xref: /freebsd/sys/amd64/amd64/fpu.c (revision 4bc52338)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <machine/bus.h>
50 #include <sys/rman.h>
51 #include <sys/signalvar.h>
52 #include <vm/uma.h>
53 
54 #include <machine/cputypes.h>
55 #include <machine/frame.h>
56 #include <machine/intr_machdep.h>
57 #include <machine/md_var.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/resource.h>
61 #include <machine/specialreg.h>
62 #include <machine/segments.h>
63 #include <machine/ucontext.h>
64 #include <x86/ifunc.h>
65 
66 /*
67  * Floating point support.
68  */
69 
70 #if defined(__GNUCLIKE_ASM) && !defined(lint)
71 
72 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
73 #define	fnclex()		__asm __volatile("fnclex")
74 #define	fninit()		__asm __volatile("fninit")
75 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
76 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
77 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
78 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
79 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
80 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
81 
82 static __inline void
83 xrstor(char *addr, uint64_t mask)
84 {
85 	uint32_t low, hi;
86 
87 	low = mask;
88 	hi = mask >> 32;
89 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
90 }
91 
92 static __inline void
93 xsave(char *addr, uint64_t mask)
94 {
95 	uint32_t low, hi;
96 
97 	low = mask;
98 	hi = mask >> 32;
99 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
100 	    "memory");
101 }
102 
103 static __inline void
104 xsaveopt(char *addr, uint64_t mask)
105 {
106 	uint32_t low, hi;
107 
108 	low = mask;
109 	hi = mask >> 32;
110 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
111 	    "memory");
112 }
113 
114 #else	/* !(__GNUCLIKE_ASM && !lint) */
115 
116 void	fldcw(u_short cw);
117 void	fnclex(void);
118 void	fninit(void);
119 void	fnstcw(caddr_t addr);
120 void	fnstsw(caddr_t addr);
121 void	fxsave(caddr_t addr);
122 void	fxrstor(caddr_t addr);
123 void	ldmxcsr(u_int csr);
124 void	stmxcsr(u_int *csr);
125 void	xrstor(char *addr, uint64_t mask);
126 void	xsave(char *addr, uint64_t mask);
127 void	xsaveopt(char *addr, uint64_t mask);
128 
129 #endif	/* __GNUCLIKE_ASM && !lint */
130 
131 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
132 #define	stop_emulating()	clts()
133 
134 CTASSERT(sizeof(struct savefpu) == 512);
135 CTASSERT(sizeof(struct xstate_hdr) == 64);
136 CTASSERT(sizeof(struct savefpu_ymm) == 832);
137 
138 /*
139  * This requirement is to make it easier for asm code to calculate
140  * offset of the fpu save area from the pcb address. FPU save area
141  * must be 64-byte aligned.
142  */
143 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
144 
145 /*
146  * Ensure the copy of XCR0 saved in a core is contained in the padding
147  * area.
148  */
149 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
150     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
151 
152 static	void	fpu_clean_state(void);
153 
154 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
155     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
156 
157 int lazy_fpu_switch = 0;
158 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
159     &lazy_fpu_switch, 0,
160     "Lazily load FPU context after context switch");
161 
162 int use_xsave;			/* non-static for cpu_switch.S */
163 uint64_t xsave_mask;		/* the same */
164 static	uma_zone_t fpu_save_area_zone;
165 static	struct savefpu *fpu_initialstate;
166 
167 struct xsave_area_elm_descr {
168 	u_int	offset;
169 	u_int	size;
170 } *xsave_area_desc;
171 
172 static void
173 fpusave_xsaveopt(void *addr)
174 {
175 
176 	xsaveopt((char *)addr, xsave_mask);
177 }
178 
179 static void
180 fpusave_xsave(void *addr)
181 {
182 
183 	xsave((char *)addr, xsave_mask);
184 }
185 
186 static void
187 fpurestore_xrstor(void *addr)
188 {
189 
190 	xrstor((char *)addr, xsave_mask);
191 }
192 
193 static void
194 fpusave_fxsave(void *addr)
195 {
196 
197 	fxsave((char *)addr);
198 }
199 
200 static void
201 fpurestore_fxrstor(void *addr)
202 {
203 
204 	fxrstor((char *)addr);
205 }
206 
207 static void
208 init_xsave(void)
209 {
210 
211 	if (use_xsave)
212 		return;
213 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
214 		return;
215 	use_xsave = 1;
216 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
217 }
218 
219 DEFINE_IFUNC(, void, fpusave, (void *), static)
220 {
221 
222 	init_xsave();
223 	if (use_xsave)
224 		return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
225 		    fpusave_xsaveopt : fpusave_xsave);
226 	return (fpusave_fxsave);
227 }
228 
229 DEFINE_IFUNC(, void, fpurestore, (void *), static)
230 {
231 
232 	init_xsave();
233 	return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor);
234 }
235 
236 void
237 fpususpend(void *addr)
238 {
239 	u_long cr0;
240 
241 	cr0 = rcr0();
242 	stop_emulating();
243 	fpusave(addr);
244 	load_cr0(cr0);
245 }
246 
247 void
248 fpuresume(void *addr)
249 {
250 	u_long cr0;
251 
252 	cr0 = rcr0();
253 	stop_emulating();
254 	fninit();
255 	if (use_xsave)
256 		load_xcr(XCR0, xsave_mask);
257 	fpurestore(addr);
258 	load_cr0(cr0);
259 }
260 
261 /*
262  * Enable XSAVE if supported and allowed by user.
263  * Calculate the xsave_mask.
264  */
265 static void
266 fpuinit_bsp1(void)
267 {
268 	u_int cp[4];
269 	uint64_t xsave_mask_user;
270 	bool old_wp;
271 
272 	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
273 	if (!use_xsave)
274 		return;
275 	cpuid_count(0xd, 0x0, cp);
276 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
277 	if ((cp[0] & xsave_mask) != xsave_mask)
278 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
279 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
280 	xsave_mask_user = xsave_mask;
281 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
282 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
283 	xsave_mask &= xsave_mask_user;
284 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
285 		xsave_mask &= ~XFEATURE_AVX512;
286 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
287 		xsave_mask &= ~XFEATURE_MPX;
288 
289 	cpuid_count(0xd, 0x1, cp);
290 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
291 		/*
292 		 * Patch the XSAVE instruction in the cpu_switch code
293 		 * to XSAVEOPT.  We assume that XSAVE encoding used
294 		 * REX byte, and set the bit 4 of the r/m byte.
295 		 *
296 		 * It seems that some BIOSes give control to the OS
297 		 * with CR0.WP already set, making the kernel text
298 		 * read-only before cpu_startup().
299 		 */
300 		old_wp = disable_wp();
301 		ctx_switch_xsave[3] |= 0x10;
302 		restore_wp(old_wp);
303 	}
304 }
305 
306 /*
307  * Calculate the fpu save area size.
308  */
309 static void
310 fpuinit_bsp2(void)
311 {
312 	u_int cp[4];
313 
314 	if (use_xsave) {
315 		cpuid_count(0xd, 0x0, cp);
316 		cpu_max_ext_state_size = cp[1];
317 
318 		/*
319 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
320 		 */
321 		do_cpuid(1, cp);
322 		cpu_feature2 = cp[2];
323 	} else
324 		cpu_max_ext_state_size = sizeof(struct savefpu);
325 }
326 
327 /*
328  * Initialize the floating point unit.
329  */
330 void
331 fpuinit(void)
332 {
333 	register_t saveintr;
334 	u_int mxcsr;
335 	u_short control;
336 
337 	if (IS_BSP())
338 		fpuinit_bsp1();
339 
340 	if (use_xsave) {
341 		load_cr4(rcr4() | CR4_XSAVE);
342 		load_xcr(XCR0, xsave_mask);
343 	}
344 
345 	/*
346 	 * XCR0 shall be set up before CPU can report the save area size.
347 	 */
348 	if (IS_BSP())
349 		fpuinit_bsp2();
350 
351 	/*
352 	 * It is too early for critical_enter() to work on AP.
353 	 */
354 	saveintr = intr_disable();
355 	stop_emulating();
356 	fninit();
357 	control = __INITIAL_FPUCW__;
358 	fldcw(control);
359 	mxcsr = __INITIAL_MXCSR__;
360 	ldmxcsr(mxcsr);
361 	start_emulating();
362 	intr_restore(saveintr);
363 }
364 
365 /*
366  * On the boot CPU we generate a clean state that is used to
367  * initialize the floating point unit when it is first used by a
368  * process.
369  */
370 static void
371 fpuinitstate(void *arg __unused)
372 {
373 	uint64_t *xstate_bv;
374 	register_t saveintr;
375 	int cp[4], i, max_ext_n;
376 
377 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
378 	    M_WAITOK | M_ZERO);
379 	saveintr = intr_disable();
380 	stop_emulating();
381 
382 	fpusave_fxsave(fpu_initialstate);
383 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
384 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
385 	else
386 		cpu_mxcsr_mask = 0xFFBF;
387 
388 	/*
389 	 * The fninit instruction does not modify XMM registers or x87
390 	 * registers (MM/ST).  The fpusave call dumped the garbage
391 	 * contained in the registers after reset to the initial state
392 	 * saved.  Clear XMM and x87 registers file image to make the
393 	 * startup program state and signal handler XMM/x87 register
394 	 * content predictable.
395 	 */
396 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
397 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
398 
399 	/*
400 	 * Create a table describing the layout of the CPU Extended
401 	 * Save Area.
402 	 */
403 	if (use_xsave) {
404 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
405 		    offsetof(struct xstate_hdr, xstate_bv));
406 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
407 
408 		max_ext_n = flsl(xsave_mask);
409 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
410 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
411 		/* x87 state */
412 		xsave_area_desc[0].offset = 0;
413 		xsave_area_desc[0].size = 160;
414 		/* XMM */
415 		xsave_area_desc[1].offset = 160;
416 		xsave_area_desc[1].size = 288 - 160;
417 
418 		for (i = 2; i < max_ext_n; i++) {
419 			cpuid_count(0xd, i, cp);
420 			xsave_area_desc[i].offset = cp[1];
421 			xsave_area_desc[i].size = cp[0];
422 		}
423 	}
424 
425 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
426 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
427 	    XSAVE_AREA_ALIGN - 1, 0);
428 
429 	start_emulating();
430 	intr_restore(saveintr);
431 }
432 /* EFIRT needs this to be initialized before we can enter our EFI environment */
433 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
434 
435 /*
436  * Free coprocessor (if we have it).
437  */
438 void
439 fpuexit(struct thread *td)
440 {
441 
442 	critical_enter();
443 	if (curthread == PCPU_GET(fpcurthread)) {
444 		stop_emulating();
445 		fpusave(curpcb->pcb_save);
446 		start_emulating();
447 		PCPU_SET(fpcurthread, NULL);
448 	}
449 	critical_exit();
450 }
451 
452 int
453 fpuformat(void)
454 {
455 
456 	return (_MC_FPFMT_XMM);
457 }
458 
459 /*
460  * The following mechanism is used to ensure that the FPE_... value
461  * that is passed as a trapcode to the signal handler of the user
462  * process does not have more than one bit set.
463  *
464  * Multiple bits may be set if the user process modifies the control
465  * word while a status word bit is already set.  While this is a sign
466  * of bad coding, we have no choise than to narrow them down to one
467  * bit, since we must not send a trapcode that is not exactly one of
468  * the FPE_ macros.
469  *
470  * The mechanism has a static table with 127 entries.  Each combination
471  * of the 7 FPU status word exception bits directly translates to a
472  * position in this table, where a single FPE_... value is stored.
473  * This FPE_... value stored there is considered the "most important"
474  * of the exception bits and will be sent as the signal code.  The
475  * precedence of the bits is based upon Intel Document "Numerical
476  * Applications", Chapter "Special Computational Situations".
477  *
478  * The macro to choose one of these values does these steps: 1) Throw
479  * away status word bits that cannot be masked.  2) Throw away the bits
480  * currently masked in the control word, assuming the user isn't
481  * interested in them anymore.  3) Reinsert status word bit 7 (stack
482  * fault) if it is set, which cannot be masked but must be presered.
483  * 4) Use the remaining bits to point into the trapcode table.
484  *
485  * The 6 maskable bits in order of their preference, as stated in the
486  * above referenced Intel manual:
487  * 1  Invalid operation (FP_X_INV)
488  * 1a   Stack underflow
489  * 1b   Stack overflow
490  * 1c   Operand of unsupported format
491  * 1d   SNaN operand.
492  * 2  QNaN operand (not an exception, irrelavant here)
493  * 3  Any other invalid-operation not mentioned above or zero divide
494  *      (FP_X_INV, FP_X_DZ)
495  * 4  Denormal operand (FP_X_DNML)
496  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
497  * 6  Inexact result (FP_X_IMP)
498  */
499 static char fpetable[128] = {
500 	0,
501 	FPE_FLTINV,	/*  1 - INV */
502 	FPE_FLTUND,	/*  2 - DNML */
503 	FPE_FLTINV,	/*  3 - INV | DNML */
504 	FPE_FLTDIV,	/*  4 - DZ */
505 	FPE_FLTINV,	/*  5 - INV | DZ */
506 	FPE_FLTDIV,	/*  6 - DNML | DZ */
507 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
508 	FPE_FLTOVF,	/*  8 - OFL */
509 	FPE_FLTINV,	/*  9 - INV | OFL */
510 	FPE_FLTUND,	/*  A - DNML | OFL */
511 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
512 	FPE_FLTDIV,	/*  C - DZ | OFL */
513 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
514 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
515 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
516 	FPE_FLTUND,	/* 10 - UFL */
517 	FPE_FLTINV,	/* 11 - INV | UFL */
518 	FPE_FLTUND,	/* 12 - DNML | UFL */
519 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
520 	FPE_FLTDIV,	/* 14 - DZ | UFL */
521 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
522 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
523 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
524 	FPE_FLTOVF,	/* 18 - OFL | UFL */
525 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
526 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
527 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
528 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
529 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
530 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
531 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
532 	FPE_FLTRES,	/* 20 - IMP */
533 	FPE_FLTINV,	/* 21 - INV | IMP */
534 	FPE_FLTUND,	/* 22 - DNML | IMP */
535 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
536 	FPE_FLTDIV,	/* 24 - DZ | IMP */
537 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
538 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
539 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
540 	FPE_FLTOVF,	/* 28 - OFL | IMP */
541 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
542 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
543 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
544 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
545 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
546 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
547 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
548 	FPE_FLTUND,	/* 30 - UFL | IMP */
549 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
550 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
551 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
552 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
553 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
554 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
555 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
556 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
557 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
558 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
559 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
560 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
561 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
562 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
563 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
564 	FPE_FLTSUB,	/* 40 - STK */
565 	FPE_FLTSUB,	/* 41 - INV | STK */
566 	FPE_FLTUND,	/* 42 - DNML | STK */
567 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
568 	FPE_FLTDIV,	/* 44 - DZ | STK */
569 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
570 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
571 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
572 	FPE_FLTOVF,	/* 48 - OFL | STK */
573 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
574 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
575 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
576 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
577 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
578 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
579 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
580 	FPE_FLTUND,	/* 50 - UFL | STK */
581 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
582 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
583 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
584 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
585 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
586 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
587 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
588 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
589 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
590 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
591 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
592 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
593 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
594 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
595 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
596 	FPE_FLTRES,	/* 60 - IMP | STK */
597 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
598 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
599 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
600 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
601 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
602 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
603 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
604 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
605 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
606 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
607 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
608 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
609 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
610 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
611 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
612 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
613 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
614 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
615 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
616 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
617 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
618 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
619 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
620 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
621 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
622 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
623 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
624 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
625 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
626 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
627 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
628 };
629 
630 /*
631  * Read the FP status and control words, then generate si_code value
632  * for SIGFPE.  The error code chosen will be one of the
633  * FPE_... macros.  It will be sent as the second argument to old
634  * BSD-style signal handlers and as "siginfo_t->si_code" (second
635  * argument) to SA_SIGINFO signal handlers.
636  *
637  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
638  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
639  * usermode code which understands the FPU hardware enough to enable
640  * the exceptions, can also handle clearing the exception state in the
641  * handler.  The only consequence of not clearing the exception is the
642  * rethrow of the SIGFPE on return from the signal handler and
643  * reexecution of the corresponding instruction.
644  *
645  * For XMM traps, the exceptions were never cleared.
646  */
647 int
648 fputrap_x87(void)
649 {
650 	struct savefpu *pcb_save;
651 	u_short control, status;
652 
653 	critical_enter();
654 
655 	/*
656 	 * Interrupt handling (for another interrupt) may have pushed the
657 	 * state to memory.  Fetch the relevant parts of the state from
658 	 * wherever they are.
659 	 */
660 	if (PCPU_GET(fpcurthread) != curthread) {
661 		pcb_save = curpcb->pcb_save;
662 		control = pcb_save->sv_env.en_cw;
663 		status = pcb_save->sv_env.en_sw;
664 	} else {
665 		fnstcw(&control);
666 		fnstsw(&status);
667 	}
668 
669 	critical_exit();
670 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
671 }
672 
673 int
674 fputrap_sse(void)
675 {
676 	u_int mxcsr;
677 
678 	critical_enter();
679 	if (PCPU_GET(fpcurthread) != curthread)
680 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
681 	else
682 		stmxcsr(&mxcsr);
683 	critical_exit();
684 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
685 }
686 
687 static void
688 restore_fpu_curthread(struct thread *td)
689 {
690 	struct pcb *pcb;
691 
692 	/*
693 	 * Record new context early in case frstor causes a trap.
694 	 */
695 	PCPU_SET(fpcurthread, td);
696 
697 	stop_emulating();
698 	fpu_clean_state();
699 	pcb = td->td_pcb;
700 
701 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
702 		/*
703 		 * This is the first time this thread has used the FPU or
704 		 * the PCB doesn't contain a clean FPU state.  Explicitly
705 		 * load an initial state.
706 		 *
707 		 * We prefer to restore the state from the actual save
708 		 * area in PCB instead of directly loading from
709 		 * fpu_initialstate, to ignite the XSAVEOPT
710 		 * tracking engine.
711 		 */
712 		bcopy(fpu_initialstate, pcb->pcb_save,
713 		    cpu_max_ext_state_size);
714 		fpurestore(pcb->pcb_save);
715 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
716 			fldcw(pcb->pcb_initial_fpucw);
717 		if (PCB_USER_FPU(pcb))
718 			set_pcb_flags(pcb, PCB_FPUINITDONE |
719 			    PCB_USERFPUINITDONE);
720 		else
721 			set_pcb_flags(pcb, PCB_FPUINITDONE);
722 	} else
723 		fpurestore(pcb->pcb_save);
724 }
725 
726 /*
727  * Device Not Available (DNA, #NM) exception handler.
728  *
729  * It would be better to switch FP context here (if curthread !=
730  * fpcurthread) and not necessarily for every context switch, but it
731  * is too hard to access foreign pcb's.
732  */
733 void
734 fpudna(void)
735 {
736 	struct thread *td;
737 
738 	td = curthread;
739 	/*
740 	 * This handler is entered with interrupts enabled, so context
741 	 * switches may occur before critical_enter() is executed.  If
742 	 * a context switch occurs, then when we regain control, our
743 	 * state will have been completely restored.  The CPU may
744 	 * change underneath us, but the only part of our context that
745 	 * lives in the CPU is CR0.TS and that will be "restored" by
746 	 * setting it on the new CPU.
747 	 */
748 	critical_enter();
749 
750 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
751 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
752 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
753 		/*
754 		 * Some virtual machines seems to set %cr0.TS at
755 		 * arbitrary moments.  Silently clear the TS bit
756 		 * regardless of the eager/lazy FPU context switch
757 		 * mode.
758 		 */
759 		stop_emulating();
760 	} else {
761 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
762 			panic(
763 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
764 			    PCPU_GET(fpcurthread),
765 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
766 		}
767 		restore_fpu_curthread(td);
768 	}
769 	critical_exit();
770 }
771 
772 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
773 void
774 fpu_activate_sw(struct thread *td)
775 {
776 
777 	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
778 	    !PCB_USER_FPU(td->td_pcb)) {
779 		PCPU_SET(fpcurthread, NULL);
780 		start_emulating();
781 	} else if (PCPU_GET(fpcurthread) != td) {
782 		restore_fpu_curthread(td);
783 	}
784 }
785 
786 void
787 fpudrop(void)
788 {
789 	struct thread *td;
790 
791 	td = PCPU_GET(fpcurthread);
792 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
793 	CRITICAL_ASSERT(td);
794 	PCPU_SET(fpcurthread, NULL);
795 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
796 	start_emulating();
797 }
798 
799 /*
800  * Get the user state of the FPU into pcb->pcb_user_save without
801  * dropping ownership (if possible).  It returns the FPU ownership
802  * status.
803  */
804 int
805 fpugetregs(struct thread *td)
806 {
807 	struct pcb *pcb;
808 	uint64_t *xstate_bv, bit;
809 	char *sa;
810 	int max_ext_n, i, owned;
811 
812 	pcb = td->td_pcb;
813 	critical_enter();
814 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
815 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
816 		    cpu_max_ext_state_size);
817 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
818 		    pcb->pcb_initial_fpucw;
819 		fpuuserinited(td);
820 		critical_exit();
821 		return (_MC_FPOWNED_PCB);
822 	}
823 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
824 		fpusave(get_pcb_user_save_pcb(pcb));
825 		owned = _MC_FPOWNED_FPU;
826 	} else {
827 		owned = _MC_FPOWNED_PCB;
828 	}
829 	if (use_xsave) {
830 		/*
831 		 * Handle partially saved state.
832 		 */
833 		sa = (char *)get_pcb_user_save_pcb(pcb);
834 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
835 		    offsetof(struct xstate_hdr, xstate_bv));
836 		max_ext_n = flsl(xsave_mask);
837 		for (i = 0; i < max_ext_n; i++) {
838 			bit = 1ULL << i;
839 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
840 				continue;
841 			bcopy((char *)fpu_initialstate +
842 			    xsave_area_desc[i].offset,
843 			    sa + xsave_area_desc[i].offset,
844 			    xsave_area_desc[i].size);
845 			*xstate_bv |= bit;
846 		}
847 	}
848 	critical_exit();
849 	return (owned);
850 }
851 
852 void
853 fpuuserinited(struct thread *td)
854 {
855 	struct pcb *pcb;
856 
857 	CRITICAL_ASSERT(td);
858 	pcb = td->td_pcb;
859 	if (PCB_USER_FPU(pcb))
860 		set_pcb_flags(pcb,
861 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
862 	else
863 		set_pcb_flags(pcb, PCB_FPUINITDONE);
864 }
865 
866 int
867 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
868 {
869 	struct xstate_hdr *hdr, *ehdr;
870 	size_t len, max_len;
871 	uint64_t bv;
872 
873 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
874 	if (xfpustate == NULL)
875 		return (0);
876 	if (!use_xsave)
877 		return (EOPNOTSUPP);
878 
879 	len = xfpustate_size;
880 	if (len < sizeof(struct xstate_hdr))
881 		return (EINVAL);
882 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
883 	if (len > max_len)
884 		return (EINVAL);
885 
886 	ehdr = (struct xstate_hdr *)xfpustate;
887 	bv = ehdr->xstate_bv;
888 
889 	/*
890 	 * Avoid #gp.
891 	 */
892 	if (bv & ~xsave_mask)
893 		return (EINVAL);
894 
895 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
896 
897 	hdr->xstate_bv = bv;
898 	bcopy(xfpustate + sizeof(struct xstate_hdr),
899 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
900 
901 	return (0);
902 }
903 
904 /*
905  * Set the state of the FPU.
906  */
907 int
908 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
909     size_t xfpustate_size)
910 {
911 	struct pcb *pcb;
912 	int error;
913 
914 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
915 	pcb = td->td_pcb;
916 	error = 0;
917 	critical_enter();
918 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
919 		error = fpusetxstate(td, xfpustate, xfpustate_size);
920 		if (error == 0) {
921 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
922 			fpurestore(get_pcb_user_save_td(td));
923 			set_pcb_flags(pcb, PCB_FPUINITDONE |
924 			    PCB_USERFPUINITDONE);
925 		}
926 	} else {
927 		error = fpusetxstate(td, xfpustate, xfpustate_size);
928 		if (error == 0) {
929 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
930 			fpuuserinited(td);
931 		}
932 	}
933 	critical_exit();
934 	return (error);
935 }
936 
937 /*
938  * On AuthenticAMD processors, the fxrstor instruction does not restore
939  * the x87's stored last instruction pointer, last data pointer, and last
940  * opcode values, except in the rare case in which the exception summary
941  * (ES) bit in the x87 status word is set to 1.
942  *
943  * In order to avoid leaking this information across processes, we clean
944  * these values by performing a dummy load before executing fxrstor().
945  */
946 static void
947 fpu_clean_state(void)
948 {
949 	static float dummy_variable = 0.0;
950 	u_short status;
951 
952 	/*
953 	 * Clear the ES bit in the x87 status word if it is currently
954 	 * set, in order to avoid causing a fault in the upcoming load.
955 	 */
956 	fnstsw(&status);
957 	if (status & 0x80)
958 		fnclex();
959 
960 	/*
961 	 * Load the dummy variable into the x87 stack.  This mangles
962 	 * the x87 stack, but we don't care since we're about to call
963 	 * fxrstor() anyway.
964 	 */
965 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
966 }
967 
968 /*
969  * This really sucks.  We want the acpi version only, but it requires
970  * the isa_if.h file in order to get the definitions.
971  */
972 #include "opt_isa.h"
973 #ifdef DEV_ISA
974 #include <isa/isavar.h>
975 /*
976  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
977  */
978 static struct isa_pnp_id fpupnp_ids[] = {
979 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
980 	{ 0 }
981 };
982 
983 static int
984 fpupnp_probe(device_t dev)
985 {
986 	int result;
987 
988 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
989 	if (result <= 0)
990 		device_quiet(dev);
991 	return (result);
992 }
993 
994 static int
995 fpupnp_attach(device_t dev)
996 {
997 
998 	return (0);
999 }
1000 
1001 static device_method_t fpupnp_methods[] = {
1002 	/* Device interface */
1003 	DEVMETHOD(device_probe,		fpupnp_probe),
1004 	DEVMETHOD(device_attach,	fpupnp_attach),
1005 	DEVMETHOD(device_detach,	bus_generic_detach),
1006 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1007 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1008 	DEVMETHOD(device_resume,	bus_generic_resume),
1009 
1010 	{ 0, 0 }
1011 };
1012 
1013 static driver_t fpupnp_driver = {
1014 	"fpupnp",
1015 	fpupnp_methods,
1016 	1,			/* no softc */
1017 };
1018 
1019 static devclass_t fpupnp_devclass;
1020 
1021 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1022 ISA_PNP_INFO(fpupnp_ids);
1023 #endif	/* DEV_ISA */
1024 
1025 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1026     "Kernel contexts for FPU state");
1027 
1028 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1029 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1030 #define	FPU_KERN_CTX_INUSE	 0x04
1031 
1032 struct fpu_kern_ctx {
1033 	struct savefpu *prev;
1034 	uint32_t flags;
1035 	char hwstate1[];
1036 };
1037 
1038 struct fpu_kern_ctx *
1039 fpu_kern_alloc_ctx(u_int flags)
1040 {
1041 	struct fpu_kern_ctx *res;
1042 	size_t sz;
1043 
1044 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1045 	    cpu_max_ext_state_size;
1046 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1047 	    M_NOWAIT : M_WAITOK) | M_ZERO);
1048 	return (res);
1049 }
1050 
1051 void
1052 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1053 {
1054 
1055 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1056 	/* XXXKIB clear the memory ? */
1057 	free(ctx, M_FPUKERN_CTX);
1058 }
1059 
1060 static struct savefpu *
1061 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1062 {
1063 	vm_offset_t p;
1064 
1065 	p = (vm_offset_t)&ctx->hwstate1;
1066 	p = roundup2(p, XSAVE_AREA_ALIGN);
1067 	return ((struct savefpu *)p);
1068 }
1069 
1070 void
1071 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1072 {
1073 	struct pcb *pcb;
1074 
1075 	pcb = td->td_pcb;
1076 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1077 	    ("ctx is required when !FPU_KERN_NOCTX"));
1078 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1079 	    ("using inuse ctx"));
1080 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1081 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1082 
1083 	if ((flags & FPU_KERN_NOCTX) != 0) {
1084 		critical_enter();
1085 		stop_emulating();
1086 		if (curthread == PCPU_GET(fpcurthread)) {
1087 			fpusave(curpcb->pcb_save);
1088 			PCPU_SET(fpcurthread, NULL);
1089 		} else {
1090 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1091 			    ("invalid fpcurthread"));
1092 		}
1093 
1094 		/*
1095 		 * This breaks XSAVEOPT tracker, but
1096 		 * PCB_FPUNOSAVE state is supposed to never need to
1097 		 * save FPU context at all.
1098 		 */
1099 		fpurestore(fpu_initialstate);
1100 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1101 		    PCB_FPUINITDONE);
1102 		return;
1103 	}
1104 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1105 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1106 		return;
1107 	}
1108 	critical_enter();
1109 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1110 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1111 	ctx->flags = FPU_KERN_CTX_INUSE;
1112 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1113 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1114 	fpuexit(td);
1115 	ctx->prev = pcb->pcb_save;
1116 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1117 	set_pcb_flags(pcb, PCB_KERNFPU);
1118 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1119 	critical_exit();
1120 }
1121 
1122 int
1123 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1124 {
1125 	struct pcb *pcb;
1126 
1127 	pcb = td->td_pcb;
1128 
1129 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1130 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1131 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1132 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1133 		CRITICAL_ASSERT(td);
1134 
1135 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1136 		start_emulating();
1137 	} else {
1138 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1139 		    ("leaving not inuse ctx"));
1140 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1141 
1142 		if (is_fpu_kern_thread(0) &&
1143 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1144 			return (0);
1145 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1146 		    ("dummy ctx"));
1147 		critical_enter();
1148 		if (curthread == PCPU_GET(fpcurthread))
1149 			fpudrop();
1150 		pcb->pcb_save = ctx->prev;
1151 	}
1152 
1153 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1154 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1155 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1156 			clear_pcb_flags(pcb, PCB_KERNFPU);
1157 		} else
1158 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1159 	} else {
1160 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1161 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1162 		else
1163 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1164 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1165 	}
1166 	critical_exit();
1167 	return (0);
1168 }
1169 
1170 int
1171 fpu_kern_thread(u_int flags)
1172 {
1173 
1174 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1175 	    ("Only kthread may use fpu_kern_thread"));
1176 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1177 	    ("mangled pcb_save"));
1178 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1179 
1180 	set_pcb_flags(curpcb, PCB_KERNFPU);
1181 	return (0);
1182 }
1183 
1184 int
1185 is_fpu_kern_thread(u_int flags)
1186 {
1187 
1188 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1189 		return (0);
1190 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1191 }
1192 
1193 /*
1194  * FPU save area alloc/free/init utility routines
1195  */
1196 struct savefpu *
1197 fpu_save_area_alloc(void)
1198 {
1199 
1200 	return (uma_zalloc(fpu_save_area_zone, 0));
1201 }
1202 
1203 void
1204 fpu_save_area_free(struct savefpu *fsa)
1205 {
1206 
1207 	uma_zfree(fpu_save_area_zone, fsa);
1208 }
1209 
1210 void
1211 fpu_save_area_reset(struct savefpu *fsa)
1212 {
1213 
1214 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1215 }
1216