xref: /freebsd/sys/amd64/amd64/exec_machdep.c (revision c03c5b1c)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/exec.h>
54 #include <sys/imgact.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/linker.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/pcpu.h>
63 #include <sys/reg.h>
64 #include <sys/rwlock.h>
65 #include <sys/signalvar.h>
66 #ifdef SMP
67 #include <sys/smp.h>
68 #endif
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/sysproto.h>
73 #include <sys/ucontext.h>
74 #include <sys/vmmeter.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_extern.h>
79 #include <vm/pmap.h>
80 
81 #ifdef DDB
82 #ifndef KDB
83 #error KDB must be enabled in order for DDB to work!
84 #endif
85 #include <ddb/ddb.h>
86 #include <ddb/db_sym.h>
87 #endif
88 
89 #include <machine/vmparam.h>
90 #include <machine/frame.h>
91 #include <machine/md_var.h>
92 #include <machine/pcb.h>
93 #include <machine/proc.h>
94 #include <machine/sigframe.h>
95 #include <machine/specialreg.h>
96 #include <machine/trap.h>
97 
98 _Static_assert(sizeof(mcontext_t) == 800, "mcontext_t size incorrect");
99 _Static_assert(sizeof(ucontext_t) == 880, "ucontext_t size incorrect");
100 _Static_assert(sizeof(siginfo_t) == 80, "siginfo_t size incorrect");
101 
102 /*
103  * Send an interrupt to process.
104  *
105  * Stack is set up to allow sigcode stored at top to call routine,
106  * followed by call to sigreturn routine below.  After sigreturn
107  * resets the signal mask, the stack, and the frame pointer, it
108  * returns to the user specified pc, psl.
109  */
110 void
111 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
112 {
113 	struct sigframe sf, *sfp;
114 	struct pcb *pcb;
115 	struct proc *p;
116 	struct thread *td;
117 	struct sigacts *psp;
118 	char *sp;
119 	struct trapframe *regs;
120 	char *xfpusave;
121 	size_t xfpusave_len;
122 	int sig;
123 	int oonstack;
124 
125 	td = curthread;
126 	pcb = td->td_pcb;
127 	p = td->td_proc;
128 	PROC_LOCK_ASSERT(p, MA_OWNED);
129 	sig = ksi->ksi_signo;
130 	psp = p->p_sigacts;
131 	mtx_assert(&psp->ps_mtx, MA_OWNED);
132 	regs = td->td_frame;
133 	oonstack = sigonstack(regs->tf_rsp);
134 
135 	/* Save user context. */
136 	bzero(&sf, sizeof(sf));
137 	sf.sf_uc.uc_sigmask = *mask;
138 	sf.sf_uc.uc_stack = td->td_sigstk;
139 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
140 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
141 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
142 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
143 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
144 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, &xfpusave, &xfpusave_len);
145 	update_pcb_bases(pcb);
146 	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
147 	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
148 	bzero(sf.sf_uc.uc_mcontext.mc_spare,
149 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
150 
151 	/* Allocate space for the signal handler context. */
152 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
153 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
154 		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
155 #if defined(COMPAT_43)
156 		td->td_sigstk.ss_flags |= SS_ONSTACK;
157 #endif
158 	} else
159 		sp = (char *)regs->tf_rsp - 128;
160 	if (xfpusave != NULL) {
161 		sp -= xfpusave_len;
162 		sp = (char *)((unsigned long)sp & ~0x3Ful);
163 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
164 	}
165 	sp -= sizeof(struct sigframe);
166 	/* Align to 16 bytes. */
167 	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
168 
169 	/* Build the argument list for the signal handler. */
170 	regs->tf_rdi = sig;			/* arg 1 in %rdi */
171 	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
172 	bzero(&sf.sf_si, sizeof(sf.sf_si));
173 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
174 		/* Signal handler installed with SA_SIGINFO. */
175 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
176 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
177 
178 		/* Fill in POSIX parts */
179 		sf.sf_si = ksi->ksi_info;
180 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
181 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
182 	} else {
183 		/* Old FreeBSD-style arguments. */
184 		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
185 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
186 		sf.sf_ahu.sf_handler = catcher;
187 	}
188 	mtx_unlock(&psp->ps_mtx);
189 	PROC_UNLOCK(p);
190 
191 	/*
192 	 * Copy the sigframe out to the user's stack.
193 	 */
194 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
195 	    (xfpusave != NULL && copyout(xfpusave,
196 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
197 	    != 0)) {
198 		uprintf("pid %d comm %s has trashed its stack, killing\n",
199 		    p->p_pid, p->p_comm);
200 		PROC_LOCK(p);
201 		sigexit(td, SIGILL);
202 	}
203 
204 	fpstate_drop(td);
205 	regs->tf_rsp = (long)sfp;
206 	regs->tf_rip = p->p_sysent->sv_sigcode_base;
207 	regs->tf_rflags &= ~(PSL_T | PSL_D);
208 	regs->tf_cs = _ucodesel;
209 	regs->tf_ds = _udatasel;
210 	regs->tf_ss = _udatasel;
211 	regs->tf_es = _udatasel;
212 	regs->tf_fs = _ufssel;
213 	regs->tf_gs = _ugssel;
214 	regs->tf_flags = TF_HASSEGS;
215 	PROC_LOCK(p);
216 	mtx_lock(&psp->ps_mtx);
217 }
218 
219 /*
220  * System call to cleanup state after a signal
221  * has been taken.  Reset signal mask and
222  * stack state from context left by sendsig (above).
223  * Return to previous pc and psl as specified by
224  * context left by sendsig. Check carefully to
225  * make sure that the user has not modified the
226  * state to gain improper privileges.
227  */
228 int
229 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
230 {
231 	ucontext_t uc;
232 	struct pcb *pcb;
233 	struct proc *p;
234 	struct trapframe *regs;
235 	ucontext_t *ucp;
236 	char *xfpustate;
237 	size_t xfpustate_len;
238 	long rflags;
239 	int cs, error, ret;
240 	ksiginfo_t ksi;
241 
242 	pcb = td->td_pcb;
243 	p = td->td_proc;
244 
245 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
246 	if (error != 0) {
247 		uprintf("pid %d (%s): sigreturn copyin failed\n",
248 		    p->p_pid, td->td_name);
249 		return (error);
250 	}
251 	ucp = &uc;
252 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
253 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
254 		    td->td_name, ucp->uc_mcontext.mc_flags);
255 		return (EINVAL);
256 	}
257 	regs = td->td_frame;
258 	rflags = ucp->uc_mcontext.mc_rflags;
259 	/*
260 	 * Don't allow users to change privileged or reserved flags.
261 	 */
262 	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
263 		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
264 		    td->td_name, rflags);
265 		return (EINVAL);
266 	}
267 
268 	/*
269 	 * Don't allow users to load a valid privileged %cs.  Let the
270 	 * hardware check for invalid selectors, excess privilege in
271 	 * other selectors, invalid %eip's and invalid %esp's.
272 	 */
273 	cs = ucp->uc_mcontext.mc_cs;
274 	if (!CS_SECURE(cs)) {
275 		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
276 		    td->td_name, cs);
277 		ksiginfo_init_trap(&ksi);
278 		ksi.ksi_signo = SIGBUS;
279 		ksi.ksi_code = BUS_OBJERR;
280 		ksi.ksi_trapno = T_PROTFLT;
281 		ksi.ksi_addr = (void *)regs->tf_rip;
282 		trapsignal(td, &ksi);
283 		return (EINVAL);
284 	}
285 
286 	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
287 		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
288 		if (xfpustate_len > cpu_max_ext_state_size -
289 		    sizeof(struct savefpu)) {
290 			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
291 			    p->p_pid, td->td_name, xfpustate_len);
292 			return (EINVAL);
293 		}
294 		xfpustate = (char *)fpu_save_area_alloc();
295 		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
296 		    xfpustate, xfpustate_len);
297 		if (error != 0) {
298 			fpu_save_area_free((struct savefpu *)xfpustate);
299 			uprintf(
300 	"pid %d (%s): sigreturn copying xfpustate failed\n",
301 			    p->p_pid, td->td_name);
302 			return (error);
303 		}
304 	} else {
305 		xfpustate = NULL;
306 		xfpustate_len = 0;
307 	}
308 	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
309 	fpu_save_area_free((struct savefpu *)xfpustate);
310 	if (ret != 0) {
311 		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
312 		    p->p_pid, td->td_name, ret);
313 		return (ret);
314 	}
315 	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
316 	update_pcb_bases(pcb);
317 	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
318 	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
319 
320 #if defined(COMPAT_43)
321 	if (ucp->uc_mcontext.mc_onstack & 1)
322 		td->td_sigstk.ss_flags |= SS_ONSTACK;
323 	else
324 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
325 #endif
326 
327 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
328 	return (EJUSTRETURN);
329 }
330 
331 #ifdef COMPAT_FREEBSD4
332 int
333 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
334 {
335 
336 	return sys_sigreturn(td, (struct sigreturn_args *)uap);
337 }
338 #endif
339 
340 /*
341  * Reset the hardware debug registers if they were in use.
342  * They won't have any meaning for the newly exec'd process.
343  */
344 void
345 x86_clear_dbregs(struct pcb *pcb)
346 {
347 	if ((pcb->pcb_flags & PCB_DBREGS) == 0)
348 		return;
349 
350 	pcb->pcb_dr0 = 0;
351 	pcb->pcb_dr1 = 0;
352 	pcb->pcb_dr2 = 0;
353 	pcb->pcb_dr3 = 0;
354 	pcb->pcb_dr6 = 0;
355 	pcb->pcb_dr7 = 0;
356 
357 	if (pcb == curpcb) {
358 		/*
359 		 * Clear the debug registers on the running CPU,
360 		 * otherwise they will end up affecting the next
361 		 * process we switch to.
362 		 */
363 		reset_dbregs();
364 	}
365 	clear_pcb_flags(pcb, PCB_DBREGS);
366 }
367 
368 /*
369  * Reset registers to default values on exec.
370  */
371 void
372 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
373 {
374 	struct trapframe *regs;
375 	struct pcb *pcb;
376 	register_t saved_rflags;
377 
378 	regs = td->td_frame;
379 	pcb = td->td_pcb;
380 
381 	if (td->td_proc->p_md.md_ldt != NULL)
382 		user_ldt_free(td);
383 
384 	update_pcb_bases(pcb);
385 	pcb->pcb_fsbase = 0;
386 	pcb->pcb_gsbase = 0;
387 	clear_pcb_flags(pcb, PCB_32BIT);
388 	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
389 
390 	saved_rflags = regs->tf_rflags & PSL_T;
391 	bzero((char *)regs, sizeof(struct trapframe));
392 	regs->tf_rip = imgp->entry_addr;
393 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
394 	regs->tf_rdi = stack;		/* argv */
395 	regs->tf_rflags = PSL_USER | saved_rflags;
396 	regs->tf_ss = _udatasel;
397 	regs->tf_cs = _ucodesel;
398 	regs->tf_ds = _udatasel;
399 	regs->tf_es = _udatasel;
400 	regs->tf_fs = _ufssel;
401 	regs->tf_gs = _ugssel;
402 	regs->tf_flags = TF_HASSEGS;
403 
404 	x86_clear_dbregs(pcb);
405 
406 	/*
407 	 * Drop the FP state if we hold it, so that the process gets a
408 	 * clean FP state if it uses the FPU again.
409 	 */
410 	fpstate_drop(td);
411 }
412 
413 int
414 fill_regs(struct thread *td, struct reg *regs)
415 {
416 	struct trapframe *tp;
417 
418 	tp = td->td_frame;
419 	return (fill_frame_regs(tp, regs));
420 }
421 
422 int
423 fill_frame_regs(struct trapframe *tp, struct reg *regs)
424 {
425 
426 	regs->r_r15 = tp->tf_r15;
427 	regs->r_r14 = tp->tf_r14;
428 	regs->r_r13 = tp->tf_r13;
429 	regs->r_r12 = tp->tf_r12;
430 	regs->r_r11 = tp->tf_r11;
431 	regs->r_r10 = tp->tf_r10;
432 	regs->r_r9  = tp->tf_r9;
433 	regs->r_r8  = tp->tf_r8;
434 	regs->r_rdi = tp->tf_rdi;
435 	regs->r_rsi = tp->tf_rsi;
436 	regs->r_rbp = tp->tf_rbp;
437 	regs->r_rbx = tp->tf_rbx;
438 	regs->r_rdx = tp->tf_rdx;
439 	regs->r_rcx = tp->tf_rcx;
440 	regs->r_rax = tp->tf_rax;
441 	regs->r_rip = tp->tf_rip;
442 	regs->r_cs = tp->tf_cs;
443 	regs->r_rflags = tp->tf_rflags;
444 	regs->r_rsp = tp->tf_rsp;
445 	regs->r_ss = tp->tf_ss;
446 	if (tp->tf_flags & TF_HASSEGS) {
447 		regs->r_ds = tp->tf_ds;
448 		regs->r_es = tp->tf_es;
449 		regs->r_fs = tp->tf_fs;
450 		regs->r_gs = tp->tf_gs;
451 	} else {
452 		regs->r_ds = 0;
453 		regs->r_es = 0;
454 		regs->r_fs = 0;
455 		regs->r_gs = 0;
456 	}
457 	regs->r_err = 0;
458 	regs->r_trapno = 0;
459 	return (0);
460 }
461 
462 int
463 set_regs(struct thread *td, struct reg *regs)
464 {
465 	struct trapframe *tp;
466 	register_t rflags;
467 
468 	tp = td->td_frame;
469 	rflags = regs->r_rflags & 0xffffffff;
470 	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
471 		return (EINVAL);
472 	tp->tf_r15 = regs->r_r15;
473 	tp->tf_r14 = regs->r_r14;
474 	tp->tf_r13 = regs->r_r13;
475 	tp->tf_r12 = regs->r_r12;
476 	tp->tf_r11 = regs->r_r11;
477 	tp->tf_r10 = regs->r_r10;
478 	tp->tf_r9  = regs->r_r9;
479 	tp->tf_r8  = regs->r_r8;
480 	tp->tf_rdi = regs->r_rdi;
481 	tp->tf_rsi = regs->r_rsi;
482 	tp->tf_rbp = regs->r_rbp;
483 	tp->tf_rbx = regs->r_rbx;
484 	tp->tf_rdx = regs->r_rdx;
485 	tp->tf_rcx = regs->r_rcx;
486 	tp->tf_rax = regs->r_rax;
487 	tp->tf_rip = regs->r_rip;
488 	tp->tf_cs = regs->r_cs;
489 	tp->tf_rflags = rflags;
490 	tp->tf_rsp = regs->r_rsp;
491 	tp->tf_ss = regs->r_ss;
492 	if (0) {	/* XXXKIB */
493 		tp->tf_ds = regs->r_ds;
494 		tp->tf_es = regs->r_es;
495 		tp->tf_fs = regs->r_fs;
496 		tp->tf_gs = regs->r_gs;
497 		tp->tf_flags = TF_HASSEGS;
498 	}
499 	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
500 	return (0);
501 }
502 
503 /* XXX check all this stuff! */
504 /* externalize from sv_xmm */
505 static void
506 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
507 {
508 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
509 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
510 	int i;
511 
512 	/* pcb -> fpregs */
513 	bzero(fpregs, sizeof(*fpregs));
514 
515 	/* FPU control/status */
516 	penv_fpreg->en_cw = penv_xmm->en_cw;
517 	penv_fpreg->en_sw = penv_xmm->en_sw;
518 	penv_fpreg->en_tw = penv_xmm->en_tw;
519 	penv_fpreg->en_opcode = penv_xmm->en_opcode;
520 	penv_fpreg->en_rip = penv_xmm->en_rip;
521 	penv_fpreg->en_rdp = penv_xmm->en_rdp;
522 	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
523 	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
524 
525 	/* FPU registers */
526 	for (i = 0; i < 8; ++i)
527 		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
528 
529 	/* SSE registers */
530 	for (i = 0; i < 16; ++i)
531 		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
532 }
533 
534 /* internalize from fpregs into sv_xmm */
535 static void
536 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
537 {
538 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
539 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
540 	int i;
541 
542 	/* fpregs -> pcb */
543 	/* FPU control/status */
544 	penv_xmm->en_cw = penv_fpreg->en_cw;
545 	penv_xmm->en_sw = penv_fpreg->en_sw;
546 	penv_xmm->en_tw = penv_fpreg->en_tw;
547 	penv_xmm->en_opcode = penv_fpreg->en_opcode;
548 	penv_xmm->en_rip = penv_fpreg->en_rip;
549 	penv_xmm->en_rdp = penv_fpreg->en_rdp;
550 	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
551 	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
552 
553 	/* FPU registers */
554 	for (i = 0; i < 8; ++i)
555 		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
556 
557 	/* SSE registers */
558 	for (i = 0; i < 16; ++i)
559 		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
560 }
561 
562 /* externalize from td->pcb */
563 int
564 fill_fpregs(struct thread *td, struct fpreg *fpregs)
565 {
566 
567 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
568 	    P_SHOULDSTOP(td->td_proc),
569 	    ("not suspended thread %p", td));
570 	fpugetregs(td);
571 	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
572 	return (0);
573 }
574 
575 /* internalize to td->pcb */
576 int
577 set_fpregs(struct thread *td, struct fpreg *fpregs)
578 {
579 
580 	critical_enter();
581 	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
582 	fpuuserinited(td);
583 	critical_exit();
584 	return (0);
585 }
586 
587 /*
588  * Get machine context.
589  */
590 int
591 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
592 {
593 	struct pcb *pcb;
594 	struct trapframe *tp;
595 
596 	pcb = td->td_pcb;
597 	tp = td->td_frame;
598 	PROC_LOCK(curthread->td_proc);
599 	mcp->mc_onstack = sigonstack(tp->tf_rsp);
600 	PROC_UNLOCK(curthread->td_proc);
601 	mcp->mc_r15 = tp->tf_r15;
602 	mcp->mc_r14 = tp->tf_r14;
603 	mcp->mc_r13 = tp->tf_r13;
604 	mcp->mc_r12 = tp->tf_r12;
605 	mcp->mc_r11 = tp->tf_r11;
606 	mcp->mc_r10 = tp->tf_r10;
607 	mcp->mc_r9  = tp->tf_r9;
608 	mcp->mc_r8  = tp->tf_r8;
609 	mcp->mc_rdi = tp->tf_rdi;
610 	mcp->mc_rsi = tp->tf_rsi;
611 	mcp->mc_rbp = tp->tf_rbp;
612 	mcp->mc_rbx = tp->tf_rbx;
613 	mcp->mc_rcx = tp->tf_rcx;
614 	mcp->mc_rflags = tp->tf_rflags;
615 	if (flags & GET_MC_CLEAR_RET) {
616 		mcp->mc_rax = 0;
617 		mcp->mc_rdx = 0;
618 		mcp->mc_rflags &= ~PSL_C;
619 	} else {
620 		mcp->mc_rax = tp->tf_rax;
621 		mcp->mc_rdx = tp->tf_rdx;
622 	}
623 	mcp->mc_rip = tp->tf_rip;
624 	mcp->mc_cs = tp->tf_cs;
625 	mcp->mc_rsp = tp->tf_rsp;
626 	mcp->mc_ss = tp->tf_ss;
627 	mcp->mc_ds = tp->tf_ds;
628 	mcp->mc_es = tp->tf_es;
629 	mcp->mc_fs = tp->tf_fs;
630 	mcp->mc_gs = tp->tf_gs;
631 	mcp->mc_flags = tp->tf_flags;
632 	mcp->mc_len = sizeof(*mcp);
633 	get_fpcontext(td, mcp, NULL, NULL);
634 	update_pcb_bases(pcb);
635 	mcp->mc_fsbase = pcb->pcb_fsbase;
636 	mcp->mc_gsbase = pcb->pcb_gsbase;
637 	mcp->mc_xfpustate = 0;
638 	mcp->mc_xfpustate_len = 0;
639 	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
640 	return (0);
641 }
642 
643 /*
644  * Set machine context.
645  *
646  * However, we don't set any but the user modifiable flags, and we won't
647  * touch the cs selector.
648  */
649 int
650 set_mcontext(struct thread *td, mcontext_t *mcp)
651 {
652 	struct pcb *pcb;
653 	struct trapframe *tp;
654 	char *xfpustate;
655 	long rflags;
656 	int ret;
657 
658 	pcb = td->td_pcb;
659 	tp = td->td_frame;
660 	if (mcp->mc_len != sizeof(*mcp) ||
661 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
662 		return (EINVAL);
663 	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
664 	    (tp->tf_rflags & ~PSL_USERCHANGE);
665 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
666 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
667 		    sizeof(struct savefpu))
668 			return (EINVAL);
669 		xfpustate = (char *)fpu_save_area_alloc();
670 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
671 		    mcp->mc_xfpustate_len);
672 		if (ret != 0) {
673 			fpu_save_area_free((struct savefpu *)xfpustate);
674 			return (ret);
675 		}
676 	} else
677 		xfpustate = NULL;
678 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
679 	fpu_save_area_free((struct savefpu *)xfpustate);
680 	if (ret != 0)
681 		return (ret);
682 	tp->tf_r15 = mcp->mc_r15;
683 	tp->tf_r14 = mcp->mc_r14;
684 	tp->tf_r13 = mcp->mc_r13;
685 	tp->tf_r12 = mcp->mc_r12;
686 	tp->tf_r11 = mcp->mc_r11;
687 	tp->tf_r10 = mcp->mc_r10;
688 	tp->tf_r9  = mcp->mc_r9;
689 	tp->tf_r8  = mcp->mc_r8;
690 	tp->tf_rdi = mcp->mc_rdi;
691 	tp->tf_rsi = mcp->mc_rsi;
692 	tp->tf_rbp = mcp->mc_rbp;
693 	tp->tf_rbx = mcp->mc_rbx;
694 	tp->tf_rdx = mcp->mc_rdx;
695 	tp->tf_rcx = mcp->mc_rcx;
696 	tp->tf_rax = mcp->mc_rax;
697 	tp->tf_rip = mcp->mc_rip;
698 	tp->tf_rflags = rflags;
699 	tp->tf_rsp = mcp->mc_rsp;
700 	tp->tf_ss = mcp->mc_ss;
701 	tp->tf_flags = mcp->mc_flags;
702 	if (tp->tf_flags & TF_HASSEGS) {
703 		tp->tf_ds = mcp->mc_ds;
704 		tp->tf_es = mcp->mc_es;
705 		tp->tf_fs = mcp->mc_fs;
706 		tp->tf_gs = mcp->mc_gs;
707 	}
708 	set_pcb_flags(pcb, PCB_FULL_IRET);
709 	if (mcp->mc_flags & _MC_HASBASES) {
710 		pcb->pcb_fsbase = mcp->mc_fsbase;
711 		pcb->pcb_gsbase = mcp->mc_gsbase;
712 	}
713 	return (0);
714 }
715 
716 void
717 get_fpcontext(struct thread *td, mcontext_t *mcp, char **xfpusave,
718     size_t *xfpusave_len)
719 {
720 	mcp->mc_ownedfp = fpugetregs(td);
721 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
722 	    sizeof(mcp->mc_fpstate));
723 	mcp->mc_fpformat = fpuformat();
724 	if (xfpusave == NULL)
725 		return;
726 	if (!use_xsave || cpu_max_ext_state_size <= sizeof(struct savefpu)) {
727 		*xfpusave_len = 0;
728 		*xfpusave = NULL;
729 	} else {
730 		mcp->mc_flags |= _MC_HASFPXSTATE;
731 		*xfpusave_len = mcp->mc_xfpustate_len =
732 		    cpu_max_ext_state_size - sizeof(struct savefpu);
733 		*xfpusave = (char *)(get_pcb_user_save_td(td) + 1);
734 	}
735 }
736 
737 int
738 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
739     size_t xfpustate_len)
740 {
741 	int error;
742 
743 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
744 		return (0);
745 	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
746 		return (EINVAL);
747 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
748 		/* We don't care what state is left in the FPU or PCB. */
749 		fpstate_drop(td);
750 		error = 0;
751 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
752 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
753 		error = fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate,
754 		    xfpustate, xfpustate_len);
755 	} else
756 		return (EINVAL);
757 	return (error);
758 }
759 
760 void
761 fpstate_drop(struct thread *td)
762 {
763 
764 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
765 	critical_enter();
766 	if (PCPU_GET(fpcurthread) == td)
767 		fpudrop();
768 	/*
769 	 * XXX force a full drop of the fpu.  The above only drops it if we
770 	 * owned it.
771 	 *
772 	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
773 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
774 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
775 	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
776 	 * have too many layers.
777 	 */
778 	clear_pcb_flags(curthread->td_pcb,
779 	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
780 	critical_exit();
781 }
782 
783 int
784 fill_dbregs(struct thread *td, struct dbreg *dbregs)
785 {
786 	struct pcb *pcb;
787 
788 	if (td == NULL) {
789 		dbregs->dr[0] = rdr0();
790 		dbregs->dr[1] = rdr1();
791 		dbregs->dr[2] = rdr2();
792 		dbregs->dr[3] = rdr3();
793 		dbregs->dr[6] = rdr6();
794 		dbregs->dr[7] = rdr7();
795 	} else {
796 		pcb = td->td_pcb;
797 		dbregs->dr[0] = pcb->pcb_dr0;
798 		dbregs->dr[1] = pcb->pcb_dr1;
799 		dbregs->dr[2] = pcb->pcb_dr2;
800 		dbregs->dr[3] = pcb->pcb_dr3;
801 		dbregs->dr[6] = pcb->pcb_dr6;
802 		dbregs->dr[7] = pcb->pcb_dr7;
803 	}
804 	dbregs->dr[4] = 0;
805 	dbregs->dr[5] = 0;
806 	dbregs->dr[8] = 0;
807 	dbregs->dr[9] = 0;
808 	dbregs->dr[10] = 0;
809 	dbregs->dr[11] = 0;
810 	dbregs->dr[12] = 0;
811 	dbregs->dr[13] = 0;
812 	dbregs->dr[14] = 0;
813 	dbregs->dr[15] = 0;
814 	return (0);
815 }
816 
817 int
818 set_dbregs(struct thread *td, struct dbreg *dbregs)
819 {
820 	struct pcb *pcb;
821 	int i;
822 
823 	if (td == NULL) {
824 		load_dr0(dbregs->dr[0]);
825 		load_dr1(dbregs->dr[1]);
826 		load_dr2(dbregs->dr[2]);
827 		load_dr3(dbregs->dr[3]);
828 		load_dr6(dbregs->dr[6]);
829 		load_dr7(dbregs->dr[7]);
830 	} else {
831 		/*
832 		 * Don't let an illegal value for dr7 get set.  Specifically,
833 		 * check for undefined settings.  Setting these bit patterns
834 		 * result in undefined behaviour and can lead to an unexpected
835 		 * TRCTRAP or a general protection fault right here.
836 		 * Upper bits of dr6 and dr7 must not be set
837 		 */
838 		for (i = 0; i < 4; i++) {
839 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
840 				return (EINVAL);
841 			if (td->td_frame->tf_cs == _ucode32sel &&
842 			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
843 				return (EINVAL);
844 		}
845 		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
846 		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
847 			return (EINVAL);
848 
849 		pcb = td->td_pcb;
850 
851 		/*
852 		 * Don't let a process set a breakpoint that is not within the
853 		 * process's address space.  If a process could do this, it
854 		 * could halt the system by setting a breakpoint in the kernel
855 		 * (if ddb was enabled).  Thus, we need to check to make sure
856 		 * that no breakpoints are being enabled for addresses outside
857 		 * process's address space.
858 		 *
859 		 * XXX - what about when the watched area of the user's
860 		 * address space is written into from within the kernel
861 		 * ... wouldn't that still cause a breakpoint to be generated
862 		 * from within kernel mode?
863 		 */
864 
865 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
866 			/* dr0 is enabled */
867 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
868 				return (EINVAL);
869 		}
870 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
871 			/* dr1 is enabled */
872 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
873 				return (EINVAL);
874 		}
875 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
876 			/* dr2 is enabled */
877 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
878 				return (EINVAL);
879 		}
880 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
881 			/* dr3 is enabled */
882 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
883 				return (EINVAL);
884 		}
885 
886 		pcb->pcb_dr0 = dbregs->dr[0];
887 		pcb->pcb_dr1 = dbregs->dr[1];
888 		pcb->pcb_dr2 = dbregs->dr[2];
889 		pcb->pcb_dr3 = dbregs->dr[3];
890 		pcb->pcb_dr6 = dbregs->dr[6];
891 		pcb->pcb_dr7 = dbregs->dr[7];
892 
893 		set_pcb_flags(pcb, PCB_DBREGS);
894 	}
895 
896 	return (0);
897 }
898 
899 void
900 reset_dbregs(void)
901 {
902 
903 	load_dr7(0);	/* Turn off the control bits first */
904 	load_dr0(0);
905 	load_dr1(0);
906 	load_dr2(0);
907 	load_dr3(0);
908 	load_dr6(0);
909 }
910 
911 /*
912  * Return > 0 if a hardware breakpoint has been hit, and the
913  * breakpoint was in user space.  Return 0, otherwise.
914  */
915 int
916 user_dbreg_trap(register_t dr6)
917 {
918         u_int64_t dr7;
919         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
920         int nbp;            /* number of breakpoints that triggered */
921         caddr_t addr[4];    /* breakpoint addresses */
922         int i;
923 
924         bp = dr6 & DBREG_DR6_BMASK;
925         if (bp == 0) {
926                 /*
927                  * None of the breakpoint bits are set meaning this
928                  * trap was not caused by any of the debug registers
929                  */
930                 return (0);
931         }
932 
933         dr7 = rdr7();
934         if ((dr7 & 0x000000ff) == 0) {
935                 /*
936                  * all GE and LE bits in the dr7 register are zero,
937                  * thus the trap couldn't have been caused by the
938                  * hardware debug registers
939                  */
940 		return (0);
941         }
942 
943         nbp = 0;
944 
945         /*
946          * at least one of the breakpoints were hit, check to see
947          * which ones and if any of them are user space addresses
948          */
949 
950         if (bp & 0x01) {
951                 addr[nbp++] = (caddr_t)rdr0();
952         }
953         if (bp & 0x02) {
954                 addr[nbp++] = (caddr_t)rdr1();
955         }
956         if (bp & 0x04) {
957                 addr[nbp++] = (caddr_t)rdr2();
958         }
959         if (bp & 0x08) {
960                 addr[nbp++] = (caddr_t)rdr3();
961         }
962 
963         for (i = 0; i < nbp; i++) {
964                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
965                         /*
966                          * addr[i] is in user space
967                          */
968                         return (nbp);
969                 }
970         }
971 
972         /*
973          * None of the breakpoints are in user space.
974          */
975         return (0);
976 }
977