mze, sizeof(mze));
270 		if (rc)
271 			return (rc);
272 		fp->f_seekp += sizeof(mze);
273 
274 		if (!mze.mze_name[0])
275 			goto mzap_next;
276 
277 		d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value);
278 		d->d_type = ZFS_DIRENT_TYPE(mze.mze_value);
279 		strcpy(d->d_name, mze.mze_name);
280 		d->d_namlen = strlen(d->d_name);
281 		return (0);
282 	} else {
283 		zap_leaf_t zl;
284 		zap_leaf_chunk_t *zc, *nc;
285 		int chunk;
286 		size_t namelen;
287 		char *p;
288 		uint64_t value;
289 
290 		/*
291 		 * Initialise this so we can use the ZAP size
292 		 * calculating macros.
293 		 */
294 		zl.l_bs = ilog2(bsize);
295 		zl.l_phys = fp->f_zap_leaf;
296 
297 		/*
298 		 * Figure out which chunk we are currently looking at
299 		 * and consider seeking to the next leaf. We use the
300 		 * low bits of f_seekp as a simple chunk index.
301 		 */
302 	fzap_next:
303 		chunk = fp->f_seekp & (bsize - 1);
304 		if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) {
305 			fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize;
306 			chunk = 0;
307 
308 			/*
309 			 * Check for EOF and read the new leaf.
310 			 */
311 			if (fp->f_seekp >= bsize * fp->f_num_leafs)
312 				return (ENOENT);
313 
314 			rc = dnode_read(spa, &fp->f_dnode,
315 					fp->f_seekp,
316 					fp->f_zap_leaf,
317 					bsize);
318 			if (rc)
319 				return (rc);
320 		}
321 
322 		zc = &ZAP_LEAF_CHUNK(&zl, chunk);
323 		fp->f_seekp++;
324 		if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
325 			goto fzap_next;
326 
327 		namelen = zc->l_entry.le_name_numints;
328 		if (namelen > sizeof(d->d_name))
329 			namelen = sizeof(d->d_name);
330 
331 		/*
332 		 * Paste the name back together.
333 		 */
334 		nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
335 		p = d->d_name;
336 		while (namelen > 0) {
337 			int len;
338 			len = namelen;
339 			if (len > ZAP_LEAF_ARRAY_BYTES)
340 				len = ZAP_LEAF_ARRAY_BYTES;
341 			memcpy(p, nc->l_array.la_array, len);
342 			p += len;
343 			namelen -= len;
344 			nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
345 		}
346 		d->d_name[sizeof(d->d_name) - 1] = 0;
347 
348 		/*
349 		 * Assume the first eight bytes of the value are
350 		 * a uint64_t.
351 		 */
352 		value = fzap_leaf_value(&zl, zc);
353 
354 		d->d_fileno = ZFS_DIRENT_OBJ(value);
355 		d->d_type = ZFS_DIRENT_TYPE(value);
356 		d->d_namlen = strlen(d->d_name);
357 
358 		return (0);
359 	}
360 }
361 
362 static int
363 vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t bytes)
364 {
365 	int fd, ret;
366 	size_t res, head, tail, total_size, full_sec_size;
367 	unsigned secsz, do_tail_read;
368 	off_t start_sec;
369 	char *outbuf, *bouncebuf;
370 
371 	fd = (uintptr_t) priv;
372 	outbuf = (char *) buf;
373 	bouncebuf = NULL;
374 
375 	ret = ioctl(fd, DIOCGSECTORSIZE, &secsz);
376 	if (ret != 0)
377 		return (ret);
378 
379 	/*
380 	 * Handling reads of arbitrary offset and size - multi-sector case
381 	 * and single-sector case.
382 	 *
383 	 *                        Multi-sector Case
384 	 *                (do_tail_read = true if tail > 0)
385 	 *
386 	 *   |<----------------------total_size--------------------->|
387 	 *   |                                                       |
388 	 *   |<--head-->|<--------------bytes------------>|<--tail-->|
389 	 *   |          |                                 |          |
390 	 *   |          |       |<~full_sec_size~>|       |          |
391 	 *   +------------------+                 +------------------+
392 	 *   |          |0101010|     .  .  .     |0101011|          |
393 	 *   +------------------+                 +------------------+
394 	 *         start_sec                         start_sec + n
395 	 *
396 	 *
397 	 *                      Single-sector Case
398 	 *                    (do_tail_read = false)
399 	 *
400 	 *              |<------total_size = secsz----->|
401 	 *              |                               |
402 	 *              |<-head->|<---bytes--->|<-tail->|
403 	 *              +-------------------------------+
404 	 *              |        |0101010101010|        |
405 	 *              +-------------------------------+
406 	 *                          start_sec
407 	 */
408 	start_sec = offset / secsz;
409 	head = offset % secsz;
410 	total_size = roundup2(head + bytes, secsz);
411 	tail = total_size - (head + bytes);
412 	do_tail_read = ((tail > 0) && (head + bytes > secsz));
413 	full_sec_size = total_size;
414 	if (head > 0)
415 		full_sec_size -= secsz;
416 	if (do_tail_read)
417 		full_sec_size -= secsz;
418 
419 	/* Return of partial sector data requires a bounce buffer. */
420 	if ((head > 0) || do_tail_read) {
421 		bouncebuf = zfs_alloc(secsz);
422 		if (bouncebuf == NULL) {
423 			printf("vdev_read: out of memory\n");
424 			return (ENOMEM);
425 		}
426 	}
427 
428 	if (lseek(fd, start_sec * secsz, SEEK_SET) == -1) {
429 		ret = errno;
430 		goto error;
431 	}
432 
433 	/* Partial data return from first sector */
434 	if (head > 0) {
435 		res = read(fd, bouncebuf, secsz);
436 		if (res != secsz) {
437 			ret = EIO;
438 			goto error;
439 		}
440 		memcpy(outbuf, bouncebuf + head, min(secsz - head, bytes));
441 		outbuf += min(secsz - head, bytes);
442 	}
443 
444 	/* Full data return from read sectors */
445 	if (full_sec_size > 0) {
446 		res = read(fd, outbuf, full_sec_size);
447 		if (res != full_sec_size) {
448 			ret = EIO;
449 			goto error;
450 		}
451 		outbuf += full_sec_size;
452 	}
453 
454 	/* Partial data return from last sector */
455 	if (do_tail_read) {
456 		res = read(fd, bouncebuf, secsz);
457 		if (res != secsz) {
458 			ret = EIO;
459 			goto error;
460 		}
461 		memcpy(outbuf, bouncebuf, secsz - tail);
462 	}
463 
464 	ret = 0;
465 error:
466 	if (bouncebuf != NULL)
467 		zfs_free(bouncebuf, secsz);
468 	return (ret);
469 }
470 
471 static int
472 zfs_dev_init(void)
473 {
474 	spa_t *spa;
475 	spa_t *next;
476 	spa_t *prev;
477 
478 	zfs_init();
479 	if (archsw.arch_zfs_probe == NULL)
480 		return (ENXIO);
481 	archsw.arch_zfs_probe();
482 
483 	prev = NULL;
484 	spa = STAILQ_FIRST(&zfs_pools);
485 	while (spa != NULL) {
486 		next = STAILQ_NEXT(spa, spa_link);
487 		if (zfs_spa_init(spa)) {
488 			if (prev == NULL)
489 				STAILQ_REMOVE_HEAD(&zfs_pools, spa_link);
490 			else
491 				STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link);
492 		} else
493 			prev = spa;
494 		spa = next;
495 	}
496 	return (0);
497 }
498 
499 struct zfs_probe_args {
500 	int		fd;
501 	const char	*devname;
502 	uint64_t	*pool_guid;
503 	u_int		secsz;
504 };
505 
506 static int
507 zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset)
508 {
509 	struct zfs_probe_args *ppa;
510 
511 	ppa = (struct zfs_probe_args *)arg;
512 	return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd,
513 	    offset * ppa->secsz, buf, blocks * ppa->secsz));
514 }
515 
516 static int
517 zfs_probe(int fd, uint64_t *pool_guid)
518 {
519 	spa_t *spa;
520 	int ret;
521 
522 	spa = NULL;
523 	ret = vdev_probe(vdev_read, (void *)(uintptr_t)fd, &spa);
524 	if (ret == 0 && pool_guid != NULL)
525 		*pool_guid = spa->spa_guid;
526 	return (ret);
527 }
528 
529 static int
530 zfs_probe_partition(void *arg, const char *partname,
531     const struct ptable_entry *part)
532 {
533 	struct zfs_probe_args *ppa, pa;
534 	struct ptable *table;
535 	char devname[32];
536 	int ret;
537 
538 	/* Probe only freebsd-zfs and freebsd partitions */
539 	if (part->type != PART_FREEBSD &&
540 	    part->type != PART_FREEBSD_ZFS)
541 		return (0);
542 
543 	ppa = (struct zfs_probe_args *)arg;
544 	strncpy(devname, ppa->devname, strlen(ppa->devname) - 1);
545 	devname[strlen(ppa->devname) - 1] = '\0';
546 	sprintf(devname, "%s%s:", devname, partname);
547 	pa.fd = open(devname, O_RDONLY);
548 	if (pa.fd == -1)
549 		return (0);
550 	ret = zfs_probe(pa.fd, ppa->pool_guid);
551 	if (ret == 0)
552 		return (0);
553 	/* Do we have BSD label here? */
554 	if (part->type == PART_FREEBSD) {
555 		pa.devname = devname;
556 		pa.pool_guid = ppa->pool_guid;
557 		pa.secsz = ppa->secsz;
558 		table = ptable_open(&pa, part->end - part->start + 1,
559 		    ppa->secsz, zfs_diskread);
560 		if (table != NULL) {
561 			ptable_iterate(table, &pa, zfs_probe_partition);
562 			ptable_close(table);
563 		}
564 	}
565 	close(pa.fd);
566 	return (0);
567 }
568 
569 int
570 zfs_probe_dev(const char *devname, uint64_t *pool_guid)
571 {
572 	struct disk_devdesc *dev;
573 	struct ptable *table;
574 	struct zfs_probe_args pa;
575 	uint64_t mediasz;
576 	int ret;
577 
578 	if (pool_guid)
579 		*pool_guid = 0;
580 	pa.fd = open(devname, O_RDONLY);
581 	if (pa.fd == -1)
582 		return (ENXIO);
583 	/*
584 	 * We will not probe the whole disk, we can not boot from such
585 	 * disks and some systems will misreport the disk sizes and will
586 	 * hang while accessing the disk.
587 	 */
588 	if (archsw.arch_getdev((void **)&dev, devname, NULL) == 0) {
589 		int partition = dev->d_partition;
590 		int slice = dev->d_slice;
591 
592 		free(dev);
593 		if (partition != D_PARTNONE && slice != D_SLICENONE) {
594 			ret = zfs_probe(pa.fd, pool_guid);
595 			if (ret == 0)
596 				return (0);
597 		}
598 	}
599 
600 	/* Probe each partition */
601 	ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz);
602 	if (ret == 0)
603 		ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz);
604 	if (ret == 0) {
605 		pa.devname = devname;
606 		pa.pool_guid = pool_guid;
607 		table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz,
608 		    zfs_diskread);
609 		if (table != NULL) {
610 			ptable_iterate(table, &pa, zfs_probe_partition);
611 			ptable_close(table);
612 		}
613 	}
614 	close(pa.fd);
615 	if (pool_guid && *pool_guid == 0)
616 		ret = ENXIO;
617 	return (ret);
618 }
619 
620 /*
621  * Print information about ZFS pools
622  */
623 static int
624 zfs_dev_print(int verbose)
625 {
626 	spa_t *spa;
627 	char line[80];
628 	int ret = 0;
629 
630 	if (STAILQ_EMPTY(&zfs_pools))
631 		return (0);
632 
633 	printf("%s devices:", zfs_dev.dv_name);
634 	if ((ret = pager_output("\n")) != 0)
635 		return (ret);
636 
637 	if (verbose) {
638 		return (spa_all_status());
639 	}
640 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
641 		snprintf(line, sizeof(line), "    zfs:%s\n", spa->spa_name);
642 		ret = pager_output(line);
643 		if (ret != 0)
644 			break;
645 	}
646 	return (ret);
647 }
648 
649 /*
650  * Attempt to open the pool described by (dev) for use by (f).
651  */
652 static int
653 zfs_dev_open(struct open_file *f, ...)
654 {
655 	va_list		args;
656 	struct zfs_devdesc	*dev;
657 	struct zfsmount	*mount;
658 	spa_t		*spa;
659 	int		rv;
660 
661 	va_start(args, f);
662 	dev = va_arg(args, struct zfs_devdesc *);
663 	va_end(args);
664 
665 	if (dev->pool_guid == 0)
666 		spa = STAILQ_FIRST(&zfs_pools);
667 	else
668 		spa = spa_find_by_guid(dev->pool_guid);
669 	if (!spa)
670 		return (ENXIO);
671 	mount = malloc(sizeof(*mount));
672 	rv = zfs_mount(spa, dev->root_guid, mount);
673 	if (rv != 0) {
674 		free(mount);
675 		return (rv);
676 	}
677 	if (mount->objset.os_type != DMU_OST_ZFS) {
678 		printf("Unexpected object set type %ju\n",
679 		    (uintmax_t)mount->objset.os_type);
680 		free(mount);
681 		return (EIO);
682 	}
683 	f->f_devdata = mount;
684 	free(dev);
685 	return (0);
686 }
687 
688 static int
689 zfs_dev_close(struct open_file *f)
690 {
691 
692 	free(f->f_devdata);
693 	f->f_devdata = NULL;
694 	return (0);
695 }
696 
697 static int
698 zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize)
699 {
700 
701 	return (ENOSYS);
702 }
703 
704 struct devsw zfs_dev = {
705 	.dv_name = "zfs",
706 	.dv_type = DEVT_ZFS,
707 	.dv_init = zfs_dev_init,
708 	.dv_strategy = zfs_dev_strategy,
709 	.dv_open = zfs_dev_open,
710 	.dv_close = zfs_dev_close,
711 	.dv_ioctl = noioctl,
712 	.dv_print = zfs_dev_print,
713 	.dv_cleanup = NULL
714 };
715 
716 int
717 zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path)
718 {
719 	static char	rootname[ZFS_MAXNAMELEN];
720 	static char	poolname[ZFS_MAXNAMELEN];
721 	spa_t		*spa;
722 	const char	*end;
723 	const char	*np;
724 	const char	*sep;
725 	int		rv;
726 
727 	np = devspec;
728 	if (*np != ':')
729 		return (EINVAL);
730 	np++;
731 	end = strrchr(np, ':');
732 	if (end == NULL)
733 		return (EINVAL);
734 	sep = strchr(np, '/');
735 	if (sep == NULL || sep >= end)
736 		sep = end;
737 	memcpy(poolname, np, sep - np);
738 	poolname[sep - np] = '\0';
739 	if (sep < end) {
740 		sep++;
741 		memcpy(rootname, sep, end - sep);
742 		rootname[end - sep] = '\0';
743 	}
744 	else
745 		rootname[0] = '\0';
746 
747 	spa = spa_find_by_name(poolname);
748 	if (!spa)
749 		return (ENXIO);
750 	dev->pool_guid = spa->spa_guid;
751 	rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid);
752 	if (rv != 0)
753 		return (rv);
754 	if (path != NULL)
755 		*path = (*end == '\0') ? end : end + 1;
756 	dev->dd.d_dev = &zfs_dev;
757 	return (0);
758 }
759 
760 char *
761 zfs_fmtdev(void *vdev)
762 {
763 	static char		rootname[ZFS_MAXNAMELEN];
764 	static char		buf[2 * ZFS_MAXNAMELEN + 8];
765 	struct zfs_devdesc	*dev = (struct zfs_devdesc *)vdev;
766 	spa_t			*spa;
767 
768 	buf[0] = '\0';
769 	if (dev->dd.d_dev->dv_type != DEVT_ZFS)
770 		return (buf);
771 
772 	if (dev->pool_guid == 0) {
773 		spa = STAILQ_FIRST(&zfs_pools);
774 		dev->pool_guid = spa->spa_guid;
775 	} else
776 		spa = spa_find_by_guid(dev->pool_guid);
777 	if (spa == NULL) {
778 		printf("ZFS: can't find pool by guid\n");
779 		return (buf);
780 	}
781 	if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) {
782 		printf("ZFS: can't find root filesystem\n");
783 		return (buf);
784 	}
785 	if (zfs_rlookup(spa, dev->root_guid, rootname)) {
786 		printf("ZFS: can't find filesystem by guid\n");
787 		return (buf);
788 	}
789 
790 	if (rootname[0] == '\0')
791 		sprintf(buf, "%s:%s:", dev->dd.d_dev->dv_name, spa->spa_name);
792 	else
793 		sprintf(buf, "%s:%s/%s:", dev->dd.d_dev->dv_name, spa->spa_name,
794 		    rootname);
795 	return (buf);
796 }
797 
798 int
799 zfs_list(const char *name)
800 {
801 	static char	poolname[ZFS_MAXNAMELEN];
802 	uint64_t	objid;
803 	spa_t		*spa;
804 	const char	*dsname;
805 	int		len;
806 	int		rv;
807 
808 	len = strlen(name);
809 	dsname = strchr(name, '/');
810 	if (dsname != NULL) {
811 		len = dsname - name;
812 		dsname++;
813 	} else
814 		dsname = "";
815 	memcpy(poolname, name, len);
816 	poolname[len] = '\0';
817 
818 	spa = spa_find_by_name(poolname);
819 	if (!spa)
820 		return (ENXIO);
821 	rv = zfs_lookup_dataset(spa, dsname, &objid);
822 	if (rv != 0)
823 		return (rv);
824 
825 	return (zfs_list_dataset(spa, objid));
826 }
827 
828 void
829 init_zfs_bootenv(const char *currdev_in)
830 {
831 	char *beroot, *currdev;
832 	int currdev_len;
833 
834 	currdev = NULL;
835 	currdev_len = strlen(currdev_in);
836 	if (currdev_len == 0)
837 		return;
838 	if (strncmp(currdev_in, "zfs:", 4) != 0)
839 		return;
840 	currdev = strdup(currdev_in);
841 	if (currdev == NULL)
842 		return;
843 	/* Remove the trailing : */
844 	currdev[currdev_len - 1] = '\0';
845 	setenv("zfs_be_active", currdev, 1);
846 	setenv("zfs_be_currpage", "1", 1);
847 	/* Remove the last element (current bootenv) */
848 	beroot = strrchr(currdev, '/');
849 	if (beroot != NULL)
850 		beroot[0] = '\0';
851 	beroot = strchr(currdev, ':') + 1;
852 	setenv("zfs_be_root", beroot, 1);
853 	zfs_bootenv_initial(beroot);
854 	free(currdev);
855 }
856 
857 static void
858 zfs_bootenv_initial(const char *name)
859 {
860 	char		poolname[ZFS_MAXNAMELEN], *dsname;
861 	char envname[32], envval[256];
862 	uint64_t	objid;
863 	spa_t		*spa;
864 	int		bootenvs_idx, len, rv;
865 
866 	SLIST_INIT(&zfs_be_head);
867 	zfs_env_count = 0;
868 	len = strlen(name);
869 	dsname = strchr(name, '/');
870 	if (dsname != NULL) {
871 		len = dsname - name;
872 		dsname++;
873 	} else
874 		dsname = "";
875 	strlcpy(poolname, name, len + 1);
876 	spa = spa_find_by_name(poolname);
877 	if (spa == NULL)
878 		return;
879 	rv = zfs_lookup_dataset(spa, dsname, &objid);
880 	if (rv != 0)
881 		return;
882 	rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
883 	bootenvs_idx = 0;
884 	/* Populate the initial environment variables */
885 	SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
886 		/* Enumerate all bootenvs for general usage */
887 		snprintf(envname, sizeof(envname), "bootenvs[%d]", bootenvs_idx);
888 		snprintf(envval, sizeof(envval), "zfs:%s/%s", name, zfs_be->name);
889 		rv = setenv(envname, envval, 1);
890 		if (rv != 0)
891 			break;
892 		bootenvs_idx++;
893 	}
894 	snprintf(envval, sizeof(envval), "%d", bootenvs_idx);
895 	setenv("bootenvs_count", envval, 1);
896 
897 	/* Clean up the SLIST of ZFS BEs */
898 	while (!SLIST_EMPTY(&zfs_be_head)) {
899 		zfs_be = SLIST_FIRST(&zfs_be_head);
900 		SLIST_REMOVE_HEAD(&zfs_be_head, entries);
901 		free(zfs_be);
902 	}
903 
904 	return;
905 
906 }
907 
908 int
909 zfs_bootenv(const char *name)
910 {
911 	static char	poolname[ZFS_MAXNAMELEN], *dsname, *root;
912 	char		becount[4];
913 	uint64_t	objid;
914 	spa_t		*spa;
915 	int		len, rv, pages, perpage, currpage;
916 
917 	if (name == NULL)
918 		return (EINVAL);
919 	if ((root = getenv("zfs_be_root")) == NULL)
920 		return (EINVAL);
921 
922 	if (strcmp(name, root) != 0) {
923 		if (setenv("zfs_be_root", name, 1) != 0)
924 			return (ENOMEM);
925 	}
926 
927 	SLIST_INIT(&zfs_be_head);
928 	zfs_env_count = 0;
929 	len = strlen(name);
930 	dsname = strchr(name, '/');
931 	if (dsname != NULL) {
932 		len = dsname - name;
933 		dsname++;
934 	} else
935 		dsname = "";
936 	memcpy(poolname, name, len);
937 	poolname[len] = '\0';
938 
939 	spa = spa_find_by_name(poolname);
940 	if (!spa)
941 		return (ENXIO);
942 	rv = zfs_lookup_dataset(spa, dsname, &objid);
943 	if (rv != 0)
944 		return (rv);
945 	rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
946 
947 	/* Calculate and store the number of pages of BEs */
948 	perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1);
949 	pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0);
950 	snprintf(becount, 4, "%d", pages);
951 	if (setenv("zfs_be_pages", becount, 1) != 0)
952 		return (ENOMEM);
953 
954 	/* Roll over the page counter if it has exceeded the maximum */
955 	currpage = strtol(getenv("zfs_be_currpage"), NULL, 10);
956 	if (currpage > pages) {
957 		if (setenv("zfs_be_currpage", "1", 1) != 0)
958 			return (ENOMEM);
959 	}
960 
961 	/* Populate the menu environment variables */
962 	zfs_set_env();
963 
964 	/* Clean up the SLIST of ZFS BEs */
965 	while (!SLIST_EMPTY(&zfs_be_head)) {
966 		zfs_be = SLIST_FIRST(&zfs_be_head);
967 		SLIST_REMOVE_HEAD(&zfs_be_head, entries);
968 		free(zfs_be);
969 	}
970 
971 	return (rv);
972 }
973 
974 int
975 zfs_belist_add(const char *name, uint64_t value __unused)
976 {
977 
978 	/* Skip special datasets that start with a $ character */
979 	if (strncmp(name, "$", 1) == 0) {
980 		return (0);
981 	}
982 	/* Add the boot environment to the head of the SLIST */
983 	zfs_be = malloc(sizeof(struct zfs_be_entry));
984 	if (zfs_be == NULL) {
985 		return (ENOMEM);
986 	}
987 	zfs_be->name = name;
988 	SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries);
989 	zfs_env_count++;
990 
991 	return (0);
992 }
993 
994 int
995 zfs_set_env(void)
996 {
997 	char envname[32], envval[256];
998 	char *beroot, *pagenum;
999 	int rv, page, ctr;
1000 
1001 	beroot = getenv("zfs_be_root");
1002 	if (beroot == NULL) {
1003 		return (1);
1004 	}
1005 
1006 	pagenum = getenv("zfs_be_currpage");
1007 	if (pagenum != NULL) {
1008 		page = strtol(pagenum, NULL, 10);
1009 	} else {
1010 		page = 1;
1011 	}
1012 
1013 	ctr = 1;
1014 	rv = 0;
1015 	zfs_env_index = ZFS_BE_FIRST;
1016 	SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
1017 		/* Skip to the requested page number */
1018 		if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) {
1019 			ctr++;
1020 			continue;
1021 		}
1022 
1023 		snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
1024 		snprintf(envval, sizeof(envval), "%s", zfs_be->name);
1025 		rv = setenv(envname, envval, 1);
1026 		if (rv != 0) {
1027 			break;
1028 		}
1029 
1030 		snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
1031 		rv = setenv(envname, envval, 1);
1032 		if (rv != 0){
1033 			break;
1034 		}
1035 
1036 		snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
1037 		rv = setenv(envname, "set_bootenv", 1);
1038 		if (rv != 0){
1039 			break;
1040 		}
1041 
1042 		snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
1043 		snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name);
1044 		rv = setenv(envname, envval, 1);
1045 		if (rv != 0){
1046 			break;
1047 		}
1048 
1049 		zfs_env_index++;
1050 		if (zfs_env_index > ZFS_BE_LAST) {
1051 			break;
1052 		}
1053 
1054 	}
1055 
1056 	for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) {
1057 		snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
1058 		(void)unsetenv(envname);
1059 		snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
1060 		(void)unsetenv(envname);
1061 		snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
1062 		(void)unsetenv(envname);
1063 		snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
1064 		(void)unsetenv(envname);
1065 	}
1066 
1067 	return (rv);
1068 }
1069