xref: /freebsd/sys/amd64/amd64/exec_machdep.c (revision 81b22a98)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/exec.h>
54 #include <sys/imgact.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/linker.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/pcpu.h>
63 #include <sys/reg.h>
64 #include <sys/rwlock.h>
65 #include <sys/signalvar.h>
66 #ifdef SMP
67 #include <sys/smp.h>
68 #endif
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/sysproto.h>
73 #include <sys/ucontext.h>
74 #include <sys/vmmeter.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_extern.h>
79 #include <vm/pmap.h>
80 
81 #ifdef DDB
82 #ifndef KDB
83 #error KDB must be enabled in order for DDB to work!
84 #endif
85 #include <ddb/ddb.h>
86 #include <ddb/db_sym.h>
87 #endif
88 
89 #include <machine/vmparam.h>
90 #include <machine/frame.h>
91 #include <machine/md_var.h>
92 #include <machine/pcb.h>
93 #include <machine/proc.h>
94 #include <machine/sigframe.h>
95 #include <machine/specialreg.h>
96 #include <machine/trap.h>
97 
98 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
99     char **xfpusave, size_t *xfpusave_len);
100 static int set_fpcontext(struct thread *td, mcontext_t *mcp,
101     char *xfpustate, size_t xfpustate_len);
102 
103 /*
104  * Send an interrupt to process.
105  *
106  * Stack is set up to allow sigcode stored at top to call routine,
107  * followed by call to sigreturn routine below.  After sigreturn
108  * resets the signal mask, the stack, and the frame pointer, it
109  * returns to the user specified pc, psl.
110  */
111 void
112 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
113 {
114 	struct sigframe sf, *sfp;
115 	struct pcb *pcb;
116 	struct proc *p;
117 	struct thread *td;
118 	struct sigacts *psp;
119 	char *sp;
120 	struct trapframe *regs;
121 	char *xfpusave;
122 	size_t xfpusave_len;
123 	int sig;
124 	int oonstack;
125 
126 	td = curthread;
127 	pcb = td->td_pcb;
128 	p = td->td_proc;
129 	PROC_LOCK_ASSERT(p, MA_OWNED);
130 	sig = ksi->ksi_signo;
131 	psp = p->p_sigacts;
132 	mtx_assert(&psp->ps_mtx, MA_OWNED);
133 	regs = td->td_frame;
134 	oonstack = sigonstack(regs->tf_rsp);
135 
136 	/* Save user context. */
137 	bzero(&sf, sizeof(sf));
138 	sf.sf_uc.uc_sigmask = *mask;
139 	sf.sf_uc.uc_stack = td->td_sigstk;
140 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
141 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
142 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
143 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
144 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
145 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, &xfpusave, &xfpusave_len);
146 	update_pcb_bases(pcb);
147 	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
148 	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
149 	bzero(sf.sf_uc.uc_mcontext.mc_spare,
150 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
151 
152 	/* Allocate space for the signal handler context. */
153 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
154 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
155 		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
156 #if defined(COMPAT_43)
157 		td->td_sigstk.ss_flags |= SS_ONSTACK;
158 #endif
159 	} else
160 		sp = (char *)regs->tf_rsp - 128;
161 	if (xfpusave != NULL) {
162 		sp -= xfpusave_len;
163 		sp = (char *)((unsigned long)sp & ~0x3Ful);
164 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
165 	}
166 	sp -= sizeof(struct sigframe);
167 	/* Align to 16 bytes. */
168 	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
169 
170 	/* Build the argument list for the signal handler. */
171 	regs->tf_rdi = sig;			/* arg 1 in %rdi */
172 	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
173 	bzero(&sf.sf_si, sizeof(sf.sf_si));
174 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
175 		/* Signal handler installed with SA_SIGINFO. */
176 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
177 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
178 
179 		/* Fill in POSIX parts */
180 		sf.sf_si = ksi->ksi_info;
181 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
182 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
183 	} else {
184 		/* Old FreeBSD-style arguments. */
185 		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
186 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
187 		sf.sf_ahu.sf_handler = catcher;
188 	}
189 	mtx_unlock(&psp->ps_mtx);
190 	PROC_UNLOCK(p);
191 
192 	/*
193 	 * Copy the sigframe out to the user's stack.
194 	 */
195 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
196 	    (xfpusave != NULL && copyout(xfpusave,
197 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
198 	    != 0)) {
199 		uprintf("pid %d comm %s has trashed its stack, killing\n",
200 		    p->p_pid, p->p_comm);
201 		PROC_LOCK(p);
202 		sigexit(td, SIGILL);
203 	}
204 
205 	fpstate_drop(td);
206 	regs->tf_rsp = (long)sfp;
207 	regs->tf_rip = p->p_sysent->sv_sigcode_base;
208 	regs->tf_rflags &= ~(PSL_T | PSL_D);
209 	regs->tf_cs = _ucodesel;
210 	regs->tf_ds = _udatasel;
211 	regs->tf_ss = _udatasel;
212 	regs->tf_es = _udatasel;
213 	regs->tf_fs = _ufssel;
214 	regs->tf_gs = _ugssel;
215 	regs->tf_flags = TF_HASSEGS;
216 	PROC_LOCK(p);
217 	mtx_lock(&psp->ps_mtx);
218 }
219 
220 /*
221  * System call to cleanup state after a signal
222  * has been taken.  Reset signal mask and
223  * stack state from context left by sendsig (above).
224  * Return to previous pc and psl as specified by
225  * context left by sendsig. Check carefully to
226  * make sure that the user has not modified the
227  * state to gain improper privileges.
228  */
229 int
230 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
231 {
232 	ucontext_t uc;
233 	struct pcb *pcb;
234 	struct proc *p;
235 	struct trapframe *regs;
236 	ucontext_t *ucp;
237 	char *xfpustate;
238 	size_t xfpustate_len;
239 	long rflags;
240 	int cs, error, ret;
241 	ksiginfo_t ksi;
242 
243 	pcb = td->td_pcb;
244 	p = td->td_proc;
245 
246 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
247 	if (error != 0) {
248 		uprintf("pid %d (%s): sigreturn copyin failed\n",
249 		    p->p_pid, td->td_name);
250 		return (error);
251 	}
252 	ucp = &uc;
253 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
254 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
255 		    td->td_name, ucp->uc_mcontext.mc_flags);
256 		return (EINVAL);
257 	}
258 	regs = td->td_frame;
259 	rflags = ucp->uc_mcontext.mc_rflags;
260 	/*
261 	 * Don't allow users to change privileged or reserved flags.
262 	 */
263 	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
264 		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
265 		    td->td_name, rflags);
266 		return (EINVAL);
267 	}
268 
269 	/*
270 	 * Don't allow users to load a valid privileged %cs.  Let the
271 	 * hardware check for invalid selectors, excess privilege in
272 	 * other selectors, invalid %eip's and invalid %esp's.
273 	 */
274 	cs = ucp->uc_mcontext.mc_cs;
275 	if (!CS_SECURE(cs)) {
276 		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
277 		    td->td_name, cs);
278 		ksiginfo_init_trap(&ksi);
279 		ksi.ksi_signo = SIGBUS;
280 		ksi.ksi_code = BUS_OBJERR;
281 		ksi.ksi_trapno = T_PROTFLT;
282 		ksi.ksi_addr = (void *)regs->tf_rip;
283 		trapsignal(td, &ksi);
284 		return (EINVAL);
285 	}
286 
287 	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
288 		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
289 		if (xfpustate_len > cpu_max_ext_state_size -
290 		    sizeof(struct savefpu)) {
291 			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
292 			    p->p_pid, td->td_name, xfpustate_len);
293 			return (EINVAL);
294 		}
295 		xfpustate = (char *)fpu_save_area_alloc();
296 		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
297 		    xfpustate, xfpustate_len);
298 		if (error != 0) {
299 			fpu_save_area_free((struct savefpu *)xfpustate);
300 			uprintf(
301 	"pid %d (%s): sigreturn copying xfpustate failed\n",
302 			    p->p_pid, td->td_name);
303 			return (error);
304 		}
305 	} else {
306 		xfpustate = NULL;
307 		xfpustate_len = 0;
308 	}
309 	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
310 	fpu_save_area_free((struct savefpu *)xfpustate);
311 	if (ret != 0) {
312 		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
313 		    p->p_pid, td->td_name, ret);
314 		return (ret);
315 	}
316 	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
317 	update_pcb_bases(pcb);
318 	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
319 	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
320 
321 #if defined(COMPAT_43)
322 	if (ucp->uc_mcontext.mc_onstack & 1)
323 		td->td_sigstk.ss_flags |= SS_ONSTACK;
324 	else
325 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
326 #endif
327 
328 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
329 	return (EJUSTRETURN);
330 }
331 
332 #ifdef COMPAT_FREEBSD4
333 int
334 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
335 {
336 
337 	return sys_sigreturn(td, (struct sigreturn_args *)uap);
338 }
339 #endif
340 
341 /*
342  * Reset the hardware debug registers if they were in use.
343  * They won't have any meaning for the newly exec'd process.
344  */
345 void
346 x86_clear_dbregs(struct pcb *pcb)
347 {
348 	if ((pcb->pcb_flags & PCB_DBREGS) == 0)
349 		return;
350 
351 	pcb->pcb_dr0 = 0;
352 	pcb->pcb_dr1 = 0;
353 	pcb->pcb_dr2 = 0;
354 	pcb->pcb_dr3 = 0;
355 	pcb->pcb_dr6 = 0;
356 	pcb->pcb_dr7 = 0;
357 
358 	if (pcb == curpcb) {
359 		/*
360 		 * Clear the debug registers on the running CPU,
361 		 * otherwise they will end up affecting the next
362 		 * process we switch to.
363 		 */
364 		reset_dbregs();
365 	}
366 	clear_pcb_flags(pcb, PCB_DBREGS);
367 }
368 
369 /*
370  * Reset registers to default values on exec.
371  */
372 void
373 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
374 {
375 	struct trapframe *regs;
376 	struct pcb *pcb;
377 	register_t saved_rflags;
378 
379 	regs = td->td_frame;
380 	pcb = td->td_pcb;
381 
382 	if (td->td_proc->p_md.md_ldt != NULL)
383 		user_ldt_free(td);
384 
385 	update_pcb_bases(pcb);
386 	pcb->pcb_fsbase = 0;
387 	pcb->pcb_gsbase = 0;
388 	clear_pcb_flags(pcb, PCB_32BIT);
389 	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
390 
391 	saved_rflags = regs->tf_rflags & PSL_T;
392 	bzero((char *)regs, sizeof(struct trapframe));
393 	regs->tf_rip = imgp->entry_addr;
394 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
395 	regs->tf_rdi = stack;		/* argv */
396 	regs->tf_rflags = PSL_USER | saved_rflags;
397 	regs->tf_ss = _udatasel;
398 	regs->tf_cs = _ucodesel;
399 	regs->tf_ds = _udatasel;
400 	regs->tf_es = _udatasel;
401 	regs->tf_fs = _ufssel;
402 	regs->tf_gs = _ugssel;
403 	regs->tf_flags = TF_HASSEGS;
404 
405 	x86_clear_dbregs(pcb);
406 
407 	/*
408 	 * Drop the FP state if we hold it, so that the process gets a
409 	 * clean FP state if it uses the FPU again.
410 	 */
411 	fpstate_drop(td);
412 }
413 
414 int
415 fill_regs(struct thread *td, struct reg *regs)
416 {
417 	struct trapframe *tp;
418 
419 	tp = td->td_frame;
420 	return (fill_frame_regs(tp, regs));
421 }
422 
423 int
424 fill_frame_regs(struct trapframe *tp, struct reg *regs)
425 {
426 
427 	regs->r_r15 = tp->tf_r15;
428 	regs->r_r14 = tp->tf_r14;
429 	regs->r_r13 = tp->tf_r13;
430 	regs->r_r12 = tp->tf_r12;
431 	regs->r_r11 = tp->tf_r11;
432 	regs->r_r10 = tp->tf_r10;
433 	regs->r_r9  = tp->tf_r9;
434 	regs->r_r8  = tp->tf_r8;
435 	regs->r_rdi = tp->tf_rdi;
436 	regs->r_rsi = tp->tf_rsi;
437 	regs->r_rbp = tp->tf_rbp;
438 	regs->r_rbx = tp->tf_rbx;
439 	regs->r_rdx = tp->tf_rdx;
440 	regs->r_rcx = tp->tf_rcx;
441 	regs->r_rax = tp->tf_rax;
442 	regs->r_rip = tp->tf_rip;
443 	regs->r_cs = tp->tf_cs;
444 	regs->r_rflags = tp->tf_rflags;
445 	regs->r_rsp = tp->tf_rsp;
446 	regs->r_ss = tp->tf_ss;
447 	if (tp->tf_flags & TF_HASSEGS) {
448 		regs->r_ds = tp->tf_ds;
449 		regs->r_es = tp->tf_es;
450 		regs->r_fs = tp->tf_fs;
451 		regs->r_gs = tp->tf_gs;
452 	} else {
453 		regs->r_ds = 0;
454 		regs->r_es = 0;
455 		regs->r_fs = 0;
456 		regs->r_gs = 0;
457 	}
458 	regs->r_err = 0;
459 	regs->r_trapno = 0;
460 	return (0);
461 }
462 
463 int
464 set_regs(struct thread *td, struct reg *regs)
465 {
466 	struct trapframe *tp;
467 	register_t rflags;
468 
469 	tp = td->td_frame;
470 	rflags = regs->r_rflags & 0xffffffff;
471 	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
472 		return (EINVAL);
473 	tp->tf_r15 = regs->r_r15;
474 	tp->tf_r14 = regs->r_r14;
475 	tp->tf_r13 = regs->r_r13;
476 	tp->tf_r12 = regs->r_r12;
477 	tp->tf_r11 = regs->r_r11;
478 	tp->tf_r10 = regs->r_r10;
479 	tp->tf_r9  = regs->r_r9;
480 	tp->tf_r8  = regs->r_r8;
481 	tp->tf_rdi = regs->r_rdi;
482 	tp->tf_rsi = regs->r_rsi;
483 	tp->tf_rbp = regs->r_rbp;
484 	tp->tf_rbx = regs->r_rbx;
485 	tp->tf_rdx = regs->r_rdx;
486 	tp->tf_rcx = regs->r_rcx;
487 	tp->tf_rax = regs->r_rax;
488 	tp->tf_rip = regs->r_rip;
489 	tp->tf_cs = regs->r_cs;
490 	tp->tf_rflags = rflags;
491 	tp->tf_rsp = regs->r_rsp;
492 	tp->tf_ss = regs->r_ss;
493 	if (0) {	/* XXXKIB */
494 		tp->tf_ds = regs->r_ds;
495 		tp->tf_es = regs->r_es;
496 		tp->tf_fs = regs->r_fs;
497 		tp->tf_gs = regs->r_gs;
498 		tp->tf_flags = TF_HASSEGS;
499 	}
500 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
501 	return (0);
502 }
503 
504 /* XXX check all this stuff! */
505 /* externalize from sv_xmm */
506 static void
507 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
508 {
509 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
510 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
511 	int i;
512 
513 	/* pcb -> fpregs */
514 	bzero(fpregs, sizeof(*fpregs));
515 
516 	/* FPU control/status */
517 	penv_fpreg->en_cw = penv_xmm->en_cw;
518 	penv_fpreg->en_sw = penv_xmm->en_sw;
519 	penv_fpreg->en_tw = penv_xmm->en_tw;
520 	penv_fpreg->en_opcode = penv_xmm->en_opcode;
521 	penv_fpreg->en_rip = penv_xmm->en_rip;
522 	penv_fpreg->en_rdp = penv_xmm->en_rdp;
523 	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
524 	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
525 
526 	/* FPU registers */
527 	for (i = 0; i < 8; ++i)
528 		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
529 
530 	/* SSE registers */
531 	for (i = 0; i < 16; ++i)
532 		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
533 }
534 
535 /* internalize from fpregs into sv_xmm */
536 static void
537 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
538 {
539 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
540 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
541 	int i;
542 
543 	/* fpregs -> pcb */
544 	/* FPU control/status */
545 	penv_xmm->en_cw = penv_fpreg->en_cw;
546 	penv_xmm->en_sw = penv_fpreg->en_sw;
547 	penv_xmm->en_tw = penv_fpreg->en_tw;
548 	penv_xmm->en_opcode = penv_fpreg->en_opcode;
549 	penv_xmm->en_rip = penv_fpreg->en_rip;
550 	penv_xmm->en_rdp = penv_fpreg->en_rdp;
551 	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
552 	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
553 
554 	/* FPU registers */
555 	for (i = 0; i < 8; ++i)
556 		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
557 
558 	/* SSE registers */
559 	for (i = 0; i < 16; ++i)
560 		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
561 }
562 
563 /* externalize from td->pcb */
564 int
565 fill_fpregs(struct thread *td, struct fpreg *fpregs)
566 {
567 
568 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
569 	    P_SHOULDSTOP(td->td_proc),
570 	    ("not suspended thread %p", td));
571 	fpugetregs(td);
572 	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
573 	return (0);
574 }
575 
576 /* internalize to td->pcb */
577 int
578 set_fpregs(struct thread *td, struct fpreg *fpregs)
579 {
580 
581 	critical_enter();
582 	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
583 	fpuuserinited(td);
584 	critical_exit();
585 	return (0);
586 }
587 
588 /*
589  * Get machine context.
590  */
591 int
592 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
593 {
594 	struct pcb *pcb;
595 	struct trapframe *tp;
596 
597 	pcb = td->td_pcb;
598 	tp = td->td_frame;
599 	PROC_LOCK(curthread->td_proc);
600 	mcp->mc_onstack = sigonstack(tp->tf_rsp);
601 	PROC_UNLOCK(curthread->td_proc);
602 	mcp->mc_r15 = tp->tf_r15;
603 	mcp->mc_r14 = tp->tf_r14;
604 	mcp->mc_r13 = tp->tf_r13;
605 	mcp->mc_r12 = tp->tf_r12;
606 	mcp->mc_r11 = tp->tf_r11;
607 	mcp->mc_r10 = tp->tf_r10;
608 	mcp->mc_r9  = tp->tf_r9;
609 	mcp->mc_r8  = tp->tf_r8;
610 	mcp->mc_rdi = tp->tf_rdi;
611 	mcp->mc_rsi = tp->tf_rsi;
612 	mcp->mc_rbp = tp->tf_rbp;
613 	mcp->mc_rbx = tp->tf_rbx;
614 	mcp->mc_rcx = tp->tf_rcx;
615 	mcp->mc_rflags = tp->tf_rflags;
616 	if (flags & GET_MC_CLEAR_RET) {
617 		mcp->mc_rax = 0;
618 		mcp->mc_rdx = 0;
619 		mcp->mc_rflags &= ~PSL_C;
620 	} else {
621 		mcp->mc_rax = tp->tf_rax;
622 		mcp->mc_rdx = tp->tf_rdx;
623 	}
624 	mcp->mc_rip = tp->tf_rip;
625 	mcp->mc_cs = tp->tf_cs;
626 	mcp->mc_rsp = tp->tf_rsp;
627 	mcp->mc_ss = tp->tf_ss;
628 	mcp->mc_ds = tp->tf_ds;
629 	mcp->mc_es = tp->tf_es;
630 	mcp->mc_fs = tp->tf_fs;
631 	mcp->mc_gs = tp->tf_gs;
632 	mcp->mc_flags = tp->tf_flags;
633 	mcp->mc_len = sizeof(*mcp);
634 	get_fpcontext(td, mcp, NULL, 0);
635 	update_pcb_bases(pcb);
636 	mcp->mc_fsbase = pcb->pcb_fsbase;
637 	mcp->mc_gsbase = pcb->pcb_gsbase;
638 	mcp->mc_xfpustate = 0;
639 	mcp->mc_xfpustate_len = 0;
640 	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
641 	return (0);
642 }
643 
644 /*
645  * Set machine context.
646  *
647  * However, we don't set any but the user modifiable flags, and we won't
648  * touch the cs selector.
649  */
650 int
651 set_mcontext(struct thread *td, mcontext_t *mcp)
652 {
653 	struct pcb *pcb;
654 	struct trapframe *tp;
655 	char *xfpustate;
656 	long rflags;
657 	int ret;
658 
659 	pcb = td->td_pcb;
660 	tp = td->td_frame;
661 	if (mcp->mc_len != sizeof(*mcp) ||
662 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
663 		return (EINVAL);
664 	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
665 	    (tp->tf_rflags & ~PSL_USERCHANGE);
666 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
667 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
668 		    sizeof(struct savefpu))
669 			return (EINVAL);
670 		xfpustate = (char *)fpu_save_area_alloc();
671 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
672 		    mcp->mc_xfpustate_len);
673 		if (ret != 0) {
674 			fpu_save_area_free((struct savefpu *)xfpustate);
675 			return (ret);
676 		}
677 	} else
678 		xfpustate = NULL;
679 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
680 	fpu_save_area_free((struct savefpu *)xfpustate);
681 	if (ret != 0)
682 		return (ret);
683 	tp->tf_r15 = mcp->mc_r15;
684 	tp->tf_r14 = mcp->mc_r14;
685 	tp->tf_r13 = mcp->mc_r13;
686 	tp->tf_r12 = mcp->mc_r12;
687 	tp->tf_r11 = mcp->mc_r11;
688 	tp->tf_r10 = mcp->mc_r10;
689 	tp->tf_r9  = mcp->mc_r9;
690 	tp->tf_r8  = mcp->mc_r8;
691 	tp->tf_rdi = mcp->mc_rdi;
692 	tp->tf_rsi = mcp->mc_rsi;
693 	tp->tf_rbp = mcp->mc_rbp;
694 	tp->tf_rbx = mcp->mc_rbx;
695 	tp->tf_rdx = mcp->mc_rdx;
696 	tp->tf_rcx = mcp->mc_rcx;
697 	tp->tf_rax = mcp->mc_rax;
698 	tp->tf_rip = mcp->mc_rip;
699 	tp->tf_rflags = rflags;
700 	tp->tf_rsp = mcp->mc_rsp;
701 	tp->tf_ss = mcp->mc_ss;
702 	tp->tf_flags = mcp->mc_flags;
703 	if (tp->tf_flags & TF_HASSEGS) {
704 		tp->tf_ds = mcp->mc_ds;
705 		tp->tf_es = mcp->mc_es;
706 		tp->tf_fs = mcp->mc_fs;
707 		tp->tf_gs = mcp->mc_gs;
708 	}
709 	set_pcb_flags(pcb, PCB_FULL_IRET);
710 	if (mcp->mc_flags & _MC_HASBASES) {
711 		pcb->pcb_fsbase = mcp->mc_fsbase;
712 		pcb->pcb_gsbase = mcp->mc_gsbase;
713 	}
714 	return (0);
715 }
716 
717 static void
718 get_fpcontext(struct thread *td, mcontext_t *mcp, char **xfpusave,
719     size_t *xfpusave_len)
720 {
721 	mcp->mc_ownedfp = fpugetregs(td);
722 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
723 	    sizeof(mcp->mc_fpstate));
724 	mcp->mc_fpformat = fpuformat();
725 	if (xfpusave == NULL)
726 		return;
727 	if (!use_xsave || cpu_max_ext_state_size <= sizeof(struct savefpu)) {
728 		*xfpusave_len = 0;
729 		*xfpusave = NULL;
730 	} else {
731 		mcp->mc_flags |= _MC_HASFPXSTATE;
732 		*xfpusave_len = mcp->mc_xfpustate_len =
733 		    cpu_max_ext_state_size - sizeof(struct savefpu);
734 		*xfpusave = (char *)(get_pcb_user_save_td(td) + 1);
735 	}
736 }
737 
738 static int
739 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
740     size_t xfpustate_len)
741 {
742 	int error;
743 
744 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
745 		return (0);
746 	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
747 		return (EINVAL);
748 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
749 		/* We don't care what state is left in the FPU or PCB. */
750 		fpstate_drop(td);
751 		error = 0;
752 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
753 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
754 		error = fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate,
755 		    xfpustate, xfpustate_len);
756 	} else
757 		return (EINVAL);
758 	return (error);
759 }
760 
761 void
762 fpstate_drop(struct thread *td)
763 {
764 
765 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
766 	critical_enter();
767 	if (PCPU_GET(fpcurthread) == td)
768 		fpudrop();
769 	/*
770 	 * XXX force a full drop of the fpu.  The above only drops it if we
771 	 * owned it.
772 	 *
773 	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
774 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
775 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
776 	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
777 	 * have too many layers.
778 	 */
779 	clear_pcb_flags(curthread->td_pcb,
780 	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
781 	critical_exit();
782 }
783 
784 int
785 fill_dbregs(struct thread *td, struct dbreg *dbregs)
786 {
787 	struct pcb *pcb;
788 
789 	if (td == NULL) {
790 		dbregs->dr[0] = rdr0();
791 		dbregs->dr[1] = rdr1();
792 		dbregs->dr[2] = rdr2();
793 		dbregs->dr[3] = rdr3();
794 		dbregs->dr[6] = rdr6();
795 		dbregs->dr[7] = rdr7();
796 	} else {
797 		pcb = td->td_pcb;
798 		dbregs->dr[0] = pcb->pcb_dr0;
799 		dbregs->dr[1] = pcb->pcb_dr1;
800 		dbregs->dr[2] = pcb->pcb_dr2;
801 		dbregs->dr[3] = pcb->pcb_dr3;
802 		dbregs->dr[6] = pcb->pcb_dr6;
803 		dbregs->dr[7] = pcb->pcb_dr7;
804 	}
805 	dbregs->dr[4] = 0;
806 	dbregs->dr[5] = 0;
807 	dbregs->dr[8] = 0;
808 	dbregs->dr[9] = 0;
809 	dbregs->dr[10] = 0;
810 	dbregs->dr[11] = 0;
811 	dbregs->dr[12] = 0;
812 	dbregs->dr[13] = 0;
813 	dbregs->dr[14] = 0;
814 	dbregs->dr[15] = 0;
815 	return (0);
816 }
817 
818 int
819 set_dbregs(struct thread *td, struct dbreg *dbregs)
820 {
821 	struct pcb *pcb;
822 	int i;
823 
824 	if (td == NULL) {
825 		load_dr0(dbregs->dr[0]);
826 		load_dr1(dbregs->dr[1]);
827 		load_dr2(dbregs->dr[2]);
828 		load_dr3(dbregs->dr[3]);
829 		load_dr6(dbregs->dr[6]);
830 		load_dr7(dbregs->dr[7]);
831 	} else {
832 		/*
833 		 * Don't let an illegal value for dr7 get set.  Specifically,
834 		 * check for undefined settings.  Setting these bit patterns
835 		 * result in undefined behaviour and can lead to an unexpected
836 		 * TRCTRAP or a general protection fault right here.
837 		 * Upper bits of dr6 and dr7 must not be set
838 		 */
839 		for (i = 0; i < 4; i++) {
840 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
841 				return (EINVAL);
842 			if (td->td_frame->tf_cs == _ucode32sel &&
843 			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
844 				return (EINVAL);
845 		}
846 		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
847 		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
848 			return (EINVAL);
849 
850 		pcb = td->td_pcb;
851 
852 		/*
853 		 * Don't let a process set a breakpoint that is not within the
854 		 * process's address space.  If a process could do this, it
855 		 * could halt the system by setting a breakpoint in the kernel
856 		 * (if ddb was enabled).  Thus, we need to check to make sure
857 		 * that no breakpoints are being enabled for addresses outside
858 		 * process's address space.
859 		 *
860 		 * XXX - what about when the watched area of the user's
861 		 * address space is written into from within the kernel
862 		 * ... wouldn't that still cause a breakpoint to be generated
863 		 * from within kernel mode?
864 		 */
865 
866 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
867 			/* dr0 is enabled */
868 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
869 				return (EINVAL);
870 		}
871 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
872 			/* dr1 is enabled */
873 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
874 				return (EINVAL);
875 		}
876 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
877 			/* dr2 is enabled */
878 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
879 				return (EINVAL);
880 		}
881 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
882 			/* dr3 is enabled */
883 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
884 				return (EINVAL);
885 		}
886 
887 		pcb->pcb_dr0 = dbregs->dr[0];
888 		pcb->pcb_dr1 = dbregs->dr[1];
889 		pcb->pcb_dr2 = dbregs->dr[2];
890 		pcb->pcb_dr3 = dbregs->dr[3];
891 		pcb->pcb_dr6 = dbregs->dr[6];
892 		pcb->pcb_dr7 = dbregs->dr[7];
893 
894 		set_pcb_flags(pcb, PCB_DBREGS);
895 	}
896 
897 	return (0);
898 }
899 
900 void
901 reset_dbregs(void)
902 {
903 
904 	load_dr7(0);	/* Turn off the control bits first */
905 	load_dr0(0);
906 	load_dr1(0);
907 	load_dr2(0);
908 	load_dr3(0);
909 	load_dr6(0);
910 }
911 
912 /*
913  * Return > 0 if a hardware breakpoint has been hit, and the
914  * breakpoint was in user space.  Return 0, otherwise.
915  */
916 int
917 user_dbreg_trap(register_t dr6)
918 {
919         u_int64_t dr7;
920         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
921         int nbp;            /* number of breakpoints that triggered */
922         caddr_t addr[4];    /* breakpoint addresses */
923         int i;
924 
925         bp = dr6 & DBREG_DR6_BMASK;
926         if (bp == 0) {
927                 /*
928                  * None of the breakpoint bits are set meaning this
929                  * trap was not caused by any of the debug registers
930                  */
931                 return (0);
932         }
933 
934         dr7 = rdr7();
935         if ((dr7 & 0x000000ff) == 0) {
936                 /*
937                  * all GE and LE bits in the dr7 register are zero,
938                  * thus the trap couldn't have been caused by the
939                  * hardware debug registers
940                  */
941 		return (0);
942         }
943 
944         nbp = 0;
945 
946         /*
947          * at least one of the breakpoints were hit, check to see
948          * which ones and if any of them are user space addresses
949          */
950 
951         if (bp & 0x01) {
952                 addr[nbp++] = (caddr_t)rdr0();
953         }
954         if (bp & 0x02) {
955                 addr[nbp++] = (caddr_t)rdr1();
956         }
957         if (bp & 0x04) {
958                 addr[nbp++] = (caddr_t)rdr2();
959         }
960         if (bp & 0x08) {
961                 addr[nbp++] = (caddr_t)rdr3();
962         }
963 
964         for (i = 0; i < nbp; i++) {
965                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
966                         /*
967                          * addr[i] is in user space
968                          */
969                         return (nbp);
970                 }
971         }
972 
973         /*
974          * None of the breakpoints are in user space.
975          */
976         return (0);
977 }
978