xref: /freebsd/sys/amd64/amd64/mp_machdep.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1996, by Steve Passe
3  * Copyright (c) 2003, by Peter Wemm
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the developer may NOT be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_cpu.h"
31 #include "opt_kstack_pages.h"
32 #include "opt_mp_watchdog.h"
33 #include "opt_sched.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #ifdef GPROF
39 #include <sys/gmon.h>
40 #endif
41 #include <sys/kernel.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/memrange.h>
46 #include <sys/mutex.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vm_extern.h>
57 
58 #include <machine/apicreg.h>
59 #include <machine/md_var.h>
60 #include <machine/mp_watchdog.h>
61 #include <machine/pcb.h>
62 #include <machine/psl.h>
63 #include <machine/smp.h>
64 #include <machine/specialreg.h>
65 #include <machine/tss.h>
66 
67 #define WARMBOOT_TARGET		0
68 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
69 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
70 
71 #define CMOS_REG		(0x70)
72 #define CMOS_DATA		(0x71)
73 #define BIOS_RESET		(0x0f)
74 #define BIOS_WARM		(0x0a)
75 
76 /* lock region used by kernel profiling */
77 int	mcount_lock;
78 
79 int	mp_naps;		/* # of Applications processors */
80 int	boot_cpu_id = -1;	/* designated BSP */
81 extern	int nkpt;
82 
83 /*
84  * CPU topology map datastructures for HTT.
85  */
86 static struct cpu_group mp_groups[MAXCPU];
87 static struct cpu_top mp_top;
88 
89 /* AP uses this during bootstrap.  Do not staticize.  */
90 char *bootSTK;
91 static int bootAP;
92 
93 /* Free these after use */
94 void *bootstacks[MAXCPU];
95 
96 /* Temporary holder for double fault stack */
97 char *doublefault_stack;
98 
99 /* Hotwire a 0->4MB V==P mapping */
100 extern pt_entry_t *KPTphys;
101 
102 /* SMP page table page */
103 extern pt_entry_t *SMPpt;
104 
105 struct pcb stoppcbs[MAXCPU];
106 
107 /* Variables needed for SMP tlb shootdown. */
108 vm_offset_t smp_tlb_addr1;
109 vm_offset_t smp_tlb_addr2;
110 volatile int smp_tlb_wait;
111 
112 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
113 
114 #ifdef STOP_NMI
115 volatile cpumask_t ipi_nmi_pending;
116 
117 static void	ipi_nmi_selected(u_int32_t cpus);
118 #endif
119 
120 /*
121  * Local data and functions.
122  */
123 
124 #ifdef STOP_NMI
125 /*
126  * Provide an alternate method of stopping other CPUs. If another CPU has
127  * disabled interrupts the conventional STOP IPI will be blocked. This
128  * NMI-based stop should get through in that case.
129  */
130 static int stop_cpus_with_nmi = 1;
131 SYSCTL_INT(_debug, OID_AUTO, stop_cpus_with_nmi, CTLTYPE_INT | CTLFLAG_RW,
132     &stop_cpus_with_nmi, 0, "");
133 TUNABLE_INT("debug.stop_cpus_with_nmi", &stop_cpus_with_nmi);
134 #else
135 #define	stop_cpus_with_nmi	0
136 #endif
137 
138 static u_int logical_cpus;
139 
140 /* used to hold the AP's until we are ready to release them */
141 static struct mtx ap_boot_mtx;
142 
143 /* Set to 1 once we're ready to let the APs out of the pen. */
144 static volatile int aps_ready = 0;
145 
146 /*
147  * Store data from cpu_add() until later in the boot when we actually setup
148  * the APs.
149  */
150 struct cpu_info {
151 	int	cpu_present:1;
152 	int	cpu_bsp:1;
153 	int	cpu_disabled:1;
154 } static cpu_info[MAXCPU];
155 static int cpu_apic_ids[MAXCPU];
156 
157 /* Holds pending bitmap based IPIs per CPU */
158 static volatile u_int cpu_ipi_pending[MAXCPU];
159 
160 static u_int boot_address;
161 
162 static void	set_interrupt_apic_ids(void);
163 static int	start_all_aps(void);
164 static int	start_ap(int apic_id);
165 static void	release_aps(void *dummy);
166 
167 static int	hlt_logical_cpus;
168 static u_int	hyperthreading_cpus;
169 static cpumask_t	hyperthreading_cpus_mask;
170 static int	hyperthreading_allowed = 1;
171 static struct	sysctl_ctx_list logical_cpu_clist;
172 static u_int	bootMP_size;
173 
174 static void
175 mem_range_AP_init(void)
176 {
177 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
178 		mem_range_softc.mr_op->initAP(&mem_range_softc);
179 }
180 
181 void
182 mp_topology(void)
183 {
184 	struct cpu_group *group;
185 	u_int regs[4];
186 	int logical_cpus;
187 	int apic_id;
188 	int groups;
189 	int cpu;
190 
191 	/* Build the smp_topology map. */
192 	/* Nothing to do if there is no HTT support. */
193 	if ((cpu_feature & CPUID_HTT) == 0)
194 		return;
195 	logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
196 	if (logical_cpus <= 1)
197 		return;
198 	/* Nothing to do if reported cores are physical cores. */
199 	if (strcmp(cpu_vendor, "GenuineIntel") == 0 && cpu_high >= 4) {
200 		cpuid_count(4, 0, regs);
201 		if ((regs[0] & 0x1f) != 0 &&
202 		    logical_cpus <= ((regs[0] >> 26) & 0x3f) + 1)
203 			return;
204 	}
205 	group = &mp_groups[0];
206 	groups = 1;
207 	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
208 		if (!cpu_info[apic_id].cpu_present)
209 			continue;
210 		/*
211 		 * If the current group has members and we're not a logical
212 		 * cpu, create a new group.
213 		 */
214 		if (group->cg_count != 0 && (apic_id % logical_cpus) == 0) {
215 			group++;
216 			groups++;
217 		}
218 		group->cg_count++;
219 		group->cg_mask |= 1 << cpu;
220 		cpu++;
221 	}
222 
223 	mp_top.ct_count = groups;
224 	mp_top.ct_group = mp_groups;
225 	smp_topology = &mp_top;
226 }
227 
228 /*
229  * Calculate usable address in base memory for AP trampoline code.
230  */
231 u_int
232 mp_bootaddress(u_int basemem)
233 {
234 
235 	bootMP_size = mptramp_end - mptramp_start;
236 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
237 	if (((basemem * 1024) - boot_address) < bootMP_size)
238 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
239 	/* 3 levels of page table pages */
240 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
241 
242 	return mptramp_pagetables;
243 }
244 
245 void
246 cpu_add(u_int apic_id, char boot_cpu)
247 {
248 
249 	if (apic_id >= MAXCPU) {
250 		printf("SMP: CPU %d exceeds maximum CPU %d, ignoring\n",
251 		    apic_id, MAXCPU - 1);
252 		return;
253 	}
254 	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
255 	    apic_id));
256 	cpu_info[apic_id].cpu_present = 1;
257 	if (boot_cpu) {
258 		KASSERT(boot_cpu_id == -1,
259 		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
260 		    boot_cpu_id));
261 		boot_cpu_id = apic_id;
262 		cpu_info[apic_id].cpu_bsp = 1;
263 	}
264 	mp_ncpus++;
265 	if (apic_id > mp_maxid)
266 		mp_maxid = apic_id;
267 	if (bootverbose)
268 		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
269 		    "AP");
270 
271 }
272 
273 void
274 cpu_mp_setmaxid(void)
275 {
276 
277 	/*
278 	 * mp_maxid should be already set by calls to cpu_add().
279 	 * Just sanity check its value here.
280 	 */
281 	if (mp_ncpus == 0)
282 		KASSERT(mp_maxid == 0,
283 		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
284 	else if (mp_ncpus == 1)
285 		mp_maxid = 0;
286 	else
287 		KASSERT(mp_maxid >= mp_ncpus - 1,
288 		    ("%s: counters out of sync: max %d, count %d", __func__,
289 			mp_maxid, mp_ncpus));
290 
291 }
292 
293 int
294 cpu_mp_probe(void)
295 {
296 
297 	/*
298 	 * Always record BSP in CPU map so that the mbuf init code works
299 	 * correctly.
300 	 */
301 	all_cpus = 1;
302 	if (mp_ncpus == 0) {
303 		/*
304 		 * No CPUs were found, so this must be a UP system.  Setup
305 		 * the variables to represent a system with a single CPU
306 		 * with an id of 0.
307 		 */
308 		mp_ncpus = 1;
309 		return (0);
310 	}
311 
312 	/* At least one CPU was found. */
313 	if (mp_ncpus == 1) {
314 		/*
315 		 * One CPU was found, so this must be a UP system with
316 		 * an I/O APIC.
317 		 */
318 		mp_maxid = 0;
319 		return (0);
320 	}
321 
322 	/* At least two CPUs were found. */
323 	return (1);
324 }
325 
326 /*
327  * Initialize the IPI handlers and start up the AP's.
328  */
329 void
330 cpu_mp_start(void)
331 {
332 	int i;
333 	u_int threads_per_cache, p[4];
334 
335 	/* Initialize the logical ID to APIC ID table. */
336 	for (i = 0; i < MAXCPU; i++) {
337 		cpu_apic_ids[i] = -1;
338 		cpu_ipi_pending[i] = 0;
339 	}
340 
341 	/* Install an inter-CPU IPI for TLB invalidation */
342 	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
343 	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
344 	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
345 
346 	/* Install an inter-CPU IPI for cache invalidation. */
347 	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
348 
349 	/* Install an inter-CPU IPI for all-CPU rendezvous */
350 	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
351 
352 	/* Install generic inter-CPU IPI handler */
353 	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
354 	       SDT_SYSIGT, SEL_KPL, 0);
355 
356 	/* Install an inter-CPU IPI for CPU stop/restart */
357 	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
358 
359 	/* Set boot_cpu_id if needed. */
360 	if (boot_cpu_id == -1) {
361 		boot_cpu_id = PCPU_GET(apic_id);
362 		cpu_info[boot_cpu_id].cpu_bsp = 1;
363 	} else
364 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
365 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
366 	cpu_apic_ids[0] = boot_cpu_id;
367 
368 	/* Start each Application Processor */
369 	start_all_aps();
370 
371 	/* Setup the initial logical CPUs info. */
372 	logical_cpus = logical_cpus_mask = 0;
373 	if (cpu_feature & CPUID_HTT)
374 		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
375 
376 	/*
377 	 * Work out if hyperthreading is *really* enabled.  This
378 	 * is made really ugly by the fact that processors lie: Dual
379 	 * core processors claim to be hyperthreaded even when they're
380 	 * not, presumably because they want to be treated the same
381 	 * way as HTT with respect to per-cpu software licensing.
382 	 * At the time of writing (May 12, 2005) the only hyperthreaded
383 	 * cpus are from Intel, and Intel's dual-core processors can be
384 	 * identified via the "deterministic cache parameters" cpuid
385 	 * calls.
386 	 */
387 	/*
388 	 * First determine if this is an Intel processor which claims
389 	 * to have hyperthreading support.
390 	 */
391 	if ((cpu_feature & CPUID_HTT) &&
392 	    (strcmp(cpu_vendor, "GenuineIntel") == 0)) {
393 		/*
394 		 * If the "deterministic cache parameters" cpuid calls
395 		 * are available, use them.
396 		 */
397 		if (cpu_high >= 4) {
398 			/* Ask the processor about the L1 cache. */
399 			for (i = 0; i < 1; i++) {
400 				cpuid_count(4, i, p);
401 				threads_per_cache = ((p[0] & 0x3ffc000) >> 14) + 1;
402 				if (hyperthreading_cpus < threads_per_cache)
403 					hyperthreading_cpus = threads_per_cache;
404 				if ((p[0] & 0x1f) == 0)
405 					break;
406 			}
407 		}
408 
409 		/*
410 		 * If the deterministic cache parameters are not
411 		 * available, or if no caches were reported to exist,
412 		 * just accept what the HTT flag indicated.
413 		 */
414 		if (hyperthreading_cpus == 0)
415 			hyperthreading_cpus = logical_cpus;
416 	}
417 
418 	set_interrupt_apic_ids();
419 }
420 
421 
422 /*
423  * Print various information about the SMP system hardware and setup.
424  */
425 void
426 cpu_mp_announce(void)
427 {
428 	int i, x;
429 
430 	/* List CPUs */
431 	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
432 	for (i = 1, x = 0; x < MAXCPU; x++) {
433 		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
434 			continue;
435 		if (cpu_info[x].cpu_disabled)
436 			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
437 		else {
438 			KASSERT(i < mp_ncpus,
439 			    ("mp_ncpus and actual cpus are out of whack"));
440 			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
441 		}
442 	}
443 }
444 
445 /*
446  * AP CPU's call this to initialize themselves.
447  */
448 void
449 init_secondary(void)
450 {
451 	struct pcpu *pc;
452 	u_int64_t msr, cr0;
453 	int cpu, gsel_tss;
454 
455 	/* Set by the startup code for us to use */
456 	cpu = bootAP;
457 
458 	/* Init tss */
459 	common_tss[cpu] = common_tss[0];
460 	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
461 	common_tss[cpu].tss_iobase = sizeof(struct amd64tss);
462 	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
463 
464 	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
465 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
466 	   (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
467 
468 	lgdt(&r_gdt);			/* does magic intra-segment return */
469 
470 	/* Get per-cpu data */
471 	pc = &__pcpu[cpu];
472 
473 	/* prime data page for it to use */
474 	pcpu_init(pc, cpu, sizeof(struct pcpu));
475 	pc->pc_apic_id = cpu_apic_ids[cpu];
476 	pc->pc_prvspace = pc;
477 	pc->pc_curthread = 0;
478 	pc->pc_tssp = &common_tss[cpu];
479 	pc->pc_rsp0 = 0;
480 
481 	wrmsr(MSR_FSBASE, 0);		/* User value */
482 	wrmsr(MSR_GSBASE, (u_int64_t)pc);
483 	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
484 
485 	lidt(&r_idt);
486 
487 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
488 	ltr(gsel_tss);
489 
490 	/*
491 	 * Set to a known state:
492 	 * Set by mpboot.s: CR0_PG, CR0_PE
493 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
494 	 */
495 	cr0 = rcr0();
496 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
497 	load_cr0(cr0);
498 
499 	/* Set up the fast syscall stuff */
500 	msr = rdmsr(MSR_EFER) | EFER_SCE;
501 	wrmsr(MSR_EFER, msr);
502 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
503 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
504 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
505 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
506 	wrmsr(MSR_STAR, msr);
507 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
508 
509 	/* Disable local APIC just to be sure. */
510 	lapic_disable();
511 
512 	/* signal our startup to the BSP. */
513 	mp_naps++;
514 
515 	/* Spin until the BSP releases the AP's. */
516 	while (!aps_ready)
517 		ia32_pause();
518 
519 	/* Initialize the PAT MSR. */
520 	pmap_init_pat();
521 
522 	/* set up CPU registers and state */
523 	cpu_setregs();
524 
525 	/* set up SSE/NX registers */
526 	initializecpu();
527 
528 	/* set up FPU state on the AP */
529 	fpuinit();
530 
531 	/* A quick check from sanity claus */
532 	if (PCPU_GET(apic_id) != lapic_id()) {
533 		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
534 		printf("SMP: actual apic_id = %d\n", lapic_id());
535 		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
536 		panic("cpuid mismatch! boom!!");
537 	}
538 
539 	/* Initialize curthread. */
540 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
541 	PCPU_SET(curthread, PCPU_GET(idlethread));
542 
543 	mtx_lock_spin(&ap_boot_mtx);
544 
545 	/* Init local apic for irq's */
546 	lapic_setup(1);
547 
548 	/* Set memory range attributes for this CPU to match the BSP */
549 	mem_range_AP_init();
550 
551 	smp_cpus++;
552 
553 	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
554 	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
555 
556 	/* Determine if we are a logical CPU. */
557 	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
558 		logical_cpus_mask |= PCPU_GET(cpumask);
559 
560 	/* Determine if we are a hyperthread. */
561 	if (hyperthreading_cpus > 1 &&
562 	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
563 		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
564 
565 	/* Build our map of 'other' CPUs. */
566 	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
567 
568 	if (bootverbose)
569 		lapic_dump("AP");
570 
571 	if (smp_cpus == mp_ncpus) {
572 		/* enable IPI's, tlb shootdown, freezes etc */
573 		atomic_store_rel_int(&smp_started, 1);
574 		smp_active = 1;	 /* historic */
575 	}
576 
577 	/*
578 	 * Enable global pages TLB extension
579 	 * This also implicitly flushes the TLB
580 	 */
581 
582 	load_cr4(rcr4() | CR4_PGE);
583 
584 	mtx_unlock_spin(&ap_boot_mtx);
585 
586 	/* wait until all the AP's are up */
587 	while (smp_started == 0)
588 		ia32_pause();
589 
590 	/* ok, now grab sched_lock and enter the scheduler */
591 	mtx_lock_spin(&sched_lock);
592 
593 	/*
594 	 * Correct spinlock nesting.  The idle thread context that we are
595 	 * borrowing was created so that it would start out with a single
596 	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
597 	 * explicitly acquired locks in this function, the nesting count
598 	 * is now 2 rather than 1.  Since we are nested, calling
599 	 * spinlock_exit() will simply adjust the counts without allowing
600 	 * spin lock using code to interrupt us.
601 	 */
602 	spinlock_exit();
603 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
604 
605 	PCPU_SET(switchtime, cpu_ticks());
606 	PCPU_SET(switchticks, ticks);
607 
608 	cpu_throw(NULL, choosethread());	/* doesn't return */
609 
610 	panic("scheduler returned us to %s", __func__);
611 	/* NOTREACHED */
612 }
613 
614 /*******************************************************************
615  * local functions and data
616  */
617 
618 /*
619  * We tell the I/O APIC code about all the CPUs we want to receive
620  * interrupts.  If we don't want certain CPUs to receive IRQs we
621  * can simply not tell the I/O APIC code about them in this function.
622  * We also do not tell it about the BSP since it tells itself about
623  * the BSP internally to work with UP kernels and on UP machines.
624  */
625 static void
626 set_interrupt_apic_ids(void)
627 {
628 	u_int apic_id;
629 
630 	for (apic_id = 0; apic_id < MAXCPU; apic_id++) {
631 		if (!cpu_info[apic_id].cpu_present)
632 			continue;
633 		if (cpu_info[apic_id].cpu_bsp)
634 			continue;
635 		if (cpu_info[apic_id].cpu_disabled)
636 			continue;
637 
638 		/* Don't let hyperthreads service interrupts. */
639 		if (hyperthreading_cpus > 1 &&
640 		    apic_id % hyperthreading_cpus != 0)
641 			continue;
642 
643 		intr_add_cpu(apic_id);
644 	}
645 }
646 
647 /*
648  * start each AP in our list
649  */
650 static int
651 start_all_aps(void)
652 {
653 	vm_offset_t va = boot_address + KERNBASE;
654 	u_int64_t *pt4, *pt3, *pt2;
655 	u_int32_t mpbioswarmvec;
656 	int apic_id, cpu, i;
657 	u_char mpbiosreason;
658 
659 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
660 
661 	/* install the AP 1st level boot code */
662 	pmap_kenter(va, boot_address);
663 	pmap_invalidate_page(kernel_pmap, va);
664 	bcopy(mptramp_start, (void *)va, bootMP_size);
665 
666 	/* Locate the page tables, they'll be below the trampoline */
667 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
668 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
669 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
670 
671 	/* Create the initial 1GB replicated page tables */
672 	for (i = 0; i < 512; i++) {
673 		/* Each slot of the level 4 pages points to the same level 3 page */
674 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
675 		pt4[i] |= PG_V | PG_RW | PG_U;
676 
677 		/* Each slot of the level 3 pages points to the same level 2 page */
678 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
679 		pt3[i] |= PG_V | PG_RW | PG_U;
680 
681 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
682 		pt2[i] = i * (2 * 1024 * 1024);
683 		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
684 	}
685 
686 	/* save the current value of the warm-start vector */
687 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
688 	outb(CMOS_REG, BIOS_RESET);
689 	mpbiosreason = inb(CMOS_DATA);
690 
691 	/* setup a vector to our boot code */
692 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
693 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
694 	outb(CMOS_REG, BIOS_RESET);
695 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
696 
697 	/* start each AP */
698 	for (cpu = 0, apic_id = 0; apic_id < MAXCPU; apic_id++) {
699 
700 		/* Ignore non-existent CPUs and the BSP. */
701 		if (!cpu_info[apic_id].cpu_present ||
702 		    cpu_info[apic_id].cpu_bsp)
703 			continue;
704 
705 		/* Don't use this CPU if it has been disabled by a tunable. */
706 		if (resource_disabled("lapic", apic_id)) {
707 			cpu_info[apic_id].cpu_disabled = 1;
708 			mp_ncpus--;
709 			continue;
710 		}
711 
712 		cpu++;
713 
714 		/* save APIC ID for this logical ID */
715 		cpu_apic_ids[cpu] = apic_id;
716 
717 		/* allocate and set up an idle stack data page */
718 		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
719 		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
720 
721 		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
722 		bootAP = cpu;
723 
724 		/* attempt to start the Application Processor */
725 		if (!start_ap(apic_id)) {
726 			/* restore the warmstart vector */
727 			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
728 			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
729 		}
730 
731 		all_cpus |= (1 << cpu);		/* record AP in CPU map */
732 	}
733 
734 	/* build our map of 'other' CPUs */
735 	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
736 
737 	/* restore the warmstart vector */
738 	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
739 
740 	outb(CMOS_REG, BIOS_RESET);
741 	outb(CMOS_DATA, mpbiosreason);
742 
743 	/* number of APs actually started */
744 	return mp_naps;
745 }
746 
747 
748 /*
749  * This function starts the AP (application processor) identified
750  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
751  * to accomplish this.  This is necessary because of the nuances
752  * of the different hardware we might encounter.  It isn't pretty,
753  * but it seems to work.
754  */
755 static int
756 start_ap(int apic_id)
757 {
758 	int vector, ms;
759 	int cpus;
760 
761 	/* calculate the vector */
762 	vector = (boot_address >> 12) & 0xff;
763 
764 	/* used as a watchpoint to signal AP startup */
765 	cpus = mp_naps;
766 
767 	/*
768 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
769 	 * and running the target CPU. OR this INIT IPI might be latched (P5
770 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
771 	 * ignored.
772 	 */
773 
774 	/* do an INIT IPI: assert RESET */
775 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
776 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
777 
778 	/* wait for pending status end */
779 	lapic_ipi_wait(-1);
780 
781 	/* do an INIT IPI: deassert RESET */
782 	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
783 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
784 
785 	/* wait for pending status end */
786 	DELAY(10000);		/* wait ~10mS */
787 	lapic_ipi_wait(-1);
788 
789 	/*
790 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
791 	 * latched, (P5 bug) this 1st STARTUP would then terminate
792 	 * immediately, and the previously started INIT IPI would continue. OR
793 	 * the previous INIT IPI has already run. and this STARTUP IPI will
794 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
795 	 * will run.
796 	 */
797 
798 	/* do a STARTUP IPI */
799 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
800 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
801 	    vector, apic_id);
802 	lapic_ipi_wait(-1);
803 	DELAY(200);		/* wait ~200uS */
804 
805 	/*
806 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
807 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
808 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
809 	 * recognized after hardware RESET or INIT IPI.
810 	 */
811 
812 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
813 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
814 	    vector, apic_id);
815 	lapic_ipi_wait(-1);
816 	DELAY(200);		/* wait ~200uS */
817 
818 	/* Wait up to 5 seconds for it to start. */
819 	for (ms = 0; ms < 5000; ms++) {
820 		if (mp_naps > cpus)
821 			return 1;	/* return SUCCESS */
822 		DELAY(1000);
823 	}
824 	return 0;		/* return FAILURE */
825 }
826 
827 /*
828  * Flush the TLB on all other CPU's
829  */
830 static void
831 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
832 {
833 	u_int ncpu;
834 
835 	ncpu = mp_ncpus - 1;	/* does not shootdown self */
836 	if (ncpu < 1)
837 		return;		/* no other cpus */
838 	mtx_assert(&smp_ipi_mtx, MA_OWNED);
839 	smp_tlb_addr1 = addr1;
840 	smp_tlb_addr2 = addr2;
841 	atomic_store_rel_int(&smp_tlb_wait, 0);
842 	ipi_all_but_self(vector);
843 	while (smp_tlb_wait < ncpu)
844 		ia32_pause();
845 }
846 
847 static void
848 smp_targeted_tlb_shootdown(u_int mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
849 {
850 	int ncpu, othercpus;
851 
852 	othercpus = mp_ncpus - 1;
853 	if (mask == (u_int)-1) {
854 		ncpu = othercpus;
855 		if (ncpu < 1)
856 			return;
857 	} else {
858 		mask &= ~PCPU_GET(cpumask);
859 		if (mask == 0)
860 			return;
861 		ncpu = bitcount32(mask);
862 		if (ncpu > othercpus) {
863 			/* XXX this should be a panic offence */
864 			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
865 			    ncpu, othercpus);
866 			ncpu = othercpus;
867 		}
868 		/* XXX should be a panic, implied by mask == 0 above */
869 		if (ncpu < 1)
870 			return;
871 	}
872 	mtx_assert(&smp_ipi_mtx, MA_OWNED);
873 	smp_tlb_addr1 = addr1;
874 	smp_tlb_addr2 = addr2;
875 	atomic_store_rel_int(&smp_tlb_wait, 0);
876 	if (mask == (u_int)-1)
877 		ipi_all_but_self(vector);
878 	else
879 		ipi_selected(mask, vector);
880 	while (smp_tlb_wait < ncpu)
881 		ia32_pause();
882 }
883 
884 void
885 smp_cache_flush(void)
886 {
887 
888 	if (smp_started)
889 		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
890 }
891 
892 void
893 smp_invltlb(void)
894 {
895 
896 	if (smp_started) {
897 		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
898 	}
899 }
900 
901 void
902 smp_invlpg(vm_offset_t addr)
903 {
904 
905 	if (smp_started)
906 		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
907 }
908 
909 void
910 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
911 {
912 
913 	if (smp_started) {
914 		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
915 	}
916 }
917 
918 void
919 smp_masked_invltlb(u_int mask)
920 {
921 
922 	if (smp_started) {
923 		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
924 	}
925 }
926 
927 void
928 smp_masked_invlpg(u_int mask, vm_offset_t addr)
929 {
930 
931 	if (smp_started) {
932 		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
933 	}
934 }
935 
936 void
937 smp_masked_invlpg_range(u_int mask, vm_offset_t addr1, vm_offset_t addr2)
938 {
939 
940 	if (smp_started) {
941 		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
942 	}
943 }
944 
945 void
946 ipi_bitmap_handler(struct trapframe frame)
947 {
948 	int cpu = PCPU_GET(cpuid);
949 	u_int ipi_bitmap;
950 
951 	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
952 
953 	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
954 		struct thread *running_thread = curthread;
955 		mtx_lock_spin(&sched_lock);
956 		if (running_thread->td_critnest > 1)
957 			running_thread->td_owepreempt = 1;
958 		else
959 			mi_switch(SW_INVOL | SW_PREEMPT, NULL);
960 		mtx_unlock_spin(&sched_lock);
961 	}
962 
963 	/* Nothing to do for AST */
964 }
965 
966 /*
967  * send an IPI to a set of cpus.
968  */
969 void
970 ipi_selected(u_int32_t cpus, u_int ipi)
971 {
972 	int cpu;
973 	u_int bitmap = 0;
974 	u_int old_pending;
975 	u_int new_pending;
976 
977 	if (IPI_IS_BITMAPED(ipi)) {
978 		bitmap = 1 << ipi;
979 		ipi = IPI_BITMAP_VECTOR;
980 	}
981 
982 #ifdef STOP_NMI
983 	if (ipi == IPI_STOP && stop_cpus_with_nmi) {
984 		ipi_nmi_selected(cpus);
985 		return;
986 	}
987 #endif
988 	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
989 	while ((cpu = ffs(cpus)) != 0) {
990 		cpu--;
991 		cpus &= ~(1 << cpu);
992 
993 		KASSERT(cpu_apic_ids[cpu] != -1,
994 		    ("IPI to non-existent CPU %d", cpu));
995 
996 		if (bitmap) {
997 			do {
998 				old_pending = cpu_ipi_pending[cpu];
999 				new_pending = old_pending | bitmap;
1000 			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1001 
1002 			if (old_pending)
1003 				continue;
1004 		}
1005 
1006 		lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1007 	}
1008 
1009 }
1010 
1011 /*
1012  * send an IPI INTerrupt containing 'vector' to all CPUs, including myself
1013  */
1014 void
1015 ipi_all(u_int ipi)
1016 {
1017 
1018 	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1019 		ipi_selected(all_cpus, ipi);
1020 		return;
1021 	}
1022 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1023 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_ALL);
1024 }
1025 
1026 /*
1027  * send an IPI to all CPUs EXCEPT myself
1028  */
1029 void
1030 ipi_all_but_self(u_int ipi)
1031 {
1032 
1033 	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1034 		ipi_selected(PCPU_GET(other_cpus), ipi);
1035 		return;
1036 	}
1037 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1038 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1039 }
1040 
1041 /*
1042  * send an IPI to myself
1043  */
1044 void
1045 ipi_self(u_int ipi)
1046 {
1047 
1048 	if (IPI_IS_BITMAPED(ipi) || (ipi == IPI_STOP && stop_cpus_with_nmi)) {
1049 		ipi_selected(PCPU_GET(cpumask), ipi);
1050 		return;
1051 	}
1052 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1053 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_SELF);
1054 }
1055 
1056 #ifdef STOP_NMI
1057 /*
1058  * send NMI IPI to selected CPUs
1059  */
1060 
1061 #define	BEFORE_SPIN	1000000
1062 
1063 void
1064 ipi_nmi_selected(u_int32_t cpus)
1065 {
1066 	int cpu;
1067 	register_t icrlo;
1068 
1069 	icrlo = APIC_DELMODE_NMI | APIC_DESTMODE_PHY | APIC_LEVEL_ASSERT
1070 		| APIC_TRIGMOD_EDGE;
1071 
1072 	CTR2(KTR_SMP, "%s: cpus: %x nmi", __func__, cpus);
1073 
1074 	atomic_set_int(&ipi_nmi_pending, cpus);
1075 
1076 	while ((cpu = ffs(cpus)) != 0) {
1077 		cpu--;
1078 		cpus &= ~(1 << cpu);
1079 
1080 		KASSERT(cpu_apic_ids[cpu] != -1,
1081 		    ("IPI NMI to non-existent CPU %d", cpu));
1082 
1083 		/* Wait for an earlier IPI to finish. */
1084 		if (!lapic_ipi_wait(BEFORE_SPIN))
1085 			panic("ipi_nmi_selected: previous IPI has not cleared");
1086 
1087 		lapic_ipi_raw(icrlo, cpu_apic_ids[cpu]);
1088 	}
1089 }
1090 
1091 int
1092 ipi_nmi_handler(void)
1093 {
1094 	int cpumask = PCPU_GET(cpumask);
1095 
1096 	if (!(ipi_nmi_pending & cpumask))
1097 		return 1;
1098 
1099 	atomic_clear_int(&ipi_nmi_pending, cpumask);
1100 	cpustop_handler();
1101 	return 0;
1102 }
1103 
1104 #endif /* STOP_NMI */
1105 
1106 /*
1107  * Handle an IPI_STOP by saving our current context and spinning until we
1108  * are resumed.
1109  */
1110 void
1111 cpustop_handler(void)
1112 {
1113 	int cpu = PCPU_GET(cpuid);
1114 	int cpumask = PCPU_GET(cpumask);
1115 
1116 	savectx(&stoppcbs[cpu]);
1117 
1118 	/* Indicate that we are stopped */
1119 	atomic_set_int(&stopped_cpus, cpumask);
1120 
1121 	/* Wait for restart */
1122 	while (!(started_cpus & cpumask))
1123 	    ia32_pause();
1124 
1125 	atomic_clear_int(&started_cpus, cpumask);
1126 	atomic_clear_int(&stopped_cpus, cpumask);
1127 
1128 	if (cpu == 0 && cpustop_restartfunc != NULL) {
1129 		cpustop_restartfunc();
1130 		cpustop_restartfunc = NULL;
1131 	}
1132 }
1133 
1134 /*
1135  * This is called once the rest of the system is up and running and we're
1136  * ready to let the AP's out of the pen.
1137  */
1138 static void
1139 release_aps(void *dummy __unused)
1140 {
1141 
1142 	if (mp_ncpus == 1)
1143 		return;
1144 	mtx_lock_spin(&sched_lock);
1145 	atomic_store_rel_int(&aps_ready, 1);
1146 	while (smp_started == 0)
1147 		ia32_pause();
1148 	mtx_unlock_spin(&sched_lock);
1149 }
1150 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1151 
1152 static int
1153 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1154 {
1155 	u_int mask;
1156 	int error;
1157 
1158 	mask = hlt_cpus_mask;
1159 	error = sysctl_handle_int(oidp, &mask, 0, req);
1160 	if (error || !req->newptr)
1161 		return (error);
1162 
1163 	if (logical_cpus_mask != 0 &&
1164 	    (mask & logical_cpus_mask) == logical_cpus_mask)
1165 		hlt_logical_cpus = 1;
1166 	else
1167 		hlt_logical_cpus = 0;
1168 
1169 	if (! hyperthreading_allowed)
1170 		mask |= hyperthreading_cpus_mask;
1171 
1172 	if ((mask & all_cpus) == all_cpus)
1173 		mask &= ~(1<<0);
1174 	hlt_cpus_mask = mask;
1175 	return (error);
1176 }
1177 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1178     0, 0, sysctl_hlt_cpus, "IU",
1179     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1180 
1181 static int
1182 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1183 {
1184 	int disable, error;
1185 
1186 	disable = hlt_logical_cpus;
1187 	error = sysctl_handle_int(oidp, &disable, 0, req);
1188 	if (error || !req->newptr)
1189 		return (error);
1190 
1191 	if (disable)
1192 		hlt_cpus_mask |= logical_cpus_mask;
1193 	else
1194 		hlt_cpus_mask &= ~logical_cpus_mask;
1195 
1196 	if (! hyperthreading_allowed)
1197 		hlt_cpus_mask |= hyperthreading_cpus_mask;
1198 
1199 	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1200 		hlt_cpus_mask &= ~(1<<0);
1201 
1202 	hlt_logical_cpus = disable;
1203 	return (error);
1204 }
1205 
1206 static int
1207 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1208 {
1209 	int allowed, error;
1210 
1211 	allowed = hyperthreading_allowed;
1212 	error = sysctl_handle_int(oidp, &allowed, 0, req);
1213 	if (error || !req->newptr)
1214 		return (error);
1215 
1216 	if (allowed)
1217 		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1218 	else
1219 		hlt_cpus_mask |= hyperthreading_cpus_mask;
1220 
1221 	if (logical_cpus_mask != 0 &&
1222 	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1223 		hlt_logical_cpus = 1;
1224 	else
1225 		hlt_logical_cpus = 0;
1226 
1227 	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1228 		hlt_cpus_mask &= ~(1<<0);
1229 
1230 	hyperthreading_allowed = allowed;
1231 	return (error);
1232 }
1233 
1234 static void
1235 cpu_hlt_setup(void *dummy __unused)
1236 {
1237 
1238 	if (logical_cpus_mask != 0) {
1239 		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1240 		    &hlt_logical_cpus);
1241 		sysctl_ctx_init(&logical_cpu_clist);
1242 		SYSCTL_ADD_PROC(&logical_cpu_clist,
1243 		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1244 		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1245 		    sysctl_hlt_logical_cpus, "IU", "");
1246 		SYSCTL_ADD_UINT(&logical_cpu_clist,
1247 		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1248 		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1249 		    &logical_cpus_mask, 0, "");
1250 
1251 		if (hlt_logical_cpus)
1252 			hlt_cpus_mask |= logical_cpus_mask;
1253 
1254 		/*
1255 		 * If necessary for security purposes, force
1256 		 * hyperthreading off, regardless of the value
1257 		 * of hlt_logical_cpus.
1258 		 */
1259 		if (hyperthreading_cpus_mask) {
1260 			TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
1261 			    &hyperthreading_allowed);
1262 			SYSCTL_ADD_PROC(&logical_cpu_clist,
1263 			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1264 			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1265 			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1266 			if (! hyperthreading_allowed)
1267 				hlt_cpus_mask |= hyperthreading_cpus_mask;
1268 		}
1269 	}
1270 }
1271 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1272 
1273 int
1274 mp_grab_cpu_hlt(void)
1275 {
1276 	u_int mask = PCPU_GET(cpumask);
1277 #ifdef MP_WATCHDOG
1278 	u_int cpuid = PCPU_GET(cpuid);
1279 #endif
1280 	int retval;
1281 
1282 #ifdef MP_WATCHDOG
1283 	ap_watchdog(cpuid);
1284 #endif
1285 
1286 	retval = mask & hlt_cpus_mask;
1287 	while (mask & hlt_cpus_mask)
1288 		__asm __volatile("sti; hlt" : : : "memory");
1289 	return (retval);
1290 }
1291