xref: /freebsd/sys/amd64/amd64/mp_machdep.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1996, by Steve Passe
3  * Copyright (c) 2003, by Peter Wemm
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the developer may NOT be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_cpu.h"
31 #include "opt_kstack_pages.h"
32 #include "opt_mp_watchdog.h"
33 #include "opt_sched.h"
34 #include "opt_smp.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #ifdef GPROF
40 #include <sys/gmon.h>
41 #endif
42 #include <sys/kernel.h>
43 #include <sys/ktr.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/memrange.h>
47 #include <sys/mutex.h>
48 #include <sys/pcpu.h>
49 #include <sys/proc.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_param.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 
60 #include <x86/apicreg.h>
61 #include <machine/clock.h>
62 #include <machine/cputypes.h>
63 #include <machine/cpufunc.h>
64 #include <x86/mca.h>
65 #include <machine/md_var.h>
66 #include <machine/mp_watchdog.h>
67 #include <machine/pcb.h>
68 #include <machine/psl.h>
69 #include <machine/smp.h>
70 #include <machine/specialreg.h>
71 #include <machine/tss.h>
72 
73 #define WARMBOOT_TARGET		0
74 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
75 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
76 
77 #define CMOS_REG		(0x70)
78 #define CMOS_DATA		(0x71)
79 #define BIOS_RESET		(0x0f)
80 #define BIOS_WARM		(0x0a)
81 
82 /* lock region used by kernel profiling */
83 int	mcount_lock;
84 
85 int	mp_naps;		/* # of Applications processors */
86 int	boot_cpu_id = -1;	/* designated BSP */
87 
88 extern  struct pcpu __pcpu[];
89 
90 /* AP uses this during bootstrap.  Do not staticize.  */
91 char *bootSTK;
92 static int bootAP;
93 
94 /* Free these after use */
95 void *bootstacks[MAXCPU];
96 
97 /* Temporary variables for init_secondary()  */
98 char *doublefault_stack;
99 char *nmi_stack;
100 void *dpcpu;
101 
102 struct pcb stoppcbs[MAXCPU];
103 struct pcb **susppcbs = NULL;
104 
105 /* Variables needed for SMP tlb shootdown. */
106 vm_offset_t smp_tlb_addr1;
107 vm_offset_t smp_tlb_addr2;
108 volatile int smp_tlb_wait;
109 
110 #ifdef COUNT_IPIS
111 /* Interrupt counts. */
112 static u_long *ipi_preempt_counts[MAXCPU];
113 static u_long *ipi_ast_counts[MAXCPU];
114 u_long *ipi_invltlb_counts[MAXCPU];
115 u_long *ipi_invlrng_counts[MAXCPU];
116 u_long *ipi_invlpg_counts[MAXCPU];
117 u_long *ipi_invlcache_counts[MAXCPU];
118 u_long *ipi_rendezvous_counts[MAXCPU];
119 u_long *ipi_lazypmap_counts[MAXCPU];
120 static u_long *ipi_hardclock_counts[MAXCPU];
121 #endif
122 
123 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
124 
125 /*
126  * Local data and functions.
127  */
128 
129 static volatile cpumask_t ipi_nmi_pending;
130 
131 /* used to hold the AP's until we are ready to release them */
132 static struct mtx ap_boot_mtx;
133 
134 /* Set to 1 once we're ready to let the APs out of the pen. */
135 static volatile int aps_ready = 0;
136 
137 /*
138  * Store data from cpu_add() until later in the boot when we actually setup
139  * the APs.
140  */
141 struct cpu_info {
142 	int	cpu_present:1;
143 	int	cpu_bsp:1;
144 	int	cpu_disabled:1;
145 	int	cpu_hyperthread:1;
146 } static cpu_info[MAX_APIC_ID + 1];
147 int cpu_apic_ids[MAXCPU];
148 int apic_cpuids[MAX_APIC_ID + 1];
149 
150 /* Holds pending bitmap based IPIs per CPU */
151 static volatile u_int cpu_ipi_pending[MAXCPU];
152 
153 static u_int boot_address;
154 static int cpu_logical;			/* logical cpus per core */
155 static int cpu_cores;			/* cores per package */
156 
157 static void	assign_cpu_ids(void);
158 static void	set_interrupt_apic_ids(void);
159 static int	start_all_aps(void);
160 static int	start_ap(int apic_id);
161 static void	release_aps(void *dummy);
162 
163 static int	hlt_logical_cpus;
164 static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
165 static cpumask_t	hyperthreading_cpus_mask;
166 static int	hyperthreading_allowed = 1;
167 static struct	sysctl_ctx_list logical_cpu_clist;
168 static u_int	bootMP_size;
169 
170 static void
171 mem_range_AP_init(void)
172 {
173 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
174 		mem_range_softc.mr_op->initAP(&mem_range_softc);
175 }
176 
177 static void
178 topo_probe_amd(void)
179 {
180 
181 	/* AMD processors do not support HTT. */
182 	cpu_cores = (amd_feature2 & AMDID2_CMP) != 0 ?
183 	    (cpu_procinfo2 & AMDID_CMP_CORES) + 1 : 1;
184 	cpu_logical = 1;
185 }
186 
187 /*
188  * Round up to the next power of two, if necessary, and then
189  * take log2.
190  * Returns -1 if argument is zero.
191  */
192 static __inline int
193 mask_width(u_int x)
194 {
195 
196 	return (fls(x << (1 - powerof2(x))) - 1);
197 }
198 
199 static void
200 topo_probe_0x4(void)
201 {
202 	u_int p[4];
203 	int pkg_id_bits;
204 	int core_id_bits;
205 	int max_cores;
206 	int max_logical;
207 	int id;
208 
209 	/* Both zero and one here mean one logical processor per package. */
210 	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
211 	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
212 	if (max_logical <= 1)
213 		return;
214 
215 	/*
216 	 * Because of uniformity assumption we examine only
217 	 * those logical processors that belong to the same
218 	 * package as BSP.  Further, we count number of
219 	 * logical processors that belong to the same core
220 	 * as BSP thus deducing number of threads per core.
221 	 */
222 	cpuid_count(0x04, 0, p);
223 	max_cores = ((p[0] >> 26) & 0x3f) + 1;
224 	core_id_bits = mask_width(max_logical/max_cores);
225 	if (core_id_bits < 0)
226 		return;
227 	pkg_id_bits = core_id_bits + mask_width(max_cores);
228 
229 	for (id = 0; id <= MAX_APIC_ID; id++) {
230 		/* Check logical CPU availability. */
231 		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
232 			continue;
233 		/* Check if logical CPU has the same package ID. */
234 		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
235 			continue;
236 		cpu_cores++;
237 		/* Check if logical CPU has the same package and core IDs. */
238 		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
239 			cpu_logical++;
240 	}
241 
242 	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
243 	    ("topo_probe_0x4 couldn't find BSP"));
244 
245 	cpu_cores /= cpu_logical;
246 	hyperthreading_cpus = cpu_logical;
247 }
248 
249 static void
250 topo_probe_0xb(void)
251 {
252 	u_int p[4];
253 	int bits;
254 	int cnt;
255 	int i;
256 	int logical;
257 	int type;
258 	int x;
259 
260 	/* We only support three levels for now. */
261 	for (i = 0; i < 3; i++) {
262 		cpuid_count(0x0b, i, p);
263 
264 		/* Fall back if CPU leaf 11 doesn't really exist. */
265 		if (i == 0 && p[1] == 0) {
266 			topo_probe_0x4();
267 			return;
268 		}
269 
270 		bits = p[0] & 0x1f;
271 		logical = p[1] &= 0xffff;
272 		type = (p[2] >> 8) & 0xff;
273 		if (type == 0 || logical == 0)
274 			break;
275 		/*
276 		 * Because of uniformity assumption we examine only
277 		 * those logical processors that belong to the same
278 		 * package as BSP.
279 		 */
280 		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
281 			if (!cpu_info[x].cpu_present ||
282 			    cpu_info[x].cpu_disabled)
283 				continue;
284 			if (x >> bits == boot_cpu_id >> bits)
285 				cnt++;
286 		}
287 		if (type == CPUID_TYPE_SMT)
288 			cpu_logical = cnt;
289 		else if (type == CPUID_TYPE_CORE)
290 			cpu_cores = cnt;
291 	}
292 	if (cpu_logical == 0)
293 		cpu_logical = 1;
294 	cpu_cores /= cpu_logical;
295 }
296 
297 /*
298  * Both topology discovery code and code that consumes topology
299  * information assume top-down uniformity of the topology.
300  * That is, all physical packages must be identical and each
301  * core in a package must have the same number of threads.
302  * Topology information is queried only on BSP, on which this
303  * code runs and for which it can query CPUID information.
304  * Then topology is extrapolated on all packages using the
305  * uniformity assumption.
306  */
307 static void
308 topo_probe(void)
309 {
310 	static int cpu_topo_probed = 0;
311 
312 	if (cpu_topo_probed)
313 		return;
314 
315 	logical_cpus_mask = 0;
316 	if (mp_ncpus <= 1)
317 		cpu_cores = cpu_logical = 1;
318 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
319 		topo_probe_amd();
320 	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
321 		/*
322 		 * See Intel(R) 64 Architecture Processor
323 		 * Topology Enumeration article for details.
324 		 *
325 		 * Note that 0x1 <= cpu_high < 4 case should be
326 		 * compatible with topo_probe_0x4() logic when
327 		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
328 		 * or it should trigger the fallback otherwise.
329 		 */
330 		if (cpu_high >= 0xb)
331 			topo_probe_0xb();
332 		else if (cpu_high >= 0x1)
333 			topo_probe_0x4();
334 	}
335 
336 	/*
337 	 * Fallback: assume each logical CPU is in separate
338 	 * physical package.  That is, no multi-core, no SMT.
339 	 */
340 	if (cpu_cores == 0 || cpu_logical == 0)
341 		cpu_cores = cpu_logical = 1;
342 	cpu_topo_probed = 1;
343 }
344 
345 struct cpu_group *
346 cpu_topo(void)
347 {
348 	int cg_flags;
349 
350 	/*
351 	 * Determine whether any threading flags are
352 	 * necessry.
353 	 */
354 	topo_probe();
355 	if (cpu_logical > 1 && hyperthreading_cpus)
356 		cg_flags = CG_FLAG_HTT;
357 	else if (cpu_logical > 1)
358 		cg_flags = CG_FLAG_SMT;
359 	else
360 		cg_flags = 0;
361 	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
362 		printf("WARNING: Non-uniform processors.\n");
363 		printf("WARNING: Using suboptimal topology.\n");
364 		return (smp_topo_none());
365 	}
366 	/*
367 	 * No multi-core or hyper-threaded.
368 	 */
369 	if (cpu_logical * cpu_cores == 1)
370 		return (smp_topo_none());
371 	/*
372 	 * Only HTT no multi-core.
373 	 */
374 	if (cpu_logical > 1 && cpu_cores == 1)
375 		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
376 	/*
377 	 * Only multi-core no HTT.
378 	 */
379 	if (cpu_cores > 1 && cpu_logical == 1)
380 		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
381 	/*
382 	 * Both HTT and multi-core.
383 	 */
384 	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
385 	    CG_SHARE_L1, cpu_logical, cg_flags));
386 }
387 
388 /*
389  * Calculate usable address in base memory for AP trampoline code.
390  */
391 u_int
392 mp_bootaddress(u_int basemem)
393 {
394 
395 	bootMP_size = mptramp_end - mptramp_start;
396 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
397 	if (((basemem * 1024) - boot_address) < bootMP_size)
398 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
399 	/* 3 levels of page table pages */
400 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
401 
402 	return mptramp_pagetables;
403 }
404 
405 void
406 cpu_add(u_int apic_id, char boot_cpu)
407 {
408 
409 	if (apic_id > MAX_APIC_ID) {
410 		panic("SMP: APIC ID %d too high", apic_id);
411 		return;
412 	}
413 	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
414 	    apic_id));
415 	cpu_info[apic_id].cpu_present = 1;
416 	if (boot_cpu) {
417 		KASSERT(boot_cpu_id == -1,
418 		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
419 		    boot_cpu_id));
420 		boot_cpu_id = apic_id;
421 		cpu_info[apic_id].cpu_bsp = 1;
422 	}
423 	if (mp_ncpus < MAXCPU) {
424 		mp_ncpus++;
425 		mp_maxid = mp_ncpus - 1;
426 	}
427 	if (bootverbose)
428 		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
429 		    "AP");
430 }
431 
432 void
433 cpu_mp_setmaxid(void)
434 {
435 
436 	/*
437 	 * mp_maxid should be already set by calls to cpu_add().
438 	 * Just sanity check its value here.
439 	 */
440 	if (mp_ncpus == 0)
441 		KASSERT(mp_maxid == 0,
442 		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
443 	else if (mp_ncpus == 1)
444 		mp_maxid = 0;
445 	else
446 		KASSERT(mp_maxid >= mp_ncpus - 1,
447 		    ("%s: counters out of sync: max %d, count %d", __func__,
448 			mp_maxid, mp_ncpus));
449 }
450 
451 int
452 cpu_mp_probe(void)
453 {
454 
455 	/*
456 	 * Always record BSP in CPU map so that the mbuf init code works
457 	 * correctly.
458 	 */
459 	all_cpus = 1;
460 	if (mp_ncpus == 0) {
461 		/*
462 		 * No CPUs were found, so this must be a UP system.  Setup
463 		 * the variables to represent a system with a single CPU
464 		 * with an id of 0.
465 		 */
466 		mp_ncpus = 1;
467 		return (0);
468 	}
469 
470 	/* At least one CPU was found. */
471 	if (mp_ncpus == 1) {
472 		/*
473 		 * One CPU was found, so this must be a UP system with
474 		 * an I/O APIC.
475 		 */
476 		mp_maxid = 0;
477 		return (0);
478 	}
479 
480 	/* At least two CPUs were found. */
481 	return (1);
482 }
483 
484 /*
485  * Initialize the IPI handlers and start up the AP's.
486  */
487 void
488 cpu_mp_start(void)
489 {
490 	int i;
491 
492 	/* Initialize the logical ID to APIC ID table. */
493 	for (i = 0; i < MAXCPU; i++) {
494 		cpu_apic_ids[i] = -1;
495 		cpu_ipi_pending[i] = 0;
496 	}
497 
498 	/* Install an inter-CPU IPI for TLB invalidation */
499 	setidt(IPI_INVLTLB, IDTVEC(invltlb), SDT_SYSIGT, SEL_KPL, 0);
500 	setidt(IPI_INVLPG, IDTVEC(invlpg), SDT_SYSIGT, SEL_KPL, 0);
501 	setidt(IPI_INVLRNG, IDTVEC(invlrng), SDT_SYSIGT, SEL_KPL, 0);
502 
503 	/* Install an inter-CPU IPI for cache invalidation. */
504 	setidt(IPI_INVLCACHE, IDTVEC(invlcache), SDT_SYSIGT, SEL_KPL, 0);
505 
506 	/* Install an inter-CPU IPI for all-CPU rendezvous */
507 	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
508 
509 	/* Install generic inter-CPU IPI handler */
510 	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
511 	       SDT_SYSIGT, SEL_KPL, 0);
512 
513 	/* Install an inter-CPU IPI for CPU stop/restart */
514 	setidt(IPI_STOP, IDTVEC(cpustop), SDT_SYSIGT, SEL_KPL, 0);
515 
516 	/* Install an inter-CPU IPI for CPU suspend/resume */
517 	setidt(IPI_SUSPEND, IDTVEC(cpususpend), SDT_SYSIGT, SEL_KPL, 0);
518 
519 	/* Set boot_cpu_id if needed. */
520 	if (boot_cpu_id == -1) {
521 		boot_cpu_id = PCPU_GET(apic_id);
522 		cpu_info[boot_cpu_id].cpu_bsp = 1;
523 	} else
524 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
525 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
526 
527 	/* Probe logical/physical core configuration. */
528 	topo_probe();
529 
530 	assign_cpu_ids();
531 
532 	/* Start each Application Processor */
533 	start_all_aps();
534 
535 	set_interrupt_apic_ids();
536 }
537 
538 
539 /*
540  * Print various information about the SMP system hardware and setup.
541  */
542 void
543 cpu_mp_announce(void)
544 {
545 	const char *hyperthread;
546 	int i;
547 
548 	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
549 	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
550 	if (hyperthreading_cpus > 1)
551 	    printf(" x %d HTT threads", cpu_logical);
552 	else if (cpu_logical > 1)
553 	    printf(" x %d SMT threads", cpu_logical);
554 	printf("\n");
555 
556 	/* List active CPUs first. */
557 	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
558 	for (i = 1; i < mp_ncpus; i++) {
559 		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
560 			hyperthread = "/HT";
561 		else
562 			hyperthread = "";
563 		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
564 		    cpu_apic_ids[i]);
565 	}
566 
567 	/* List disabled CPUs last. */
568 	for (i = 0; i <= MAX_APIC_ID; i++) {
569 		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
570 			continue;
571 		if (cpu_info[i].cpu_hyperthread)
572 			hyperthread = "/HT";
573 		else
574 			hyperthread = "";
575 		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
576 		    i);
577 	}
578 }
579 
580 /*
581  * AP CPU's call this to initialize themselves.
582  */
583 void
584 init_secondary(void)
585 {
586 	struct pcpu *pc;
587 	struct nmi_pcpu *np;
588 	u_int64_t msr, cr0;
589 	int cpu, gsel_tss, x;
590 	struct region_descriptor ap_gdt;
591 
592 	/* Set by the startup code for us to use */
593 	cpu = bootAP;
594 
595 	/* Init tss */
596 	common_tss[cpu] = common_tss[0];
597 	common_tss[cpu].tss_rsp0 = 0;   /* not used until after switch */
598 	common_tss[cpu].tss_iobase = sizeof(struct amd64tss) +
599 	    IOPAGES * PAGE_SIZE;
600 	common_tss[cpu].tss_ist1 = (long)&doublefault_stack[PAGE_SIZE];
601 
602 	/* The NMI stack runs on IST2. */
603 	np = ((struct nmi_pcpu *) &nmi_stack[PAGE_SIZE]) - 1;
604 	common_tss[cpu].tss_ist2 = (long) np;
605 
606 	/* Prepare private GDT */
607 	gdt_segs[GPROC0_SEL].ssd_base = (long) &common_tss[cpu];
608 	for (x = 0; x < NGDT; x++) {
609 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
610 		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL + 1))
611 			ssdtosd(&gdt_segs[x], &gdt[NGDT * cpu + x]);
612 	}
613 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
614 	    (struct system_segment_descriptor *)&gdt[NGDT * cpu + GPROC0_SEL]);
615 	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
616 	ap_gdt.rd_base =  (long) &gdt[NGDT * cpu];
617 	lgdt(&ap_gdt);			/* does magic intra-segment return */
618 
619 	/* Get per-cpu data */
620 	pc = &__pcpu[cpu];
621 
622 	/* prime data page for it to use */
623 	pcpu_init(pc, cpu, sizeof(struct pcpu));
624 	dpcpu_init(dpcpu, cpu);
625 	pc->pc_apic_id = cpu_apic_ids[cpu];
626 	pc->pc_prvspace = pc;
627 	pc->pc_curthread = 0;
628 	pc->pc_tssp = &common_tss[cpu];
629 	pc->pc_commontssp = &common_tss[cpu];
630 	pc->pc_rsp0 = 0;
631 	pc->pc_tss = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
632 	    GPROC0_SEL];
633 	pc->pc_fs32p = &gdt[NGDT * cpu + GUFS32_SEL];
634 	pc->pc_gs32p = &gdt[NGDT * cpu + GUGS32_SEL];
635 	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[NGDT * cpu +
636 	    GUSERLDT_SEL];
637 
638 	/* Save the per-cpu pointer for use by the NMI handler. */
639 	np->np_pcpu = (register_t) pc;
640 
641 	wrmsr(MSR_FSBASE, 0);		/* User value */
642 	wrmsr(MSR_GSBASE, (u_int64_t)pc);
643 	wrmsr(MSR_KGSBASE, (u_int64_t)pc);	/* XXX User value while we're in the kernel */
644 
645 	lidt(&r_idt);
646 
647 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
648 	ltr(gsel_tss);
649 
650 	/*
651 	 * Set to a known state:
652 	 * Set by mpboot.s: CR0_PG, CR0_PE
653 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
654 	 */
655 	cr0 = rcr0();
656 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
657 	load_cr0(cr0);
658 
659 	/* Set up the fast syscall stuff */
660 	msr = rdmsr(MSR_EFER) | EFER_SCE;
661 	wrmsr(MSR_EFER, msr);
662 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
663 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
664 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
665 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
666 	wrmsr(MSR_STAR, msr);
667 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
668 
669 	/* Disable local APIC just to be sure. */
670 	lapic_disable();
671 
672 	/* signal our startup to the BSP. */
673 	mp_naps++;
674 
675 	/* Spin until the BSP releases the AP's. */
676 	while (!aps_ready)
677 		ia32_pause();
678 
679 	/* Initialize the PAT MSR. */
680 	pmap_init_pat();
681 
682 	/* set up CPU registers and state */
683 	cpu_setregs();
684 
685 	/* set up SSE/NX registers */
686 	initializecpu();
687 
688 	/* set up FPU state on the AP */
689 	fpuinit();
690 
691 	/* A quick check from sanity claus */
692 	if (PCPU_GET(apic_id) != lapic_id()) {
693 		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
694 		printf("SMP: actual apic_id = %d\n", lapic_id());
695 		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
696 		panic("cpuid mismatch! boom!!");
697 	}
698 
699 	/* Initialize curthread. */
700 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
701 	PCPU_SET(curthread, PCPU_GET(idlethread));
702 
703 	mca_init();
704 
705 	mtx_lock_spin(&ap_boot_mtx);
706 
707 	/* Init local apic for irq's */
708 	lapic_setup(1);
709 
710 	/* Set memory range attributes for this CPU to match the BSP */
711 	mem_range_AP_init();
712 
713 	smp_cpus++;
714 
715 	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
716 	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
717 
718 	/* Determine if we are a logical CPU. */
719 	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
720 	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
721 		logical_cpus_mask |= PCPU_GET(cpumask);
722 
723 	/* Determine if we are a hyperthread. */
724 	if (hyperthreading_cpus > 1 &&
725 	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
726 		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
727 
728 	/* Build our map of 'other' CPUs. */
729 	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
730 
731 	if (bootverbose)
732 		lapic_dump("AP");
733 
734 	if (smp_cpus == mp_ncpus) {
735 		/* enable IPI's, tlb shootdown, freezes etc */
736 		atomic_store_rel_int(&smp_started, 1);
737 		smp_active = 1;	 /* historic */
738 	}
739 
740 	/*
741 	 * Enable global pages TLB extension
742 	 * This also implicitly flushes the TLB
743 	 */
744 
745 	load_cr4(rcr4() | CR4_PGE);
746 	load_ds(_udatasel);
747 	load_es(_udatasel);
748 	load_fs(_ufssel);
749 	mtx_unlock_spin(&ap_boot_mtx);
750 
751 	/* Wait until all the AP's are up. */
752 	while (smp_started == 0)
753 		ia32_pause();
754 
755 	/* Start per-CPU event timers. */
756 	cpu_initclocks_ap();
757 
758 	sched_throw(NULL);
759 
760 	panic("scheduler returned us to %s", __func__);
761 	/* NOTREACHED */
762 }
763 
764 /*******************************************************************
765  * local functions and data
766  */
767 
768 /*
769  * We tell the I/O APIC code about all the CPUs we want to receive
770  * interrupts.  If we don't want certain CPUs to receive IRQs we
771  * can simply not tell the I/O APIC code about them in this function.
772  * We also do not tell it about the BSP since it tells itself about
773  * the BSP internally to work with UP kernels and on UP machines.
774  */
775 static void
776 set_interrupt_apic_ids(void)
777 {
778 	u_int i, apic_id;
779 
780 	for (i = 0; i < MAXCPU; i++) {
781 		apic_id = cpu_apic_ids[i];
782 		if (apic_id == -1)
783 			continue;
784 		if (cpu_info[apic_id].cpu_bsp)
785 			continue;
786 		if (cpu_info[apic_id].cpu_disabled)
787 			continue;
788 
789 		/* Don't let hyperthreads service interrupts. */
790 		if (hyperthreading_cpus > 1 &&
791 		    apic_id % hyperthreading_cpus != 0)
792 			continue;
793 
794 		intr_add_cpu(i);
795 	}
796 }
797 
798 /*
799  * Assign logical CPU IDs to local APICs.
800  */
801 static void
802 assign_cpu_ids(void)
803 {
804 	u_int i;
805 
806 	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
807 	    &hyperthreading_allowed);
808 
809 	/* Check for explicitly disabled CPUs. */
810 	for (i = 0; i <= MAX_APIC_ID; i++) {
811 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
812 			continue;
813 
814 		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
815 			cpu_info[i].cpu_hyperthread = 1;
816 #if defined(SCHED_ULE)
817 			/*
818 			 * Don't use HT CPU if it has been disabled by a
819 			 * tunable.
820 			 */
821 			if (hyperthreading_allowed == 0) {
822 				cpu_info[i].cpu_disabled = 1;
823 				continue;
824 			}
825 #endif
826 		}
827 
828 		/* Don't use this CPU if it has been disabled by a tunable. */
829 		if (resource_disabled("lapic", i)) {
830 			cpu_info[i].cpu_disabled = 1;
831 			continue;
832 		}
833 	}
834 
835 	/*
836 	 * Assign CPU IDs to local APIC IDs and disable any CPUs
837 	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
838 	 *
839 	 * To minimize confusion for userland, we attempt to number
840 	 * CPUs such that all threads and cores in a package are
841 	 * grouped together.  For now we assume that the BSP is always
842 	 * the first thread in a package and just start adding APs
843 	 * starting with the BSP's APIC ID.
844 	 */
845 	mp_ncpus = 1;
846 	cpu_apic_ids[0] = boot_cpu_id;
847 	apic_cpuids[boot_cpu_id] = 0;
848 	for (i = boot_cpu_id + 1; i != boot_cpu_id;
849 	     i == MAX_APIC_ID ? i = 0 : i++) {
850 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
851 		    cpu_info[i].cpu_disabled)
852 			continue;
853 
854 		if (mp_ncpus < MAXCPU) {
855 			cpu_apic_ids[mp_ncpus] = i;
856 			apic_cpuids[i] = mp_ncpus;
857 			mp_ncpus++;
858 		} else
859 			cpu_info[i].cpu_disabled = 1;
860 	}
861 	KASSERT(mp_maxid >= mp_ncpus - 1,
862 	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
863 	    mp_ncpus));
864 }
865 
866 /*
867  * start each AP in our list
868  */
869 static int
870 start_all_aps(void)
871 {
872 	vm_offset_t va = boot_address + KERNBASE;
873 	u_int64_t *pt4, *pt3, *pt2;
874 	u_int32_t mpbioswarmvec;
875 	int apic_id, cpu, i;
876 	u_char mpbiosreason;
877 
878 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
879 
880 	/* install the AP 1st level boot code */
881 	pmap_kenter(va, boot_address);
882 	pmap_invalidate_page(kernel_pmap, va);
883 	bcopy(mptramp_start, (void *)va, bootMP_size);
884 
885 	/* Locate the page tables, they'll be below the trampoline */
886 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
887 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
888 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
889 
890 	/* Create the initial 1GB replicated page tables */
891 	for (i = 0; i < 512; i++) {
892 		/* Each slot of the level 4 pages points to the same level 3 page */
893 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
894 		pt4[i] |= PG_V | PG_RW | PG_U;
895 
896 		/* Each slot of the level 3 pages points to the same level 2 page */
897 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
898 		pt3[i] |= PG_V | PG_RW | PG_U;
899 
900 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
901 		pt2[i] = i * (2 * 1024 * 1024);
902 		pt2[i] |= PG_V | PG_RW | PG_PS | PG_U;
903 	}
904 
905 	/* save the current value of the warm-start vector */
906 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
907 	outb(CMOS_REG, BIOS_RESET);
908 	mpbiosreason = inb(CMOS_DATA);
909 
910 	/* setup a vector to our boot code */
911 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
912 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
913 	outb(CMOS_REG, BIOS_RESET);
914 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
915 
916 	/* start each AP */
917 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
918 		apic_id = cpu_apic_ids[cpu];
919 
920 		/* allocate and set up an idle stack data page */
921 		bootstacks[cpu] = (void *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
922 		doublefault_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
923 		nmi_stack = (char *)kmem_alloc(kernel_map, PAGE_SIZE);
924 		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
925 
926 		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 8;
927 		bootAP = cpu;
928 
929 		/* attempt to start the Application Processor */
930 		if (!start_ap(apic_id)) {
931 			/* restore the warmstart vector */
932 			*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
933 			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
934 		}
935 
936 		all_cpus |= (1 << cpu);		/* record AP in CPU map */
937 	}
938 
939 	/* build our map of 'other' CPUs */
940 	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
941 
942 	/* restore the warmstart vector */
943 	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
944 
945 	outb(CMOS_REG, BIOS_RESET);
946 	outb(CMOS_DATA, mpbiosreason);
947 
948 	/* number of APs actually started */
949 	return mp_naps;
950 }
951 
952 
953 /*
954  * This function starts the AP (application processor) identified
955  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
956  * to accomplish this.  This is necessary because of the nuances
957  * of the different hardware we might encounter.  It isn't pretty,
958  * but it seems to work.
959  */
960 static int
961 start_ap(int apic_id)
962 {
963 	int vector, ms;
964 	int cpus;
965 
966 	/* calculate the vector */
967 	vector = (boot_address >> 12) & 0xff;
968 
969 	/* used as a watchpoint to signal AP startup */
970 	cpus = mp_naps;
971 
972 	/*
973 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
974 	 * and running the target CPU. OR this INIT IPI might be latched (P5
975 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
976 	 * ignored.
977 	 */
978 
979 	/* do an INIT IPI: assert RESET */
980 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
981 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
982 
983 	/* wait for pending status end */
984 	lapic_ipi_wait(-1);
985 
986 	/* do an INIT IPI: deassert RESET */
987 	lapic_ipi_raw(APIC_DEST_ALLESELF | APIC_TRIGMOD_LEVEL |
988 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, 0);
989 
990 	/* wait for pending status end */
991 	DELAY(10000);		/* wait ~10mS */
992 	lapic_ipi_wait(-1);
993 
994 	/*
995 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
996 	 * latched, (P5 bug) this 1st STARTUP would then terminate
997 	 * immediately, and the previously started INIT IPI would continue. OR
998 	 * the previous INIT IPI has already run. and this STARTUP IPI will
999 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1000 	 * will run.
1001 	 */
1002 
1003 	/* do a STARTUP IPI */
1004 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1005 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1006 	    vector, apic_id);
1007 	lapic_ipi_wait(-1);
1008 	DELAY(200);		/* wait ~200uS */
1009 
1010 	/*
1011 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1012 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1013 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1014 	 * recognized after hardware RESET or INIT IPI.
1015 	 */
1016 
1017 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1018 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1019 	    vector, apic_id);
1020 	lapic_ipi_wait(-1);
1021 	DELAY(200);		/* wait ~200uS */
1022 
1023 	/* Wait up to 5 seconds for it to start. */
1024 	for (ms = 0; ms < 5000; ms++) {
1025 		if (mp_naps > cpus)
1026 			return 1;	/* return SUCCESS */
1027 		DELAY(1000);
1028 	}
1029 	return 0;		/* return FAILURE */
1030 }
1031 
1032 #ifdef COUNT_XINVLTLB_HITS
1033 u_int xhits_gbl[MAXCPU];
1034 u_int xhits_pg[MAXCPU];
1035 u_int xhits_rng[MAXCPU];
1036 SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1037 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1038     sizeof(xhits_gbl), "IU", "");
1039 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1040     sizeof(xhits_pg), "IU", "");
1041 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1042     sizeof(xhits_rng), "IU", "");
1043 
1044 u_int ipi_global;
1045 u_int ipi_page;
1046 u_int ipi_range;
1047 u_int ipi_range_size;
1048 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1049 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1050 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1051 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW,
1052     &ipi_range_size, 0, "");
1053 
1054 u_int ipi_masked_global;
1055 u_int ipi_masked_page;
1056 u_int ipi_masked_range;
1057 u_int ipi_masked_range_size;
1058 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1059     &ipi_masked_global, 0, "");
1060 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1061     &ipi_masked_page, 0, "");
1062 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1063     &ipi_masked_range, 0, "");
1064 SYSCTL_UINT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1065     &ipi_masked_range_size, 0, "");
1066 #endif /* COUNT_XINVLTLB_HITS */
1067 
1068 /*
1069  * Flush the TLB on all other CPU's
1070  */
1071 static void
1072 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1073 {
1074 	u_int ncpu;
1075 
1076 	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1077 	if (ncpu < 1)
1078 		return;		/* no other cpus */
1079 	if (!(read_rflags() & PSL_I))
1080 		panic("%s: interrupts disabled", __func__);
1081 	mtx_lock_spin(&smp_ipi_mtx);
1082 	smp_tlb_addr1 = addr1;
1083 	smp_tlb_addr2 = addr2;
1084 	atomic_store_rel_int(&smp_tlb_wait, 0);
1085 	ipi_all_but_self(vector);
1086 	while (smp_tlb_wait < ncpu)
1087 		ia32_pause();
1088 	mtx_unlock_spin(&smp_ipi_mtx);
1089 }
1090 
1091 static void
1092 smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1093 {
1094 	int ncpu, othercpus;
1095 
1096 	othercpus = mp_ncpus - 1;
1097 	if (mask == (cpumask_t)-1) {
1098 		ncpu = othercpus;
1099 		if (ncpu < 1)
1100 			return;
1101 	} else {
1102 		mask &= ~PCPU_GET(cpumask);
1103 		if (mask == 0)
1104 			return;
1105 		ncpu = bitcount32(mask);
1106 		if (ncpu > othercpus) {
1107 			/* XXX this should be a panic offence */
1108 			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1109 			    ncpu, othercpus);
1110 			ncpu = othercpus;
1111 		}
1112 		/* XXX should be a panic, implied by mask == 0 above */
1113 		if (ncpu < 1)
1114 			return;
1115 	}
1116 	if (!(read_rflags() & PSL_I))
1117 		panic("%s: interrupts disabled", __func__);
1118 	mtx_lock_spin(&smp_ipi_mtx);
1119 	smp_tlb_addr1 = addr1;
1120 	smp_tlb_addr2 = addr2;
1121 	atomic_store_rel_int(&smp_tlb_wait, 0);
1122 	if (mask == (cpumask_t)-1)
1123 		ipi_all_but_self(vector);
1124 	else
1125 		ipi_selected(mask, vector);
1126 	while (smp_tlb_wait < ncpu)
1127 		ia32_pause();
1128 	mtx_unlock_spin(&smp_ipi_mtx);
1129 }
1130 
1131 /*
1132  * Send an IPI to specified CPU handling the bitmap logic.
1133  */
1134 static void
1135 ipi_send_cpu(int cpu, u_int ipi)
1136 {
1137 	u_int bitmap, old_pending, new_pending;
1138 
1139 	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1140 
1141 	if (IPI_IS_BITMAPED(ipi)) {
1142 		bitmap = 1 << ipi;
1143 		ipi = IPI_BITMAP_VECTOR;
1144 		do {
1145 			old_pending = cpu_ipi_pending[cpu];
1146 			new_pending = old_pending | bitmap;
1147 		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1148 		    old_pending, new_pending));
1149 		if (old_pending)
1150 			return;
1151 	}
1152 	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1153 }
1154 
1155 void
1156 smp_cache_flush(void)
1157 {
1158 
1159 	if (smp_started)
1160 		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1161 }
1162 
1163 void
1164 smp_invltlb(void)
1165 {
1166 
1167 	if (smp_started) {
1168 		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1169 #ifdef COUNT_XINVLTLB_HITS
1170 		ipi_global++;
1171 #endif
1172 	}
1173 }
1174 
1175 void
1176 smp_invlpg(vm_offset_t addr)
1177 {
1178 
1179 	if (smp_started) {
1180 		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1181 #ifdef COUNT_XINVLTLB_HITS
1182 		ipi_page++;
1183 #endif
1184 	}
1185 }
1186 
1187 void
1188 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1189 {
1190 
1191 	if (smp_started) {
1192 		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1193 #ifdef COUNT_XINVLTLB_HITS
1194 		ipi_range++;
1195 		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1196 #endif
1197 	}
1198 }
1199 
1200 void
1201 smp_masked_invltlb(cpumask_t mask)
1202 {
1203 
1204 	if (smp_started) {
1205 		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1206 #ifdef COUNT_XINVLTLB_HITS
1207 		ipi_masked_global++;
1208 #endif
1209 	}
1210 }
1211 
1212 void
1213 smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
1214 {
1215 
1216 	if (smp_started) {
1217 		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1218 #ifdef COUNT_XINVLTLB_HITS
1219 		ipi_masked_page++;
1220 #endif
1221 	}
1222 }
1223 
1224 void
1225 smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
1226 {
1227 
1228 	if (smp_started) {
1229 		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1230 #ifdef COUNT_XINVLTLB_HITS
1231 		ipi_masked_range++;
1232 		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1233 #endif
1234 	}
1235 }
1236 
1237 void
1238 ipi_bitmap_handler(struct trapframe frame)
1239 {
1240 	struct trapframe *oldframe;
1241 	struct thread *td;
1242 	int cpu = PCPU_GET(cpuid);
1243 	u_int ipi_bitmap;
1244 
1245 	critical_enter();
1246 	td = curthread;
1247 	td->td_intr_nesting_level++;
1248 	oldframe = td->td_intr_frame;
1249 	td->td_intr_frame = &frame;
1250 	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1251 	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1252 #ifdef COUNT_IPIS
1253 		(*ipi_preempt_counts[cpu])++;
1254 #endif
1255 		sched_preempt(td);
1256 	}
1257 	if (ipi_bitmap & (1 << IPI_AST)) {
1258 #ifdef COUNT_IPIS
1259 		(*ipi_ast_counts[cpu])++;
1260 #endif
1261 		/* Nothing to do for AST */
1262 	}
1263 	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1264 #ifdef COUNT_IPIS
1265 		(*ipi_hardclock_counts[cpu])++;
1266 #endif
1267 		hardclockintr();
1268 	}
1269 	td->td_intr_frame = oldframe;
1270 	td->td_intr_nesting_level--;
1271 	critical_exit();
1272 }
1273 
1274 /*
1275  * send an IPI to a set of cpus.
1276  */
1277 void
1278 ipi_selected(cpumask_t cpus, u_int ipi)
1279 {
1280 	int cpu;
1281 
1282 	/*
1283 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1284 	 * of help in order to understand what is the source.
1285 	 * Set the mask of receiving CPUs for this purpose.
1286 	 */
1287 	if (ipi == IPI_STOP_HARD)
1288 		atomic_set_int(&ipi_nmi_pending, cpus);
1289 
1290 	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1291 	while ((cpu = ffs(cpus)) != 0) {
1292 		cpu--;
1293 		cpus &= ~(1 << cpu);
1294 		ipi_send_cpu(cpu, ipi);
1295 	}
1296 }
1297 
1298 /*
1299  * send an IPI to a specific CPU.
1300  */
1301 void
1302 ipi_cpu(int cpu, u_int ipi)
1303 {
1304 
1305 	/*
1306 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1307 	 * of help in order to understand what is the source.
1308 	 * Set the mask of receiving CPUs for this purpose.
1309 	 */
1310 	if (ipi == IPI_STOP_HARD)
1311 		atomic_set_int(&ipi_nmi_pending, 1 << cpu);
1312 
1313 	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1314 	ipi_send_cpu(cpu, ipi);
1315 }
1316 
1317 /*
1318  * send an IPI to all CPUs EXCEPT myself
1319  */
1320 void
1321 ipi_all_but_self(u_int ipi)
1322 {
1323 
1324 	if (IPI_IS_BITMAPED(ipi)) {
1325 		ipi_selected(PCPU_GET(other_cpus), ipi);
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1331 	 * of help in order to understand what is the source.
1332 	 * Set the mask of receiving CPUs for this purpose.
1333 	 */
1334 	if (ipi == IPI_STOP_HARD)
1335 		atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
1336 
1337 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1338 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1339 }
1340 
1341 int
1342 ipi_nmi_handler()
1343 {
1344 	cpumask_t cpumask;
1345 
1346 	/*
1347 	 * As long as there is not a simple way to know about a NMI's
1348 	 * source, if the bitmask for the current CPU is present in
1349 	 * the global pending bitword an IPI_STOP_HARD has been issued
1350 	 * and should be handled.
1351 	 */
1352 	cpumask = PCPU_GET(cpumask);
1353 	if ((ipi_nmi_pending & cpumask) == 0)
1354 		return (1);
1355 
1356 	atomic_clear_int(&ipi_nmi_pending, cpumask);
1357 	cpustop_handler();
1358 	return (0);
1359 }
1360 
1361 /*
1362  * Handle an IPI_STOP by saving our current context and spinning until we
1363  * are resumed.
1364  */
1365 void
1366 cpustop_handler(void)
1367 {
1368 	cpumask_t cpumask;
1369 	u_int cpu;
1370 
1371 	cpu = PCPU_GET(cpuid);
1372 	cpumask = PCPU_GET(cpumask);
1373 
1374 	savectx(&stoppcbs[cpu]);
1375 
1376 	/* Indicate that we are stopped */
1377 	atomic_set_int(&stopped_cpus, cpumask);
1378 
1379 	/* Wait for restart */
1380 	while (!(started_cpus & cpumask))
1381 	    ia32_pause();
1382 
1383 	atomic_clear_int(&started_cpus, cpumask);
1384 	atomic_clear_int(&stopped_cpus, cpumask);
1385 
1386 	if (cpu == 0 && cpustop_restartfunc != NULL) {
1387 		cpustop_restartfunc();
1388 		cpustop_restartfunc = NULL;
1389 	}
1390 }
1391 
1392 /*
1393  * Handle an IPI_SUSPEND by saving our current context and spinning until we
1394  * are resumed.
1395  */
1396 void
1397 cpususpend_handler(void)
1398 {
1399 	cpumask_t cpumask;
1400 	register_t cr3, rf;
1401 	u_int cpu;
1402 
1403 	cpu = PCPU_GET(cpuid);
1404 	cpumask = PCPU_GET(cpumask);
1405 
1406 	rf = intr_disable();
1407 	cr3 = rcr3();
1408 
1409 	if (savectx(susppcbs[cpu])) {
1410 		wbinvd();
1411 		atomic_set_int(&stopped_cpus, cpumask);
1412 	} else {
1413 		pmap_init_pat();
1414 		PCPU_SET(switchtime, 0);
1415 		PCPU_SET(switchticks, ticks);
1416 	}
1417 
1418 	/* Wait for resume */
1419 	while (!(started_cpus & cpumask))
1420 		ia32_pause();
1421 
1422 	atomic_clear_int(&started_cpus, cpumask);
1423 	atomic_clear_int(&stopped_cpus, cpumask);
1424 
1425 	/* Restore CR3 and enable interrupts */
1426 	load_cr3(cr3);
1427 	mca_resume();
1428 	lapic_setup(0);
1429 	intr_restore(rf);
1430 }
1431 
1432 /*
1433  * This is called once the rest of the system is up and running and we're
1434  * ready to let the AP's out of the pen.
1435  */
1436 static void
1437 release_aps(void *dummy __unused)
1438 {
1439 
1440 	if (mp_ncpus == 1)
1441 		return;
1442 	atomic_store_rel_int(&aps_ready, 1);
1443 	while (smp_started == 0)
1444 		ia32_pause();
1445 }
1446 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1447 
1448 static int
1449 sysctl_hlt_cpus(SYSCTL_HANDLER_ARGS)
1450 {
1451 	cpumask_t mask;
1452 	int error;
1453 
1454 	mask = hlt_cpus_mask;
1455 	error = sysctl_handle_int(oidp, &mask, 0, req);
1456 	if (error || !req->newptr)
1457 		return (error);
1458 
1459 	if (logical_cpus_mask != 0 &&
1460 	    (mask & logical_cpus_mask) == logical_cpus_mask)
1461 		hlt_logical_cpus = 1;
1462 	else
1463 		hlt_logical_cpus = 0;
1464 
1465 	if (! hyperthreading_allowed)
1466 		mask |= hyperthreading_cpus_mask;
1467 
1468 	if ((mask & all_cpus) == all_cpus)
1469 		mask &= ~(1<<0);
1470 	hlt_cpus_mask = mask;
1471 	return (error);
1472 }
1473 SYSCTL_PROC(_machdep, OID_AUTO, hlt_cpus, CTLTYPE_INT|CTLFLAG_RW,
1474     0, 0, sysctl_hlt_cpus, "IU",
1475     "Bitmap of CPUs to halt.  101 (binary) will halt CPUs 0 and 2.");
1476 
1477 static int
1478 sysctl_hlt_logical_cpus(SYSCTL_HANDLER_ARGS)
1479 {
1480 	int disable, error;
1481 
1482 	disable = hlt_logical_cpus;
1483 	error = sysctl_handle_int(oidp, &disable, 0, req);
1484 	if (error || !req->newptr)
1485 		return (error);
1486 
1487 	if (disable)
1488 		hlt_cpus_mask |= logical_cpus_mask;
1489 	else
1490 		hlt_cpus_mask &= ~logical_cpus_mask;
1491 
1492 	if (! hyperthreading_allowed)
1493 		hlt_cpus_mask |= hyperthreading_cpus_mask;
1494 
1495 	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1496 		hlt_cpus_mask &= ~(1<<0);
1497 
1498 	hlt_logical_cpus = disable;
1499 	return (error);
1500 }
1501 
1502 static int
1503 sysctl_hyperthreading_allowed(SYSCTL_HANDLER_ARGS)
1504 {
1505 	int allowed, error;
1506 
1507 	allowed = hyperthreading_allowed;
1508 	error = sysctl_handle_int(oidp, &allowed, 0, req);
1509 	if (error || !req->newptr)
1510 		return (error);
1511 
1512 #ifdef SCHED_ULE
1513 	/*
1514 	 * SCHED_ULE doesn't allow enabling/disabling HT cores at
1515 	 * run-time.
1516 	 */
1517 	if (allowed != hyperthreading_allowed)
1518 		return (ENOTSUP);
1519 	return (error);
1520 #endif
1521 
1522 	if (allowed)
1523 		hlt_cpus_mask &= ~hyperthreading_cpus_mask;
1524 	else
1525 		hlt_cpus_mask |= hyperthreading_cpus_mask;
1526 
1527 	if (logical_cpus_mask != 0 &&
1528 	    (hlt_cpus_mask & logical_cpus_mask) == logical_cpus_mask)
1529 		hlt_logical_cpus = 1;
1530 	else
1531 		hlt_logical_cpus = 0;
1532 
1533 	if ((hlt_cpus_mask & all_cpus) == all_cpus)
1534 		hlt_cpus_mask &= ~(1<<0);
1535 
1536 	hyperthreading_allowed = allowed;
1537 	return (error);
1538 }
1539 
1540 static void
1541 cpu_hlt_setup(void *dummy __unused)
1542 {
1543 
1544 	if (logical_cpus_mask != 0) {
1545 		TUNABLE_INT_FETCH("machdep.hlt_logical_cpus",
1546 		    &hlt_logical_cpus);
1547 		sysctl_ctx_init(&logical_cpu_clist);
1548 		SYSCTL_ADD_PROC(&logical_cpu_clist,
1549 		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1550 		    "hlt_logical_cpus", CTLTYPE_INT|CTLFLAG_RW, 0, 0,
1551 		    sysctl_hlt_logical_cpus, "IU", "");
1552 		SYSCTL_ADD_UINT(&logical_cpu_clist,
1553 		    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1554 		    "logical_cpus_mask", CTLTYPE_INT|CTLFLAG_RD,
1555 		    &logical_cpus_mask, 0, "");
1556 
1557 		if (hlt_logical_cpus)
1558 			hlt_cpus_mask |= logical_cpus_mask;
1559 
1560 		/*
1561 		 * If necessary for security purposes, force
1562 		 * hyperthreading off, regardless of the value
1563 		 * of hlt_logical_cpus.
1564 		 */
1565 		if (hyperthreading_cpus_mask) {
1566 			SYSCTL_ADD_PROC(&logical_cpu_clist,
1567 			    SYSCTL_STATIC_CHILDREN(_machdep), OID_AUTO,
1568 			    "hyperthreading_allowed", CTLTYPE_INT|CTLFLAG_RW,
1569 			    0, 0, sysctl_hyperthreading_allowed, "IU", "");
1570 			if (! hyperthreading_allowed)
1571 				hlt_cpus_mask |= hyperthreading_cpus_mask;
1572 		}
1573 	}
1574 }
1575 SYSINIT(cpu_hlt, SI_SUB_SMP, SI_ORDER_ANY, cpu_hlt_setup, NULL);
1576 
1577 int
1578 mp_grab_cpu_hlt(void)
1579 {
1580 	cpumask_t mask;
1581 #ifdef MP_WATCHDOG
1582 	u_int cpuid;
1583 #endif
1584 	int retval;
1585 
1586 	mask = PCPU_GET(cpumask);
1587 #ifdef MP_WATCHDOG
1588 	cpuid = PCPU_GET(cpuid);
1589 	ap_watchdog(cpuid);
1590 #endif
1591 
1592 	retval = 0;
1593 	while (mask & hlt_cpus_mask) {
1594 		retval = 1;
1595 		__asm __volatile("sti; hlt" : : : "memory");
1596 	}
1597 	return (retval);
1598 }
1599 
1600 #ifdef COUNT_IPIS
1601 /*
1602  * Setup interrupt counters for IPI handlers.
1603  */
1604 static void
1605 mp_ipi_intrcnt(void *dummy)
1606 {
1607 	char buf[64];
1608 	int i;
1609 
1610 	CPU_FOREACH(i) {
1611 		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1612 		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1613 		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1614 		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1615 		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1616 		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1617 		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1618 		intrcnt_add(buf, &ipi_preempt_counts[i]);
1619 		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1620 		intrcnt_add(buf, &ipi_ast_counts[i]);
1621 		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1622 		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1623 		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1624 		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1625 		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1626 		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1627 	}
1628 }
1629 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1630 #endif
1631 
1632