xref: /freebsd/sys/amd64/amd64/machdep.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_atalk.h"
45 #include "opt_atpic.h"
46 #include "opt_compat.h"
47 #include "opt_cpu.h"
48 #include "opt_ddb.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_isa.h"
52 #include "opt_kstack_pages.h"
53 #include "opt_maxmem.h"
54 #include "opt_mp_watchdog.h"
55 #include "opt_perfmon.h"
56 #include "opt_platform.h"
57 #include "opt_sched.h"
58 #include "opt_kdtrace.h"
59 
60 #include <sys/param.h>
61 #include <sys/proc.h>
62 #include <sys/systm.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/bus.h>
66 #include <sys/callout.h>
67 #include <sys/cons.h>
68 #include <sys/cpu.h>
69 #include <sys/eventhandler.h>
70 #include <sys/exec.h>
71 #include <sys/imgact.h>
72 #include <sys/kdb.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/linker.h>
76 #include <sys/lock.h>
77 #include <sys/malloc.h>
78 #include <sys/memrange.h>
79 #include <sys/msgbuf.h>
80 #include <sys/mutex.h>
81 #include <sys/pcpu.h>
82 #include <sys/ptrace.h>
83 #include <sys/reboot.h>
84 #include <sys/rwlock.h>
85 #include <sys/sched.h>
86 #include <sys/signalvar.h>
87 #ifdef SMP
88 #include <sys/smp.h>
89 #endif
90 #include <sys/syscallsubr.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/sysproto.h>
94 #include <sys/ucontext.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_param.h>
105 
106 #ifdef DDB
107 #ifndef KDB
108 #error KDB must be enabled in order for DDB to work!
109 #endif
110 #include <ddb/ddb.h>
111 #include <ddb/db_sym.h>
112 #endif
113 
114 #include <net/netisr.h>
115 
116 #include <machine/clock.h>
117 #include <machine/cpu.h>
118 #include <machine/cputypes.h>
119 #include <machine/intr_machdep.h>
120 #include <x86/mca.h>
121 #include <machine/md_var.h>
122 #include <machine/metadata.h>
123 #include <machine/mp_watchdog.h>
124 #include <machine/pc/bios.h>
125 #include <machine/pcb.h>
126 #include <machine/proc.h>
127 #include <machine/reg.h>
128 #include <machine/sigframe.h>
129 #include <machine/specialreg.h>
130 #ifdef PERFMON
131 #include <machine/perfmon.h>
132 #endif
133 #include <machine/tss.h>
134 #ifdef SMP
135 #include <machine/smp.h>
136 #endif
137 #ifdef FDT
138 #include <x86/fdt.h>
139 #endif
140 
141 #ifdef DEV_ATPIC
142 #include <x86/isa/icu.h>
143 #else
144 #include <machine/apicvar.h>
145 #endif
146 
147 #include <isa/isareg.h>
148 #include <isa/rtc.h>
149 
150 /* Sanity check for __curthread() */
151 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
152 
153 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
154 
155 extern void printcpuinfo(void);	/* XXX header file */
156 extern void identify_cpu(void);
157 extern void panicifcpuunsupported(void);
158 
159 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
160 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
161 
162 static void cpu_startup(void *);
163 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
164     char *xfpusave, size_t xfpusave_len);
165 static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
166     char *xfpustate, size_t xfpustate_len);
167 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
168 
169 /*
170  * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
171  * the physical address at which the kernel is loaded.
172  */
173 extern char kernphys[];
174 #ifdef DDB
175 extern vm_offset_t ksym_start, ksym_end;
176 #endif
177 
178 struct msgbuf *msgbufp;
179 
180 /* Intel ICH registers */
181 #define ICH_PMBASE	0x400
182 #define ICH_SMI_EN	ICH_PMBASE + 0x30
183 
184 int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
185 
186 int cold = 1;
187 
188 long Maxmem = 0;
189 long realmem = 0;
190 
191 /*
192  * The number of PHYSMAP entries must be one less than the number of
193  * PHYSSEG entries because the PHYSMAP entry that spans the largest
194  * physical address that is accessible by ISA DMA is split into two
195  * PHYSSEG entries.
196  */
197 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
198 
199 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
200 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
201 
202 /* must be 2 less so 0 0 can signal end of chunks */
203 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
204 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
205 
206 struct kva_md_info kmi;
207 
208 static struct trapframe proc0_tf;
209 struct region_descriptor r_gdt, r_idt;
210 
211 struct pcpu __pcpu[MAXCPU];
212 
213 struct mtx icu_lock;
214 
215 struct mem_range_softc mem_range_softc;
216 
217 struct mtx dt_lock;	/* lock for GDT and LDT */
218 
219 static void
220 cpu_startup(dummy)
221 	void *dummy;
222 {
223 	uintmax_t memsize;
224 	char *sysenv;
225 
226 	/*
227 	 * On MacBooks, we need to disallow the legacy USB circuit to
228 	 * generate an SMI# because this can cause several problems,
229 	 * namely: incorrect CPU frequency detection and failure to
230 	 * start the APs.
231 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
232 	 * Enable register) of the Intel ICH LPC Interface Bridge.
233 	 */
234 	sysenv = getenv("smbios.system.product");
235 	if (sysenv != NULL) {
236 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
237 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
238 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
242 			if (bootverbose)
243 				printf("Disabling LEGACY_USB_EN bit on "
244 				    "Intel ICH.\n");
245 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
246 		}
247 		freeenv(sysenv);
248 	}
249 
250 	/*
251 	 * Good {morning,afternoon,evening,night}.
252 	 */
253 	startrtclock();
254 	printcpuinfo();
255 	panicifcpuunsupported();
256 #ifdef PERFMON
257 	perfmon_init();
258 #endif
259 	realmem = Maxmem;
260 
261 	/*
262 	 * Display physical memory if SMBIOS reports reasonable amount.
263 	 */
264 	memsize = 0;
265 	sysenv = getenv("smbios.memory.enabled");
266 	if (sysenv != NULL) {
267 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268 		freeenv(sysenv);
269 	}
270 	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271 		memsize = ptoa((uintmax_t)Maxmem);
272 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273 
274 	/*
275 	 * Display any holes after the first chunk of extended memory.
276 	 */
277 	if (bootverbose) {
278 		int indx;
279 
280 		printf("Physical memory chunk(s):\n");
281 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
282 			vm_paddr_t size;
283 
284 			size = phys_avail[indx + 1] - phys_avail[indx];
285 			printf(
286 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
287 			    (uintmax_t)phys_avail[indx],
288 			    (uintmax_t)phys_avail[indx + 1] - 1,
289 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
290 		}
291 	}
292 
293 	vm_ksubmap_init(&kmi);
294 
295 	printf("avail memory = %ju (%ju MB)\n",
296 	    ptoa((uintmax_t)cnt.v_free_count),
297 	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
298 
299 	/*
300 	 * Set up buffers, so they can be used to read disk labels.
301 	 */
302 	bufinit();
303 	vm_pager_bufferinit();
304 
305 	cpu_setregs();
306 }
307 
308 /*
309  * Send an interrupt to process.
310  *
311  * Stack is set up to allow sigcode stored
312  * at top to call routine, followed by call
313  * to sigreturn routine below.  After sigreturn
314  * resets the signal mask, the stack, and the
315  * frame pointer, it returns to the user
316  * specified pc, psl.
317  */
318 void
319 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
320 {
321 	struct sigframe sf, *sfp;
322 	struct pcb *pcb;
323 	struct proc *p;
324 	struct thread *td;
325 	struct sigacts *psp;
326 	char *sp;
327 	struct trapframe *regs;
328 	char *xfpusave;
329 	size_t xfpusave_len;
330 	int sig;
331 	int oonstack;
332 
333 	td = curthread;
334 	pcb = td->td_pcb;
335 	p = td->td_proc;
336 	PROC_LOCK_ASSERT(p, MA_OWNED);
337 	sig = ksi->ksi_signo;
338 	psp = p->p_sigacts;
339 	mtx_assert(&psp->ps_mtx, MA_OWNED);
340 	regs = td->td_frame;
341 	oonstack = sigonstack(regs->tf_rsp);
342 
343 	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
344 		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
345 		xfpusave = __builtin_alloca(xfpusave_len);
346 	} else {
347 		xfpusave_len = 0;
348 		xfpusave = NULL;
349 	}
350 
351 	/* Save user context. */
352 	bzero(&sf, sizeof(sf));
353 	sf.sf_uc.uc_sigmask = *mask;
354 	sf.sf_uc.uc_stack = td->td_sigstk;
355 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
356 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
357 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
358 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
359 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
360 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
361 	fpstate_drop(td);
362 	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
363 	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
364 	bzero(sf.sf_uc.uc_mcontext.mc_spare,
365 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
366 	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
367 
368 	/* Allocate space for the signal handler context. */
369 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
370 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
371 		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
372 #if defined(COMPAT_43)
373 		td->td_sigstk.ss_flags |= SS_ONSTACK;
374 #endif
375 	} else
376 		sp = (char *)regs->tf_rsp - 128;
377 	if (xfpusave != NULL) {
378 		sp -= xfpusave_len;
379 		sp = (char *)((unsigned long)sp & ~0x3Ful);
380 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
381 	}
382 	sp -= sizeof(struct sigframe);
383 	/* Align to 16 bytes. */
384 	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
385 
386 	/* Translate the signal if appropriate. */
387 	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
388 		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
389 
390 	/* Build the argument list for the signal handler. */
391 	regs->tf_rdi = sig;			/* arg 1 in %rdi */
392 	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
393 	bzero(&sf.sf_si, sizeof(sf.sf_si));
394 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
395 		/* Signal handler installed with SA_SIGINFO. */
396 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
397 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
398 
399 		/* Fill in POSIX parts */
400 		sf.sf_si = ksi->ksi_info;
401 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
402 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
403 	} else {
404 		/* Old FreeBSD-style arguments. */
405 		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
406 		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
407 		sf.sf_ahu.sf_handler = catcher;
408 	}
409 	mtx_unlock(&psp->ps_mtx);
410 	PROC_UNLOCK(p);
411 
412 	/*
413 	 * Copy the sigframe out to the user's stack.
414 	 */
415 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
416 	    (xfpusave != NULL && copyout(xfpusave,
417 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
418 	    != 0)) {
419 #ifdef DEBUG
420 		printf("process %ld has trashed its stack\n", (long)p->p_pid);
421 #endif
422 		PROC_LOCK(p);
423 		sigexit(td, SIGILL);
424 	}
425 
426 	regs->tf_rsp = (long)sfp;
427 	regs->tf_rip = p->p_sysent->sv_sigcode_base;
428 	regs->tf_rflags &= ~(PSL_T | PSL_D);
429 	regs->tf_cs = _ucodesel;
430 	regs->tf_ds = _udatasel;
431 	regs->tf_es = _udatasel;
432 	regs->tf_fs = _ufssel;
433 	regs->tf_gs = _ugssel;
434 	regs->tf_flags = TF_HASSEGS;
435 	set_pcb_flags(pcb, PCB_FULL_IRET);
436 	PROC_LOCK(p);
437 	mtx_lock(&psp->ps_mtx);
438 }
439 
440 /*
441  * System call to cleanup state after a signal
442  * has been taken.  Reset signal mask and
443  * stack state from context left by sendsig (above).
444  * Return to previous pc and psl as specified by
445  * context left by sendsig. Check carefully to
446  * make sure that the user has not modified the
447  * state to gain improper privileges.
448  *
449  * MPSAFE
450  */
451 int
452 sys_sigreturn(td, uap)
453 	struct thread *td;
454 	struct sigreturn_args /* {
455 		const struct __ucontext *sigcntxp;
456 	} */ *uap;
457 {
458 	ucontext_t uc;
459 	struct pcb *pcb;
460 	struct proc *p;
461 	struct trapframe *regs;
462 	ucontext_t *ucp;
463 	char *xfpustate;
464 	size_t xfpustate_len;
465 	long rflags;
466 	int cs, error, ret;
467 	ksiginfo_t ksi;
468 
469 	pcb = td->td_pcb;
470 	p = td->td_proc;
471 
472 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
473 	if (error != 0) {
474 		uprintf("pid %d (%s): sigreturn copyin failed\n",
475 		    p->p_pid, td->td_name);
476 		return (error);
477 	}
478 	ucp = &uc;
479 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
480 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
481 		    td->td_name, ucp->uc_mcontext.mc_flags);
482 		return (EINVAL);
483 	}
484 	regs = td->td_frame;
485 	rflags = ucp->uc_mcontext.mc_rflags;
486 	/*
487 	 * Don't allow users to change privileged or reserved flags.
488 	 */
489 	/*
490 	 * XXX do allow users to change the privileged flag PSL_RF.
491 	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
492 	 * should sometimes set it there too.  tf_rflags is kept in
493 	 * the signal context during signal handling and there is no
494 	 * other place to remember it, so the PSL_RF bit may be
495 	 * corrupted by the signal handler without us knowing.
496 	 * Corruption of the PSL_RF bit at worst causes one more or
497 	 * one less debugger trap, so allowing it is fairly harmless.
498 	 */
499 	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
500 		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
501 		    td->td_name, rflags);
502 		return (EINVAL);
503 	}
504 
505 	/*
506 	 * Don't allow users to load a valid privileged %cs.  Let the
507 	 * hardware check for invalid selectors, excess privilege in
508 	 * other selectors, invalid %eip's and invalid %esp's.
509 	 */
510 	cs = ucp->uc_mcontext.mc_cs;
511 	if (!CS_SECURE(cs)) {
512 		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
513 		    td->td_name, cs);
514 		ksiginfo_init_trap(&ksi);
515 		ksi.ksi_signo = SIGBUS;
516 		ksi.ksi_code = BUS_OBJERR;
517 		ksi.ksi_trapno = T_PROTFLT;
518 		ksi.ksi_addr = (void *)regs->tf_rip;
519 		trapsignal(td, &ksi);
520 		return (EINVAL);
521 	}
522 
523 	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
524 		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
525 		if (xfpustate_len > cpu_max_ext_state_size -
526 		    sizeof(struct savefpu)) {
527 			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
528 			    p->p_pid, td->td_name, xfpustate_len);
529 			return (EINVAL);
530 		}
531 		xfpustate = __builtin_alloca(xfpustate_len);
532 		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
533 		    xfpustate, xfpustate_len);
534 		if (error != 0) {
535 			uprintf(
536 	"pid %d (%s): sigreturn copying xfpustate failed\n",
537 			    p->p_pid, td->td_name);
538 			return (error);
539 		}
540 	} else {
541 		xfpustate = NULL;
542 		xfpustate_len = 0;
543 	}
544 	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
545 	if (ret != 0) {
546 		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
547 		    p->p_pid, td->td_name, ret);
548 		return (ret);
549 	}
550 	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
551 	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
552 	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
553 
554 #if defined(COMPAT_43)
555 	if (ucp->uc_mcontext.mc_onstack & 1)
556 		td->td_sigstk.ss_flags |= SS_ONSTACK;
557 	else
558 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
559 #endif
560 
561 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
562 	set_pcb_flags(pcb, PCB_FULL_IRET);
563 	return (EJUSTRETURN);
564 }
565 
566 #ifdef COMPAT_FREEBSD4
567 int
568 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
569 {
570 
571 	return sys_sigreturn(td, (struct sigreturn_args *)uap);
572 }
573 #endif
574 
575 
576 /*
577  * Machine dependent boot() routine
578  *
579  * I haven't seen anything to put here yet
580  * Possibly some stuff might be grafted back here from boot()
581  */
582 void
583 cpu_boot(int howto)
584 {
585 }
586 
587 /*
588  * Flush the D-cache for non-DMA I/O so that the I-cache can
589  * be made coherent later.
590  */
591 void
592 cpu_flush_dcache(void *ptr, size_t len)
593 {
594 	/* Not applicable */
595 }
596 
597 /* Get current clock frequency for the given cpu id. */
598 int
599 cpu_est_clockrate(int cpu_id, uint64_t *rate)
600 {
601 	uint64_t tsc1, tsc2;
602 	uint64_t acnt, mcnt, perf;
603 	register_t reg;
604 
605 	if (pcpu_find(cpu_id) == NULL || rate == NULL)
606 		return (EINVAL);
607 
608 	/*
609 	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
610 	 * DELAY(9) based logic fails.
611 	 */
612 	if (tsc_is_invariant && !tsc_perf_stat)
613 		return (EOPNOTSUPP);
614 
615 #ifdef SMP
616 	if (smp_cpus > 1) {
617 		/* Schedule ourselves on the indicated cpu. */
618 		thread_lock(curthread);
619 		sched_bind(curthread, cpu_id);
620 		thread_unlock(curthread);
621 	}
622 #endif
623 
624 	/* Calibrate by measuring a short delay. */
625 	reg = intr_disable();
626 	if (tsc_is_invariant) {
627 		wrmsr(MSR_MPERF, 0);
628 		wrmsr(MSR_APERF, 0);
629 		tsc1 = rdtsc();
630 		DELAY(1000);
631 		mcnt = rdmsr(MSR_MPERF);
632 		acnt = rdmsr(MSR_APERF);
633 		tsc2 = rdtsc();
634 		intr_restore(reg);
635 		perf = 1000 * acnt / mcnt;
636 		*rate = (tsc2 - tsc1) * perf;
637 	} else {
638 		tsc1 = rdtsc();
639 		DELAY(1000);
640 		tsc2 = rdtsc();
641 		intr_restore(reg);
642 		*rate = (tsc2 - tsc1) * 1000;
643 	}
644 
645 #ifdef SMP
646 	if (smp_cpus > 1) {
647 		thread_lock(curthread);
648 		sched_unbind(curthread);
649 		thread_unlock(curthread);
650 	}
651 #endif
652 
653 	return (0);
654 }
655 
656 /*
657  * Shutdown the CPU as much as possible
658  */
659 void
660 cpu_halt(void)
661 {
662 	for (;;)
663 		halt();
664 }
665 
666 void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
667 static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
668 static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
669 TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
670 SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
671     0, "Use MONITOR/MWAIT for short idle");
672 
673 #define	STATE_RUNNING	0x0
674 #define	STATE_MWAIT	0x1
675 #define	STATE_SLEEPING	0x2
676 
677 static void
678 cpu_idle_acpi(sbintime_t sbt)
679 {
680 	int *state;
681 
682 	state = (int *)PCPU_PTR(monitorbuf);
683 	*state = STATE_SLEEPING;
684 
685 	/* See comments in cpu_idle_hlt(). */
686 	disable_intr();
687 	if (sched_runnable())
688 		enable_intr();
689 	else if (cpu_idle_hook)
690 		cpu_idle_hook(sbt);
691 	else
692 		__asm __volatile("sti; hlt");
693 	*state = STATE_RUNNING;
694 }
695 
696 static void
697 cpu_idle_hlt(sbintime_t sbt)
698 {
699 	int *state;
700 
701 	state = (int *)PCPU_PTR(monitorbuf);
702 	*state = STATE_SLEEPING;
703 
704 	/*
705 	 * Since we may be in a critical section from cpu_idle(), if
706 	 * an interrupt fires during that critical section we may have
707 	 * a pending preemption.  If the CPU halts, then that thread
708 	 * may not execute until a later interrupt awakens the CPU.
709 	 * To handle this race, check for a runnable thread after
710 	 * disabling interrupts and immediately return if one is
711 	 * found.  Also, we must absolutely guarentee that hlt is
712 	 * the next instruction after sti.  This ensures that any
713 	 * interrupt that fires after the call to disable_intr() will
714 	 * immediately awaken the CPU from hlt.  Finally, please note
715 	 * that on x86 this works fine because of interrupts enabled only
716 	 * after the instruction following sti takes place, while IF is set
717 	 * to 1 immediately, allowing hlt instruction to acknowledge the
718 	 * interrupt.
719 	 */
720 	disable_intr();
721 	if (sched_runnable())
722 		enable_intr();
723 	else
724 		__asm __volatile("sti; hlt");
725 	*state = STATE_RUNNING;
726 }
727 
728 /*
729  * MWAIT cpu power states.  Lower 4 bits are sub-states.
730  */
731 #define	MWAIT_C0	0xf0
732 #define	MWAIT_C1	0x00
733 #define	MWAIT_C2	0x10
734 #define	MWAIT_C3	0x20
735 #define	MWAIT_C4	0x30
736 
737 static void
738 cpu_idle_mwait(sbintime_t sbt)
739 {
740 	int *state;
741 
742 	state = (int *)PCPU_PTR(monitorbuf);
743 	*state = STATE_MWAIT;
744 
745 	/* See comments in cpu_idle_hlt(). */
746 	disable_intr();
747 	if (sched_runnable()) {
748 		enable_intr();
749 		*state = STATE_RUNNING;
750 		return;
751 	}
752 	cpu_monitor(state, 0, 0);
753 	if (*state == STATE_MWAIT)
754 		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
755 	else
756 		enable_intr();
757 	*state = STATE_RUNNING;
758 }
759 
760 static void
761 cpu_idle_spin(sbintime_t sbt)
762 {
763 	int *state;
764 	int i;
765 
766 	state = (int *)PCPU_PTR(monitorbuf);
767 	*state = STATE_RUNNING;
768 
769 	/*
770 	 * The sched_runnable() call is racy but as long as there is
771 	 * a loop missing it one time will have just a little impact if any
772 	 * (and it is much better than missing the check at all).
773 	 */
774 	for (i = 0; i < 1000; i++) {
775 		if (sched_runnable())
776 			return;
777 		cpu_spinwait();
778 	}
779 }
780 
781 /*
782  * C1E renders the local APIC timer dead, so we disable it by
783  * reading the Interrupt Pending Message register and clearing
784  * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
785  *
786  * Reference:
787  *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
788  *   #32559 revision 3.00+
789  */
790 #define	MSR_AMDK8_IPM		0xc0010055
791 #define	AMDK8_SMIONCMPHALT	(1ULL << 27)
792 #define	AMDK8_C1EONCMPHALT	(1ULL << 28)
793 #define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
794 
795 static void
796 cpu_probe_amdc1e(void)
797 {
798 
799 	/*
800 	 * Detect the presence of C1E capability mostly on latest
801 	 * dual-cores (or future) k8 family.
802 	 */
803 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
804 	    (cpu_id & 0x00000f00) == 0x00000f00 &&
805 	    (cpu_id & 0x0fff0000) >=  0x00040000) {
806 		cpu_ident_amdc1e = 1;
807 	}
808 }
809 
810 void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
811 
812 void
813 cpu_idle(int busy)
814 {
815 	uint64_t msr;
816 	sbintime_t sbt = -1;
817 
818 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
819 	    busy, curcpu);
820 #ifdef MP_WATCHDOG
821 	ap_watchdog(PCPU_GET(cpuid));
822 #endif
823 	/* If we are busy - try to use fast methods. */
824 	if (busy) {
825 		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
826 			cpu_idle_mwait(busy);
827 			goto out;
828 		}
829 	}
830 
831 	/* If we have time - switch timers into idle mode. */
832 	if (!busy) {
833 		critical_enter();
834 		sbt = cpu_idleclock();
835 	}
836 
837 	/* Apply AMD APIC timer C1E workaround. */
838 	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
839 		msr = rdmsr(MSR_AMDK8_IPM);
840 		if (msr & AMDK8_CMPHALT)
841 			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
842 	}
843 
844 	/* Call main idle method. */
845 	cpu_idle_fn(sbt);
846 
847 	/* Switch timers mack into active mode. */
848 	if (!busy) {
849 		cpu_activeclock();
850 		critical_exit();
851 	}
852 out:
853 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
854 	    busy, curcpu);
855 }
856 
857 int
858 cpu_idle_wakeup(int cpu)
859 {
860 	struct pcpu *pcpu;
861 	int *state;
862 
863 	pcpu = pcpu_find(cpu);
864 	state = (int *)pcpu->pc_monitorbuf;
865 	/*
866 	 * This doesn't need to be atomic since missing the race will
867 	 * simply result in unnecessary IPIs.
868 	 */
869 	if (*state == STATE_SLEEPING)
870 		return (0);
871 	if (*state == STATE_MWAIT)
872 		*state = STATE_RUNNING;
873 	return (1);
874 }
875 
876 /*
877  * Ordered by speed/power consumption.
878  */
879 struct {
880 	void	*id_fn;
881 	char	*id_name;
882 } idle_tbl[] = {
883 	{ cpu_idle_spin, "spin" },
884 	{ cpu_idle_mwait, "mwait" },
885 	{ cpu_idle_hlt, "hlt" },
886 	{ cpu_idle_acpi, "acpi" },
887 	{ NULL, NULL }
888 };
889 
890 static int
891 idle_sysctl_available(SYSCTL_HANDLER_ARGS)
892 {
893 	char *avail, *p;
894 	int error;
895 	int i;
896 
897 	avail = malloc(256, M_TEMP, M_WAITOK);
898 	p = avail;
899 	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
900 		if (strstr(idle_tbl[i].id_name, "mwait") &&
901 		    (cpu_feature2 & CPUID2_MON) == 0)
902 			continue;
903 		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
904 		    cpu_idle_hook == NULL)
905 			continue;
906 		p += sprintf(p, "%s%s", p != avail ? ", " : "",
907 		    idle_tbl[i].id_name);
908 	}
909 	error = sysctl_handle_string(oidp, avail, 0, req);
910 	free(avail, M_TEMP);
911 	return (error);
912 }
913 
914 SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
915     0, 0, idle_sysctl_available, "A", "list of available idle functions");
916 
917 static int
918 idle_sysctl(SYSCTL_HANDLER_ARGS)
919 {
920 	char buf[16];
921 	int error;
922 	char *p;
923 	int i;
924 
925 	p = "unknown";
926 	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
927 		if (idle_tbl[i].id_fn == cpu_idle_fn) {
928 			p = idle_tbl[i].id_name;
929 			break;
930 		}
931 	}
932 	strncpy(buf, p, sizeof(buf));
933 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
934 	if (error != 0 || req->newptr == NULL)
935 		return (error);
936 	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
937 		if (strstr(idle_tbl[i].id_name, "mwait") &&
938 		    (cpu_feature2 & CPUID2_MON) == 0)
939 			continue;
940 		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
941 		    cpu_idle_hook == NULL)
942 			continue;
943 		if (strcmp(idle_tbl[i].id_name, buf))
944 			continue;
945 		cpu_idle_fn = idle_tbl[i].id_fn;
946 		return (0);
947 	}
948 	return (EINVAL);
949 }
950 
951 SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
952     idle_sysctl, "A", "currently selected idle function");
953 
954 /*
955  * Reset registers to default values on exec.
956  */
957 void
958 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
959 {
960 	struct trapframe *regs = td->td_frame;
961 	struct pcb *pcb = td->td_pcb;
962 
963 	mtx_lock(&dt_lock);
964 	if (td->td_proc->p_md.md_ldt != NULL)
965 		user_ldt_free(td);
966 	else
967 		mtx_unlock(&dt_lock);
968 
969 	pcb->pcb_fsbase = 0;
970 	pcb->pcb_gsbase = 0;
971 	clear_pcb_flags(pcb, PCB_32BIT);
972 	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
973 	set_pcb_flags(pcb, PCB_FULL_IRET);
974 
975 	bzero((char *)regs, sizeof(struct trapframe));
976 	regs->tf_rip = imgp->entry_addr;
977 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
978 	regs->tf_rdi = stack;		/* argv */
979 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
980 	regs->tf_ss = _udatasel;
981 	regs->tf_cs = _ucodesel;
982 	regs->tf_ds = _udatasel;
983 	regs->tf_es = _udatasel;
984 	regs->tf_fs = _ufssel;
985 	regs->tf_gs = _ugssel;
986 	regs->tf_flags = TF_HASSEGS;
987 	td->td_retval[1] = 0;
988 
989 	/*
990 	 * Reset the hardware debug registers if they were in use.
991 	 * They won't have any meaning for the newly exec'd process.
992 	 */
993 	if (pcb->pcb_flags & PCB_DBREGS) {
994 		pcb->pcb_dr0 = 0;
995 		pcb->pcb_dr1 = 0;
996 		pcb->pcb_dr2 = 0;
997 		pcb->pcb_dr3 = 0;
998 		pcb->pcb_dr6 = 0;
999 		pcb->pcb_dr7 = 0;
1000 		if (pcb == curpcb) {
1001 			/*
1002 			 * Clear the debug registers on the running
1003 			 * CPU, otherwise they will end up affecting
1004 			 * the next process we switch to.
1005 			 */
1006 			reset_dbregs();
1007 		}
1008 		clear_pcb_flags(pcb, PCB_DBREGS);
1009 	}
1010 
1011 	/*
1012 	 * Drop the FP state if we hold it, so that the process gets a
1013 	 * clean FP state if it uses the FPU again.
1014 	 */
1015 	fpstate_drop(td);
1016 }
1017 
1018 void
1019 cpu_setregs(void)
1020 {
1021 	register_t cr0;
1022 
1023 	cr0 = rcr0();
1024 	/*
1025 	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1026 	 * BSP.  See the comments there about why we set them.
1027 	 */
1028 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1029 	load_cr0(cr0);
1030 }
1031 
1032 /*
1033  * Initialize amd64 and configure to run kernel
1034  */
1035 
1036 /*
1037  * Initialize segments & interrupt table
1038  */
1039 
1040 struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1041 static struct gate_descriptor idt0[NIDT];
1042 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1043 
1044 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1045 
1046 static char nmi0_stack[PAGE_SIZE] __aligned(16);
1047 CTASSERT(sizeof(struct nmi_pcpu) == 16);
1048 
1049 struct amd64tss common_tss[MAXCPU];
1050 
1051 /*
1052  * Software prototypes -- in more palatable form.
1053  *
1054  * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1055  * slots as corresponding segments for i386 kernel.
1056  */
1057 struct soft_segment_descriptor gdt_segs[] = {
1058 /* GNULL_SEL	0 Null Descriptor */
1059 {	.ssd_base = 0x0,
1060 	.ssd_limit = 0x0,
1061 	.ssd_type = 0,
1062 	.ssd_dpl = 0,
1063 	.ssd_p = 0,
1064 	.ssd_long = 0,
1065 	.ssd_def32 = 0,
1066 	.ssd_gran = 0		},
1067 /* GNULL2_SEL	1 Null Descriptor */
1068 {	.ssd_base = 0x0,
1069 	.ssd_limit = 0x0,
1070 	.ssd_type = 0,
1071 	.ssd_dpl = 0,
1072 	.ssd_p = 0,
1073 	.ssd_long = 0,
1074 	.ssd_def32 = 0,
1075 	.ssd_gran = 0		},
1076 /* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1077 {	.ssd_base = 0x0,
1078 	.ssd_limit = 0xfffff,
1079 	.ssd_type = SDT_MEMRWA,
1080 	.ssd_dpl = SEL_UPL,
1081 	.ssd_p = 1,
1082 	.ssd_long = 0,
1083 	.ssd_def32 = 1,
1084 	.ssd_gran = 1		},
1085 /* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1086 {	.ssd_base = 0x0,
1087 	.ssd_limit = 0xfffff,
1088 	.ssd_type = SDT_MEMRWA,
1089 	.ssd_dpl = SEL_UPL,
1090 	.ssd_p = 1,
1091 	.ssd_long = 0,
1092 	.ssd_def32 = 1,
1093 	.ssd_gran = 1		},
1094 /* GCODE_SEL	4 Code Descriptor for kernel */
1095 {	.ssd_base = 0x0,
1096 	.ssd_limit = 0xfffff,
1097 	.ssd_type = SDT_MEMERA,
1098 	.ssd_dpl = SEL_KPL,
1099 	.ssd_p = 1,
1100 	.ssd_long = 1,
1101 	.ssd_def32 = 0,
1102 	.ssd_gran = 1		},
1103 /* GDATA_SEL	5 Data Descriptor for kernel */
1104 {	.ssd_base = 0x0,
1105 	.ssd_limit = 0xfffff,
1106 	.ssd_type = SDT_MEMRWA,
1107 	.ssd_dpl = SEL_KPL,
1108 	.ssd_p = 1,
1109 	.ssd_long = 1,
1110 	.ssd_def32 = 0,
1111 	.ssd_gran = 1		},
1112 /* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1113 {	.ssd_base = 0x0,
1114 	.ssd_limit = 0xfffff,
1115 	.ssd_type = SDT_MEMERA,
1116 	.ssd_dpl = SEL_UPL,
1117 	.ssd_p = 1,
1118 	.ssd_long = 0,
1119 	.ssd_def32 = 1,
1120 	.ssd_gran = 1		},
1121 /* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1122 {	.ssd_base = 0x0,
1123 	.ssd_limit = 0xfffff,
1124 	.ssd_type = SDT_MEMRWA,
1125 	.ssd_dpl = SEL_UPL,
1126 	.ssd_p = 1,
1127 	.ssd_long = 0,
1128 	.ssd_def32 = 1,
1129 	.ssd_gran = 1		},
1130 /* GUCODE_SEL	8 64 bit Code Descriptor for user */
1131 {	.ssd_base = 0x0,
1132 	.ssd_limit = 0xfffff,
1133 	.ssd_type = SDT_MEMERA,
1134 	.ssd_dpl = SEL_UPL,
1135 	.ssd_p = 1,
1136 	.ssd_long = 1,
1137 	.ssd_def32 = 0,
1138 	.ssd_gran = 1		},
1139 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1140 {	.ssd_base = 0x0,
1141 	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1142 	.ssd_type = SDT_SYSTSS,
1143 	.ssd_dpl = SEL_KPL,
1144 	.ssd_p = 1,
1145 	.ssd_long = 0,
1146 	.ssd_def32 = 0,
1147 	.ssd_gran = 0		},
1148 /* Actually, the TSS is a system descriptor which is double size */
1149 {	.ssd_base = 0x0,
1150 	.ssd_limit = 0x0,
1151 	.ssd_type = 0,
1152 	.ssd_dpl = 0,
1153 	.ssd_p = 0,
1154 	.ssd_long = 0,
1155 	.ssd_def32 = 0,
1156 	.ssd_gran = 0		},
1157 /* GUSERLDT_SEL	11 LDT Descriptor */
1158 {	.ssd_base = 0x0,
1159 	.ssd_limit = 0x0,
1160 	.ssd_type = 0,
1161 	.ssd_dpl = 0,
1162 	.ssd_p = 0,
1163 	.ssd_long = 0,
1164 	.ssd_def32 = 0,
1165 	.ssd_gran = 0		},
1166 /* GUSERLDT_SEL	12 LDT Descriptor, double size */
1167 {	.ssd_base = 0x0,
1168 	.ssd_limit = 0x0,
1169 	.ssd_type = 0,
1170 	.ssd_dpl = 0,
1171 	.ssd_p = 0,
1172 	.ssd_long = 0,
1173 	.ssd_def32 = 0,
1174 	.ssd_gran = 0		},
1175 };
1176 
1177 void
1178 setidt(idx, func, typ, dpl, ist)
1179 	int idx;
1180 	inthand_t *func;
1181 	int typ;
1182 	int dpl;
1183 	int ist;
1184 {
1185 	struct gate_descriptor *ip;
1186 
1187 	ip = idt + idx;
1188 	ip->gd_looffset = (uintptr_t)func;
1189 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1190 	ip->gd_ist = ist;
1191 	ip->gd_xx = 0;
1192 	ip->gd_type = typ;
1193 	ip->gd_dpl = dpl;
1194 	ip->gd_p = 1;
1195 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1196 }
1197 
1198 extern inthand_t
1199 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1200 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1201 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1202 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1203 	IDTVEC(xmm), IDTVEC(dblfault),
1204 #ifdef KDTRACE_HOOKS
1205 	IDTVEC(dtrace_ret),
1206 #endif
1207 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1208 
1209 #ifdef DDB
1210 /*
1211  * Display the index and function name of any IDT entries that don't use
1212  * the default 'rsvd' entry point.
1213  */
1214 DB_SHOW_COMMAND(idt, db_show_idt)
1215 {
1216 	struct gate_descriptor *ip;
1217 	int idx;
1218 	uintptr_t func;
1219 
1220 	ip = idt;
1221 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1222 		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1223 		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1224 			db_printf("%3d\t", idx);
1225 			db_printsym(func, DB_STGY_PROC);
1226 			db_printf("\n");
1227 		}
1228 		ip++;
1229 	}
1230 }
1231 #endif
1232 
1233 void
1234 sdtossd(sd, ssd)
1235 	struct user_segment_descriptor *sd;
1236 	struct soft_segment_descriptor *ssd;
1237 {
1238 
1239 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1240 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1241 	ssd->ssd_type  = sd->sd_type;
1242 	ssd->ssd_dpl   = sd->sd_dpl;
1243 	ssd->ssd_p     = sd->sd_p;
1244 	ssd->ssd_long  = sd->sd_long;
1245 	ssd->ssd_def32 = sd->sd_def32;
1246 	ssd->ssd_gran  = sd->sd_gran;
1247 }
1248 
1249 void
1250 ssdtosd(ssd, sd)
1251 	struct soft_segment_descriptor *ssd;
1252 	struct user_segment_descriptor *sd;
1253 {
1254 
1255 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1256 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1257 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1258 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1259 	sd->sd_type  = ssd->ssd_type;
1260 	sd->sd_dpl   = ssd->ssd_dpl;
1261 	sd->sd_p     = ssd->ssd_p;
1262 	sd->sd_long  = ssd->ssd_long;
1263 	sd->sd_def32 = ssd->ssd_def32;
1264 	sd->sd_gran  = ssd->ssd_gran;
1265 }
1266 
1267 void
1268 ssdtosyssd(ssd, sd)
1269 	struct soft_segment_descriptor *ssd;
1270 	struct system_segment_descriptor *sd;
1271 {
1272 
1273 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1274 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1275 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1276 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1277 	sd->sd_type  = ssd->ssd_type;
1278 	sd->sd_dpl   = ssd->ssd_dpl;
1279 	sd->sd_p     = ssd->ssd_p;
1280 	sd->sd_gran  = ssd->ssd_gran;
1281 }
1282 
1283 #if !defined(DEV_ATPIC) && defined(DEV_ISA)
1284 #include <isa/isavar.h>
1285 #include <isa/isareg.h>
1286 /*
1287  * Return a bitmap of the current interrupt requests.  This is 8259-specific
1288  * and is only suitable for use at probe time.
1289  * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1290  * It shouldn't be here.  There should probably be an APIC centric
1291  * implementation in the apic driver code, if at all.
1292  */
1293 intrmask_t
1294 isa_irq_pending(void)
1295 {
1296 	u_char irr1;
1297 	u_char irr2;
1298 
1299 	irr1 = inb(IO_ICU1);
1300 	irr2 = inb(IO_ICU2);
1301 	return ((irr2 << 8) | irr1);
1302 }
1303 #endif
1304 
1305 u_int basemem;
1306 
1307 static int
1308 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1309 {
1310 	int i, insert_idx, physmap_idx;
1311 
1312 	physmap_idx = *physmap_idxp;
1313 
1314 	if (boothowto & RB_VERBOSE)
1315 		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1316 		    smap->type, smap->base, smap->length);
1317 
1318 	if (smap->type != SMAP_TYPE_MEMORY)
1319 		return (1);
1320 
1321 	if (smap->length == 0)
1322 		return (0);
1323 
1324 	/*
1325 	 * Find insertion point while checking for overlap.  Start off by
1326 	 * assuming the new entry will be added to the end.
1327 	 */
1328 	insert_idx = physmap_idx + 2;
1329 	for (i = 0; i <= physmap_idx; i += 2) {
1330 		if (smap->base < physmap[i + 1]) {
1331 			if (smap->base + smap->length <= physmap[i]) {
1332 				insert_idx = i;
1333 				break;
1334 			}
1335 			if (boothowto & RB_VERBOSE)
1336 				printf(
1337 		    "Overlapping memory regions, ignoring second region\n");
1338 			return (1);
1339 		}
1340 	}
1341 
1342 	/* See if we can prepend to the next entry. */
1343 	if (insert_idx <= physmap_idx &&
1344 	    smap->base + smap->length == physmap[insert_idx]) {
1345 		physmap[insert_idx] = smap->base;
1346 		return (1);
1347 	}
1348 
1349 	/* See if we can append to the previous entry. */
1350 	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1351 		physmap[insert_idx - 1] += smap->length;
1352 		return (1);
1353 	}
1354 
1355 	physmap_idx += 2;
1356 	*physmap_idxp = physmap_idx;
1357 	if (physmap_idx == PHYSMAP_SIZE) {
1358 		printf(
1359 		"Too many segments in the physical address map, giving up\n");
1360 		return (0);
1361 	}
1362 
1363 	/*
1364 	 * Move the last 'N' entries down to make room for the new
1365 	 * entry if needed.
1366 	 */
1367 	for (i = physmap_idx; i > insert_idx; i -= 2) {
1368 		physmap[i] = physmap[i - 2];
1369 		physmap[i + 1] = physmap[i - 1];
1370 	}
1371 
1372 	/* Insert the new entry. */
1373 	physmap[insert_idx] = smap->base;
1374 	physmap[insert_idx + 1] = smap->base + smap->length;
1375 	return (1);
1376 }
1377 
1378 /*
1379  * Populate the (physmap) array with base/bound pairs describing the
1380  * available physical memory in the system, then test this memory and
1381  * build the phys_avail array describing the actually-available memory.
1382  *
1383  * Total memory size may be set by the kernel environment variable
1384  * hw.physmem or the compile-time define MAXMEM.
1385  *
1386  * XXX first should be vm_paddr_t.
1387  */
1388 static void
1389 getmemsize(caddr_t kmdp, u_int64_t first)
1390 {
1391 	int i, physmap_idx, pa_indx, da_indx;
1392 	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1393 	u_long physmem_start, physmem_tunable, memtest;
1394 	pt_entry_t *pte;
1395 	struct bios_smap *smapbase, *smap, *smapend;
1396 	u_int32_t smapsize;
1397 	quad_t dcons_addr, dcons_size;
1398 
1399 	bzero(physmap, sizeof(physmap));
1400 	basemem = 0;
1401 	physmap_idx = 0;
1402 
1403 	/*
1404 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1405 	 *
1406 	 * subr_module.c says:
1407 	 * "Consumer may safely assume that size value precedes data."
1408 	 * ie: an int32_t immediately precedes smap.
1409 	 */
1410 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1411 	    MODINFO_METADATA | MODINFOMD_SMAP);
1412 	if (smapbase == NULL)
1413 		panic("No BIOS smap info from loader!");
1414 
1415 	smapsize = *((u_int32_t *)smapbase - 1);
1416 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1417 
1418 	for (smap = smapbase; smap < smapend; smap++)
1419 		if (!add_smap_entry(smap, physmap, &physmap_idx))
1420 			break;
1421 
1422 	/*
1423 	 * Find the 'base memory' segment for SMP
1424 	 */
1425 	basemem = 0;
1426 	for (i = 0; i <= physmap_idx; i += 2) {
1427 		if (physmap[i] == 0x00000000) {
1428 			basemem = physmap[i + 1] / 1024;
1429 			break;
1430 		}
1431 	}
1432 	if (basemem == 0)
1433 		panic("BIOS smap did not include a basemem segment!");
1434 
1435 #ifdef SMP
1436 	/* make hole for AP bootstrap code */
1437 	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1438 #endif
1439 
1440 	/*
1441 	 * Maxmem isn't the "maximum memory", it's one larger than the
1442 	 * highest page of the physical address space.  It should be
1443 	 * called something like "Maxphyspage".  We may adjust this
1444 	 * based on ``hw.physmem'' and the results of the memory test.
1445 	 */
1446 	Maxmem = atop(physmap[physmap_idx + 1]);
1447 
1448 #ifdef MAXMEM
1449 	Maxmem = MAXMEM / 4;
1450 #endif
1451 
1452 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1453 		Maxmem = atop(physmem_tunable);
1454 
1455 	/*
1456 	 * By default enable the memory test on real hardware, and disable
1457 	 * it if we appear to be running in a VM.  This avoids touching all
1458 	 * pages unnecessarily, which doesn't matter on real hardware but is
1459 	 * bad for shared VM hosts.  Use a general name so that
1460 	 * one could eventually do more with the code than just disable it.
1461 	 */
1462 	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1463 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1464 
1465 	/*
1466 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1467 	 * in the system.
1468 	 */
1469 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1470 		Maxmem = atop(physmap[physmap_idx + 1]);
1471 
1472 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1473 	    (boothowto & RB_VERBOSE))
1474 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1475 
1476 	/* call pmap initialization to make new kernel address space */
1477 	pmap_bootstrap(&first);
1478 
1479 	/*
1480 	 * Size up each available chunk of physical memory.
1481 	 *
1482 	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1483 	 * By default, mask off the first 16 pages unless we appear to be
1484 	 * running in a VM.
1485 	 */
1486 	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1487 	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1488 	if (physmem_start < PAGE_SIZE)
1489 		physmap[0] = PAGE_SIZE;
1490 	else if (physmem_start >= physmap[1])
1491 		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1492 	else
1493 		physmap[0] = round_page(physmem_start);
1494 	pa_indx = 0;
1495 	da_indx = 1;
1496 	phys_avail[pa_indx++] = physmap[0];
1497 	phys_avail[pa_indx] = physmap[0];
1498 	dump_avail[da_indx] = physmap[0];
1499 	pte = CMAP1;
1500 
1501 	/*
1502 	 * Get dcons buffer address
1503 	 */
1504 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1505 	    getenv_quad("dcons.size", &dcons_size) == 0)
1506 		dcons_addr = 0;
1507 
1508 	/*
1509 	 * physmap is in bytes, so when converting to page boundaries,
1510 	 * round up the start address and round down the end address.
1511 	 */
1512 	for (i = 0; i <= physmap_idx; i += 2) {
1513 		vm_paddr_t end;
1514 
1515 		end = ptoa((vm_paddr_t)Maxmem);
1516 		if (physmap[i + 1] < end)
1517 			end = trunc_page(physmap[i + 1]);
1518 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1519 			int tmp, page_bad, full;
1520 			int *ptr = (int *)CADDR1;
1521 
1522 			full = FALSE;
1523 			/*
1524 			 * block out kernel memory as not available.
1525 			 */
1526 			if (pa >= (vm_paddr_t)kernphys && pa < first)
1527 				goto do_dump_avail;
1528 
1529 			/*
1530 			 * block out dcons buffer
1531 			 */
1532 			if (dcons_addr > 0
1533 			    && pa >= trunc_page(dcons_addr)
1534 			    && pa < dcons_addr + dcons_size)
1535 				goto do_dump_avail;
1536 
1537 			page_bad = FALSE;
1538 			if (memtest == 0)
1539 				goto skip_memtest;
1540 
1541 			/*
1542 			 * map page into kernel: valid, read/write,non-cacheable
1543 			 */
1544 			*pte = pa | PG_V | PG_RW | PG_N;
1545 			invltlb();
1546 
1547 			tmp = *(int *)ptr;
1548 			/*
1549 			 * Test for alternating 1's and 0's
1550 			 */
1551 			*(volatile int *)ptr = 0xaaaaaaaa;
1552 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1553 				page_bad = TRUE;
1554 			/*
1555 			 * Test for alternating 0's and 1's
1556 			 */
1557 			*(volatile int *)ptr = 0x55555555;
1558 			if (*(volatile int *)ptr != 0x55555555)
1559 				page_bad = TRUE;
1560 			/*
1561 			 * Test for all 1's
1562 			 */
1563 			*(volatile int *)ptr = 0xffffffff;
1564 			if (*(volatile int *)ptr != 0xffffffff)
1565 				page_bad = TRUE;
1566 			/*
1567 			 * Test for all 0's
1568 			 */
1569 			*(volatile int *)ptr = 0x0;
1570 			if (*(volatile int *)ptr != 0x0)
1571 				page_bad = TRUE;
1572 			/*
1573 			 * Restore original value.
1574 			 */
1575 			*(int *)ptr = tmp;
1576 
1577 skip_memtest:
1578 			/*
1579 			 * Adjust array of valid/good pages.
1580 			 */
1581 			if (page_bad == TRUE)
1582 				continue;
1583 			/*
1584 			 * If this good page is a continuation of the
1585 			 * previous set of good pages, then just increase
1586 			 * the end pointer. Otherwise start a new chunk.
1587 			 * Note that "end" points one higher than end,
1588 			 * making the range >= start and < end.
1589 			 * If we're also doing a speculative memory
1590 			 * test and we at or past the end, bump up Maxmem
1591 			 * so that we keep going. The first bad page
1592 			 * will terminate the loop.
1593 			 */
1594 			if (phys_avail[pa_indx] == pa) {
1595 				phys_avail[pa_indx] += PAGE_SIZE;
1596 			} else {
1597 				pa_indx++;
1598 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1599 					printf(
1600 		"Too many holes in the physical address space, giving up\n");
1601 					pa_indx--;
1602 					full = TRUE;
1603 					goto do_dump_avail;
1604 				}
1605 				phys_avail[pa_indx++] = pa;	/* start */
1606 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1607 			}
1608 			physmem++;
1609 do_dump_avail:
1610 			if (dump_avail[da_indx] == pa) {
1611 				dump_avail[da_indx] += PAGE_SIZE;
1612 			} else {
1613 				da_indx++;
1614 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1615 					da_indx--;
1616 					goto do_next;
1617 				}
1618 				dump_avail[da_indx++] = pa; /* start */
1619 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1620 			}
1621 do_next:
1622 			if (full)
1623 				break;
1624 		}
1625 	}
1626 	*pte = 0;
1627 	invltlb();
1628 
1629 	/*
1630 	 * XXX
1631 	 * The last chunk must contain at least one page plus the message
1632 	 * buffer to avoid complicating other code (message buffer address
1633 	 * calculation, etc.).
1634 	 */
1635 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1636 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1637 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1638 		phys_avail[pa_indx--] = 0;
1639 		phys_avail[pa_indx--] = 0;
1640 	}
1641 
1642 	Maxmem = atop(phys_avail[pa_indx]);
1643 
1644 	/* Trim off space for the message buffer. */
1645 	phys_avail[pa_indx] -= round_page(msgbufsize);
1646 
1647 	/* Map the message buffer. */
1648 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1649 }
1650 
1651 u_int64_t
1652 hammer_time(u_int64_t modulep, u_int64_t physfree)
1653 {
1654 	caddr_t kmdp;
1655 	int gsel_tss, x;
1656 	struct pcpu *pc;
1657 	struct nmi_pcpu *np;
1658 	struct xstate_hdr *xhdr;
1659 	u_int64_t msr;
1660 	char *env;
1661 	size_t kstack0_sz;
1662 
1663 	thread0.td_kstack = physfree + KERNBASE;
1664 	thread0.td_kstack_pages = KSTACK_PAGES;
1665 	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1666 	bzero((void *)thread0.td_kstack, kstack0_sz);
1667 	physfree += kstack0_sz;
1668 
1669 	/*
1670  	 * This may be done better later if it gets more high level
1671  	 * components in it. If so just link td->td_proc here.
1672 	 */
1673 	proc_linkup0(&proc0, &thread0);
1674 
1675 	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1676 	preload_bootstrap_relocate(KERNBASE);
1677 	kmdp = preload_search_by_type("elf kernel");
1678 	if (kmdp == NULL)
1679 		kmdp = preload_search_by_type("elf64 kernel");
1680 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1681 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1682 #ifdef DDB
1683 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1684 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1685 #endif
1686 
1687 	/* Init basic tunables, hz etc */
1688 	init_param1();
1689 
1690 	/*
1691 	 * make gdt memory segments
1692 	 */
1693 	for (x = 0; x < NGDT; x++) {
1694 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1695 		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1696 			ssdtosd(&gdt_segs[x], &gdt[x]);
1697 	}
1698 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1699 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1700 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1701 
1702 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1703 	r_gdt.rd_base =  (long) gdt;
1704 	lgdt(&r_gdt);
1705 	pc = &__pcpu[0];
1706 
1707 	wrmsr(MSR_FSBASE, 0);		/* User value */
1708 	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1709 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1710 
1711 	pcpu_init(pc, 0, sizeof(struct pcpu));
1712 	dpcpu_init((void *)(physfree + KERNBASE), 0);
1713 	physfree += DPCPU_SIZE;
1714 	PCPU_SET(prvspace, pc);
1715 	PCPU_SET(curthread, &thread0);
1716 	PCPU_SET(tssp, &common_tss[0]);
1717 	PCPU_SET(commontssp, &common_tss[0]);
1718 	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1719 	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1720 	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1721 	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1722 
1723 	/*
1724 	 * Initialize mutexes.
1725 	 *
1726 	 * icu_lock: in order to allow an interrupt to occur in a critical
1727 	 * 	     section, to set pcpu->ipending (etc...) properly, we
1728 	 *	     must be able to get the icu lock, so it can't be
1729 	 *	     under witness.
1730 	 */
1731 	mutex_init();
1732 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1733 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1734 
1735 	/* exceptions */
1736 	for (x = 0; x < NIDT; x++)
1737 		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1738 	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1740 	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1741  	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1742 	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1743 	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1744 	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1745 	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1746 	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1747 	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1748 	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1749 	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1750 	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1751 	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1752 	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1753 	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1754 	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1755 	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1756 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1757 #ifdef KDTRACE_HOOKS
1758 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1759 #endif
1760 
1761 	r_idt.rd_limit = sizeof(idt0) - 1;
1762 	r_idt.rd_base = (long) idt;
1763 	lidt(&r_idt);
1764 
1765 	/*
1766 	 * Initialize the i8254 before the console so that console
1767 	 * initialization can use DELAY().
1768 	 */
1769 	i8254_init();
1770 
1771 	/*
1772 	 * Initialize the console before we print anything out.
1773 	 */
1774 	cninit();
1775 
1776 #ifdef DEV_ISA
1777 #ifdef DEV_ATPIC
1778 	elcr_probe();
1779 	atpic_startup();
1780 #else
1781 	/* Reset and mask the atpics and leave them shut down. */
1782 	atpic_reset();
1783 
1784 	/*
1785 	 * Point the ICU spurious interrupt vectors at the APIC spurious
1786 	 * interrupt handler.
1787 	 */
1788 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1789 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1790 #endif
1791 #else
1792 #error "have you forgotten the isa device?";
1793 #endif
1794 
1795 	kdb_init();
1796 
1797 #ifdef KDB
1798 	if (boothowto & RB_KDB)
1799 		kdb_enter(KDB_WHY_BOOTFLAGS,
1800 		    "Boot flags requested debugger");
1801 #endif
1802 
1803 	identify_cpu();		/* Final stage of CPU initialization */
1804 	initializecpu();	/* Initialize CPU registers */
1805 	initializecpucache();
1806 
1807 	/* doublefault stack space, runs on ist1 */
1808 	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1809 
1810 	/*
1811 	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1812 	 * above the start of the ist2 stack.
1813 	 */
1814 	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1815 	np->np_pcpu = (register_t) pc;
1816 	common_tss[0].tss_ist2 = (long) np;
1817 
1818 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1819 	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1820 	    IOPAGES * PAGE_SIZE;
1821 
1822 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1823 	ltr(gsel_tss);
1824 
1825 	/* Set up the fast syscall stuff */
1826 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1827 	wrmsr(MSR_EFER, msr);
1828 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1829 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1830 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1831 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1832 	wrmsr(MSR_STAR, msr);
1833 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1834 
1835 	getmemsize(kmdp, physfree);
1836 	init_param2(physmem);
1837 
1838 	/* now running on new page tables, configured,and u/iom is accessible */
1839 
1840 	msgbufinit(msgbufp, msgbufsize);
1841 	fpuinit();
1842 
1843 	/*
1844 	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
1845 	 * area size.  Zero out the extended state header in fpu save
1846 	 * area.
1847 	 */
1848 	thread0.td_pcb = get_pcb_td(&thread0);
1849 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1850 	if (use_xsave) {
1851 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1852 		    1);
1853 		xhdr->xstate_bv = xsave_mask;
1854 	}
1855 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1856 	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
1857 	/* Ensure the stack is aligned to 16 bytes */
1858 	common_tss[0].tss_rsp0 &= ~0xFul;
1859 	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1860 	PCPU_SET(curpcb, thread0.td_pcb);
1861 
1862 	/* transfer to user mode */
1863 
1864 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1865 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1866 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1867 	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1868 	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1869 
1870 	load_ds(_udatasel);
1871 	load_es(_udatasel);
1872 	load_fs(_ufssel);
1873 
1874 	/* setup proc 0's pcb */
1875 	thread0.td_pcb->pcb_flags = 0;
1876 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1877 	thread0.td_frame = &proc0_tf;
1878 
1879         env = getenv("kernelname");
1880 	if (env != NULL)
1881 		strlcpy(kernelname, env, sizeof(kernelname));
1882 
1883 #ifdef XENHVM
1884 	if (inw(0x10) == 0x49d2) {
1885 		if (bootverbose)
1886 			printf("Xen detected: disabling emulated block and network devices\n");
1887 		outw(0x10, 3);
1888 	}
1889 #endif
1890 
1891 	cpu_probe_amdc1e();
1892 
1893 #ifdef FDT
1894 	x86_init_fdt();
1895 #endif
1896 
1897 	/* Location of kernel stack for locore */
1898 	return ((u_int64_t)thread0.td_pcb);
1899 }
1900 
1901 void
1902 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1903 {
1904 
1905 	pcpu->pc_acpi_id = 0xffffffff;
1906 }
1907 
1908 void
1909 spinlock_enter(void)
1910 {
1911 	struct thread *td;
1912 	register_t flags;
1913 
1914 	td = curthread;
1915 	if (td->td_md.md_spinlock_count == 0) {
1916 		flags = intr_disable();
1917 		td->td_md.md_spinlock_count = 1;
1918 		td->td_md.md_saved_flags = flags;
1919 	} else
1920 		td->td_md.md_spinlock_count++;
1921 	critical_enter();
1922 }
1923 
1924 void
1925 spinlock_exit(void)
1926 {
1927 	struct thread *td;
1928 	register_t flags;
1929 
1930 	td = curthread;
1931 	critical_exit();
1932 	flags = td->td_md.md_saved_flags;
1933 	td->td_md.md_spinlock_count--;
1934 	if (td->td_md.md_spinlock_count == 0)
1935 		intr_restore(flags);
1936 }
1937 
1938 /*
1939  * Construct a PCB from a trapframe. This is called from kdb_trap() where
1940  * we want to start a backtrace from the function that caused us to enter
1941  * the debugger. We have the context in the trapframe, but base the trace
1942  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1943  * enough for a backtrace.
1944  */
1945 void
1946 makectx(struct trapframe *tf, struct pcb *pcb)
1947 {
1948 
1949 	pcb->pcb_r12 = tf->tf_r12;
1950 	pcb->pcb_r13 = tf->tf_r13;
1951 	pcb->pcb_r14 = tf->tf_r14;
1952 	pcb->pcb_r15 = tf->tf_r15;
1953 	pcb->pcb_rbp = tf->tf_rbp;
1954 	pcb->pcb_rbx = tf->tf_rbx;
1955 	pcb->pcb_rip = tf->tf_rip;
1956 	pcb->pcb_rsp = tf->tf_rsp;
1957 }
1958 
1959 int
1960 ptrace_set_pc(struct thread *td, unsigned long addr)
1961 {
1962 	td->td_frame->tf_rip = addr;
1963 	return (0);
1964 }
1965 
1966 int
1967 ptrace_single_step(struct thread *td)
1968 {
1969 	td->td_frame->tf_rflags |= PSL_T;
1970 	return (0);
1971 }
1972 
1973 int
1974 ptrace_clear_single_step(struct thread *td)
1975 {
1976 	td->td_frame->tf_rflags &= ~PSL_T;
1977 	return (0);
1978 }
1979 
1980 int
1981 fill_regs(struct thread *td, struct reg *regs)
1982 {
1983 	struct trapframe *tp;
1984 
1985 	tp = td->td_frame;
1986 	return (fill_frame_regs(tp, regs));
1987 }
1988 
1989 int
1990 fill_frame_regs(struct trapframe *tp, struct reg *regs)
1991 {
1992 	regs->r_r15 = tp->tf_r15;
1993 	regs->r_r14 = tp->tf_r14;
1994 	regs->r_r13 = tp->tf_r13;
1995 	regs->r_r12 = tp->tf_r12;
1996 	regs->r_r11 = tp->tf_r11;
1997 	regs->r_r10 = tp->tf_r10;
1998 	regs->r_r9  = tp->tf_r9;
1999 	regs->r_r8  = tp->tf_r8;
2000 	regs->r_rdi = tp->tf_rdi;
2001 	regs->r_rsi = tp->tf_rsi;
2002 	regs->r_rbp = tp->tf_rbp;
2003 	regs->r_rbx = tp->tf_rbx;
2004 	regs->r_rdx = tp->tf_rdx;
2005 	regs->r_rcx = tp->tf_rcx;
2006 	regs->r_rax = tp->tf_rax;
2007 	regs->r_rip = tp->tf_rip;
2008 	regs->r_cs = tp->tf_cs;
2009 	regs->r_rflags = tp->tf_rflags;
2010 	regs->r_rsp = tp->tf_rsp;
2011 	regs->r_ss = tp->tf_ss;
2012 	if (tp->tf_flags & TF_HASSEGS) {
2013 		regs->r_ds = tp->tf_ds;
2014 		regs->r_es = tp->tf_es;
2015 		regs->r_fs = tp->tf_fs;
2016 		regs->r_gs = tp->tf_gs;
2017 	} else {
2018 		regs->r_ds = 0;
2019 		regs->r_es = 0;
2020 		regs->r_fs = 0;
2021 		regs->r_gs = 0;
2022 	}
2023 	return (0);
2024 }
2025 
2026 int
2027 set_regs(struct thread *td, struct reg *regs)
2028 {
2029 	struct trapframe *tp;
2030 	register_t rflags;
2031 
2032 	tp = td->td_frame;
2033 	rflags = regs->r_rflags & 0xffffffff;
2034 	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2035 		return (EINVAL);
2036 	tp->tf_r15 = regs->r_r15;
2037 	tp->tf_r14 = regs->r_r14;
2038 	tp->tf_r13 = regs->r_r13;
2039 	tp->tf_r12 = regs->r_r12;
2040 	tp->tf_r11 = regs->r_r11;
2041 	tp->tf_r10 = regs->r_r10;
2042 	tp->tf_r9  = regs->r_r9;
2043 	tp->tf_r8  = regs->r_r8;
2044 	tp->tf_rdi = regs->r_rdi;
2045 	tp->tf_rsi = regs->r_rsi;
2046 	tp->tf_rbp = regs->r_rbp;
2047 	tp->tf_rbx = regs->r_rbx;
2048 	tp->tf_rdx = regs->r_rdx;
2049 	tp->tf_rcx = regs->r_rcx;
2050 	tp->tf_rax = regs->r_rax;
2051 	tp->tf_rip = regs->r_rip;
2052 	tp->tf_cs = regs->r_cs;
2053 	tp->tf_rflags = rflags;
2054 	tp->tf_rsp = regs->r_rsp;
2055 	tp->tf_ss = regs->r_ss;
2056 	if (0) {	/* XXXKIB */
2057 		tp->tf_ds = regs->r_ds;
2058 		tp->tf_es = regs->r_es;
2059 		tp->tf_fs = regs->r_fs;
2060 		tp->tf_gs = regs->r_gs;
2061 		tp->tf_flags = TF_HASSEGS;
2062 		set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2063 	}
2064 	return (0);
2065 }
2066 
2067 /* XXX check all this stuff! */
2068 /* externalize from sv_xmm */
2069 static void
2070 fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2071 {
2072 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2073 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2074 	int i;
2075 
2076 	/* pcb -> fpregs */
2077 	bzero(fpregs, sizeof(*fpregs));
2078 
2079 	/* FPU control/status */
2080 	penv_fpreg->en_cw = penv_xmm->en_cw;
2081 	penv_fpreg->en_sw = penv_xmm->en_sw;
2082 	penv_fpreg->en_tw = penv_xmm->en_tw;
2083 	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2084 	penv_fpreg->en_rip = penv_xmm->en_rip;
2085 	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2086 	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2087 	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2088 
2089 	/* FPU registers */
2090 	for (i = 0; i < 8; ++i)
2091 		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2092 
2093 	/* SSE registers */
2094 	for (i = 0; i < 16; ++i)
2095 		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2096 }
2097 
2098 /* internalize from fpregs into sv_xmm */
2099 static void
2100 set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2101 {
2102 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2103 	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2104 	int i;
2105 
2106 	/* fpregs -> pcb */
2107 	/* FPU control/status */
2108 	penv_xmm->en_cw = penv_fpreg->en_cw;
2109 	penv_xmm->en_sw = penv_fpreg->en_sw;
2110 	penv_xmm->en_tw = penv_fpreg->en_tw;
2111 	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2112 	penv_xmm->en_rip = penv_fpreg->en_rip;
2113 	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2114 	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2115 	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2116 
2117 	/* FPU registers */
2118 	for (i = 0; i < 8; ++i)
2119 		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2120 
2121 	/* SSE registers */
2122 	for (i = 0; i < 16; ++i)
2123 		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2124 }
2125 
2126 /* externalize from td->pcb */
2127 int
2128 fill_fpregs(struct thread *td, struct fpreg *fpregs)
2129 {
2130 
2131 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2132 	    P_SHOULDSTOP(td->td_proc),
2133 	    ("not suspended thread %p", td));
2134 	fpugetregs(td);
2135 	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2136 	return (0);
2137 }
2138 
2139 /* internalize to td->pcb */
2140 int
2141 set_fpregs(struct thread *td, struct fpreg *fpregs)
2142 {
2143 
2144 	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2145 	fpuuserinited(td);
2146 	return (0);
2147 }
2148 
2149 /*
2150  * Get machine context.
2151  */
2152 int
2153 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2154 {
2155 	struct pcb *pcb;
2156 	struct trapframe *tp;
2157 
2158 	pcb = td->td_pcb;
2159 	tp = td->td_frame;
2160 	PROC_LOCK(curthread->td_proc);
2161 	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2162 	PROC_UNLOCK(curthread->td_proc);
2163 	mcp->mc_r15 = tp->tf_r15;
2164 	mcp->mc_r14 = tp->tf_r14;
2165 	mcp->mc_r13 = tp->tf_r13;
2166 	mcp->mc_r12 = tp->tf_r12;
2167 	mcp->mc_r11 = tp->tf_r11;
2168 	mcp->mc_r10 = tp->tf_r10;
2169 	mcp->mc_r9  = tp->tf_r9;
2170 	mcp->mc_r8  = tp->tf_r8;
2171 	mcp->mc_rdi = tp->tf_rdi;
2172 	mcp->mc_rsi = tp->tf_rsi;
2173 	mcp->mc_rbp = tp->tf_rbp;
2174 	mcp->mc_rbx = tp->tf_rbx;
2175 	mcp->mc_rcx = tp->tf_rcx;
2176 	mcp->mc_rflags = tp->tf_rflags;
2177 	if (flags & GET_MC_CLEAR_RET) {
2178 		mcp->mc_rax = 0;
2179 		mcp->mc_rdx = 0;
2180 		mcp->mc_rflags &= ~PSL_C;
2181 	} else {
2182 		mcp->mc_rax = tp->tf_rax;
2183 		mcp->mc_rdx = tp->tf_rdx;
2184 	}
2185 	mcp->mc_rip = tp->tf_rip;
2186 	mcp->mc_cs = tp->tf_cs;
2187 	mcp->mc_rsp = tp->tf_rsp;
2188 	mcp->mc_ss = tp->tf_ss;
2189 	mcp->mc_ds = tp->tf_ds;
2190 	mcp->mc_es = tp->tf_es;
2191 	mcp->mc_fs = tp->tf_fs;
2192 	mcp->mc_gs = tp->tf_gs;
2193 	mcp->mc_flags = tp->tf_flags;
2194 	mcp->mc_len = sizeof(*mcp);
2195 	get_fpcontext(td, mcp, NULL, 0);
2196 	mcp->mc_fsbase = pcb->pcb_fsbase;
2197 	mcp->mc_gsbase = pcb->pcb_gsbase;
2198 	mcp->mc_xfpustate = 0;
2199 	mcp->mc_xfpustate_len = 0;
2200 	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2201 	return (0);
2202 }
2203 
2204 /*
2205  * Set machine context.
2206  *
2207  * However, we don't set any but the user modifiable flags, and we won't
2208  * touch the cs selector.
2209  */
2210 int
2211 set_mcontext(struct thread *td, const mcontext_t *mcp)
2212 {
2213 	struct pcb *pcb;
2214 	struct trapframe *tp;
2215 	char *xfpustate;
2216 	long rflags;
2217 	int ret;
2218 
2219 	pcb = td->td_pcb;
2220 	tp = td->td_frame;
2221 	if (mcp->mc_len != sizeof(*mcp) ||
2222 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2223 		return (EINVAL);
2224 	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2225 	    (tp->tf_rflags & ~PSL_USERCHANGE);
2226 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2227 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2228 		    sizeof(struct savefpu))
2229 			return (EINVAL);
2230 		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2231 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2232 		    mcp->mc_xfpustate_len);
2233 		if (ret != 0)
2234 			return (ret);
2235 	} else
2236 		xfpustate = NULL;
2237 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2238 	if (ret != 0)
2239 		return (ret);
2240 	tp->tf_r15 = mcp->mc_r15;
2241 	tp->tf_r14 = mcp->mc_r14;
2242 	tp->tf_r13 = mcp->mc_r13;
2243 	tp->tf_r12 = mcp->mc_r12;
2244 	tp->tf_r11 = mcp->mc_r11;
2245 	tp->tf_r10 = mcp->mc_r10;
2246 	tp->tf_r9  = mcp->mc_r9;
2247 	tp->tf_r8  = mcp->mc_r8;
2248 	tp->tf_rdi = mcp->mc_rdi;
2249 	tp->tf_rsi = mcp->mc_rsi;
2250 	tp->tf_rbp = mcp->mc_rbp;
2251 	tp->tf_rbx = mcp->mc_rbx;
2252 	tp->tf_rdx = mcp->mc_rdx;
2253 	tp->tf_rcx = mcp->mc_rcx;
2254 	tp->tf_rax = mcp->mc_rax;
2255 	tp->tf_rip = mcp->mc_rip;
2256 	tp->tf_rflags = rflags;
2257 	tp->tf_rsp = mcp->mc_rsp;
2258 	tp->tf_ss = mcp->mc_ss;
2259 	tp->tf_flags = mcp->mc_flags;
2260 	if (tp->tf_flags & TF_HASSEGS) {
2261 		tp->tf_ds = mcp->mc_ds;
2262 		tp->tf_es = mcp->mc_es;
2263 		tp->tf_fs = mcp->mc_fs;
2264 		tp->tf_gs = mcp->mc_gs;
2265 	}
2266 	if (mcp->mc_flags & _MC_HASBASES) {
2267 		pcb->pcb_fsbase = mcp->mc_fsbase;
2268 		pcb->pcb_gsbase = mcp->mc_gsbase;
2269 	}
2270 	set_pcb_flags(pcb, PCB_FULL_IRET);
2271 	return (0);
2272 }
2273 
2274 static void
2275 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2276     size_t xfpusave_len)
2277 {
2278 	size_t max_len, len;
2279 
2280 	mcp->mc_ownedfp = fpugetregs(td);
2281 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2282 	    sizeof(mcp->mc_fpstate));
2283 	mcp->mc_fpformat = fpuformat();
2284 	if (!use_xsave || xfpusave_len == 0)
2285 		return;
2286 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2287 	len = xfpusave_len;
2288 	if (len > max_len) {
2289 		len = max_len;
2290 		bzero(xfpusave + max_len, len - max_len);
2291 	}
2292 	mcp->mc_flags |= _MC_HASFPXSTATE;
2293 	mcp->mc_xfpustate_len = len;
2294 	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2295 }
2296 
2297 static int
2298 set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2299     size_t xfpustate_len)
2300 {
2301 	struct savefpu *fpstate;
2302 	int error;
2303 
2304 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2305 		return (0);
2306 	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2307 		return (EINVAL);
2308 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2309 		/* We don't care what state is left in the FPU or PCB. */
2310 		fpstate_drop(td);
2311 		error = 0;
2312 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2313 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2314 		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2315 		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2316 		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2317 	} else
2318 		return (EINVAL);
2319 	return (error);
2320 }
2321 
2322 void
2323 fpstate_drop(struct thread *td)
2324 {
2325 
2326 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2327 	critical_enter();
2328 	if (PCPU_GET(fpcurthread) == td)
2329 		fpudrop();
2330 	/*
2331 	 * XXX force a full drop of the fpu.  The above only drops it if we
2332 	 * owned it.
2333 	 *
2334 	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2335 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2336 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2337 	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2338 	 * have too many layers.
2339 	 */
2340 	clear_pcb_flags(curthread->td_pcb,
2341 	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2342 	critical_exit();
2343 }
2344 
2345 int
2346 fill_dbregs(struct thread *td, struct dbreg *dbregs)
2347 {
2348 	struct pcb *pcb;
2349 
2350 	if (td == NULL) {
2351 		dbregs->dr[0] = rdr0();
2352 		dbregs->dr[1] = rdr1();
2353 		dbregs->dr[2] = rdr2();
2354 		dbregs->dr[3] = rdr3();
2355 		dbregs->dr[6] = rdr6();
2356 		dbregs->dr[7] = rdr7();
2357 	} else {
2358 		pcb = td->td_pcb;
2359 		dbregs->dr[0] = pcb->pcb_dr0;
2360 		dbregs->dr[1] = pcb->pcb_dr1;
2361 		dbregs->dr[2] = pcb->pcb_dr2;
2362 		dbregs->dr[3] = pcb->pcb_dr3;
2363 		dbregs->dr[6] = pcb->pcb_dr6;
2364 		dbregs->dr[7] = pcb->pcb_dr7;
2365 	}
2366 	dbregs->dr[4] = 0;
2367 	dbregs->dr[5] = 0;
2368 	dbregs->dr[8] = 0;
2369 	dbregs->dr[9] = 0;
2370 	dbregs->dr[10] = 0;
2371 	dbregs->dr[11] = 0;
2372 	dbregs->dr[12] = 0;
2373 	dbregs->dr[13] = 0;
2374 	dbregs->dr[14] = 0;
2375 	dbregs->dr[15] = 0;
2376 	return (0);
2377 }
2378 
2379 int
2380 set_dbregs(struct thread *td, struct dbreg *dbregs)
2381 {
2382 	struct pcb *pcb;
2383 	int i;
2384 
2385 	if (td == NULL) {
2386 		load_dr0(dbregs->dr[0]);
2387 		load_dr1(dbregs->dr[1]);
2388 		load_dr2(dbregs->dr[2]);
2389 		load_dr3(dbregs->dr[3]);
2390 		load_dr6(dbregs->dr[6]);
2391 		load_dr7(dbregs->dr[7]);
2392 	} else {
2393 		/*
2394 		 * Don't let an illegal value for dr7 get set.  Specifically,
2395 		 * check for undefined settings.  Setting these bit patterns
2396 		 * result in undefined behaviour and can lead to an unexpected
2397 		 * TRCTRAP or a general protection fault right here.
2398 		 * Upper bits of dr6 and dr7 must not be set
2399 		 */
2400 		for (i = 0; i < 4; i++) {
2401 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2402 				return (EINVAL);
2403 			if (td->td_frame->tf_cs == _ucode32sel &&
2404 			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2405 				return (EINVAL);
2406 		}
2407 		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2408 		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2409 			return (EINVAL);
2410 
2411 		pcb = td->td_pcb;
2412 
2413 		/*
2414 		 * Don't let a process set a breakpoint that is not within the
2415 		 * process's address space.  If a process could do this, it
2416 		 * could halt the system by setting a breakpoint in the kernel
2417 		 * (if ddb was enabled).  Thus, we need to check to make sure
2418 		 * that no breakpoints are being enabled for addresses outside
2419 		 * process's address space.
2420 		 *
2421 		 * XXX - what about when the watched area of the user's
2422 		 * address space is written into from within the kernel
2423 		 * ... wouldn't that still cause a breakpoint to be generated
2424 		 * from within kernel mode?
2425 		 */
2426 
2427 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2428 			/* dr0 is enabled */
2429 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2430 				return (EINVAL);
2431 		}
2432 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2433 			/* dr1 is enabled */
2434 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2435 				return (EINVAL);
2436 		}
2437 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2438 			/* dr2 is enabled */
2439 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2440 				return (EINVAL);
2441 		}
2442 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2443 			/* dr3 is enabled */
2444 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2445 				return (EINVAL);
2446 		}
2447 
2448 		pcb->pcb_dr0 = dbregs->dr[0];
2449 		pcb->pcb_dr1 = dbregs->dr[1];
2450 		pcb->pcb_dr2 = dbregs->dr[2];
2451 		pcb->pcb_dr3 = dbregs->dr[3];
2452 		pcb->pcb_dr6 = dbregs->dr[6];
2453 		pcb->pcb_dr7 = dbregs->dr[7];
2454 
2455 		set_pcb_flags(pcb, PCB_DBREGS);
2456 	}
2457 
2458 	return (0);
2459 }
2460 
2461 void
2462 reset_dbregs(void)
2463 {
2464 
2465 	load_dr7(0);	/* Turn off the control bits first */
2466 	load_dr0(0);
2467 	load_dr1(0);
2468 	load_dr2(0);
2469 	load_dr3(0);
2470 	load_dr6(0);
2471 }
2472 
2473 /*
2474  * Return > 0 if a hardware breakpoint has been hit, and the
2475  * breakpoint was in user space.  Return 0, otherwise.
2476  */
2477 int
2478 user_dbreg_trap(void)
2479 {
2480         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2481         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2482         int nbp;            /* number of breakpoints that triggered */
2483         caddr_t addr[4];    /* breakpoint addresses */
2484         int i;
2485 
2486         dr7 = rdr7();
2487         if ((dr7 & 0x000000ff) == 0) {
2488                 /*
2489                  * all GE and LE bits in the dr7 register are zero,
2490                  * thus the trap couldn't have been caused by the
2491                  * hardware debug registers
2492                  */
2493                 return 0;
2494         }
2495 
2496         nbp = 0;
2497         dr6 = rdr6();
2498         bp = dr6 & 0x0000000f;
2499 
2500         if (!bp) {
2501                 /*
2502                  * None of the breakpoint bits are set meaning this
2503                  * trap was not caused by any of the debug registers
2504                  */
2505                 return 0;
2506         }
2507 
2508         /*
2509          * at least one of the breakpoints were hit, check to see
2510          * which ones and if any of them are user space addresses
2511          */
2512 
2513         if (bp & 0x01) {
2514                 addr[nbp++] = (caddr_t)rdr0();
2515         }
2516         if (bp & 0x02) {
2517                 addr[nbp++] = (caddr_t)rdr1();
2518         }
2519         if (bp & 0x04) {
2520                 addr[nbp++] = (caddr_t)rdr2();
2521         }
2522         if (bp & 0x08) {
2523                 addr[nbp++] = (caddr_t)rdr3();
2524         }
2525 
2526         for (i = 0; i < nbp; i++) {
2527                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2528                         /*
2529                          * addr[i] is in user space
2530                          */
2531                         return nbp;
2532                 }
2533         }
2534 
2535         /*
2536          * None of the breakpoints are in user space.
2537          */
2538         return 0;
2539 }
2540 
2541 #ifdef KDB
2542 
2543 /*
2544  * Provide inb() and outb() as functions.  They are normally only available as
2545  * inline functions, thus cannot be called from the debugger.
2546  */
2547 
2548 /* silence compiler warnings */
2549 u_char inb_(u_short);
2550 void outb_(u_short, u_char);
2551 
2552 u_char
2553 inb_(u_short port)
2554 {
2555 	return inb(port);
2556 }
2557 
2558 void
2559 outb_(u_short port, u_char data)
2560 {
2561 	outb(port, data);
2562 }
2563 
2564 #endif /* KDB */
2565