xref: /freebsd/sys/amd64/amd64/pmap.c (revision 2b833162)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
48  */
49 /*-
50  * Copyright (c) 2003 Networks Associates Technology, Inc.
51  * Copyright (c) 2014-2020 The FreeBSD Foundation
52  * All rights reserved.
53  *
54  * This software was developed for the FreeBSD Project by Jake Burkholder,
55  * Safeport Network Services, and Network Associates Laboratories, the
56  * Security Research Division of Network Associates, Inc. under
57  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58  * CHATS research program.
59  *
60  * Portions of this software were developed by
61  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
62  * the FreeBSD Foundation.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #define	AMD64_NPT_AWARE
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  *	Manages physical address maps.
93  *
94  *	Since the information managed by this module is
95  *	also stored by the logical address mapping module,
96  *	this module may throw away valid virtual-to-physical
97  *	mappings at almost any time.  However, invalidations
98  *	of virtual-to-physical mappings must be done as
99  *	requested.
100  *
101  *	In order to cope with hardware architectures which
102  *	make virtual-to-physical map invalidates expensive,
103  *	this module may delay invalidate or reduced protection
104  *	operations until such time as they are actually
105  *	necessary.  This module is given full information as
106  *	to which processors are currently using which maps,
107  *	and to when physical maps must be made correct.
108  */
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap.h"
112 #include "opt_vm.h"
113 
114 #include <sys/param.h>
115 #include <sys/asan.h>
116 #include <sys/bitstring.h>
117 #include <sys/bus.h>
118 #include <sys/systm.h>
119 #include <sys/counter.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/malloc.h>
124 #include <sys/mman.h>
125 #include <sys/msan.h>
126 #include <sys/mutex.h>
127 #include <sys/proc.h>
128 #include <sys/rangeset.h>
129 #include <sys/rwlock.h>
130 #include <sys/sbuf.h>
131 #include <sys/smr.h>
132 #include <sys/sx.h>
133 #include <sys/turnstile.h>
134 #include <sys/vmem.h>
135 #include <sys/vmmeter.h>
136 #include <sys/sched.h>
137 #include <sys/sysctl.h>
138 #include <sys/smp.h>
139 #ifdef DDB
140 #include <sys/kdb.h>
141 #include <ddb/ddb.h>
142 #endif
143 
144 #include <vm/vm.h>
145 #include <vm/vm_param.h>
146 #include <vm/vm_kern.h>
147 #include <vm/vm_page.h>
148 #include <vm/vm_map.h>
149 #include <vm/vm_object.h>
150 #include <vm/vm_extern.h>
151 #include <vm/vm_pageout.h>
152 #include <vm/vm_pager.h>
153 #include <vm/vm_phys.h>
154 #include <vm/vm_radix.h>
155 #include <vm/vm_reserv.h>
156 #include <vm/vm_dumpset.h>
157 #include <vm/uma.h>
158 
159 #include <machine/asan.h>
160 #include <machine/intr_machdep.h>
161 #include <x86/apicvar.h>
162 #include <x86/ifunc.h>
163 #include <machine/cpu.h>
164 #include <machine/cputypes.h>
165 #include <machine/md_var.h>
166 #include <machine/msan.h>
167 #include <machine/pcb.h>
168 #include <machine/specialreg.h>
169 #ifdef SMP
170 #include <machine/smp.h>
171 #endif
172 #include <machine/sysarch.h>
173 #include <machine/tss.h>
174 
175 #ifdef NUMA
176 #define	PMAP_MEMDOM	MAXMEMDOM
177 #else
178 #define	PMAP_MEMDOM	1
179 #endif
180 
181 static __inline boolean_t
182 pmap_type_guest(pmap_t pmap)
183 {
184 
185 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
186 }
187 
188 static __inline boolean_t
189 pmap_emulate_ad_bits(pmap_t pmap)
190 {
191 
192 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
193 }
194 
195 static __inline pt_entry_t
196 pmap_valid_bit(pmap_t pmap)
197 {
198 	pt_entry_t mask;
199 
200 	switch (pmap->pm_type) {
201 	case PT_X86:
202 	case PT_RVI:
203 		mask = X86_PG_V;
204 		break;
205 	case PT_EPT:
206 		if (pmap_emulate_ad_bits(pmap))
207 			mask = EPT_PG_EMUL_V;
208 		else
209 			mask = EPT_PG_READ;
210 		break;
211 	default:
212 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
213 	}
214 
215 	return (mask);
216 }
217 
218 static __inline pt_entry_t
219 pmap_rw_bit(pmap_t pmap)
220 {
221 	pt_entry_t mask;
222 
223 	switch (pmap->pm_type) {
224 	case PT_X86:
225 	case PT_RVI:
226 		mask = X86_PG_RW;
227 		break;
228 	case PT_EPT:
229 		if (pmap_emulate_ad_bits(pmap))
230 			mask = EPT_PG_EMUL_RW;
231 		else
232 			mask = EPT_PG_WRITE;
233 		break;
234 	default:
235 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
236 	}
237 
238 	return (mask);
239 }
240 
241 static pt_entry_t pg_g;
242 
243 static __inline pt_entry_t
244 pmap_global_bit(pmap_t pmap)
245 {
246 	pt_entry_t mask;
247 
248 	switch (pmap->pm_type) {
249 	case PT_X86:
250 		mask = pg_g;
251 		break;
252 	case PT_RVI:
253 	case PT_EPT:
254 		mask = 0;
255 		break;
256 	default:
257 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
258 	}
259 
260 	return (mask);
261 }
262 
263 static __inline pt_entry_t
264 pmap_accessed_bit(pmap_t pmap)
265 {
266 	pt_entry_t mask;
267 
268 	switch (pmap->pm_type) {
269 	case PT_X86:
270 	case PT_RVI:
271 		mask = X86_PG_A;
272 		break;
273 	case PT_EPT:
274 		if (pmap_emulate_ad_bits(pmap))
275 			mask = EPT_PG_READ;
276 		else
277 			mask = EPT_PG_A;
278 		break;
279 	default:
280 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
281 	}
282 
283 	return (mask);
284 }
285 
286 static __inline pt_entry_t
287 pmap_modified_bit(pmap_t pmap)
288 {
289 	pt_entry_t mask;
290 
291 	switch (pmap->pm_type) {
292 	case PT_X86:
293 	case PT_RVI:
294 		mask = X86_PG_M;
295 		break;
296 	case PT_EPT:
297 		if (pmap_emulate_ad_bits(pmap))
298 			mask = EPT_PG_WRITE;
299 		else
300 			mask = EPT_PG_M;
301 		break;
302 	default:
303 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
304 	}
305 
306 	return (mask);
307 }
308 
309 static __inline pt_entry_t
310 pmap_pku_mask_bit(pmap_t pmap)
311 {
312 
313 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
314 }
315 
316 #if !defined(DIAGNOSTIC)
317 #ifdef __GNUC_GNU_INLINE__
318 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
319 #else
320 #define PMAP_INLINE	extern inline
321 #endif
322 #else
323 #define PMAP_INLINE
324 #endif
325 
326 #ifdef PV_STATS
327 #define PV_STAT(x)	do { x ; } while (0)
328 #else
329 #define PV_STAT(x)	do { } while (0)
330 #endif
331 
332 #undef pa_index
333 #ifdef NUMA
334 #define	pa_index(pa)	({					\
335 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
336 	    ("address %lx beyond the last segment", (pa)));	\
337 	(pa) >> PDRSHIFT;					\
338 })
339 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
340 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
341 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
342 	struct rwlock *_lock;					\
343 	if (__predict_false((pa) > pmap_last_pa))		\
344 		_lock = &pv_dummy_large.pv_lock;		\
345 	else							\
346 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
347 	_lock;							\
348 })
349 #else
350 #define	pa_index(pa)	((pa) >> PDRSHIFT)
351 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
352 
353 #define	NPV_LIST_LOCKS	MAXCPU
354 
355 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
356 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
357 #endif
358 
359 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
360 	struct rwlock **_lockp = (lockp);		\
361 	struct rwlock *_new_lock;			\
362 							\
363 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
364 	if (_new_lock != *_lockp) {			\
365 		if (*_lockp != NULL)			\
366 			rw_wunlock(*_lockp);		\
367 		*_lockp = _new_lock;			\
368 		rw_wlock(*_lockp);			\
369 	}						\
370 } while (0)
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
373 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
374 
375 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
376 	struct rwlock **_lockp = (lockp);		\
377 							\
378 	if (*_lockp != NULL) {				\
379 		rw_wunlock(*_lockp);			\
380 		*_lockp = NULL;				\
381 	}						\
382 } while (0)
383 
384 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
385 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
386 
387 struct pmap kernel_pmap_store;
388 
389 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
390 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
391 
392 int nkpt;
393 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
394     "Number of kernel page table pages allocated on bootup");
395 
396 static int ndmpdp;
397 vm_paddr_t dmaplimit;
398 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
399 pt_entry_t pg_nx;
400 
401 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
402     "VM/pmap parameters");
403 
404 static int pg_ps_enabled = 1;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
406     &pg_ps_enabled, 0, "Are large page mappings enabled?");
407 
408 int __read_frequently la57 = 0;
409 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
410     &la57, 0,
411     "5-level paging for host is enabled");
412 
413 static bool
414 pmap_is_la57(pmap_t pmap)
415 {
416 	if (pmap->pm_type == PT_X86)
417 		return (la57);
418 	return (false);		/* XXXKIB handle EPT */
419 }
420 
421 #define	PAT_INDEX_SIZE	8
422 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
423 
424 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
425 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
426 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
427 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
428 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
429 					   if supported */
430 
431 #ifdef KASAN
432 static uint64_t		KASANPDPphys;
433 #endif
434 #ifdef KMSAN
435 static uint64_t		KMSANSHADPDPphys;
436 static uint64_t		KMSANORIGPDPphys;
437 
438 /*
439  * To support systems with large amounts of memory, it is necessary to extend
440  * the maximum size of the direct map.  This could eat into the space reserved
441  * for the shadow map.
442  */
443 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
444 #endif
445 
446 static pml4_entry_t	*kernel_pml4;
447 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
448 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
449 static int		ndmpdpphys;	/* number of DMPDPphys pages */
450 
451 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
452 vm_paddr_t		KERNend;	/* and the end */
453 
454 /*
455  * pmap_mapdev support pre initialization (i.e. console)
456  */
457 #define	PMAP_PREINIT_MAPPING_COUNT	8
458 static struct pmap_preinit_mapping {
459 	vm_paddr_t	pa;
460 	vm_offset_t	va;
461 	vm_size_t	sz;
462 	int		mode;
463 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
464 static int pmap_initialized;
465 
466 /*
467  * Data for the pv entry allocation mechanism.
468  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
469  */
470 #ifdef NUMA
471 static __inline int
472 pc_to_domain(struct pv_chunk *pc)
473 {
474 
475 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
476 }
477 #else
478 static __inline int
479 pc_to_domain(struct pv_chunk *pc __unused)
480 {
481 
482 	return (0);
483 }
484 #endif
485 
486 struct pv_chunks_list {
487 	struct mtx pvc_lock;
488 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
489 	int active_reclaims;
490 } __aligned(CACHE_LINE_SIZE);
491 
492 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
493 
494 #ifdef	NUMA
495 struct pmap_large_md_page {
496 	struct rwlock   pv_lock;
497 	struct md_page  pv_page;
498 	u_long pv_invl_gen;
499 };
500 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
501 #define pv_dummy pv_dummy_large.pv_page
502 __read_mostly static struct pmap_large_md_page *pv_table;
503 __read_mostly vm_paddr_t pmap_last_pa;
504 #else
505 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
506 static u_long pv_invl_gen[NPV_LIST_LOCKS];
507 static struct md_page *pv_table;
508 static struct md_page pv_dummy;
509 #endif
510 
511 /*
512  * All those kernel PT submaps that BSD is so fond of
513  */
514 pt_entry_t *CMAP1 = NULL;
515 caddr_t CADDR1 = 0;
516 static vm_offset_t qframe = 0;
517 static struct mtx qframe_mtx;
518 
519 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
520 
521 static vmem_t *large_vmem;
522 static u_int lm_ents;
523 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
524 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
525 
526 int pmap_pcid_enabled = 1;
527 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
528     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
529 int invpcid_works = 0;
530 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
531     "Is the invpcid instruction available ?");
532 int pmap_pcid_invlpg_workaround = 0;
533 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
534     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
535     &pmap_pcid_invlpg_workaround, 0,
536     "Enable small core PCID/INVLPG workaround");
537 int pmap_pcid_invlpg_workaround_uena = 1;
538 
539 int __read_frequently pti = 0;
540 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
541     &pti, 0,
542     "Page Table Isolation enabled");
543 static vm_object_t pti_obj;
544 static pml4_entry_t *pti_pml4;
545 static vm_pindex_t pti_pg_idx;
546 static bool pti_finalized;
547 
548 struct pmap_pkru_range {
549 	struct rs_el	pkru_rs_el;
550 	u_int		pkru_keyidx;
551 	int		pkru_flags;
552 };
553 
554 static uma_zone_t pmap_pkru_ranges_zone;
555 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
556 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
557 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
558 static void *pkru_dup_range(void *ctx, void *data);
559 static void pkru_free_range(void *ctx, void *node);
560 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
561 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
562 static void pmap_pkru_deassign_all(pmap_t pmap);
563 
564 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
565 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
566     &pcid_save_cnt, "Count of saved TLB context on switch");
567 
568 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
569     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
570 static struct mtx invl_gen_mtx;
571 /* Fake lock object to satisfy turnstiles interface. */
572 static struct lock_object invl_gen_ts = {
573 	.lo_name = "invlts",
574 };
575 static struct pmap_invl_gen pmap_invl_gen_head = {
576 	.gen = 1,
577 	.next = NULL,
578 };
579 static u_long pmap_invl_gen = 1;
580 static int pmap_invl_waiters;
581 static struct callout pmap_invl_callout;
582 static bool pmap_invl_callout_inited;
583 
584 #define	PMAP_ASSERT_NOT_IN_DI() \
585     KASSERT(pmap_not_in_di(), ("DI already started"))
586 
587 static bool
588 pmap_di_locked(void)
589 {
590 	int tun;
591 
592 	if ((cpu_feature2 & CPUID2_CX16) == 0)
593 		return (true);
594 	tun = 0;
595 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
596 	return (tun != 0);
597 }
598 
599 static int
600 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
601 {
602 	int locked;
603 
604 	locked = pmap_di_locked();
605 	return (sysctl_handle_int(oidp, &locked, 0, req));
606 }
607 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
608     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
609     "Locked delayed invalidation");
610 
611 static bool pmap_not_in_di_l(void);
612 static bool pmap_not_in_di_u(void);
613 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
614 {
615 
616 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
617 }
618 
619 static bool
620 pmap_not_in_di_l(void)
621 {
622 	struct pmap_invl_gen *invl_gen;
623 
624 	invl_gen = &curthread->td_md.md_invl_gen;
625 	return (invl_gen->gen == 0);
626 }
627 
628 static void
629 pmap_thread_init_invl_gen_l(struct thread *td)
630 {
631 	struct pmap_invl_gen *invl_gen;
632 
633 	invl_gen = &td->td_md.md_invl_gen;
634 	invl_gen->gen = 0;
635 }
636 
637 static void
638 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
639 {
640 	struct turnstile *ts;
641 
642 	ts = turnstile_trywait(&invl_gen_ts);
643 	if (*m_gen > atomic_load_long(invl_gen))
644 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
645 	else
646 		turnstile_cancel(ts);
647 }
648 
649 static void
650 pmap_delayed_invl_finish_unblock(u_long new_gen)
651 {
652 	struct turnstile *ts;
653 
654 	turnstile_chain_lock(&invl_gen_ts);
655 	ts = turnstile_lookup(&invl_gen_ts);
656 	if (new_gen != 0)
657 		pmap_invl_gen = new_gen;
658 	if (ts != NULL) {
659 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
660 		turnstile_unpend(ts);
661 	}
662 	turnstile_chain_unlock(&invl_gen_ts);
663 }
664 
665 /*
666  * Start a new Delayed Invalidation (DI) block of code, executed by
667  * the current thread.  Within a DI block, the current thread may
668  * destroy both the page table and PV list entries for a mapping and
669  * then release the corresponding PV list lock before ensuring that
670  * the mapping is flushed from the TLBs of any processors with the
671  * pmap active.
672  */
673 static void
674 pmap_delayed_invl_start_l(void)
675 {
676 	struct pmap_invl_gen *invl_gen;
677 	u_long currgen;
678 
679 	invl_gen = &curthread->td_md.md_invl_gen;
680 	PMAP_ASSERT_NOT_IN_DI();
681 	mtx_lock(&invl_gen_mtx);
682 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
683 		currgen = pmap_invl_gen;
684 	else
685 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
686 	invl_gen->gen = currgen + 1;
687 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
688 	mtx_unlock(&invl_gen_mtx);
689 }
690 
691 /*
692  * Finish the DI block, previously started by the current thread.  All
693  * required TLB flushes for the pages marked by
694  * pmap_delayed_invl_page() must be finished before this function is
695  * called.
696  *
697  * This function works by bumping the global DI generation number to
698  * the generation number of the current thread's DI, unless there is a
699  * pending DI that started earlier.  In the latter case, bumping the
700  * global DI generation number would incorrectly signal that the
701  * earlier DI had finished.  Instead, this function bumps the earlier
702  * DI's generation number to match the generation number of the
703  * current thread's DI.
704  */
705 static void
706 pmap_delayed_invl_finish_l(void)
707 {
708 	struct pmap_invl_gen *invl_gen, *next;
709 
710 	invl_gen = &curthread->td_md.md_invl_gen;
711 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
712 	mtx_lock(&invl_gen_mtx);
713 	next = LIST_NEXT(invl_gen, link);
714 	if (next == NULL)
715 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
716 	else
717 		next->gen = invl_gen->gen;
718 	LIST_REMOVE(invl_gen, link);
719 	mtx_unlock(&invl_gen_mtx);
720 	invl_gen->gen = 0;
721 }
722 
723 static bool
724 pmap_not_in_di_u(void)
725 {
726 	struct pmap_invl_gen *invl_gen;
727 
728 	invl_gen = &curthread->td_md.md_invl_gen;
729 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
730 }
731 
732 static void
733 pmap_thread_init_invl_gen_u(struct thread *td)
734 {
735 	struct pmap_invl_gen *invl_gen;
736 
737 	invl_gen = &td->td_md.md_invl_gen;
738 	invl_gen->gen = 0;
739 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
740 }
741 
742 static bool
743 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
744 {
745 	uint64_t new_high, new_low, old_high, old_low;
746 	char res;
747 
748 	old_low = new_low = 0;
749 	old_high = new_high = (uintptr_t)0;
750 
751 	__asm volatile("lock;cmpxchg16b\t%1"
752 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
753 	    : "b"(new_low), "c" (new_high)
754 	    : "memory", "cc");
755 	if (res == 0) {
756 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
757 			return (false);
758 		out->gen = old_low;
759 		out->next = (void *)old_high;
760 	} else {
761 		out->gen = new_low;
762 		out->next = (void *)new_high;
763 	}
764 	return (true);
765 }
766 
767 static bool
768 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
769     struct pmap_invl_gen *new_val)
770 {
771 	uint64_t new_high, new_low, old_high, old_low;
772 	char res;
773 
774 	new_low = new_val->gen;
775 	new_high = (uintptr_t)new_val->next;
776 	old_low = old_val->gen;
777 	old_high = (uintptr_t)old_val->next;
778 
779 	__asm volatile("lock;cmpxchg16b\t%1"
780 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
781 	    : "b"(new_low), "c" (new_high)
782 	    : "memory", "cc");
783 	return (res);
784 }
785 
786 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
787 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
788     &pv_page_count, "Current number of allocated pv pages");
789 
790 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
791 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
792     &user_pt_page_count,
793     "Current number of allocated page table pages for userspace");
794 
795 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
796 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
797     &kernel_pt_page_count,
798     "Current number of allocated page table pages for the kernel");
799 
800 #ifdef PV_STATS
801 
802 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
803 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
804     CTLFLAG_RD, &invl_start_restart,
805     "Number of delayed TLB invalidation request restarts");
806 
807 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
808 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
809     &invl_finish_restart,
810     "Number of delayed TLB invalidation completion restarts");
811 
812 static int invl_max_qlen;
813 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
814     &invl_max_qlen, 0,
815     "Maximum delayed TLB invalidation request queue length");
816 #endif
817 
818 #define di_delay	locks_delay
819 
820 static void
821 pmap_delayed_invl_start_u(void)
822 {
823 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
824 	struct thread *td;
825 	struct lock_delay_arg lda;
826 	uintptr_t prevl;
827 	u_char pri;
828 #ifdef PV_STATS
829 	int i, ii;
830 #endif
831 
832 	td = curthread;
833 	invl_gen = &td->td_md.md_invl_gen;
834 	PMAP_ASSERT_NOT_IN_DI();
835 	lock_delay_arg_init(&lda, &di_delay);
836 	invl_gen->saved_pri = 0;
837 	pri = td->td_base_pri;
838 	if (pri > PVM) {
839 		thread_lock(td);
840 		pri = td->td_base_pri;
841 		if (pri > PVM) {
842 			invl_gen->saved_pri = pri;
843 			sched_prio(td, PVM);
844 		}
845 		thread_unlock(td);
846 	}
847 again:
848 	PV_STAT(i = 0);
849 	for (p = &pmap_invl_gen_head;; p = prev.next) {
850 		PV_STAT(i++);
851 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
852 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
853 			PV_STAT(counter_u64_add(invl_start_restart, 1));
854 			lock_delay(&lda);
855 			goto again;
856 		}
857 		if (prevl == 0)
858 			break;
859 		prev.next = (void *)prevl;
860 	}
861 #ifdef PV_STATS
862 	if ((ii = invl_max_qlen) < i)
863 		atomic_cmpset_int(&invl_max_qlen, ii, i);
864 #endif
865 
866 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
867 		PV_STAT(counter_u64_add(invl_start_restart, 1));
868 		lock_delay(&lda);
869 		goto again;
870 	}
871 
872 	new_prev.gen = prev.gen;
873 	new_prev.next = invl_gen;
874 	invl_gen->gen = prev.gen + 1;
875 
876 	/* Formal fence between store to invl->gen and updating *p. */
877 	atomic_thread_fence_rel();
878 
879 	/*
880 	 * After inserting an invl_gen element with invalid bit set,
881 	 * this thread blocks any other thread trying to enter the
882 	 * delayed invalidation block.  Do not allow to remove us from
883 	 * the CPU, because it causes starvation for other threads.
884 	 */
885 	critical_enter();
886 
887 	/*
888 	 * ABA for *p is not possible there, since p->gen can only
889 	 * increase.  So if the *p thread finished its di, then
890 	 * started a new one and got inserted into the list at the
891 	 * same place, its gen will appear greater than the previously
892 	 * read gen.
893 	 */
894 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
895 		critical_exit();
896 		PV_STAT(counter_u64_add(invl_start_restart, 1));
897 		lock_delay(&lda);
898 		goto again;
899 	}
900 
901 	/*
902 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
903 	 * invl_gen->next, allowing other threads to iterate past us.
904 	 * pmap_di_store_invl() provides fence between the generation
905 	 * write and the update of next.
906 	 */
907 	invl_gen->next = NULL;
908 	critical_exit();
909 }
910 
911 static bool
912 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
913     struct pmap_invl_gen *p)
914 {
915 	struct pmap_invl_gen prev, new_prev;
916 	u_long mygen;
917 
918 	/*
919 	 * Load invl_gen->gen after setting invl_gen->next
920 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
921 	 * generations to propagate to our invl_gen->gen.  Lock prefix
922 	 * in atomic_set_ptr() worked as seq_cst fence.
923 	 */
924 	mygen = atomic_load_long(&invl_gen->gen);
925 
926 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
927 		return (false);
928 
929 	KASSERT(prev.gen < mygen,
930 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
931 	new_prev.gen = mygen;
932 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
933 	    ~PMAP_INVL_GEN_NEXT_INVALID);
934 
935 	/* Formal fence between load of prev and storing update to it. */
936 	atomic_thread_fence_rel();
937 
938 	return (pmap_di_store_invl(p, &prev, &new_prev));
939 }
940 
941 static void
942 pmap_delayed_invl_finish_u(void)
943 {
944 	struct pmap_invl_gen *invl_gen, *p;
945 	struct thread *td;
946 	struct lock_delay_arg lda;
947 	uintptr_t prevl;
948 
949 	td = curthread;
950 	invl_gen = &td->td_md.md_invl_gen;
951 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
952 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
953 	    ("missed invl_start: INVALID"));
954 	lock_delay_arg_init(&lda, &di_delay);
955 
956 again:
957 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
958 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
959 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
960 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
961 			lock_delay(&lda);
962 			goto again;
963 		}
964 		if ((void *)prevl == invl_gen)
965 			break;
966 	}
967 
968 	/*
969 	 * It is legitimate to not find ourself on the list if a
970 	 * thread before us finished its DI and started it again.
971 	 */
972 	if (__predict_false(p == NULL)) {
973 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
974 		lock_delay(&lda);
975 		goto again;
976 	}
977 
978 	critical_enter();
979 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
980 	    PMAP_INVL_GEN_NEXT_INVALID);
981 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
982 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
983 		    PMAP_INVL_GEN_NEXT_INVALID);
984 		critical_exit();
985 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
986 		lock_delay(&lda);
987 		goto again;
988 	}
989 	critical_exit();
990 	if (atomic_load_int(&pmap_invl_waiters) > 0)
991 		pmap_delayed_invl_finish_unblock(0);
992 	if (invl_gen->saved_pri != 0) {
993 		thread_lock(td);
994 		sched_prio(td, invl_gen->saved_pri);
995 		thread_unlock(td);
996 	}
997 }
998 
999 #ifdef DDB
1000 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1001 {
1002 	struct pmap_invl_gen *p, *pn;
1003 	struct thread *td;
1004 	uintptr_t nextl;
1005 	bool first;
1006 
1007 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1008 	    first = false) {
1009 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1010 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1011 		td = first ? NULL : __containerof(p, struct thread,
1012 		    td_md.md_invl_gen);
1013 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1014 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1015 		    td != NULL ? td->td_tid : -1);
1016 	}
1017 }
1018 #endif
1019 
1020 #ifdef PV_STATS
1021 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1022 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1023     CTLFLAG_RD, &invl_wait,
1024     "Number of times DI invalidation blocked pmap_remove_all/write");
1025 
1026 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1027 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1028      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1029 
1030 #endif
1031 
1032 #ifdef NUMA
1033 static u_long *
1034 pmap_delayed_invl_genp(vm_page_t m)
1035 {
1036 	vm_paddr_t pa;
1037 	u_long *gen;
1038 
1039 	pa = VM_PAGE_TO_PHYS(m);
1040 	if (__predict_false((pa) > pmap_last_pa))
1041 		gen = &pv_dummy_large.pv_invl_gen;
1042 	else
1043 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1044 
1045 	return (gen);
1046 }
1047 #else
1048 static u_long *
1049 pmap_delayed_invl_genp(vm_page_t m)
1050 {
1051 
1052 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1053 }
1054 #endif
1055 
1056 static void
1057 pmap_delayed_invl_callout_func(void *arg __unused)
1058 {
1059 
1060 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1061 		return;
1062 	pmap_delayed_invl_finish_unblock(0);
1063 }
1064 
1065 static void
1066 pmap_delayed_invl_callout_init(void *arg __unused)
1067 {
1068 
1069 	if (pmap_di_locked())
1070 		return;
1071 	callout_init(&pmap_invl_callout, 1);
1072 	pmap_invl_callout_inited = true;
1073 }
1074 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1075     pmap_delayed_invl_callout_init, NULL);
1076 
1077 /*
1078  * Ensure that all currently executing DI blocks, that need to flush
1079  * TLB for the given page m, actually flushed the TLB at the time the
1080  * function returned.  If the page m has an empty PV list and we call
1081  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1082  * valid mapping for the page m in either its page table or TLB.
1083  *
1084  * This function works by blocking until the global DI generation
1085  * number catches up with the generation number associated with the
1086  * given page m and its PV list.  Since this function's callers
1087  * typically own an object lock and sometimes own a page lock, it
1088  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1089  * processor.
1090  */
1091 static void
1092 pmap_delayed_invl_wait_l(vm_page_t m)
1093 {
1094 	u_long *m_gen;
1095 #ifdef PV_STATS
1096 	bool accounted = false;
1097 #endif
1098 
1099 	m_gen = pmap_delayed_invl_genp(m);
1100 	while (*m_gen > pmap_invl_gen) {
1101 #ifdef PV_STATS
1102 		if (!accounted) {
1103 			counter_u64_add(invl_wait, 1);
1104 			accounted = true;
1105 		}
1106 #endif
1107 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1108 	}
1109 }
1110 
1111 static void
1112 pmap_delayed_invl_wait_u(vm_page_t m)
1113 {
1114 	u_long *m_gen;
1115 	struct lock_delay_arg lda;
1116 	bool fast;
1117 
1118 	fast = true;
1119 	m_gen = pmap_delayed_invl_genp(m);
1120 	lock_delay_arg_init(&lda, &di_delay);
1121 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1122 		if (fast || !pmap_invl_callout_inited) {
1123 			PV_STAT(counter_u64_add(invl_wait, 1));
1124 			lock_delay(&lda);
1125 			fast = false;
1126 		} else {
1127 			/*
1128 			 * The page's invalidation generation number
1129 			 * is still below the current thread's number.
1130 			 * Prepare to block so that we do not waste
1131 			 * CPU cycles or worse, suffer livelock.
1132 			 *
1133 			 * Since it is impossible to block without
1134 			 * racing with pmap_delayed_invl_finish_u(),
1135 			 * prepare for the race by incrementing
1136 			 * pmap_invl_waiters and arming a 1-tick
1137 			 * callout which will unblock us if we lose
1138 			 * the race.
1139 			 */
1140 			atomic_add_int(&pmap_invl_waiters, 1);
1141 
1142 			/*
1143 			 * Re-check the current thread's invalidation
1144 			 * generation after incrementing
1145 			 * pmap_invl_waiters, so that there is no race
1146 			 * with pmap_delayed_invl_finish_u() setting
1147 			 * the page generation and checking
1148 			 * pmap_invl_waiters.  The only race allowed
1149 			 * is for a missed unblock, which is handled
1150 			 * by the callout.
1151 			 */
1152 			if (*m_gen >
1153 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1154 				callout_reset(&pmap_invl_callout, 1,
1155 				    pmap_delayed_invl_callout_func, NULL);
1156 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1157 				pmap_delayed_invl_wait_block(m_gen,
1158 				    &pmap_invl_gen_head.gen);
1159 			}
1160 			atomic_add_int(&pmap_invl_waiters, -1);
1161 		}
1162 	}
1163 }
1164 
1165 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1166 {
1167 
1168 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1169 	    pmap_thread_init_invl_gen_u);
1170 }
1171 
1172 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1173 {
1174 
1175 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1176 	    pmap_delayed_invl_start_u);
1177 }
1178 
1179 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1180 {
1181 
1182 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1183 	    pmap_delayed_invl_finish_u);
1184 }
1185 
1186 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1187 {
1188 
1189 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1190 	    pmap_delayed_invl_wait_u);
1191 }
1192 
1193 /*
1194  * Mark the page m's PV list as participating in the current thread's
1195  * DI block.  Any threads concurrently using m's PV list to remove or
1196  * restrict all mappings to m will wait for the current thread's DI
1197  * block to complete before proceeding.
1198  *
1199  * The function works by setting the DI generation number for m's PV
1200  * list to at least the DI generation number of the current thread.
1201  * This forces a caller of pmap_delayed_invl_wait() to block until
1202  * current thread calls pmap_delayed_invl_finish().
1203  */
1204 static void
1205 pmap_delayed_invl_page(vm_page_t m)
1206 {
1207 	u_long gen, *m_gen;
1208 
1209 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1210 	gen = curthread->td_md.md_invl_gen.gen;
1211 	if (gen == 0)
1212 		return;
1213 	m_gen = pmap_delayed_invl_genp(m);
1214 	if (*m_gen < gen)
1215 		*m_gen = gen;
1216 }
1217 
1218 /*
1219  * Crashdump maps.
1220  */
1221 static caddr_t crashdumpmap;
1222 
1223 /*
1224  * Internal flags for pmap_enter()'s helper functions.
1225  */
1226 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1227 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1228 
1229 /*
1230  * Internal flags for pmap_mapdev_internal() and
1231  * pmap_change_props_locked().
1232  */
1233 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1234 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1235 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1236 
1237 TAILQ_HEAD(pv_chunklist, pv_chunk);
1238 
1239 static void	free_pv_chunk(struct pv_chunk *pc);
1240 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1241 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1242 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1243 static int	popcnt_pc_map_pq(uint64_t *map);
1244 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1245 static void	reserve_pv_entries(pmap_t pmap, int needed,
1246 		    struct rwlock **lockp);
1247 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1248 		    struct rwlock **lockp);
1249 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1250 		    u_int flags, struct rwlock **lockp);
1251 #if VM_NRESERVLEVEL > 0
1252 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1253 		    struct rwlock **lockp);
1254 #endif
1255 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1256 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1257 		    vm_offset_t va);
1258 
1259 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1260 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1261     vm_prot_t prot, int mode, int flags);
1262 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1263 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1264     vm_offset_t va, struct rwlock **lockp);
1265 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1266     vm_offset_t va);
1267 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1268 		    vm_prot_t prot, struct rwlock **lockp);
1269 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1270 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1271 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1272     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1273 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1274 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
1275 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1276     vm_offset_t eva);
1277 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1278     vm_offset_t eva);
1279 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1280 		    pd_entry_t pde);
1281 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1282 static vm_page_t pmap_large_map_getptp_unlocked(void);
1283 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1284 #if VM_NRESERVLEVEL > 0
1285 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1286     vm_page_t mpte, struct rwlock **lockp);
1287 #endif
1288 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1289     vm_prot_t prot);
1290 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1291 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1292     bool exec);
1293 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1294 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1295 static void pmap_pti_wire_pte(void *pte);
1296 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1297     struct spglist *free, struct rwlock **lockp);
1298 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1299     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1300 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1301 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1302     struct spglist *free);
1303 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1304 		    pd_entry_t *pde, struct spglist *free,
1305 		    struct rwlock **lockp);
1306 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1307     vm_page_t m, struct rwlock **lockp);
1308 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1309     pd_entry_t newpde);
1310 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1311 
1312 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1313 		struct rwlock **lockp);
1314 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1315 		struct rwlock **lockp, vm_offset_t va);
1316 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1317 		struct rwlock **lockp, vm_offset_t va);
1318 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1319 		struct rwlock **lockp);
1320 
1321 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1322     struct spglist *free);
1323 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1324 
1325 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1326 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1327 
1328 /********************/
1329 /* Inline functions */
1330 /********************/
1331 
1332 /*
1333  * Return a non-clipped indexes for a given VA, which are page table
1334  * pages indexes at the corresponding level.
1335  */
1336 static __inline vm_pindex_t
1337 pmap_pde_pindex(vm_offset_t va)
1338 {
1339 	return (va >> PDRSHIFT);
1340 }
1341 
1342 static __inline vm_pindex_t
1343 pmap_pdpe_pindex(vm_offset_t va)
1344 {
1345 	return (NUPDE + (va >> PDPSHIFT));
1346 }
1347 
1348 static __inline vm_pindex_t
1349 pmap_pml4e_pindex(vm_offset_t va)
1350 {
1351 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1352 }
1353 
1354 static __inline vm_pindex_t
1355 pmap_pml5e_pindex(vm_offset_t va)
1356 {
1357 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1358 }
1359 
1360 static __inline pml4_entry_t *
1361 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1362 {
1363 
1364 	MPASS(pmap_is_la57(pmap));
1365 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1366 }
1367 
1368 static __inline pml4_entry_t *
1369 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1370 {
1371 
1372 	MPASS(pmap_is_la57(pmap));
1373 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1374 }
1375 
1376 static __inline pml4_entry_t *
1377 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1378 {
1379 	pml4_entry_t *pml4e;
1380 
1381 	/* XXX MPASS(pmap_is_la57(pmap); */
1382 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1383 	return (&pml4e[pmap_pml4e_index(va)]);
1384 }
1385 
1386 /* Return a pointer to the PML4 slot that corresponds to a VA */
1387 static __inline pml4_entry_t *
1388 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1389 {
1390 	pml5_entry_t *pml5e;
1391 	pml4_entry_t *pml4e;
1392 	pt_entry_t PG_V;
1393 
1394 	if (pmap_is_la57(pmap)) {
1395 		pml5e = pmap_pml5e(pmap, va);
1396 		PG_V = pmap_valid_bit(pmap);
1397 		if ((*pml5e & PG_V) == 0)
1398 			return (NULL);
1399 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1400 	} else {
1401 		pml4e = pmap->pm_pmltop;
1402 	}
1403 	return (&pml4e[pmap_pml4e_index(va)]);
1404 }
1405 
1406 static __inline pml4_entry_t *
1407 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1408 {
1409 	MPASS(!pmap_is_la57(pmap));
1410 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1411 }
1412 
1413 /* Return a pointer to the PDP slot that corresponds to a VA */
1414 static __inline pdp_entry_t *
1415 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1416 {
1417 	pdp_entry_t *pdpe;
1418 
1419 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1420 	return (&pdpe[pmap_pdpe_index(va)]);
1421 }
1422 
1423 /* Return a pointer to the PDP slot that corresponds to a VA */
1424 static __inline pdp_entry_t *
1425 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1426 {
1427 	pml4_entry_t *pml4e;
1428 	pt_entry_t PG_V;
1429 
1430 	PG_V = pmap_valid_bit(pmap);
1431 	pml4e = pmap_pml4e(pmap, va);
1432 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1433 		return (NULL);
1434 	return (pmap_pml4e_to_pdpe(pml4e, va));
1435 }
1436 
1437 /* Return a pointer to the PD slot that corresponds to a VA */
1438 static __inline pd_entry_t *
1439 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1440 {
1441 	pd_entry_t *pde;
1442 
1443 	KASSERT((*pdpe & PG_PS) == 0,
1444 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1445 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1446 	return (&pde[pmap_pde_index(va)]);
1447 }
1448 
1449 /* Return a pointer to the PD slot that corresponds to a VA */
1450 static __inline pd_entry_t *
1451 pmap_pde(pmap_t pmap, vm_offset_t va)
1452 {
1453 	pdp_entry_t *pdpe;
1454 	pt_entry_t PG_V;
1455 
1456 	PG_V = pmap_valid_bit(pmap);
1457 	pdpe = pmap_pdpe(pmap, va);
1458 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1459 		return (NULL);
1460 	KASSERT((*pdpe & PG_PS) == 0,
1461 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1462 	return (pmap_pdpe_to_pde(pdpe, va));
1463 }
1464 
1465 /* Return a pointer to the PT slot that corresponds to a VA */
1466 static __inline pt_entry_t *
1467 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1468 {
1469 	pt_entry_t *pte;
1470 
1471 	KASSERT((*pde & PG_PS) == 0,
1472 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1473 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1474 	return (&pte[pmap_pte_index(va)]);
1475 }
1476 
1477 /* Return a pointer to the PT slot that corresponds to a VA */
1478 static __inline pt_entry_t *
1479 pmap_pte(pmap_t pmap, vm_offset_t va)
1480 {
1481 	pd_entry_t *pde;
1482 	pt_entry_t PG_V;
1483 
1484 	PG_V = pmap_valid_bit(pmap);
1485 	pde = pmap_pde(pmap, va);
1486 	if (pde == NULL || (*pde & PG_V) == 0)
1487 		return (NULL);
1488 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1489 		return ((pt_entry_t *)pde);
1490 	return (pmap_pde_to_pte(pde, va));
1491 }
1492 
1493 static __inline void
1494 pmap_resident_count_adj(pmap_t pmap, int count)
1495 {
1496 
1497 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1498 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1499 	    ("pmap %p resident count underflow %ld %d", pmap,
1500 	    pmap->pm_stats.resident_count, count));
1501 	pmap->pm_stats.resident_count += count;
1502 }
1503 
1504 static __inline void
1505 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1506 {
1507 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1508 	    ("pmap %p resident count underflow %ld %d", pmap,
1509 	    pmap->pm_stats.resident_count, count));
1510 	pmap->pm_stats.resident_count += count;
1511 }
1512 
1513 static __inline void
1514 pmap_pt_page_count_adj(pmap_t pmap, int count)
1515 {
1516 	if (pmap == kernel_pmap)
1517 		counter_u64_add(kernel_pt_page_count, count);
1518 	else {
1519 		if (pmap != NULL)
1520 			pmap_resident_count_adj(pmap, count);
1521 		counter_u64_add(user_pt_page_count, count);
1522 	}
1523 }
1524 
1525 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1526     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1527 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1528 
1529 PMAP_INLINE pt_entry_t *
1530 vtopte(vm_offset_t va)
1531 {
1532 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1533 
1534 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1535 }
1536 
1537 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1538     NPML4EPGSHIFT)) - 1) << 3;
1539 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1540 
1541 static __inline pd_entry_t *
1542 vtopde(vm_offset_t va)
1543 {
1544 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1545 
1546 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1547 }
1548 
1549 static u_int64_t
1550 allocpages(vm_paddr_t *firstaddr, int n)
1551 {
1552 	u_int64_t ret;
1553 
1554 	ret = *firstaddr;
1555 	bzero((void *)ret, n * PAGE_SIZE);
1556 	*firstaddr += n * PAGE_SIZE;
1557 	return (ret);
1558 }
1559 
1560 CTASSERT(powerof2(NDMPML4E));
1561 
1562 /* number of kernel PDP slots */
1563 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1564 
1565 static void
1566 nkpt_init(vm_paddr_t addr)
1567 {
1568 	int pt_pages;
1569 
1570 #ifdef NKPT
1571 	pt_pages = NKPT;
1572 #else
1573 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1574 	pt_pages += NKPDPE(pt_pages);
1575 
1576 	/*
1577 	 * Add some slop beyond the bare minimum required for bootstrapping
1578 	 * the kernel.
1579 	 *
1580 	 * This is quite important when allocating KVA for kernel modules.
1581 	 * The modules are required to be linked in the negative 2GB of
1582 	 * the address space.  If we run out of KVA in this region then
1583 	 * pmap_growkernel() will need to allocate page table pages to map
1584 	 * the entire 512GB of KVA space which is an unnecessary tax on
1585 	 * physical memory.
1586 	 *
1587 	 * Secondly, device memory mapped as part of setting up the low-
1588 	 * level console(s) is taken from KVA, starting at virtual_avail.
1589 	 * This is because cninit() is called after pmap_bootstrap() but
1590 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1591 	 * not uncommon.
1592 	 */
1593 	pt_pages += 32;		/* 64MB additional slop. */
1594 #endif
1595 	nkpt = pt_pages;
1596 }
1597 
1598 /*
1599  * Returns the proper write/execute permission for a physical page that is
1600  * part of the initial boot allocations.
1601  *
1602  * If the page has kernel text, it is marked as read-only. If the page has
1603  * kernel read-only data, it is marked as read-only/not-executable. If the
1604  * page has only read-write data, it is marked as read-write/not-executable.
1605  * If the page is below/above the kernel range, it is marked as read-write.
1606  *
1607  * This function operates on 2M pages, since we map the kernel space that
1608  * way.
1609  */
1610 static inline pt_entry_t
1611 bootaddr_rwx(vm_paddr_t pa)
1612 {
1613 	/*
1614 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1615 	 * need not be executable.  The .bss section is padded to a 2MB
1616 	 * boundary, so memory following the kernel need not be executable
1617 	 * either.  Preloaded kernel modules have their mapping permissions
1618 	 * fixed up by the linker.
1619 	 */
1620 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1621 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1622 		return (X86_PG_RW | pg_nx);
1623 
1624 	/*
1625 	 * The linker should ensure that the read-only and read-write
1626 	 * portions don't share the same 2M page, so this shouldn't
1627 	 * impact read-only data. However, in any case, any page with
1628 	 * read-write data needs to be read-write.
1629 	 */
1630 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1631 		return (X86_PG_RW | pg_nx);
1632 
1633 	/*
1634 	 * Mark any 2M page containing kernel text as read-only. Mark
1635 	 * other pages with read-only data as read-only and not executable.
1636 	 * (It is likely a small portion of the read-only data section will
1637 	 * be marked as read-only, but executable. This should be acceptable
1638 	 * since the read-only protection will keep the data from changing.)
1639 	 * Note that fixups to the .text section will still work until we
1640 	 * set CR0.WP.
1641 	 */
1642 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1643 		return (0);
1644 	return (pg_nx);
1645 }
1646 
1647 static void
1648 create_pagetables(vm_paddr_t *firstaddr)
1649 {
1650 	pd_entry_t *pd_p;
1651 	pdp_entry_t *pdp_p;
1652 	pml4_entry_t *p4_p;
1653 	uint64_t DMPDkernphys;
1654 	vm_paddr_t pax;
1655 #ifdef KASAN
1656 	pt_entry_t *pt_p;
1657 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1658 	vm_offset_t kasankernbase;
1659 	int kasankpdpi, kasankpdi, nkasanpte;
1660 #endif
1661 	int i, j, ndm1g, nkpdpe, nkdmpde;
1662 
1663 	/* Allocate page table pages for the direct map */
1664 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1665 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1666 		ndmpdp = 4;
1667 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1668 	if (ndmpdpphys > NDMPML4E) {
1669 		/*
1670 		 * Each NDMPML4E allows 512 GB, so limit to that,
1671 		 * and then readjust ndmpdp and ndmpdpphys.
1672 		 */
1673 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1674 		Maxmem = atop(NDMPML4E * NBPML4);
1675 		ndmpdpphys = NDMPML4E;
1676 		ndmpdp = NDMPML4E * NPDEPG;
1677 	}
1678 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1679 	ndm1g = 0;
1680 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1681 		/*
1682 		 * Calculate the number of 1G pages that will fully fit in
1683 		 * Maxmem.
1684 		 */
1685 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1686 
1687 		/*
1688 		 * Allocate 2M pages for the kernel. These will be used in
1689 		 * place of the one or more 1G pages from ndm1g that maps
1690 		 * kernel memory into DMAP.
1691 		 */
1692 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1693 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1694 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1695 	}
1696 	if (ndm1g < ndmpdp)
1697 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1698 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1699 
1700 	/* Allocate pages. */
1701 	KPML4phys = allocpages(firstaddr, 1);
1702 	KPDPphys = allocpages(firstaddr, NKPML4E);
1703 #ifdef KASAN
1704 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1705 	KASANPDphys = allocpages(firstaddr, 1);
1706 #endif
1707 #ifdef KMSAN
1708 	/*
1709 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1710 	 * no need to shadow memory above KERNBASE.
1711 	 */
1712 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1713 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1714 #endif
1715 
1716 	/*
1717 	 * Allocate the initial number of kernel page table pages required to
1718 	 * bootstrap.  We defer this until after all memory-size dependent
1719 	 * allocations are done (e.g. direct map), so that we don't have to
1720 	 * build in too much slop in our estimate.
1721 	 *
1722 	 * Note that when NKPML4E > 1, we have an empty page underneath
1723 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1724 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1725 	 */
1726 	nkpt_init(*firstaddr);
1727 	nkpdpe = NKPDPE(nkpt);
1728 
1729 	KPTphys = allocpages(firstaddr, nkpt);
1730 	KPDphys = allocpages(firstaddr, nkpdpe);
1731 
1732 #ifdef KASAN
1733 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1734 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1735 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1736 #endif
1737 
1738 	/*
1739 	 * Connect the zero-filled PT pages to their PD entries.  This
1740 	 * implicitly maps the PT pages at their correct locations within
1741 	 * the PTmap.
1742 	 */
1743 	pd_p = (pd_entry_t *)KPDphys;
1744 	for (i = 0; i < nkpt; i++)
1745 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1746 
1747 	/*
1748 	 * Map from start of the kernel in physical memory (staging
1749 	 * area) to the end of loader preallocated memory using 2MB
1750 	 * pages.  This replaces some of the PD entries created above.
1751 	 * For compatibility, identity map 2M at the start.
1752 	 */
1753 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1754 	    X86_PG_RW | pg_nx;
1755 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1756 		/* Preset PG_M and PG_A because demotion expects it. */
1757 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1758 		    X86_PG_A | bootaddr_rwx(pax);
1759 	}
1760 
1761 	/*
1762 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1763 	 * to record the physical blocks we've actually mapped into kernel
1764 	 * virtual address space.
1765 	 */
1766 	if (*firstaddr < round_2mpage(KERNend))
1767 		*firstaddr = round_2mpage(KERNend);
1768 
1769 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1770 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1771 	for (i = 0; i < nkpdpe; i++)
1772 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1773 
1774 #ifdef KASAN
1775 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1776 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1777 	kasankpdi = pmap_pde_index(kasankernbase);
1778 
1779 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1780 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1781 
1782 	pd_p = (pd_entry_t *)KASANPDphys;
1783 	for (i = 0; i < nkasanpte; i++)
1784 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1785 		    X86_PG_V | pg_nx;
1786 
1787 	pt_p = (pt_entry_t *)KASANPTphys;
1788 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1789 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1790 		    X86_PG_M | X86_PG_A | pg_nx;
1791 #endif
1792 
1793 	/*
1794 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1795 	 * the end of physical memory is not aligned to a 1GB page boundary,
1796 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1797 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1798 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1799 	 * that are partially used.
1800 	 */
1801 	pd_p = (pd_entry_t *)DMPDphys;
1802 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1803 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1804 		/* Preset PG_M and PG_A because demotion expects it. */
1805 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1806 		    X86_PG_M | X86_PG_A | pg_nx;
1807 	}
1808 	pdp_p = (pdp_entry_t *)DMPDPphys;
1809 	for (i = 0; i < ndm1g; i++) {
1810 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1811 		/* Preset PG_M and PG_A because demotion expects it. */
1812 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1813 		    X86_PG_M | X86_PG_A | pg_nx;
1814 	}
1815 	for (j = 0; i < ndmpdp; i++, j++) {
1816 		pdp_p[i] = DMPDphys + ptoa(j);
1817 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1818 	}
1819 
1820 	/*
1821 	 * Instead of using a 1G page for the memory containing the kernel,
1822 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1823 	 * pages, this will partially overwrite the PDPEs above.)
1824 	 */
1825 	if (ndm1g > 0) {
1826 		pd_p = (pd_entry_t *)DMPDkernphys;
1827 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1828 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1829 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1830 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1831 		}
1832 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1833 		for (i = 0; i < nkdmpde; i++) {
1834 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1835 			    X86_PG_RW | X86_PG_V | pg_nx;
1836 		}
1837 	}
1838 
1839 	/* And recursively map PML4 to itself in order to get PTmap */
1840 	p4_p = (pml4_entry_t *)KPML4phys;
1841 	p4_p[PML4PML4I] = KPML4phys;
1842 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1843 
1844 #ifdef KASAN
1845 	/* Connect the KASAN shadow map slots up to the PML4. */
1846 	for (i = 0; i < NKASANPML4E; i++) {
1847 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1848 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1849 	}
1850 #endif
1851 
1852 #ifdef KMSAN
1853 	/* Connect the KMSAN shadow map slots up to the PML4. */
1854 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1855 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1856 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1857 	}
1858 
1859 	/* Connect the KMSAN origin map slots up to the PML4. */
1860 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1861 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1862 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1863 	}
1864 #endif
1865 
1866 	/* Connect the Direct Map slots up to the PML4. */
1867 	for (i = 0; i < ndmpdpphys; i++) {
1868 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1869 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1870 	}
1871 
1872 	/* Connect the KVA slots up to the PML4 */
1873 	for (i = 0; i < NKPML4E; i++) {
1874 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1875 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1876 	}
1877 
1878 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1879 }
1880 
1881 /*
1882  *	Bootstrap the system enough to run with virtual memory.
1883  *
1884  *	On amd64 this is called after mapping has already been enabled
1885  *	and just syncs the pmap module with what has already been done.
1886  *	[We can't call it easily with mapping off since the kernel is not
1887  *	mapped with PA == VA, hence we would have to relocate every address
1888  *	from the linked base (virtual) address "KERNBASE" to the actual
1889  *	(physical) address starting relative to 0]
1890  */
1891 void
1892 pmap_bootstrap(vm_paddr_t *firstaddr)
1893 {
1894 	vm_offset_t va;
1895 	pt_entry_t *pte, *pcpu_pte;
1896 	struct region_descriptor r_gdt;
1897 	uint64_t cr4, pcpu_phys;
1898 	u_long res;
1899 	int i;
1900 
1901 	KERNend = *firstaddr;
1902 	res = atop(KERNend - (vm_paddr_t)kernphys);
1903 
1904 	if (!pti)
1905 		pg_g = X86_PG_G;
1906 
1907 	/*
1908 	 * Create an initial set of page tables to run the kernel in.
1909 	 */
1910 	create_pagetables(firstaddr);
1911 
1912 	pcpu_phys = allocpages(firstaddr, MAXCPU);
1913 
1914 	/*
1915 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1916 	 * preallocated kernel page table pages so that vm_page structures
1917 	 * representing these pages will be created.  The vm_page structures
1918 	 * are required for promotion of the corresponding kernel virtual
1919 	 * addresses to superpage mappings.
1920 	 */
1921 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1922 
1923 	/*
1924 	 * Account for the virtual addresses mapped by create_pagetables().
1925 	 */
1926 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1927 	    (vm_paddr_t)kernphys);
1928 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1929 
1930 	/*
1931 	 * Enable PG_G global pages, then switch to the kernel page
1932 	 * table from the bootstrap page table.  After the switch, it
1933 	 * is possible to enable SMEP and SMAP since PG_U bits are
1934 	 * correct now.
1935 	 */
1936 	cr4 = rcr4();
1937 	cr4 |= CR4_PGE;
1938 	load_cr4(cr4);
1939 	load_cr3(KPML4phys);
1940 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1941 		cr4 |= CR4_SMEP;
1942 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1943 		cr4 |= CR4_SMAP;
1944 	load_cr4(cr4);
1945 
1946 	/*
1947 	 * Initialize the kernel pmap (which is statically allocated).
1948 	 * Count bootstrap data as being resident in case any of this data is
1949 	 * later unmapped (using pmap_remove()) and freed.
1950 	 */
1951 	PMAP_LOCK_INIT(kernel_pmap);
1952 	kernel_pmap->pm_pmltop = kernel_pml4;
1953 	kernel_pmap->pm_cr3 = KPML4phys;
1954 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1955 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1956 	kernel_pmap->pm_stats.resident_count = res;
1957 	kernel_pmap->pm_flags = pmap_flags;
1958 
1959 	/*
1960 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1961 	 * enumerated, the mask will be set equal to all_cpus.
1962 	 */
1963 	CPU_FILL(&kernel_pmap->pm_active);
1964 
1965  	/*
1966 	 * Initialize the TLB invalidations generation number lock.
1967 	 */
1968 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1969 
1970 	/*
1971 	 * Reserve some special page table entries/VA space for temporary
1972 	 * mapping of pages.
1973 	 */
1974 #define	SYSMAP(c, p, v, n)	\
1975 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1976 
1977 	va = virtual_avail;
1978 	pte = vtopte(va);
1979 
1980 	/*
1981 	 * Crashdump maps.  The first page is reused as CMAP1 for the
1982 	 * memory test.
1983 	 */
1984 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1985 	CADDR1 = crashdumpmap;
1986 
1987 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
1988 	virtual_avail = va;
1989 
1990 	for (i = 0; i < MAXCPU; i++) {
1991 		pcpu_pte[i] = (pcpu_phys + ptoa(i)) | X86_PG_V | X86_PG_RW |
1992 		    pg_g | pg_nx | X86_PG_M | X86_PG_A;
1993 	}
1994 
1995 	/*
1996 	 * Re-initialize PCPU area for BSP after switching.
1997 	 * Make hardware use gdt and common_tss from the new PCPU.
1998 	 */
1999 	STAILQ_INIT(&cpuhead);
2000 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2001 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2002 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2003 	amd64_bsp_ist_init(&__pcpu[0]);
2004 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2005 	    IOPERM_BITMAP_SIZE;
2006 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2007 	    sizeof(struct user_segment_descriptor));
2008 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2009 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2010 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2011 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2012 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2013 	lgdt(&r_gdt);
2014 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2015 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2016 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2017 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2018 
2019 	/*
2020 	 * Initialize the PAT MSR.
2021 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2022 	 * side-effect, invalidates stale PG_G TLB entries that might
2023 	 * have been created in our pre-boot environment.
2024 	 */
2025 	pmap_init_pat();
2026 
2027 	/* Initialize TLB Context Id. */
2028 	if (pmap_pcid_enabled) {
2029 		for (i = 0; i < MAXCPU; i++) {
2030 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
2031 			kernel_pmap->pm_pcids[i].pm_gen = 1;
2032 		}
2033 
2034 		/*
2035 		 * PMAP_PCID_KERN + 1 is used for initialization of
2036 		 * proc0 pmap.  The pmap' pcid state might be used by
2037 		 * EFIRT entry before first context switch, so it
2038 		 * needs to be valid.
2039 		 */
2040 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2041 		PCPU_SET(pcid_gen, 1);
2042 
2043 		/*
2044 		 * pcpu area for APs is zeroed during AP startup.
2045 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2046 		 * during pcpu setup.
2047 		 */
2048 		load_cr4(rcr4() | CR4_PCIDE);
2049 	}
2050 }
2051 
2052 /*
2053  * Setup the PAT MSR.
2054  */
2055 void
2056 pmap_init_pat(void)
2057 {
2058 	uint64_t pat_msr;
2059 	u_long cr0, cr4;
2060 	int i;
2061 
2062 	/* Bail if this CPU doesn't implement PAT. */
2063 	if ((cpu_feature & CPUID_PAT) == 0)
2064 		panic("no PAT??");
2065 
2066 	/* Set default PAT index table. */
2067 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2068 		pat_index[i] = -1;
2069 	pat_index[PAT_WRITE_BACK] = 0;
2070 	pat_index[PAT_WRITE_THROUGH] = 1;
2071 	pat_index[PAT_UNCACHEABLE] = 3;
2072 	pat_index[PAT_WRITE_COMBINING] = 6;
2073 	pat_index[PAT_WRITE_PROTECTED] = 5;
2074 	pat_index[PAT_UNCACHED] = 2;
2075 
2076 	/*
2077 	 * Initialize default PAT entries.
2078 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2079 	 * Program 5 and 6 as WP and WC.
2080 	 *
2081 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2082 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2083 	 * to its overload with PG_PS.
2084 	 */
2085 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2086 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2087 	    PAT_VALUE(2, PAT_UNCACHED) |
2088 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2089 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2090 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2091 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2092 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2093 
2094 	/* Disable PGE. */
2095 	cr4 = rcr4();
2096 	load_cr4(cr4 & ~CR4_PGE);
2097 
2098 	/* Disable caches (CD = 1, NW = 0). */
2099 	cr0 = rcr0();
2100 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2101 
2102 	/* Flushes caches and TLBs. */
2103 	wbinvd();
2104 	invltlb();
2105 
2106 	/* Update PAT and index table. */
2107 	wrmsr(MSR_PAT, pat_msr);
2108 
2109 	/* Flush caches and TLBs again. */
2110 	wbinvd();
2111 	invltlb();
2112 
2113 	/* Restore caches and PGE. */
2114 	load_cr0(cr0);
2115 	load_cr4(cr4);
2116 }
2117 
2118 vm_page_t
2119 pmap_page_alloc_below_4g(bool zeroed)
2120 {
2121 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2122 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2123 }
2124 
2125 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2126     la57_trampoline_gdt[], la57_trampoline_end[];
2127 
2128 static void
2129 pmap_bootstrap_la57(void *arg __unused)
2130 {
2131 	char *v_code;
2132 	pml5_entry_t *v_pml5;
2133 	pml4_entry_t *v_pml4;
2134 	pdp_entry_t *v_pdp;
2135 	pd_entry_t *v_pd;
2136 	pt_entry_t *v_pt;
2137 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2138 	void (*la57_tramp)(uint64_t pml5);
2139 	struct region_descriptor r_gdt;
2140 
2141 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2142 		return;
2143 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2144 	if (!la57)
2145 		return;
2146 
2147 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2148 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2149 
2150 	m_code = pmap_page_alloc_below_4g(true);
2151 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2152 	m_pml5 = pmap_page_alloc_below_4g(true);
2153 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2154 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2155 	m_pml4 = pmap_page_alloc_below_4g(true);
2156 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2157 	m_pdp = pmap_page_alloc_below_4g(true);
2158 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2159 	m_pd = pmap_page_alloc_below_4g(true);
2160 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2161 	m_pt = pmap_page_alloc_below_4g(true);
2162 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2163 
2164 	/*
2165 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2166 	 * address being below 4G.  Since kernel KVA is in upper half,
2167 	 * the pml4e should be zero and free for temporary use.
2168 	 */
2169 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2170 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2171 	    X86_PG_M;
2172 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2173 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2174 	    X86_PG_M;
2175 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2176 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2177 	    X86_PG_M;
2178 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2179 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2180 	    X86_PG_M;
2181 
2182 	/*
2183 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2184 	 * entering all existing kernel mappings into level 5 table.
2185 	 */
2186 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2187 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2188 
2189 	/*
2190 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2191 	 */
2192 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2193 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2194 	    X86_PG_M;
2195 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2196 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2197 	    X86_PG_M;
2198 
2199 	/*
2200 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2201 	 */
2202 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2203 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2204 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2205 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2206 	invlpg((vm_offset_t)la57_tramp);
2207 	la57_tramp(KPML5phys);
2208 
2209 	/*
2210 	 * gdt was necessary reset, switch back to our gdt.
2211 	 */
2212 	lgdt(&r_gdt);
2213 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2214 	load_ds(_udatasel);
2215 	load_es(_udatasel);
2216 	load_fs(_ufssel);
2217 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2218 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2219 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2220 
2221 	/*
2222 	 * Now unmap the trampoline, and free the pages.
2223 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2224 	 */
2225 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2226 	invlpg((vm_offset_t)v_code);
2227 	vm_page_free(m_code);
2228 	vm_page_free(m_pdp);
2229 	vm_page_free(m_pd);
2230 	vm_page_free(m_pt);
2231 
2232 	/*
2233 	 * Recursively map PML5 to itself in order to get PTmap and
2234 	 * PDmap.
2235 	 */
2236 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2237 
2238 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2239 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2240 	PTmap = (vm_offset_t)P5Tmap;
2241 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2242 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2243 	PDmap = (vm_offset_t)P5Dmap;
2244 
2245 	kernel_pmap->pm_cr3 = KPML5phys;
2246 	kernel_pmap->pm_pmltop = v_pml5;
2247 	pmap_pt_page_count_adj(kernel_pmap, 1);
2248 }
2249 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2250 
2251 /*
2252  *	Initialize a vm_page's machine-dependent fields.
2253  */
2254 void
2255 pmap_page_init(vm_page_t m)
2256 {
2257 
2258 	TAILQ_INIT(&m->md.pv_list);
2259 	m->md.pat_mode = PAT_WRITE_BACK;
2260 }
2261 
2262 static int pmap_allow_2m_x_ept;
2263 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2264     &pmap_allow_2m_x_ept, 0,
2265     "Allow executable superpage mappings in EPT");
2266 
2267 void
2268 pmap_allow_2m_x_ept_recalculate(void)
2269 {
2270 	/*
2271 	 * SKL002, SKL012S.  Since the EPT format is only used by
2272 	 * Intel CPUs, the vendor check is merely a formality.
2273 	 */
2274 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2275 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2276 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2277 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2278 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2279 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2280 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2281 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2282 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2283 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2284 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2285 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2286 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2287 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2288 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2289 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2290 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2291 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2292 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2293 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2294 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2295 		pmap_allow_2m_x_ept = 1;
2296 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 }
2298 
2299 static bool
2300 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2301 {
2302 
2303 	return (pmap->pm_type != PT_EPT || !executable ||
2304 	    !pmap_allow_2m_x_ept);
2305 }
2306 
2307 #ifdef NUMA
2308 static void
2309 pmap_init_pv_table(void)
2310 {
2311 	struct pmap_large_md_page *pvd;
2312 	vm_size_t s;
2313 	long start, end, highest, pv_npg;
2314 	int domain, i, j, pages;
2315 
2316 	/*
2317 	 * For correctness we depend on the size being evenly divisible into a
2318 	 * page. As a tradeoff between performance and total memory use, the
2319 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2320 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2321 	 * avoidable traffic due to adjacent cacheline prefetcher.
2322 	 *
2323 	 * Assert the size so that accidental changes fail to compile.
2324 	 */
2325 	CTASSERT((sizeof(*pvd) == 64));
2326 
2327 	/*
2328 	 * Calculate the size of the array.
2329 	 */
2330 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2331 	pv_npg = howmany(pmap_last_pa, NBPDR);
2332 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2333 	s = round_page(s);
2334 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2335 	if (pv_table == NULL)
2336 		panic("%s: kva_alloc failed\n", __func__);
2337 
2338 	/*
2339 	 * Iterate physical segments to allocate space for respective pages.
2340 	 */
2341 	highest = -1;
2342 	s = 0;
2343 	for (i = 0; i < vm_phys_nsegs; i++) {
2344 		end = vm_phys_segs[i].end / NBPDR;
2345 		domain = vm_phys_segs[i].domain;
2346 
2347 		if (highest >= end)
2348 			continue;
2349 
2350 		start = highest + 1;
2351 		pvd = &pv_table[start];
2352 
2353 		pages = end - start + 1;
2354 		s = round_page(pages * sizeof(*pvd));
2355 		highest = start + (s / sizeof(*pvd)) - 1;
2356 
2357 		for (j = 0; j < s; j += PAGE_SIZE) {
2358 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2359 			if (m == NULL)
2360 				panic("failed to allocate PV table page");
2361 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2362 		}
2363 
2364 		for (j = 0; j < s / sizeof(*pvd); j++) {
2365 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2366 			TAILQ_INIT(&pvd->pv_page.pv_list);
2367 			pvd->pv_page.pv_gen = 0;
2368 			pvd->pv_page.pat_mode = 0;
2369 			pvd->pv_invl_gen = 0;
2370 			pvd++;
2371 		}
2372 	}
2373 	pvd = &pv_dummy_large;
2374 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2375 	TAILQ_INIT(&pvd->pv_page.pv_list);
2376 	pvd->pv_page.pv_gen = 0;
2377 	pvd->pv_page.pat_mode = 0;
2378 	pvd->pv_invl_gen = 0;
2379 }
2380 #else
2381 static void
2382 pmap_init_pv_table(void)
2383 {
2384 	vm_size_t s;
2385 	long i, pv_npg;
2386 
2387 	/*
2388 	 * Initialize the pool of pv list locks.
2389 	 */
2390 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2391 		rw_init(&pv_list_locks[i], "pmap pv list");
2392 
2393 	/*
2394 	 * Calculate the size of the pv head table for superpages.
2395 	 */
2396 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2397 
2398 	/*
2399 	 * Allocate memory for the pv head table for superpages.
2400 	 */
2401 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2402 	s = round_page(s);
2403 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2404 	for (i = 0; i < pv_npg; i++)
2405 		TAILQ_INIT(&pv_table[i].pv_list);
2406 	TAILQ_INIT(&pv_dummy.pv_list);
2407 }
2408 #endif
2409 
2410 /*
2411  *	Initialize the pmap module.
2412  *	Called by vm_init, to initialize any structures that the pmap
2413  *	system needs to map virtual memory.
2414  */
2415 void
2416 pmap_init(void)
2417 {
2418 	struct pmap_preinit_mapping *ppim;
2419 	vm_page_t m, mpte;
2420 	int error, i, ret, skz63;
2421 
2422 	/* L1TF, reserve page @0 unconditionally */
2423 	vm_page_blacklist_add(0, bootverbose);
2424 
2425 	/* Detect bare-metal Skylake Server and Skylake-X. */
2426 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2427 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2428 		/*
2429 		 * Skylake-X errata SKZ63. Processor May Hang When
2430 		 * Executing Code In an HLE Transaction Region between
2431 		 * 40000000H and 403FFFFFH.
2432 		 *
2433 		 * Mark the pages in the range as preallocated.  It
2434 		 * seems to be impossible to distinguish between
2435 		 * Skylake Server and Skylake X.
2436 		 */
2437 		skz63 = 1;
2438 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2439 		if (skz63 != 0) {
2440 			if (bootverbose)
2441 				printf("SKZ63: skipping 4M RAM starting "
2442 				    "at physical 1G\n");
2443 			for (i = 0; i < atop(0x400000); i++) {
2444 				ret = vm_page_blacklist_add(0x40000000 +
2445 				    ptoa(i), FALSE);
2446 				if (!ret && bootverbose)
2447 					printf("page at %#lx already used\n",
2448 					    0x40000000 + ptoa(i));
2449 			}
2450 		}
2451 	}
2452 
2453 	/* IFU */
2454 	pmap_allow_2m_x_ept_recalculate();
2455 
2456 	/*
2457 	 * Initialize the vm page array entries for the kernel pmap's
2458 	 * page table pages.
2459 	 */
2460 	PMAP_LOCK(kernel_pmap);
2461 	for (i = 0; i < nkpt; i++) {
2462 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2463 		KASSERT(mpte >= vm_page_array &&
2464 		    mpte < &vm_page_array[vm_page_array_size],
2465 		    ("pmap_init: page table page is out of range"));
2466 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2467 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2468 		mpte->ref_count = 1;
2469 
2470 		/*
2471 		 * Collect the page table pages that were replaced by a 2MB
2472 		 * page in create_pagetables().  They are zero filled.
2473 		 */
2474 		if ((i == 0 ||
2475 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2476 		    pmap_insert_pt_page(kernel_pmap, mpte, false))
2477 			panic("pmap_init: pmap_insert_pt_page failed");
2478 	}
2479 	PMAP_UNLOCK(kernel_pmap);
2480 	vm_wire_add(nkpt);
2481 
2482 	/*
2483 	 * If the kernel is running on a virtual machine, then it must assume
2484 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2485 	 * be prepared for the hypervisor changing the vendor and family that
2486 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2487 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2488 	 * include at least one feature that is only supported by older Intel
2489 	 * or newer AMD processors.
2490 	 */
2491 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2492 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2493 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2494 	    AMDID2_FMA4)) == 0)
2495 		workaround_erratum383 = 1;
2496 
2497 	/*
2498 	 * Are large page mappings enabled?
2499 	 */
2500 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2501 	if (pg_ps_enabled) {
2502 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2503 		    ("pmap_init: can't assign to pagesizes[1]"));
2504 		pagesizes[1] = NBPDR;
2505 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2506 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2507 			    ("pmap_init: can't assign to pagesizes[2]"));
2508 			pagesizes[2] = NBPDP;
2509 		}
2510 	}
2511 
2512 	/*
2513 	 * Initialize pv chunk lists.
2514 	 */
2515 	for (i = 0; i < PMAP_MEMDOM; i++) {
2516 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2517 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2518 	}
2519 	pmap_init_pv_table();
2520 
2521 	pmap_initialized = 1;
2522 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2523 		ppim = pmap_preinit_mapping + i;
2524 		if (ppim->va == 0)
2525 			continue;
2526 		/* Make the direct map consistent */
2527 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2528 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2529 			    ppim->sz, ppim->mode);
2530 		}
2531 		if (!bootverbose)
2532 			continue;
2533 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2534 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2535 	}
2536 
2537 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2538 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2539 	    (vmem_addr_t *)&qframe);
2540 	if (error != 0)
2541 		panic("qframe allocation failed");
2542 
2543 	lm_ents = 8;
2544 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2545 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2546 		lm_ents = LMEPML4I - LMSPML4I + 1;
2547 #ifdef KMSAN
2548 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2549 		printf(
2550 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2551 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2552 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2553 	}
2554 #endif
2555 	if (bootverbose)
2556 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2557 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2558 	if (lm_ents != 0) {
2559 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2560 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2561 		if (large_vmem == NULL) {
2562 			printf("pmap: cannot create large map\n");
2563 			lm_ents = 0;
2564 		}
2565 		for (i = 0; i < lm_ents; i++) {
2566 			m = pmap_large_map_getptp_unlocked();
2567 			/* XXXKIB la57 */
2568 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2569 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2570 			    VM_PAGE_TO_PHYS(m);
2571 		}
2572 	}
2573 }
2574 
2575 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2576     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2577     "Maximum number of PML4 entries for use by large map (tunable).  "
2578     "Each entry corresponds to 512GB of address space.");
2579 
2580 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2581     "2MB page mapping counters");
2582 
2583 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2584 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2585     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2586 
2587 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2588 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2589     &pmap_pde_mappings, "2MB page mappings");
2590 
2591 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2592 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2593     &pmap_pde_p_failures, "2MB page promotion failures");
2594 
2595 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2596 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2597     &pmap_pde_promotions, "2MB page promotions");
2598 
2599 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2600     "1GB page mapping counters");
2601 
2602 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2603 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2604     &pmap_pdpe_demotions, "1GB page demotions");
2605 
2606 /***************************************************
2607  * Low level helper routines.....
2608  ***************************************************/
2609 
2610 static pt_entry_t
2611 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2612 {
2613 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2614 
2615 	switch (pmap->pm_type) {
2616 	case PT_X86:
2617 	case PT_RVI:
2618 		/* Verify that both PAT bits are not set at the same time */
2619 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2620 		    ("Invalid PAT bits in entry %#lx", entry));
2621 
2622 		/* Swap the PAT bits if one of them is set */
2623 		if ((entry & x86_pat_bits) != 0)
2624 			entry ^= x86_pat_bits;
2625 		break;
2626 	case PT_EPT:
2627 		/*
2628 		 * Nothing to do - the memory attributes are represented
2629 		 * the same way for regular pages and superpages.
2630 		 */
2631 		break;
2632 	default:
2633 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2634 	}
2635 
2636 	return (entry);
2637 }
2638 
2639 boolean_t
2640 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2641 {
2642 
2643 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2644 	    pat_index[(int)mode] >= 0);
2645 }
2646 
2647 /*
2648  * Determine the appropriate bits to set in a PTE or PDE for a specified
2649  * caching mode.
2650  */
2651 int
2652 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2653 {
2654 	int cache_bits, pat_flag, pat_idx;
2655 
2656 	if (!pmap_is_valid_memattr(pmap, mode))
2657 		panic("Unknown caching mode %d\n", mode);
2658 
2659 	switch (pmap->pm_type) {
2660 	case PT_X86:
2661 	case PT_RVI:
2662 		/* The PAT bit is different for PTE's and PDE's. */
2663 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2664 
2665 		/* Map the caching mode to a PAT index. */
2666 		pat_idx = pat_index[mode];
2667 
2668 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2669 		cache_bits = 0;
2670 		if (pat_idx & 0x4)
2671 			cache_bits |= pat_flag;
2672 		if (pat_idx & 0x2)
2673 			cache_bits |= PG_NC_PCD;
2674 		if (pat_idx & 0x1)
2675 			cache_bits |= PG_NC_PWT;
2676 		break;
2677 
2678 	case PT_EPT:
2679 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2680 		break;
2681 
2682 	default:
2683 		panic("unsupported pmap type %d", pmap->pm_type);
2684 	}
2685 
2686 	return (cache_bits);
2687 }
2688 
2689 static int
2690 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2691 {
2692 	int mask;
2693 
2694 	switch (pmap->pm_type) {
2695 	case PT_X86:
2696 	case PT_RVI:
2697 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2698 		break;
2699 	case PT_EPT:
2700 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2701 		break;
2702 	default:
2703 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2704 	}
2705 
2706 	return (mask);
2707 }
2708 
2709 static int
2710 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2711 {
2712 	int pat_flag, pat_idx;
2713 
2714 	pat_idx = 0;
2715 	switch (pmap->pm_type) {
2716 	case PT_X86:
2717 	case PT_RVI:
2718 		/* The PAT bit is different for PTE's and PDE's. */
2719 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2720 
2721 		if ((pte & pat_flag) != 0)
2722 			pat_idx |= 0x4;
2723 		if ((pte & PG_NC_PCD) != 0)
2724 			pat_idx |= 0x2;
2725 		if ((pte & PG_NC_PWT) != 0)
2726 			pat_idx |= 0x1;
2727 		break;
2728 	case PT_EPT:
2729 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2730 			panic("EPT PTE %#lx has no PAT memory type", pte);
2731 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2732 		break;
2733 	}
2734 
2735 	/* See pmap_init_pat(). */
2736 	if (pat_idx == 4)
2737 		pat_idx = 0;
2738 	if (pat_idx == 7)
2739 		pat_idx = 3;
2740 
2741 	return (pat_idx);
2742 }
2743 
2744 bool
2745 pmap_ps_enabled(pmap_t pmap)
2746 {
2747 
2748 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2749 }
2750 
2751 static void
2752 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2753 {
2754 
2755 	switch (pmap->pm_type) {
2756 	case PT_X86:
2757 		break;
2758 	case PT_RVI:
2759 	case PT_EPT:
2760 		/*
2761 		 * XXX
2762 		 * This is a little bogus since the generation number is
2763 		 * supposed to be bumped up when a region of the address
2764 		 * space is invalidated in the page tables.
2765 		 *
2766 		 * In this case the old PDE entry is valid but yet we want
2767 		 * to make sure that any mappings using the old entry are
2768 		 * invalidated in the TLB.
2769 		 *
2770 		 * The reason this works as expected is because we rendezvous
2771 		 * "all" host cpus and force any vcpu context to exit as a
2772 		 * side-effect.
2773 		 */
2774 		atomic_add_long(&pmap->pm_eptgen, 1);
2775 		break;
2776 	default:
2777 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2778 	}
2779 	pde_store(pde, newpde);
2780 }
2781 
2782 /*
2783  * After changing the page size for the specified virtual address in the page
2784  * table, flush the corresponding entries from the processor's TLB.  Only the
2785  * calling processor's TLB is affected.
2786  *
2787  * The calling thread must be pinned to a processor.
2788  */
2789 static void
2790 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2791 {
2792 	pt_entry_t PG_G;
2793 
2794 	if (pmap_type_guest(pmap))
2795 		return;
2796 
2797 	KASSERT(pmap->pm_type == PT_X86,
2798 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2799 
2800 	PG_G = pmap_global_bit(pmap);
2801 
2802 	if ((newpde & PG_PS) == 0)
2803 		/* Demotion: flush a specific 2MB page mapping. */
2804 		pmap_invlpg(pmap, va);
2805 	else if ((newpde & PG_G) == 0)
2806 		/*
2807 		 * Promotion: flush every 4KB page mapping from the TLB
2808 		 * because there are too many to flush individually.
2809 		 */
2810 		invltlb();
2811 	else {
2812 		/*
2813 		 * Promotion: flush every 4KB page mapping from the TLB,
2814 		 * including any global (PG_G) mappings.
2815 		 */
2816 		invltlb_glob();
2817 	}
2818 }
2819 
2820 /*
2821  * The amd64 pmap uses different approaches to TLB invalidation
2822  * depending on the kernel configuration, available hardware features,
2823  * and known hardware errata.  The kernel configuration option that
2824  * has the greatest operational impact on TLB invalidation is PTI,
2825  * which is enabled automatically on affected Intel CPUs.  The most
2826  * impactful hardware features are first PCID, and then INVPCID
2827  * instruction presence.  PCID usage is quite different for PTI
2828  * vs. non-PTI.
2829  *
2830  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2831  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2832  *   space is served by two page tables, user and kernel.  The user
2833  *   page table only maps user space and a kernel trampoline.  The
2834  *   kernel trampoline includes the entirety of the kernel text but
2835  *   only the kernel data that is needed to switch from user to kernel
2836  *   mode.  The kernel page table maps the user and kernel address
2837  *   spaces in their entirety.  It is identical to the per-process
2838  *   page table used in non-PTI mode.
2839  *
2840  *   User page tables are only used when the CPU is in user mode.
2841  *   Consequently, some TLB invalidations can be postponed until the
2842  *   switch from kernel to user mode.  In contrast, the user
2843  *   space part of the kernel page table is used for copyout(9), so
2844  *   TLB invalidations on this page table cannot be similarly postponed.
2845  *
2846  *   The existence of a user mode page table for the given pmap is
2847  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2848  *   which case pm_ucr3 contains the %cr3 register value for the user
2849  *   mode page table's root.
2850  *
2851  * * The pm_active bitmask indicates which CPUs currently have the
2852  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2853  *   cleared on switching off this CPU.  For the kernel page table,
2854  *   the pm_active field is immutable and contains all CPUs.  The
2855  *   kernel page table is always logically active on every processor,
2856  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2857  *
2858  *   When requesting invalidation of virtual addresses with
2859  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2860  *   all CPUs recorded as active in pm_active.  Updates to and reads
2861  *   from pm_active are not synchronized, and so they may race with
2862  *   each other.  Shootdown handlers are prepared to handle the race.
2863  *
2864  * * PCID is an optional feature of the long mode x86 MMU where TLB
2865  *   entries are tagged with the 'Process ID' of the address space
2866  *   they belong to.  This feature provides a limited namespace for
2867  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2868  *   total.
2869  *
2870  *   Allocation of a PCID to a pmap is done by an algorithm described
2871  *   in section 15.12, "Other TLB Consistency Algorithms", of
2872  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2873  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2874  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2875  *   the CPU is about to start caching TLB entries from a pmap,
2876  *   i.e., on the context switch that activates the pmap on the CPU.
2877  *
2878  *   The PCID allocator maintains a per-CPU, per-pmap generation
2879  *   count, pm_gen, which is incremented each time a new PCID is
2880  *   allocated.  On TLB invalidation, the generation counters for the
2881  *   pmap are zeroed, which signals the context switch code that the
2882  *   previously allocated PCID is no longer valid.  Effectively,
2883  *   zeroing any of these counters triggers a TLB shootdown for the
2884  *   given CPU/address space, due to the allocation of a new PCID.
2885  *
2886  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2887  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2888  *   be initiated by an ordinary memory access to reset the target
2889  *   CPU's generation count within the pmap.  The CPU initiating the
2890  *   TLB shootdown does not need to send an IPI to the target CPU.
2891  *
2892  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2893  *   for complete (kernel) page tables, and PCIDs for user mode page
2894  *   tables.  A user PCID value is obtained from the kernel PCID value
2895  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2896  *
2897  *   User space page tables are activated on return to user mode, by
2898  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2899  *   clearing bit 63 of the loaded ucr3, this effectively causes
2900  *   complete invalidation of the user mode TLB entries for the
2901  *   current pmap.  In which case, local invalidations of individual
2902  *   pages in the user page table are skipped.
2903  *
2904  * * Local invalidation, all modes.  If the requested invalidation is
2905  *   for a specific address or the total invalidation of a currently
2906  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2907  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2908  *   user space page table(s).
2909  *
2910  *   If the INVPCID instruction is available, it is used to flush user
2911  *   entries from the kernel page table.
2912  *
2913  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2914  *   entries for the given page that either match the current PCID or
2915  *   are global. Since TLB entries for the same page under different
2916  *   PCIDs are unaffected, kernel pages which reside in all address
2917  *   spaces could be problematic.  We avoid the problem by creating
2918  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2919  *   disabled.
2920  *
2921  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2922  *   address space, all other 4095 PCIDs are used for user mode spaces
2923  *   as described above.  A context switch allocates a new PCID if
2924  *   the recorded PCID is zero or the recorded generation does not match
2925  *   the CPU's generation, effectively flushing the TLB for this address space.
2926  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2927  *	local user page: INVLPG
2928  *	local kernel page: INVLPG
2929  *	local user total: INVPCID(CTX)
2930  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2931  *	remote user page, inactive pmap: zero pm_gen
2932  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2933  *	(Both actions are required to handle the aforementioned pm_active races.)
2934  *	remote kernel page: IPI:INVLPG
2935  *	remote user total, inactive pmap: zero pm_gen
2936  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2937  *          reload %cr3)
2938  *	(See note above about pm_active races.)
2939  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2940  *
2941  * PTI enabled, PCID present.
2942  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2943  *          for upt
2944  *	local kernel page: INVLPG
2945  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2946  *          on loading UCR3 into %cr3 for upt
2947  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2948  *	remote user page, inactive pmap: zero pm_gen
2949  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2950  *          INVPCID(ADDR) for upt)
2951  *	remote kernel page: IPI:INVLPG
2952  *	remote user total, inactive pmap: zero pm_gen
2953  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2954  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2955  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2956  *
2957  *  No PCID.
2958  *	local user page: INVLPG
2959  *	local kernel page: INVLPG
2960  *	local user total: reload %cr3
2961  *	local kernel total: invltlb_glob()
2962  *	remote user page, inactive pmap: -
2963  *	remote user page, active pmap: IPI:INVLPG
2964  *	remote kernel page: IPI:INVLPG
2965  *	remote user total, inactive pmap: -
2966  *	remote user total, active pmap: IPI:(reload %cr3)
2967  *	remote kernel total: IPI:invltlb_glob()
2968  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
2969  *  TLB invalidation, no specific action is required for user page table.
2970  *
2971  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
2972  * XXX TODO
2973  */
2974 
2975 #ifdef SMP
2976 /*
2977  * Interrupt the cpus that are executing in the guest context.
2978  * This will force the vcpu to exit and the cached EPT mappings
2979  * will be invalidated by the host before the next vmresume.
2980  */
2981 static __inline void
2982 pmap_invalidate_ept(pmap_t pmap)
2983 {
2984 	smr_seq_t goal;
2985 	int ipinum;
2986 
2987 	sched_pin();
2988 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2989 	    ("pmap_invalidate_ept: absurd pm_active"));
2990 
2991 	/*
2992 	 * The TLB mappings associated with a vcpu context are not
2993 	 * flushed each time a different vcpu is chosen to execute.
2994 	 *
2995 	 * This is in contrast with a process's vtop mappings that
2996 	 * are flushed from the TLB on each context switch.
2997 	 *
2998 	 * Therefore we need to do more than just a TLB shootdown on
2999 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3000 	 * track of the number of invalidations performed on this pmap.
3001 	 *
3002 	 * Each vcpu keeps a cache of this counter and compares it
3003 	 * just before a vmresume. If the counter is out-of-date an
3004 	 * invept will be done to flush stale mappings from the TLB.
3005 	 *
3006 	 * To ensure that all vCPU threads have observed the new counter
3007 	 * value before returning, we use SMR.  Ordering is important here:
3008 	 * the VMM enters an SMR read section before loading the counter
3009 	 * and after updating the pm_active bit set.  Thus, pm_active is
3010 	 * a superset of active readers, and any reader that has observed
3011 	 * the goal has observed the new counter value.
3012 	 */
3013 	atomic_add_long(&pmap->pm_eptgen, 1);
3014 
3015 	goal = smr_advance(pmap->pm_eptsmr);
3016 
3017 	/*
3018 	 * Force the vcpu to exit and trap back into the hypervisor.
3019 	 */
3020 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3021 	ipi_selected(pmap->pm_active, ipinum);
3022 	sched_unpin();
3023 
3024 	/*
3025 	 * Ensure that all active vCPUs will observe the new generation counter
3026 	 * value before executing any more guest instructions.
3027 	 */
3028 	smr_wait(pmap->pm_eptsmr, goal);
3029 }
3030 
3031 static inline void
3032 pmap_invalidate_preipi_pcid(pmap_t pmap)
3033 {
3034 	u_int cpuid, i;
3035 
3036 	sched_pin();
3037 
3038 	cpuid = PCPU_GET(cpuid);
3039 	if (pmap != PCPU_GET(curpmap))
3040 		cpuid = 0xffffffff;	/* An impossible value */
3041 
3042 	CPU_FOREACH(i) {
3043 		if (cpuid != i)
3044 			pmap->pm_pcids[i].pm_gen = 0;
3045 	}
3046 
3047 	/*
3048 	 * The fence is between stores to pm_gen and the read of the
3049 	 * pm_active mask.  We need to ensure that it is impossible
3050 	 * for us to miss the bit update in pm_active and
3051 	 * simultaneously observe a non-zero pm_gen in
3052 	 * pmap_activate_sw(), otherwise TLB update is missed.
3053 	 * Without the fence, IA32 allows such an outcome.  Note that
3054 	 * pm_active is updated by a locked operation, which provides
3055 	 * the reciprocal fence.
3056 	 */
3057 	atomic_thread_fence_seq_cst();
3058 }
3059 
3060 static void
3061 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3062 {
3063 	sched_pin();
3064 }
3065 
3066 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3067 {
3068 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3069 	    pmap_invalidate_preipi_nopcid);
3070 }
3071 
3072 static inline void
3073 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3074     const bool invpcid_works1)
3075 {
3076 	struct invpcid_descr d;
3077 	uint64_t kcr3, ucr3;
3078 	uint32_t pcid;
3079 	u_int cpuid;
3080 
3081 	/*
3082 	 * Because pm_pcid is recalculated on a context switch, we
3083 	 * must ensure there is no preemption, not just pinning.
3084 	 * Otherwise, we might use a stale value below.
3085 	 */
3086 	CRITICAL_ASSERT(curthread);
3087 
3088 	/*
3089 	 * No need to do anything with user page tables invalidation
3090 	 * if there is no user page table, or invalidation is deferred
3091 	 * until the return to userspace.  ucr3_load_mask is stable
3092 	 * because we have preemption disabled.
3093 	 */
3094 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3095 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3096 		return;
3097 
3098 	cpuid = PCPU_GET(cpuid);
3099 
3100 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3101 	if (invpcid_works1) {
3102 		d.pcid = pcid | PMAP_PCID_USER_PT;
3103 		d.pad = 0;
3104 		d.addr = va;
3105 		invpcid(&d, INVPCID_ADDR);
3106 	} else {
3107 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3108 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3109 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3110 	}
3111 }
3112 
3113 static void
3114 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3115 {
3116 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3117 }
3118 
3119 static void
3120 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3121 {
3122 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3123 }
3124 
3125 static void
3126 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3127 {
3128 }
3129 
3130 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3131 {
3132 	if (pmap_pcid_enabled)
3133 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3134 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3135 	return (pmap_invalidate_page_nopcid_cb);
3136 }
3137 
3138 static void
3139 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3140     vm_offset_t addr2 __unused)
3141 {
3142 	if (pmap == kernel_pmap) {
3143 		pmap_invlpg(kernel_pmap, va);
3144 	} else if (pmap == PCPU_GET(curpmap)) {
3145 		invlpg(va);
3146 		pmap_invalidate_page_cb(pmap, va);
3147 	}
3148 }
3149 
3150 void
3151 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3152 {
3153 	if (pmap_type_guest(pmap)) {
3154 		pmap_invalidate_ept(pmap);
3155 		return;
3156 	}
3157 
3158 	KASSERT(pmap->pm_type == PT_X86,
3159 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3160 
3161 	pmap_invalidate_preipi(pmap);
3162 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3163 }
3164 
3165 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3166 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3167 
3168 static void
3169 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3170     const bool invpcid_works1)
3171 {
3172 	struct invpcid_descr d;
3173 	uint64_t kcr3, ucr3;
3174 	uint32_t pcid;
3175 	u_int cpuid;
3176 
3177 	CRITICAL_ASSERT(curthread);
3178 
3179 	if (pmap != PCPU_GET(curpmap) ||
3180 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3181 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3182 		return;
3183 
3184 	cpuid = PCPU_GET(cpuid);
3185 
3186 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3187 	if (invpcid_works1) {
3188 		d.pcid = pcid | PMAP_PCID_USER_PT;
3189 		d.pad = 0;
3190 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3191 			invpcid(&d, INVPCID_ADDR);
3192 	} else {
3193 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3194 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3195 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3196 	}
3197 }
3198 
3199 static void
3200 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3201     vm_offset_t eva)
3202 {
3203 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3204 }
3205 
3206 static void
3207 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3208     vm_offset_t eva)
3209 {
3210 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3211 }
3212 
3213 static void
3214 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3215     vm_offset_t eva __unused)
3216 {
3217 }
3218 
3219 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3220     vm_offset_t))
3221 {
3222 	if (pmap_pcid_enabled)
3223 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3224 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3225 	return (pmap_invalidate_range_nopcid_cb);
3226 }
3227 
3228 static void
3229 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3230 {
3231 	vm_offset_t addr;
3232 
3233 	if (pmap == kernel_pmap) {
3234 		if (PCPU_GET(pcid_invlpg_workaround)) {
3235 			struct invpcid_descr d = { 0 };
3236 
3237 			invpcid(&d, INVPCID_CTXGLOB);
3238 		} else {
3239 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3240 				invlpg(addr);
3241 		}
3242 	} else if (pmap == PCPU_GET(curpmap)) {
3243 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3244 			invlpg(addr);
3245 		pmap_invalidate_range_cb(pmap, sva, eva);
3246 	}
3247 }
3248 
3249 void
3250 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3251 {
3252 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3253 		pmap_invalidate_all(pmap);
3254 		return;
3255 	}
3256 
3257 	if (pmap_type_guest(pmap)) {
3258 		pmap_invalidate_ept(pmap);
3259 		return;
3260 	}
3261 
3262 	KASSERT(pmap->pm_type == PT_X86,
3263 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3264 
3265 	pmap_invalidate_preipi(pmap);
3266 	smp_masked_invlpg_range(sva, eva, pmap,
3267 	    pmap_invalidate_range_curcpu_cb);
3268 }
3269 
3270 static inline void
3271 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3272 {
3273 	struct invpcid_descr d;
3274 	uint64_t kcr3;
3275 	uint32_t pcid;
3276 	u_int cpuid;
3277 
3278 	if (pmap == kernel_pmap) {
3279 		if (invpcid_works1) {
3280 			bzero(&d, sizeof(d));
3281 			invpcid(&d, INVPCID_CTXGLOB);
3282 		} else {
3283 			invltlb_glob();
3284 		}
3285 	} else if (pmap == PCPU_GET(curpmap)) {
3286 		CRITICAL_ASSERT(curthread);
3287 		cpuid = PCPU_GET(cpuid);
3288 
3289 		pcid = pmap->pm_pcids[cpuid].pm_pcid;
3290 		if (invpcid_works1) {
3291 			d.pcid = pcid;
3292 			d.pad = 0;
3293 			d.addr = 0;
3294 			invpcid(&d, INVPCID_CTX);
3295 		} else {
3296 			kcr3 = pmap->pm_cr3 | pcid;
3297 			load_cr3(kcr3);
3298 		}
3299 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3300 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3301 	}
3302 }
3303 
3304 static void
3305 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3306 {
3307 	pmap_invalidate_all_pcid_cb(pmap, true);
3308 }
3309 
3310 static void
3311 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3312 {
3313 	pmap_invalidate_all_pcid_cb(pmap, false);
3314 }
3315 
3316 static void
3317 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3318 {
3319 	if (pmap == kernel_pmap)
3320 		invltlb_glob();
3321 	else if (pmap == PCPU_GET(curpmap))
3322 		invltlb();
3323 }
3324 
3325 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3326 {
3327 	if (pmap_pcid_enabled)
3328 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3329 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3330 	return (pmap_invalidate_all_nopcid_cb);
3331 }
3332 
3333 static void
3334 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3335     vm_offset_t addr2 __unused)
3336 {
3337 	pmap_invalidate_all_cb(pmap);
3338 }
3339 
3340 void
3341 pmap_invalidate_all(pmap_t pmap)
3342 {
3343 	if (pmap_type_guest(pmap)) {
3344 		pmap_invalidate_ept(pmap);
3345 		return;
3346 	}
3347 
3348 	KASSERT(pmap->pm_type == PT_X86,
3349 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3350 
3351 	pmap_invalidate_preipi(pmap);
3352 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3353 }
3354 
3355 static void
3356 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3357     vm_offset_t addr2 __unused)
3358 {
3359 	wbinvd();
3360 }
3361 
3362 void
3363 pmap_invalidate_cache(void)
3364 {
3365 	sched_pin();
3366 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3367 }
3368 
3369 struct pde_action {
3370 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3371 	pmap_t pmap;
3372 	vm_offset_t va;
3373 	pd_entry_t *pde;
3374 	pd_entry_t newpde;
3375 	u_int store;		/* processor that updates the PDE */
3376 };
3377 
3378 static void
3379 pmap_update_pde_action(void *arg)
3380 {
3381 	struct pde_action *act = arg;
3382 
3383 	if (act->store == PCPU_GET(cpuid))
3384 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3385 }
3386 
3387 static void
3388 pmap_update_pde_teardown(void *arg)
3389 {
3390 	struct pde_action *act = arg;
3391 
3392 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3393 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3394 }
3395 
3396 /*
3397  * Change the page size for the specified virtual address in a way that
3398  * prevents any possibility of the TLB ever having two entries that map the
3399  * same virtual address using different page sizes.  This is the recommended
3400  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3401  * machine check exception for a TLB state that is improperly diagnosed as a
3402  * hardware error.
3403  */
3404 static void
3405 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3406 {
3407 	struct pde_action act;
3408 	cpuset_t active, other_cpus;
3409 	u_int cpuid;
3410 
3411 	sched_pin();
3412 	cpuid = PCPU_GET(cpuid);
3413 	other_cpus = all_cpus;
3414 	CPU_CLR(cpuid, &other_cpus);
3415 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3416 		active = all_cpus;
3417 	else {
3418 		active = pmap->pm_active;
3419 	}
3420 	if (CPU_OVERLAP(&active, &other_cpus)) {
3421 		act.store = cpuid;
3422 		act.invalidate = active;
3423 		act.va = va;
3424 		act.pmap = pmap;
3425 		act.pde = pde;
3426 		act.newpde = newpde;
3427 		CPU_SET(cpuid, &active);
3428 		smp_rendezvous_cpus(active,
3429 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3430 		    pmap_update_pde_teardown, &act);
3431 	} else {
3432 		pmap_update_pde_store(pmap, pde, newpde);
3433 		if (CPU_ISSET(cpuid, &active))
3434 			pmap_update_pde_invalidate(pmap, va, newpde);
3435 	}
3436 	sched_unpin();
3437 }
3438 #else /* !SMP */
3439 /*
3440  * Normal, non-SMP, invalidation functions.
3441  */
3442 void
3443 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3444 {
3445 	struct invpcid_descr d;
3446 	uint64_t kcr3, ucr3;
3447 	uint32_t pcid;
3448 
3449 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3450 		pmap->pm_eptgen++;
3451 		return;
3452 	}
3453 	KASSERT(pmap->pm_type == PT_X86,
3454 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3455 
3456 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3457 		invlpg(va);
3458 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3459 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3460 			critical_enter();
3461 			pcid = pmap->pm_pcids[0].pm_pcid;
3462 			if (invpcid_works) {
3463 				d.pcid = pcid | PMAP_PCID_USER_PT;
3464 				d.pad = 0;
3465 				d.addr = va;
3466 				invpcid(&d, INVPCID_ADDR);
3467 			} else {
3468 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3469 				ucr3 = pmap->pm_ucr3 | pcid |
3470 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3471 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3472 			}
3473 			critical_exit();
3474 		}
3475 	} else if (pmap_pcid_enabled)
3476 		pmap->pm_pcids[0].pm_gen = 0;
3477 }
3478 
3479 void
3480 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3481 {
3482 	struct invpcid_descr d;
3483 	vm_offset_t addr;
3484 	uint64_t kcr3, ucr3;
3485 
3486 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3487 		pmap->pm_eptgen++;
3488 		return;
3489 	}
3490 	KASSERT(pmap->pm_type == PT_X86,
3491 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3492 
3493 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3494 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3495 			invlpg(addr);
3496 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3497 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3498 			critical_enter();
3499 			if (invpcid_works) {
3500 				d.pcid = pmap->pm_pcids[0].pm_pcid |
3501 				    PMAP_PCID_USER_PT;
3502 				d.pad = 0;
3503 				d.addr = sva;
3504 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3505 					invpcid(&d, INVPCID_ADDR);
3506 			} else {
3507 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
3508 				    pm_pcid | CR3_PCID_SAVE;
3509 				ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
3510 				    pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3511 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3512 			}
3513 			critical_exit();
3514 		}
3515 	} else if (pmap_pcid_enabled) {
3516 		pmap->pm_pcids[0].pm_gen = 0;
3517 	}
3518 }
3519 
3520 void
3521 pmap_invalidate_all(pmap_t pmap)
3522 {
3523 	struct invpcid_descr d;
3524 	uint64_t kcr3, ucr3;
3525 
3526 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3527 		pmap->pm_eptgen++;
3528 		return;
3529 	}
3530 	KASSERT(pmap->pm_type == PT_X86,
3531 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3532 
3533 	if (pmap == kernel_pmap) {
3534 		if (pmap_pcid_enabled && invpcid_works) {
3535 			bzero(&d, sizeof(d));
3536 			invpcid(&d, INVPCID_CTXGLOB);
3537 		} else {
3538 			invltlb_glob();
3539 		}
3540 	} else if (pmap == PCPU_GET(curpmap)) {
3541 		if (pmap_pcid_enabled) {
3542 			critical_enter();
3543 			if (invpcid_works) {
3544 				d.pcid = pmap->pm_pcids[0].pm_pcid;
3545 				d.pad = 0;
3546 				d.addr = 0;
3547 				invpcid(&d, INVPCID_CTX);
3548 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3549 					d.pcid |= PMAP_PCID_USER_PT;
3550 					invpcid(&d, INVPCID_CTX);
3551 				}
3552 			} else {
3553 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
3554 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3555 					ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
3556 					    0].pm_pcid | PMAP_PCID_USER_PT;
3557 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3558 				} else
3559 					load_cr3(kcr3);
3560 			}
3561 			critical_exit();
3562 		} else {
3563 			invltlb();
3564 		}
3565 	} else if (pmap_pcid_enabled) {
3566 		pmap->pm_pcids[0].pm_gen = 0;
3567 	}
3568 }
3569 
3570 PMAP_INLINE void
3571 pmap_invalidate_cache(void)
3572 {
3573 
3574 	wbinvd();
3575 }
3576 
3577 static void
3578 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3579 {
3580 
3581 	pmap_update_pde_store(pmap, pde, newpde);
3582 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3583 		pmap_update_pde_invalidate(pmap, va, newpde);
3584 	else
3585 		pmap->pm_pcids[0].pm_gen = 0;
3586 }
3587 #endif /* !SMP */
3588 
3589 static void
3590 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3591 {
3592 
3593 	/*
3594 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3595 	 * by a promotion that did not invalidate the 512 4KB page mappings
3596 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3597 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3598 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3599 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3600 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3601 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3602 	 * TLB.
3603 	 */
3604 	if ((pde & PG_PROMOTED) != 0)
3605 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3606 	else
3607 		pmap_invalidate_page(pmap, va);
3608 }
3609 
3610 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3611     (vm_offset_t sva, vm_offset_t eva))
3612 {
3613 
3614 	if ((cpu_feature & CPUID_SS) != 0)
3615 		return (pmap_invalidate_cache_range_selfsnoop);
3616 	if ((cpu_feature & CPUID_CLFSH) != 0)
3617 		return (pmap_force_invalidate_cache_range);
3618 	return (pmap_invalidate_cache_range_all);
3619 }
3620 
3621 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3622 
3623 static void
3624 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3625 {
3626 
3627 	KASSERT((sva & PAGE_MASK) == 0,
3628 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3629 	KASSERT((eva & PAGE_MASK) == 0,
3630 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3631 }
3632 
3633 static void
3634 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3635 {
3636 
3637 	pmap_invalidate_cache_range_check_align(sva, eva);
3638 }
3639 
3640 void
3641 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3642 {
3643 
3644 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3645 
3646 	/*
3647 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3648 	 * registers if we use CLFLUSH on the local APIC range.  The
3649 	 * local APIC is always uncached, so we don't need to flush
3650 	 * for that range anyway.
3651 	 */
3652 	if (pmap_kextract(sva) == lapic_paddr)
3653 		return;
3654 
3655 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3656 		/*
3657 		 * Do per-cache line flush.  Use a locked
3658 		 * instruction to insure that previous stores are
3659 		 * included in the write-back.  The processor
3660 		 * propagates flush to other processors in the cache
3661 		 * coherence domain.
3662 		 */
3663 		atomic_thread_fence_seq_cst();
3664 		for (; sva < eva; sva += cpu_clflush_line_size)
3665 			clflushopt(sva);
3666 		atomic_thread_fence_seq_cst();
3667 	} else {
3668 		/*
3669 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3670 		 */
3671 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3672 			mfence();
3673 		for (; sva < eva; sva += cpu_clflush_line_size)
3674 			clflush(sva);
3675 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3676 			mfence();
3677 	}
3678 }
3679 
3680 static void
3681 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3682 {
3683 
3684 	pmap_invalidate_cache_range_check_align(sva, eva);
3685 	pmap_invalidate_cache();
3686 }
3687 
3688 /*
3689  * Remove the specified set of pages from the data and instruction caches.
3690  *
3691  * In contrast to pmap_invalidate_cache_range(), this function does not
3692  * rely on the CPU's self-snoop feature, because it is intended for use
3693  * when moving pages into a different cache domain.
3694  */
3695 void
3696 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3697 {
3698 	vm_offset_t daddr, eva;
3699 	int i;
3700 	bool useclflushopt;
3701 
3702 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3703 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3704 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3705 		pmap_invalidate_cache();
3706 	else {
3707 		if (useclflushopt)
3708 			atomic_thread_fence_seq_cst();
3709 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3710 			mfence();
3711 		for (i = 0; i < count; i++) {
3712 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3713 			eva = daddr + PAGE_SIZE;
3714 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3715 				if (useclflushopt)
3716 					clflushopt(daddr);
3717 				else
3718 					clflush(daddr);
3719 			}
3720 		}
3721 		if (useclflushopt)
3722 			atomic_thread_fence_seq_cst();
3723 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3724 			mfence();
3725 	}
3726 }
3727 
3728 void
3729 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3730 {
3731 
3732 	pmap_invalidate_cache_range_check_align(sva, eva);
3733 
3734 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3735 		pmap_force_invalidate_cache_range(sva, eva);
3736 		return;
3737 	}
3738 
3739 	/* See comment in pmap_force_invalidate_cache_range(). */
3740 	if (pmap_kextract(sva) == lapic_paddr)
3741 		return;
3742 
3743 	atomic_thread_fence_seq_cst();
3744 	for (; sva < eva; sva += cpu_clflush_line_size)
3745 		clwb(sva);
3746 	atomic_thread_fence_seq_cst();
3747 }
3748 
3749 void
3750 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3751 {
3752 	pt_entry_t *pte;
3753 	vm_offset_t vaddr;
3754 	int error __diagused;
3755 	int pte_bits;
3756 
3757 	KASSERT((spa & PAGE_MASK) == 0,
3758 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3759 	KASSERT((epa & PAGE_MASK) == 0,
3760 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3761 
3762 	if (spa < dmaplimit) {
3763 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3764 		    dmaplimit, epa)));
3765 		if (dmaplimit >= epa)
3766 			return;
3767 		spa = dmaplimit;
3768 	}
3769 
3770 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3771 	    X86_PG_V;
3772 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3773 	    &vaddr);
3774 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3775 	pte = vtopte(vaddr);
3776 	for (; spa < epa; spa += PAGE_SIZE) {
3777 		sched_pin();
3778 		pte_store(pte, spa | pte_bits);
3779 		pmap_invlpg(kernel_pmap, vaddr);
3780 		/* XXXKIB atomic inside flush_cache_range are excessive */
3781 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3782 		sched_unpin();
3783 	}
3784 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3785 }
3786 
3787 /*
3788  *	Routine:	pmap_extract
3789  *	Function:
3790  *		Extract the physical page address associated
3791  *		with the given map/virtual_address pair.
3792  */
3793 vm_paddr_t
3794 pmap_extract(pmap_t pmap, vm_offset_t va)
3795 {
3796 	pdp_entry_t *pdpe;
3797 	pd_entry_t *pde;
3798 	pt_entry_t *pte, PG_V;
3799 	vm_paddr_t pa;
3800 
3801 	pa = 0;
3802 	PG_V = pmap_valid_bit(pmap);
3803 	PMAP_LOCK(pmap);
3804 	pdpe = pmap_pdpe(pmap, va);
3805 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3806 		if ((*pdpe & PG_PS) != 0)
3807 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3808 		else {
3809 			pde = pmap_pdpe_to_pde(pdpe, va);
3810 			if ((*pde & PG_V) != 0) {
3811 				if ((*pde & PG_PS) != 0) {
3812 					pa = (*pde & PG_PS_FRAME) |
3813 					    (va & PDRMASK);
3814 				} else {
3815 					pte = pmap_pde_to_pte(pde, va);
3816 					pa = (*pte & PG_FRAME) |
3817 					    (va & PAGE_MASK);
3818 				}
3819 			}
3820 		}
3821 	}
3822 	PMAP_UNLOCK(pmap);
3823 	return (pa);
3824 }
3825 
3826 /*
3827  *	Routine:	pmap_extract_and_hold
3828  *	Function:
3829  *		Atomically extract and hold the physical page
3830  *		with the given pmap and virtual address pair
3831  *		if that mapping permits the given protection.
3832  */
3833 vm_page_t
3834 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3835 {
3836 	pdp_entry_t pdpe, *pdpep;
3837 	pd_entry_t pde, *pdep;
3838 	pt_entry_t pte, PG_RW, PG_V;
3839 	vm_page_t m;
3840 
3841 	m = NULL;
3842 	PG_RW = pmap_rw_bit(pmap);
3843 	PG_V = pmap_valid_bit(pmap);
3844 	PMAP_LOCK(pmap);
3845 
3846 	pdpep = pmap_pdpe(pmap, va);
3847 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3848 		goto out;
3849 	if ((pdpe & PG_PS) != 0) {
3850 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3851 			goto out;
3852 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3853 		goto check_page;
3854 	}
3855 
3856 	pdep = pmap_pdpe_to_pde(pdpep, va);
3857 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3858 		goto out;
3859 	if ((pde & PG_PS) != 0) {
3860 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3861 			goto out;
3862 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3863 		goto check_page;
3864 	}
3865 
3866 	pte = *pmap_pde_to_pte(pdep, va);
3867 	if ((pte & PG_V) == 0 ||
3868 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3869 		goto out;
3870 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3871 
3872 check_page:
3873 	if (m != NULL && !vm_page_wire_mapped(m))
3874 		m = NULL;
3875 out:
3876 	PMAP_UNLOCK(pmap);
3877 	return (m);
3878 }
3879 
3880 vm_paddr_t
3881 pmap_kextract(vm_offset_t va)
3882 {
3883 	pd_entry_t pde;
3884 	vm_paddr_t pa;
3885 
3886 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3887 		pa = DMAP_TO_PHYS(va);
3888 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3889 		pa = pmap_large_map_kextract(va);
3890 	} else {
3891 		pde = *vtopde(va);
3892 		if (pde & PG_PS) {
3893 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3894 		} else {
3895 			/*
3896 			 * Beware of a concurrent promotion that changes the
3897 			 * PDE at this point!  For example, vtopte() must not
3898 			 * be used to access the PTE because it would use the
3899 			 * new PDE.  It is, however, safe to use the old PDE
3900 			 * because the page table page is preserved by the
3901 			 * promotion.
3902 			 */
3903 			pa = *pmap_pde_to_pte(&pde, va);
3904 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3905 		}
3906 	}
3907 	return (pa);
3908 }
3909 
3910 /***************************************************
3911  * Low level mapping routines.....
3912  ***************************************************/
3913 
3914 /*
3915  * Add a wired page to the kva.
3916  * Note: not SMP coherent.
3917  */
3918 PMAP_INLINE void
3919 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3920 {
3921 	pt_entry_t *pte;
3922 
3923 	pte = vtopte(va);
3924 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3925 	    X86_PG_RW | X86_PG_V);
3926 }
3927 
3928 static __inline void
3929 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3930 {
3931 	pt_entry_t *pte;
3932 	int cache_bits;
3933 
3934 	pte = vtopte(va);
3935 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3936 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3937 	    X86_PG_RW | X86_PG_V | cache_bits);
3938 }
3939 
3940 /*
3941  * Remove a page from the kernel pagetables.
3942  * Note: not SMP coherent.
3943  */
3944 PMAP_INLINE void
3945 pmap_kremove(vm_offset_t va)
3946 {
3947 	pt_entry_t *pte;
3948 
3949 	pte = vtopte(va);
3950 	pte_clear(pte);
3951 }
3952 
3953 /*
3954  *	Used to map a range of physical addresses into kernel
3955  *	virtual address space.
3956  *
3957  *	The value passed in '*virt' is a suggested virtual address for
3958  *	the mapping. Architectures which can support a direct-mapped
3959  *	physical to virtual region can return the appropriate address
3960  *	within that region, leaving '*virt' unchanged. Other
3961  *	architectures should map the pages starting at '*virt' and
3962  *	update '*virt' with the first usable address after the mapped
3963  *	region.
3964  */
3965 vm_offset_t
3966 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3967 {
3968 	return PHYS_TO_DMAP(start);
3969 }
3970 
3971 /*
3972  * Add a list of wired pages to the kva
3973  * this routine is only used for temporary
3974  * kernel mappings that do not need to have
3975  * page modification or references recorded.
3976  * Note that old mappings are simply written
3977  * over.  The page *must* be wired.
3978  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3979  */
3980 void
3981 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3982 {
3983 	pt_entry_t *endpte, oldpte, pa, *pte;
3984 	vm_page_t m;
3985 	int cache_bits;
3986 
3987 	oldpte = 0;
3988 	pte = vtopte(sva);
3989 	endpte = pte + count;
3990 	while (pte < endpte) {
3991 		m = *ma++;
3992 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
3993 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3994 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3995 			oldpte |= *pte;
3996 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
3997 			    X86_PG_M | X86_PG_RW | X86_PG_V);
3998 		}
3999 		pte++;
4000 	}
4001 	if (__predict_false((oldpte & X86_PG_V) != 0))
4002 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4003 		    PAGE_SIZE);
4004 }
4005 
4006 /*
4007  * This routine tears out page mappings from the
4008  * kernel -- it is meant only for temporary mappings.
4009  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4010  */
4011 void
4012 pmap_qremove(vm_offset_t sva, int count)
4013 {
4014 	vm_offset_t va;
4015 
4016 	va = sva;
4017 	while (count-- > 0) {
4018 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4019 		pmap_kremove(va);
4020 		va += PAGE_SIZE;
4021 	}
4022 	pmap_invalidate_range(kernel_pmap, sva, va);
4023 }
4024 
4025 /***************************************************
4026  * Page table page management routines.....
4027  ***************************************************/
4028 /*
4029  * Schedule the specified unused page table page to be freed.  Specifically,
4030  * add the page to the specified list of pages that will be released to the
4031  * physical memory manager after the TLB has been updated.
4032  */
4033 static __inline void
4034 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4035     boolean_t set_PG_ZERO)
4036 {
4037 
4038 	if (set_PG_ZERO)
4039 		m->flags |= PG_ZERO;
4040 	else
4041 		m->flags &= ~PG_ZERO;
4042 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4043 }
4044 
4045 /*
4046  * Inserts the specified page table page into the specified pmap's collection
4047  * of idle page table pages.  Each of a pmap's page table pages is responsible
4048  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4049  * ordered by this virtual address range.
4050  *
4051  * If "promoted" is false, then the page table page "mpte" must be zero filled.
4052  */
4053 static __inline int
4054 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
4055 {
4056 
4057 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4058 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
4059 	return (vm_radix_insert(&pmap->pm_root, mpte));
4060 }
4061 
4062 /*
4063  * Removes the page table page mapping the specified virtual address from the
4064  * specified pmap's collection of idle page table pages, and returns it.
4065  * Otherwise, returns NULL if there is no page table page corresponding to the
4066  * specified virtual address.
4067  */
4068 static __inline vm_page_t
4069 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4070 {
4071 
4072 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4073 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4074 }
4075 
4076 /*
4077  * Decrements a page table page's reference count, which is used to record the
4078  * number of valid page table entries within the page.  If the reference count
4079  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4080  * page table page was unmapped and FALSE otherwise.
4081  */
4082 static inline boolean_t
4083 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4084 {
4085 
4086 	--m->ref_count;
4087 	if (m->ref_count == 0) {
4088 		_pmap_unwire_ptp(pmap, va, m, free);
4089 		return (TRUE);
4090 	} else
4091 		return (FALSE);
4092 }
4093 
4094 static void
4095 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4096 {
4097 	pml5_entry_t *pml5;
4098 	pml4_entry_t *pml4;
4099 	pdp_entry_t *pdp;
4100 	pd_entry_t *pd;
4101 	vm_page_t pdpg, pdppg, pml4pg;
4102 
4103 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4104 
4105 	/*
4106 	 * unmap the page table page
4107 	 */
4108 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4109 		/* PML4 page */
4110 		MPASS(pmap_is_la57(pmap));
4111 		pml5 = pmap_pml5e(pmap, va);
4112 		*pml5 = 0;
4113 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4114 			pml5 = pmap_pml5e_u(pmap, va);
4115 			*pml5 = 0;
4116 		}
4117 	} else if (m->pindex >= NUPDE + NUPDPE) {
4118 		/* PDP page */
4119 		pml4 = pmap_pml4e(pmap, va);
4120 		*pml4 = 0;
4121 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4122 		    va <= VM_MAXUSER_ADDRESS) {
4123 			pml4 = pmap_pml4e_u(pmap, va);
4124 			*pml4 = 0;
4125 		}
4126 	} else if (m->pindex >= NUPDE) {
4127 		/* PD page */
4128 		pdp = pmap_pdpe(pmap, va);
4129 		*pdp = 0;
4130 	} else {
4131 		/* PTE page */
4132 		pd = pmap_pde(pmap, va);
4133 		*pd = 0;
4134 	}
4135 	if (m->pindex < NUPDE) {
4136 		/* We just released a PT, unhold the matching PD */
4137 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4138 		pmap_unwire_ptp(pmap, va, pdpg, free);
4139 	} else if (m->pindex < NUPDE + NUPDPE) {
4140 		/* We just released a PD, unhold the matching PDP */
4141 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4142 		pmap_unwire_ptp(pmap, va, pdppg, free);
4143 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4144 		/* We just released a PDP, unhold the matching PML4 */
4145 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4146 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4147 	}
4148 
4149 	pmap_pt_page_count_adj(pmap, -1);
4150 
4151 	/*
4152 	 * Put page on a list so that it is released after
4153 	 * *ALL* TLB shootdown is done
4154 	 */
4155 	pmap_add_delayed_free_list(m, free, TRUE);
4156 }
4157 
4158 /*
4159  * After removing a page table entry, this routine is used to
4160  * conditionally free the page, and manage the reference count.
4161  */
4162 static int
4163 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4164     struct spglist *free)
4165 {
4166 	vm_page_t mpte;
4167 
4168 	if (va >= VM_MAXUSER_ADDRESS)
4169 		return (0);
4170 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4171 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4172 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4173 }
4174 
4175 /*
4176  * Release a page table page reference after a failed attempt to create a
4177  * mapping.
4178  */
4179 static void
4180 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4181 {
4182 	struct spglist free;
4183 
4184 	SLIST_INIT(&free);
4185 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4186 		/*
4187 		 * Although "va" was never mapped, paging-structure caches
4188 		 * could nonetheless have entries that refer to the freed
4189 		 * page table pages.  Invalidate those entries.
4190 		 */
4191 		pmap_invalidate_page(pmap, va);
4192 		vm_page_free_pages_toq(&free, true);
4193 	}
4194 }
4195 
4196 void
4197 pmap_pinit0(pmap_t pmap)
4198 {
4199 	struct proc *p;
4200 	struct thread *td;
4201 	int i;
4202 
4203 	PMAP_LOCK_INIT(pmap);
4204 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4205 	pmap->pm_pmltopu = NULL;
4206 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4207 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4208 	pmap->pm_ucr3 = PMAP_NO_CR3;
4209 	vm_radix_init(&pmap->pm_root);
4210 	CPU_ZERO(&pmap->pm_active);
4211 	TAILQ_INIT(&pmap->pm_pvchunk);
4212 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4213 	pmap->pm_flags = pmap_flags;
4214 	CPU_FOREACH(i) {
4215 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN + 1;
4216 		pmap->pm_pcids[i].pm_gen = 1;
4217 	}
4218 	pmap_activate_boot(pmap);
4219 	td = curthread;
4220 	if (pti) {
4221 		p = td->td_proc;
4222 		PROC_LOCK(p);
4223 		p->p_md.md_flags |= P_MD_KPTI;
4224 		PROC_UNLOCK(p);
4225 	}
4226 	pmap_thread_init_invl_gen(td);
4227 
4228 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4229 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4230 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4231 		    UMA_ALIGN_PTR, 0);
4232 	}
4233 }
4234 
4235 void
4236 pmap_pinit_pml4(vm_page_t pml4pg)
4237 {
4238 	pml4_entry_t *pm_pml4;
4239 	int i;
4240 
4241 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4242 
4243 	/* Wire in kernel global address entries. */
4244 	for (i = 0; i < NKPML4E; i++) {
4245 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4246 		    X86_PG_V;
4247 	}
4248 #ifdef KASAN
4249 	for (i = 0; i < NKASANPML4E; i++) {
4250 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4251 		    X86_PG_V | pg_nx;
4252 	}
4253 #endif
4254 #ifdef KMSAN
4255 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4256 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4257 		    X86_PG_RW | X86_PG_V | pg_nx;
4258 	}
4259 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4260 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4261 		    X86_PG_RW | X86_PG_V | pg_nx;
4262 	}
4263 #endif
4264 	for (i = 0; i < ndmpdpphys; i++) {
4265 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4266 		    X86_PG_V;
4267 	}
4268 
4269 	/* install self-referential address mapping entry(s) */
4270 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4271 	    X86_PG_A | X86_PG_M;
4272 
4273 	/* install large map entries if configured */
4274 	for (i = 0; i < lm_ents; i++)
4275 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4276 }
4277 
4278 void
4279 pmap_pinit_pml5(vm_page_t pml5pg)
4280 {
4281 	pml5_entry_t *pm_pml5;
4282 
4283 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4284 
4285 	/*
4286 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4287 	 * entering all existing kernel mappings into level 5 table.
4288 	 */
4289 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4290 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4291 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4292 
4293 	/*
4294 	 * Install self-referential address mapping entry.
4295 	 */
4296 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4297 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4298 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4299 }
4300 
4301 static void
4302 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4303 {
4304 	pml4_entry_t *pm_pml4u;
4305 	int i;
4306 
4307 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4308 	for (i = 0; i < NPML4EPG; i++)
4309 		pm_pml4u[i] = pti_pml4[i];
4310 }
4311 
4312 static void
4313 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4314 {
4315 	pml5_entry_t *pm_pml5u;
4316 
4317 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4318 	pagezero(pm_pml5u);
4319 
4320 	/*
4321 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4322 	 * table, entering all kernel mappings needed for usermode
4323 	 * into level 5 table.
4324 	 */
4325 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4326 	    pmap_kextract((vm_offset_t)pti_pml4) |
4327 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4328 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4329 }
4330 
4331 /* Allocate a page table page and do related bookkeeping */
4332 static vm_page_t
4333 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4334 {
4335 	vm_page_t m;
4336 
4337 	m = vm_page_alloc_noobj(flags);
4338 	if (__predict_false(m == NULL))
4339 		return (NULL);
4340 	m->pindex = pindex;
4341 	pmap_pt_page_count_adj(pmap, 1);
4342 	return (m);
4343 }
4344 
4345 static void
4346 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4347 {
4348 	/*
4349 	 * This function assumes the page will need to be unwired,
4350 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4351 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4352 	 * of pmap_free_pt_page() require unwiring.  The case in which
4353 	 * a PT page doesn't require unwiring because its ref_count has
4354 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4355 	 */
4356 	vm_page_unwire_noq(m);
4357 	if (zerofilled)
4358 		vm_page_free_zero(m);
4359 	else
4360 		vm_page_free(m);
4361 
4362 	pmap_pt_page_count_adj(pmap, -1);
4363 }
4364 
4365 /*
4366  * Initialize a preallocated and zeroed pmap structure,
4367  * such as one in a vmspace structure.
4368  */
4369 int
4370 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4371 {
4372 	vm_page_t pmltop_pg, pmltop_pgu;
4373 	vm_paddr_t pmltop_phys;
4374 	int i;
4375 
4376 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4377 
4378 	/*
4379 	 * Allocate the page directory page.  Pass NULL instead of a
4380 	 * pointer to the pmap here to avoid calling
4381 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4382 	 * since that requires pmap lock.  Instead do the accounting
4383 	 * manually.
4384 	 *
4385 	 * Note that final call to pmap_remove() optimization that
4386 	 * checks for zero resident_count is basically disabled by
4387 	 * accounting for top-level page.  But the optimization was
4388 	 * not effective since we started using non-managed mapping of
4389 	 * the shared page.
4390 	 */
4391 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4392 	    VM_ALLOC_WAITOK);
4393 	pmap_pt_page_count_pinit(pmap, 1);
4394 
4395 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4396 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4397 
4398 	CPU_FOREACH(i) {
4399 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
4400 		pmap->pm_pcids[i].pm_gen = 0;
4401 	}
4402 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4403 	pmap->pm_ucr3 = PMAP_NO_CR3;
4404 	pmap->pm_pmltopu = NULL;
4405 
4406 	pmap->pm_type = pm_type;
4407 
4408 	/*
4409 	 * Do not install the host kernel mappings in the nested page
4410 	 * tables. These mappings are meaningless in the guest physical
4411 	 * address space.
4412 	 * Install minimal kernel mappings in PTI case.
4413 	 */
4414 	switch (pm_type) {
4415 	case PT_X86:
4416 		pmap->pm_cr3 = pmltop_phys;
4417 		if (pmap_is_la57(pmap))
4418 			pmap_pinit_pml5(pmltop_pg);
4419 		else
4420 			pmap_pinit_pml4(pmltop_pg);
4421 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4422 			/*
4423 			 * As with pmltop_pg, pass NULL instead of a
4424 			 * pointer to the pmap to ensure that the PTI
4425 			 * page counted explicitly.
4426 			 */
4427 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4428 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4429 			pmap_pt_page_count_pinit(pmap, 1);
4430 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4431 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4432 			if (pmap_is_la57(pmap))
4433 				pmap_pinit_pml5_pti(pmltop_pgu);
4434 			else
4435 				pmap_pinit_pml4_pti(pmltop_pgu);
4436 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4437 		}
4438 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4439 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4440 			    pkru_free_range, pmap, M_NOWAIT);
4441 		}
4442 		break;
4443 	case PT_EPT:
4444 	case PT_RVI:
4445 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4446 		break;
4447 	}
4448 
4449 	vm_radix_init(&pmap->pm_root);
4450 	CPU_ZERO(&pmap->pm_active);
4451 	TAILQ_INIT(&pmap->pm_pvchunk);
4452 	pmap->pm_flags = flags;
4453 	pmap->pm_eptgen = 0;
4454 
4455 	return (1);
4456 }
4457 
4458 int
4459 pmap_pinit(pmap_t pmap)
4460 {
4461 
4462 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4463 }
4464 
4465 static void
4466 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4467 {
4468 	vm_page_t mpg;
4469 	struct spglist free;
4470 
4471 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4472 	if (mpg->ref_count != 0)
4473 		return;
4474 	SLIST_INIT(&free);
4475 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4476 	pmap_invalidate_page(pmap, va);
4477 	vm_page_free_pages_toq(&free, true);
4478 }
4479 
4480 static pml4_entry_t *
4481 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4482     bool addref)
4483 {
4484 	vm_pindex_t pml5index;
4485 	pml5_entry_t *pml5;
4486 	pml4_entry_t *pml4;
4487 	vm_page_t pml4pg;
4488 	pt_entry_t PG_V;
4489 	bool allocated;
4490 
4491 	if (!pmap_is_la57(pmap))
4492 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4493 
4494 	PG_V = pmap_valid_bit(pmap);
4495 	pml5index = pmap_pml5e_index(va);
4496 	pml5 = &pmap->pm_pmltop[pml5index];
4497 	if ((*pml5 & PG_V) == 0) {
4498 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4499 		    va) == NULL)
4500 			return (NULL);
4501 		allocated = true;
4502 	} else {
4503 		allocated = false;
4504 	}
4505 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4506 	pml4 = &pml4[pmap_pml4e_index(va)];
4507 	if ((*pml4 & PG_V) == 0) {
4508 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4509 		if (allocated && !addref)
4510 			pml4pg->ref_count--;
4511 		else if (!allocated && addref)
4512 			pml4pg->ref_count++;
4513 	}
4514 	return (pml4);
4515 }
4516 
4517 static pdp_entry_t *
4518 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4519     bool addref)
4520 {
4521 	vm_page_t pdppg;
4522 	pml4_entry_t *pml4;
4523 	pdp_entry_t *pdp;
4524 	pt_entry_t PG_V;
4525 	bool allocated;
4526 
4527 	PG_V = pmap_valid_bit(pmap);
4528 
4529 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4530 	if (pml4 == NULL)
4531 		return (NULL);
4532 
4533 	if ((*pml4 & PG_V) == 0) {
4534 		/* Have to allocate a new pdp, recurse */
4535 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4536 		    va) == NULL) {
4537 			if (pmap_is_la57(pmap))
4538 				pmap_allocpte_free_unref(pmap, va,
4539 				    pmap_pml5e(pmap, va));
4540 			return (NULL);
4541 		}
4542 		allocated = true;
4543 	} else {
4544 		allocated = false;
4545 	}
4546 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4547 	pdp = &pdp[pmap_pdpe_index(va)];
4548 	if ((*pdp & PG_V) == 0) {
4549 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4550 		if (allocated && !addref)
4551 			pdppg->ref_count--;
4552 		else if (!allocated && addref)
4553 			pdppg->ref_count++;
4554 	}
4555 	return (pdp);
4556 }
4557 
4558 /*
4559  * The ptepindexes, i.e. page indices, of the page table pages encountered
4560  * while translating virtual address va are defined as follows:
4561  * - for the page table page (last level),
4562  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4563  *   in other words, it is just the index of the PDE that maps the page
4564  *   table page.
4565  * - for the page directory page,
4566  *      ptepindex = NUPDE (number of userland PD entries) +
4567  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4568  *   i.e. index of PDPE is put after the last index of PDE,
4569  * - for the page directory pointer page,
4570  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4571  *          NPML4EPGSHIFT),
4572  *   i.e. index of pml4e is put after the last index of PDPE,
4573  * - for the PML4 page (if LA57 mode is enabled),
4574  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4575  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4576  *   i.e. index of pml5e is put after the last index of PML4E.
4577  *
4578  * Define an order on the paging entries, where all entries of the
4579  * same height are put together, then heights are put from deepest to
4580  * root.  Then ptexpindex is the sequential number of the
4581  * corresponding paging entry in this order.
4582  *
4583  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4584  * LA57 paging structures even in LA48 paging mode. Moreover, the
4585  * ptepindexes are calculated as if the paging structures were 5-level
4586  * regardless of the actual mode of operation.
4587  *
4588  * The root page at PML4/PML5 does not participate in this indexing scheme,
4589  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4590  */
4591 static vm_page_t
4592 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4593     vm_offset_t va)
4594 {
4595 	vm_pindex_t pml5index, pml4index;
4596 	pml5_entry_t *pml5, *pml5u;
4597 	pml4_entry_t *pml4, *pml4u;
4598 	pdp_entry_t *pdp;
4599 	pd_entry_t *pd;
4600 	vm_page_t m, pdpg;
4601 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4602 
4603 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4604 
4605 	PG_A = pmap_accessed_bit(pmap);
4606 	PG_M = pmap_modified_bit(pmap);
4607 	PG_V = pmap_valid_bit(pmap);
4608 	PG_RW = pmap_rw_bit(pmap);
4609 
4610 	/*
4611 	 * Allocate a page table page.
4612 	 */
4613 	m = pmap_alloc_pt_page(pmap, ptepindex,
4614 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4615 	if (m == NULL)
4616 		return (NULL);
4617 
4618 	/*
4619 	 * Map the pagetable page into the process address space, if
4620 	 * it isn't already there.
4621 	 */
4622 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4623 		MPASS(pmap_is_la57(pmap));
4624 
4625 		pml5index = pmap_pml5e_index(va);
4626 		pml5 = &pmap->pm_pmltop[pml5index];
4627 		KASSERT((*pml5 & PG_V) == 0,
4628 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4629 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4630 
4631 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4632 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4633 				*pml5 |= pg_nx;
4634 
4635 			pml5u = &pmap->pm_pmltopu[pml5index];
4636 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4637 			    PG_A | PG_M;
4638 		}
4639 	} else if (ptepindex >= NUPDE + NUPDPE) {
4640 		pml4index = pmap_pml4e_index(va);
4641 		/* Wire up a new PDPE page */
4642 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4643 		if (pml4 == NULL) {
4644 			pmap_free_pt_page(pmap, m, true);
4645 			return (NULL);
4646 		}
4647 		KASSERT((*pml4 & PG_V) == 0,
4648 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4649 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4650 
4651 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4652 		    pml4index < NUPML4E) {
4653 			/*
4654 			 * PTI: Make all user-space mappings in the
4655 			 * kernel-mode page table no-execute so that
4656 			 * we detect any programming errors that leave
4657 			 * the kernel-mode page table active on return
4658 			 * to user space.
4659 			 */
4660 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4661 				*pml4 |= pg_nx;
4662 
4663 			pml4u = &pmap->pm_pmltopu[pml4index];
4664 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4665 			    PG_A | PG_M;
4666 		}
4667 	} else if (ptepindex >= NUPDE) {
4668 		/* Wire up a new PDE page */
4669 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4670 		if (pdp == NULL) {
4671 			pmap_free_pt_page(pmap, m, true);
4672 			return (NULL);
4673 		}
4674 		KASSERT((*pdp & PG_V) == 0,
4675 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4676 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4677 	} else {
4678 		/* Wire up a new PTE page */
4679 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4680 		if (pdp == NULL) {
4681 			pmap_free_pt_page(pmap, m, true);
4682 			return (NULL);
4683 		}
4684 		if ((*pdp & PG_V) == 0) {
4685 			/* Have to allocate a new pd, recurse */
4686 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4687 		      lockp, va) == NULL) {
4688 				pmap_allocpte_free_unref(pmap, va,
4689 				    pmap_pml4e(pmap, va));
4690 				pmap_free_pt_page(pmap, m, true);
4691 				return (NULL);
4692 			}
4693 		} else {
4694 			/* Add reference to the pd page */
4695 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4696 			pdpg->ref_count++;
4697 		}
4698 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4699 
4700 		/* Now we know where the page directory page is */
4701 		pd = &pd[pmap_pde_index(va)];
4702 		KASSERT((*pd & PG_V) == 0,
4703 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4704 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4705 	}
4706 
4707 	return (m);
4708 }
4709 
4710 /*
4711  * This routine is called if the desired page table page does not exist.
4712  *
4713  * If page table page allocation fails, this routine may sleep before
4714  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4715  * occurs right before returning to the caller. This way, we never
4716  * drop pmap lock to sleep while a page table page has ref_count == 0,
4717  * which prevents the page from being freed under us.
4718  */
4719 static vm_page_t
4720 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4721     vm_offset_t va)
4722 {
4723 	vm_page_t m;
4724 
4725 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4726 	if (m == NULL && lockp != NULL) {
4727 		RELEASE_PV_LIST_LOCK(lockp);
4728 		PMAP_UNLOCK(pmap);
4729 		PMAP_ASSERT_NOT_IN_DI();
4730 		vm_wait(NULL);
4731 		PMAP_LOCK(pmap);
4732 	}
4733 	return (m);
4734 }
4735 
4736 static pd_entry_t *
4737 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4738     struct rwlock **lockp)
4739 {
4740 	pdp_entry_t *pdpe, PG_V;
4741 	pd_entry_t *pde;
4742 	vm_page_t pdpg;
4743 	vm_pindex_t pdpindex;
4744 
4745 	PG_V = pmap_valid_bit(pmap);
4746 
4747 retry:
4748 	pdpe = pmap_pdpe(pmap, va);
4749 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4750 		pde = pmap_pdpe_to_pde(pdpe, va);
4751 		if (va < VM_MAXUSER_ADDRESS) {
4752 			/* Add a reference to the pd page. */
4753 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4754 			pdpg->ref_count++;
4755 		} else
4756 			pdpg = NULL;
4757 	} else if (va < VM_MAXUSER_ADDRESS) {
4758 		/* Allocate a pd page. */
4759 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4760 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4761 		if (pdpg == NULL) {
4762 			if (lockp != NULL)
4763 				goto retry;
4764 			else
4765 				return (NULL);
4766 		}
4767 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4768 		pde = &pde[pmap_pde_index(va)];
4769 	} else
4770 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4771 		    va);
4772 	*pdpgp = pdpg;
4773 	return (pde);
4774 }
4775 
4776 static vm_page_t
4777 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4778 {
4779 	vm_pindex_t ptepindex;
4780 	pd_entry_t *pd, PG_V;
4781 	vm_page_t m;
4782 
4783 	PG_V = pmap_valid_bit(pmap);
4784 
4785 	/*
4786 	 * Calculate pagetable page index
4787 	 */
4788 	ptepindex = pmap_pde_pindex(va);
4789 retry:
4790 	/*
4791 	 * Get the page directory entry
4792 	 */
4793 	pd = pmap_pde(pmap, va);
4794 
4795 	/*
4796 	 * This supports switching from a 2MB page to a
4797 	 * normal 4K page.
4798 	 */
4799 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4800 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4801 			/*
4802 			 * Invalidation of the 2MB page mapping may have caused
4803 			 * the deallocation of the underlying PD page.
4804 			 */
4805 			pd = NULL;
4806 		}
4807 	}
4808 
4809 	/*
4810 	 * If the page table page is mapped, we just increment the
4811 	 * hold count, and activate it.
4812 	 */
4813 	if (pd != NULL && (*pd & PG_V) != 0) {
4814 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4815 		m->ref_count++;
4816 	} else {
4817 		/*
4818 		 * Here if the pte page isn't mapped, or if it has been
4819 		 * deallocated.
4820 		 */
4821 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4822 		if (m == NULL && lockp != NULL)
4823 			goto retry;
4824 	}
4825 	return (m);
4826 }
4827 
4828 /***************************************************
4829  * Pmap allocation/deallocation routines.
4830  ***************************************************/
4831 
4832 /*
4833  * Release any resources held by the given physical map.
4834  * Called when a pmap initialized by pmap_pinit is being released.
4835  * Should only be called if the map contains no valid mappings.
4836  */
4837 void
4838 pmap_release(pmap_t pmap)
4839 {
4840 	vm_page_t m;
4841 	int i;
4842 
4843 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4844 	    ("pmap_release: pmap %p has reserved page table page(s)",
4845 	    pmap));
4846 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4847 	    ("releasing active pmap %p", pmap));
4848 
4849 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4850 
4851 	if (pmap_is_la57(pmap)) {
4852 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4853 		pmap->pm_pmltop[PML5PML5I] = 0;
4854 	} else {
4855 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4856 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4857 #ifdef KASAN
4858 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4859 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4860 #endif
4861 #ifdef KMSAN
4862 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4863 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4864 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4865 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4866 #endif
4867 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4868 			pmap->pm_pmltop[DMPML4I + i] = 0;
4869 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4870 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4871 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4872 	}
4873 
4874 	pmap_free_pt_page(NULL, m, true);
4875 	pmap_pt_page_count_pinit(pmap, -1);
4876 
4877 	if (pmap->pm_pmltopu != NULL) {
4878 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4879 		    pm_pmltopu));
4880 		pmap_free_pt_page(NULL, m, false);
4881 		pmap_pt_page_count_pinit(pmap, -1);
4882 	}
4883 	if (pmap->pm_type == PT_X86 &&
4884 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4885 		rangeset_fini(&pmap->pm_pkru);
4886 
4887 	KASSERT(pmap->pm_stats.resident_count == 0,
4888 	    ("pmap_release: pmap %p resident count %ld != 0",
4889 	    pmap, pmap->pm_stats.resident_count));
4890 }
4891 
4892 static int
4893 kvm_size(SYSCTL_HANDLER_ARGS)
4894 {
4895 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4896 
4897 	return sysctl_handle_long(oidp, &ksize, 0, req);
4898 }
4899 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4900     0, 0, kvm_size, "LU",
4901     "Size of KVM");
4902 
4903 static int
4904 kvm_free(SYSCTL_HANDLER_ARGS)
4905 {
4906 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4907 
4908 	return sysctl_handle_long(oidp, &kfree, 0, req);
4909 }
4910 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4911     0, 0, kvm_free, "LU",
4912     "Amount of KVM free");
4913 
4914 #ifdef KMSAN
4915 static void
4916 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4917 {
4918 	pdp_entry_t *pdpe;
4919 	pd_entry_t *pde;
4920 	pt_entry_t *pte;
4921 	vm_paddr_t dummypa, dummypd, dummypt;
4922 	int i, npde, npdpg;
4923 
4924 	npdpg = howmany(size, NBPDP);
4925 	npde = size / NBPDR;
4926 
4927 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4928 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4929 
4930 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4931 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4932 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4933 	for (i = 0; i < npdpg; i++)
4934 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4935 
4936 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4937 	for (i = 0; i < NPTEPG; i++)
4938 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4939 		    X86_PG_A | X86_PG_M | pg_nx);
4940 
4941 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4942 	for (i = 0; i < npde; i++)
4943 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4944 
4945 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4946 	for (i = 0; i < npdpg; i++)
4947 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4948 		    X86_PG_RW | pg_nx);
4949 }
4950 
4951 static void
4952 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4953 {
4954 	vm_size_t size;
4955 
4956 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4957 
4958 	/*
4959 	 * The end of the page array's KVA region is 2MB aligned, see
4960 	 * kmem_init().
4961 	 */
4962 	size = round_2mpage(end) - start;
4963 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4964 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4965 }
4966 #endif
4967 
4968 /*
4969  * Allocate physical memory for the vm_page array and map it into KVA,
4970  * attempting to back the vm_pages with domain-local memory.
4971  */
4972 void
4973 pmap_page_array_startup(long pages)
4974 {
4975 	pdp_entry_t *pdpe;
4976 	pd_entry_t *pde, newpdir;
4977 	vm_offset_t va, start, end;
4978 	vm_paddr_t pa;
4979 	long pfn;
4980 	int domain, i;
4981 
4982 	vm_page_array_size = pages;
4983 
4984 	start = VM_MIN_KERNEL_ADDRESS;
4985 	end = start + pages * sizeof(struct vm_page);
4986 	for (va = start; va < end; va += NBPDR) {
4987 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4988 		domain = vm_phys_domain(ptoa(pfn));
4989 		pdpe = pmap_pdpe(kernel_pmap, va);
4990 		if ((*pdpe & X86_PG_V) == 0) {
4991 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4992 			dump_add_page(pa);
4993 			pagezero((void *)PHYS_TO_DMAP(pa));
4994 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4995 			    X86_PG_A | X86_PG_M);
4996 		}
4997 		pde = pmap_pdpe_to_pde(pdpe, va);
4998 		if ((*pde & X86_PG_V) != 0)
4999 			panic("Unexpected pde");
5000 		pa = vm_phys_early_alloc(domain, NBPDR);
5001 		for (i = 0; i < NPDEPG; i++)
5002 			dump_add_page(pa + i * PAGE_SIZE);
5003 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5004 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5005 		pde_store(pde, newpdir);
5006 	}
5007 	vm_page_array = (vm_page_t)start;
5008 
5009 #ifdef KMSAN
5010 	pmap_kmsan_page_array_startup(start, end);
5011 #endif
5012 }
5013 
5014 /*
5015  * grow the number of kernel page table entries, if needed
5016  */
5017 void
5018 pmap_growkernel(vm_offset_t addr)
5019 {
5020 	vm_paddr_t paddr;
5021 	vm_page_t nkpg;
5022 	pd_entry_t *pde, newpdir;
5023 	pdp_entry_t *pdpe;
5024 	vm_offset_t end;
5025 
5026 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5027 
5028 	/*
5029 	 * The kernel map covers two distinct regions of KVA: that used
5030 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5031 	 * of the virtual address space.  The latter is used to map the
5032 	 * kernel and loadable kernel modules.  This scheme enables the
5033 	 * use of a special code generation model for kernel code which
5034 	 * takes advantage of compact addressing modes in machine code.
5035 	 *
5036 	 * Both regions grow upwards; to avoid wasting memory, the gap
5037 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5038 	 * kernel's region is grown, otherwise the kmem region is grown.
5039 	 *
5040 	 * The correctness of this action is based on the following
5041 	 * argument: vm_map_insert() allocates contiguous ranges of the
5042 	 * kernel virtual address space.  It calls this function if a range
5043 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5044 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5045 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5046 	 * than the kernel.  Thus, there is no immediate need to allocate
5047 	 * any new kernel page table pages between "kernel_vm_end" and
5048 	 * "KERNBASE".
5049 	 */
5050 	if (KERNBASE < addr) {
5051 		end = KERNBASE + nkpt * NBPDR;
5052 		if (end == 0)
5053 			return;
5054 	} else {
5055 		end = kernel_vm_end;
5056 	}
5057 
5058 	addr = roundup2(addr, NBPDR);
5059 	if (addr - 1 >= vm_map_max(kernel_map))
5060 		addr = vm_map_max(kernel_map);
5061 	if (addr <= end) {
5062 		/*
5063 		 * The grown region is already mapped, so there is
5064 		 * nothing to do.
5065 		 */
5066 		return;
5067 	}
5068 
5069 	kasan_shadow_map(end, addr - end);
5070 	kmsan_shadow_map(end, addr - end);
5071 	while (end < addr) {
5072 		pdpe = pmap_pdpe(kernel_pmap, end);
5073 		if ((*pdpe & X86_PG_V) == 0) {
5074 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5075 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
5076 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5077 			if (nkpg == NULL)
5078 				panic("pmap_growkernel: no memory to grow kernel");
5079 			paddr = VM_PAGE_TO_PHYS(nkpg);
5080 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5081 			    X86_PG_A | X86_PG_M);
5082 			continue; /* try again */
5083 		}
5084 		pde = pmap_pdpe_to_pde(pdpe, end);
5085 		if ((*pde & X86_PG_V) != 0) {
5086 			end = (end + NBPDR) & ~PDRMASK;
5087 			if (end - 1 >= vm_map_max(kernel_map)) {
5088 				end = vm_map_max(kernel_map);
5089 				break;
5090 			}
5091 			continue;
5092 		}
5093 
5094 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5095 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5096 		if (nkpg == NULL)
5097 			panic("pmap_growkernel: no memory to grow kernel");
5098 		paddr = VM_PAGE_TO_PHYS(nkpg);
5099 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5100 		pde_store(pde, newpdir);
5101 
5102 		end = (end + NBPDR) & ~PDRMASK;
5103 		if (end - 1 >= vm_map_max(kernel_map)) {
5104 			end = vm_map_max(kernel_map);
5105 			break;
5106 		}
5107 	}
5108 
5109 	if (end <= KERNBASE)
5110 		kernel_vm_end = end;
5111 	else
5112 		nkpt = howmany(end - KERNBASE, NBPDR);
5113 }
5114 
5115 /***************************************************
5116  * page management routines.
5117  ***************************************************/
5118 
5119 static const uint64_t pc_freemask[_NPCM] = {
5120 	[0 ... _NPCM - 2] = PC_FREEN,
5121 	[_NPCM - 1] = PC_FREEL
5122 };
5123 
5124 #ifdef PV_STATS
5125 
5126 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5127 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5128     &pc_chunk_count, "Current number of pv entry cnunks");
5129 
5130 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5131 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5132     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5133 
5134 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5135 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5136     &pc_chunk_frees, "Total number of pv entry chunks freed");
5137 
5138 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5139 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5140     &pc_chunk_tryfail,
5141     "Number of failed attempts to get a pv entry chunk page");
5142 
5143 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5144 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5145     &pv_entry_frees, "Total number of pv entries freed");
5146 
5147 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5148 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5149     &pv_entry_allocs, "Total number of pv entries allocated");
5150 
5151 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5152 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5153     &pv_entry_count, "Current number of pv entries");
5154 
5155 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5156 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5157     &pv_entry_spare, "Current number of spare pv entries");
5158 #endif
5159 
5160 static void
5161 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5162 {
5163 
5164 	if (pmap == NULL)
5165 		return;
5166 	pmap_invalidate_all(pmap);
5167 	if (pmap != locked_pmap)
5168 		PMAP_UNLOCK(pmap);
5169 	if (start_di)
5170 		pmap_delayed_invl_finish();
5171 }
5172 
5173 /*
5174  * We are in a serious low memory condition.  Resort to
5175  * drastic measures to free some pages so we can allocate
5176  * another pv entry chunk.
5177  *
5178  * Returns NULL if PV entries were reclaimed from the specified pmap.
5179  *
5180  * We do not, however, unmap 2mpages because subsequent accesses will
5181  * allocate per-page pv entries until repromotion occurs, thereby
5182  * exacerbating the shortage of free pv entries.
5183  */
5184 static vm_page_t
5185 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5186 {
5187 	struct pv_chunks_list *pvc;
5188 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5189 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5190 	struct md_page *pvh;
5191 	pd_entry_t *pde;
5192 	pmap_t next_pmap, pmap;
5193 	pt_entry_t *pte, tpte;
5194 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5195 	pv_entry_t pv;
5196 	vm_offset_t va;
5197 	vm_page_t m, m_pc;
5198 	struct spglist free;
5199 	uint64_t inuse;
5200 	int bit, field, freed;
5201 	bool start_di, restart;
5202 
5203 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5204 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5205 	pmap = NULL;
5206 	m_pc = NULL;
5207 	PG_G = PG_A = PG_M = PG_RW = 0;
5208 	SLIST_INIT(&free);
5209 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5210 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5211 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5212 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5213 
5214 	/*
5215 	 * A delayed invalidation block should already be active if
5216 	 * pmap_advise() or pmap_remove() called this function by way
5217 	 * of pmap_demote_pde_locked().
5218 	 */
5219 	start_di = pmap_not_in_di();
5220 
5221 	pvc = &pv_chunks[domain];
5222 	mtx_lock(&pvc->pvc_lock);
5223 	pvc->active_reclaims++;
5224 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5225 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5226 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5227 	    SLIST_EMPTY(&free)) {
5228 		next_pmap = pc->pc_pmap;
5229 		if (next_pmap == NULL) {
5230 			/*
5231 			 * The next chunk is a marker.  However, it is
5232 			 * not our marker, so active_reclaims must be
5233 			 * > 1.  Consequently, the next_chunk code
5234 			 * will not rotate the pv_chunks list.
5235 			 */
5236 			goto next_chunk;
5237 		}
5238 		mtx_unlock(&pvc->pvc_lock);
5239 
5240 		/*
5241 		 * A pv_chunk can only be removed from the pc_lru list
5242 		 * when both pc_chunks_mutex is owned and the
5243 		 * corresponding pmap is locked.
5244 		 */
5245 		if (pmap != next_pmap) {
5246 			restart = false;
5247 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5248 			    start_di);
5249 			pmap = next_pmap;
5250 			/* Avoid deadlock and lock recursion. */
5251 			if (pmap > locked_pmap) {
5252 				RELEASE_PV_LIST_LOCK(lockp);
5253 				PMAP_LOCK(pmap);
5254 				if (start_di)
5255 					pmap_delayed_invl_start();
5256 				mtx_lock(&pvc->pvc_lock);
5257 				restart = true;
5258 			} else if (pmap != locked_pmap) {
5259 				if (PMAP_TRYLOCK(pmap)) {
5260 					if (start_di)
5261 						pmap_delayed_invl_start();
5262 					mtx_lock(&pvc->pvc_lock);
5263 					restart = true;
5264 				} else {
5265 					pmap = NULL; /* pmap is not locked */
5266 					mtx_lock(&pvc->pvc_lock);
5267 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5268 					if (pc == NULL ||
5269 					    pc->pc_pmap != next_pmap)
5270 						continue;
5271 					goto next_chunk;
5272 				}
5273 			} else if (start_di)
5274 				pmap_delayed_invl_start();
5275 			PG_G = pmap_global_bit(pmap);
5276 			PG_A = pmap_accessed_bit(pmap);
5277 			PG_M = pmap_modified_bit(pmap);
5278 			PG_RW = pmap_rw_bit(pmap);
5279 			if (restart)
5280 				continue;
5281 		}
5282 
5283 		/*
5284 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5285 		 */
5286 		freed = 0;
5287 		for (field = 0; field < _NPCM; field++) {
5288 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5289 			    inuse != 0; inuse &= ~(1UL << bit)) {
5290 				bit = bsfq(inuse);
5291 				pv = &pc->pc_pventry[field * 64 + bit];
5292 				va = pv->pv_va;
5293 				pde = pmap_pde(pmap, va);
5294 				if ((*pde & PG_PS) != 0)
5295 					continue;
5296 				pte = pmap_pde_to_pte(pde, va);
5297 				if ((*pte & PG_W) != 0)
5298 					continue;
5299 				tpte = pte_load_clear(pte);
5300 				if ((tpte & PG_G) != 0)
5301 					pmap_invalidate_page(pmap, va);
5302 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5303 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5304 					vm_page_dirty(m);
5305 				if ((tpte & PG_A) != 0)
5306 					vm_page_aflag_set(m, PGA_REFERENCED);
5307 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5308 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5309 				m->md.pv_gen++;
5310 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5311 				    (m->flags & PG_FICTITIOUS) == 0) {
5312 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5313 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5314 						vm_page_aflag_clear(m,
5315 						    PGA_WRITEABLE);
5316 					}
5317 				}
5318 				pmap_delayed_invl_page(m);
5319 				pc->pc_map[field] |= 1UL << bit;
5320 				pmap_unuse_pt(pmap, va, *pde, &free);
5321 				freed++;
5322 			}
5323 		}
5324 		if (freed == 0) {
5325 			mtx_lock(&pvc->pvc_lock);
5326 			goto next_chunk;
5327 		}
5328 		/* Every freed mapping is for a 4 KB page. */
5329 		pmap_resident_count_adj(pmap, -freed);
5330 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5331 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5332 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5333 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5334 		if (pc_is_free(pc)) {
5335 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5336 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5337 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5338 			/* Entire chunk is free; return it. */
5339 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5340 			dump_drop_page(m_pc->phys_addr);
5341 			mtx_lock(&pvc->pvc_lock);
5342 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5343 			break;
5344 		}
5345 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5346 		mtx_lock(&pvc->pvc_lock);
5347 		/* One freed pv entry in locked_pmap is sufficient. */
5348 		if (pmap == locked_pmap)
5349 			break;
5350 next_chunk:
5351 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5352 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5353 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5354 			/*
5355 			 * Rotate the pv chunks list so that we do not
5356 			 * scan the same pv chunks that could not be
5357 			 * freed (because they contained a wired
5358 			 * and/or superpage mapping) on every
5359 			 * invocation of reclaim_pv_chunk().
5360 			 */
5361 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5362 				MPASS(pc->pc_pmap != NULL);
5363 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5364 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5365 			}
5366 		}
5367 	}
5368 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5369 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5370 	pvc->active_reclaims--;
5371 	mtx_unlock(&pvc->pvc_lock);
5372 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5373 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5374 		m_pc = SLIST_FIRST(&free);
5375 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5376 		/* Recycle a freed page table page. */
5377 		m_pc->ref_count = 1;
5378 	}
5379 	vm_page_free_pages_toq(&free, true);
5380 	return (m_pc);
5381 }
5382 
5383 static vm_page_t
5384 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5385 {
5386 	vm_page_t m;
5387 	int i, domain;
5388 
5389 	domain = PCPU_GET(domain);
5390 	for (i = 0; i < vm_ndomains; i++) {
5391 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5392 		if (m != NULL)
5393 			break;
5394 		domain = (domain + 1) % vm_ndomains;
5395 	}
5396 
5397 	return (m);
5398 }
5399 
5400 /*
5401  * free the pv_entry back to the free list
5402  */
5403 static void
5404 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5405 {
5406 	struct pv_chunk *pc;
5407 	int idx, field, bit;
5408 
5409 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5410 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5411 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5412 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5413 	pc = pv_to_chunk(pv);
5414 	idx = pv - &pc->pc_pventry[0];
5415 	field = idx / 64;
5416 	bit = idx % 64;
5417 	pc->pc_map[field] |= 1ul << bit;
5418 	if (!pc_is_free(pc)) {
5419 		/* 98% of the time, pc is already at the head of the list. */
5420 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5421 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5422 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5423 		}
5424 		return;
5425 	}
5426 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5427 	free_pv_chunk(pc);
5428 }
5429 
5430 static void
5431 free_pv_chunk_dequeued(struct pv_chunk *pc)
5432 {
5433 	vm_page_t m;
5434 
5435 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5436 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5437 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5438 	counter_u64_add(pv_page_count, -1);
5439 	/* entire chunk is free, return it */
5440 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5441 	dump_drop_page(m->phys_addr);
5442 	vm_page_unwire_noq(m);
5443 	vm_page_free(m);
5444 }
5445 
5446 static void
5447 free_pv_chunk(struct pv_chunk *pc)
5448 {
5449 	struct pv_chunks_list *pvc;
5450 
5451 	pvc = &pv_chunks[pc_to_domain(pc)];
5452 	mtx_lock(&pvc->pvc_lock);
5453 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5454 	mtx_unlock(&pvc->pvc_lock);
5455 	free_pv_chunk_dequeued(pc);
5456 }
5457 
5458 static void
5459 free_pv_chunk_batch(struct pv_chunklist *batch)
5460 {
5461 	struct pv_chunks_list *pvc;
5462 	struct pv_chunk *pc, *npc;
5463 	int i;
5464 
5465 	for (i = 0; i < vm_ndomains; i++) {
5466 		if (TAILQ_EMPTY(&batch[i]))
5467 			continue;
5468 		pvc = &pv_chunks[i];
5469 		mtx_lock(&pvc->pvc_lock);
5470 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5471 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5472 		}
5473 		mtx_unlock(&pvc->pvc_lock);
5474 	}
5475 
5476 	for (i = 0; i < vm_ndomains; i++) {
5477 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5478 			free_pv_chunk_dequeued(pc);
5479 		}
5480 	}
5481 }
5482 
5483 /*
5484  * Returns a new PV entry, allocating a new PV chunk from the system when
5485  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5486  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5487  * returned.
5488  *
5489  * The given PV list lock may be released.
5490  */
5491 static pv_entry_t
5492 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5493 {
5494 	struct pv_chunks_list *pvc;
5495 	int bit, field;
5496 	pv_entry_t pv;
5497 	struct pv_chunk *pc;
5498 	vm_page_t m;
5499 
5500 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5501 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5502 retry:
5503 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5504 	if (pc != NULL) {
5505 		for (field = 0; field < _NPCM; field++) {
5506 			if (pc->pc_map[field]) {
5507 				bit = bsfq(pc->pc_map[field]);
5508 				break;
5509 			}
5510 		}
5511 		if (field < _NPCM) {
5512 			pv = &pc->pc_pventry[field * 64 + bit];
5513 			pc->pc_map[field] &= ~(1ul << bit);
5514 			/* If this was the last item, move it to tail */
5515 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5516 			    pc->pc_map[2] == 0) {
5517 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5518 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5519 				    pc_list);
5520 			}
5521 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5522 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5523 			return (pv);
5524 		}
5525 	}
5526 	/* No free items, allocate another chunk */
5527 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5528 	if (m == NULL) {
5529 		if (lockp == NULL) {
5530 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5531 			return (NULL);
5532 		}
5533 		m = reclaim_pv_chunk(pmap, lockp);
5534 		if (m == NULL)
5535 			goto retry;
5536 	} else
5537 		counter_u64_add(pv_page_count, 1);
5538 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5539 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5540 	dump_add_page(m->phys_addr);
5541 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5542 	pc->pc_pmap = pmap;
5543 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5544 	pc->pc_map[1] = PC_FREEN;
5545 	pc->pc_map[2] = PC_FREEL;
5546 	pvc = &pv_chunks[vm_page_domain(m)];
5547 	mtx_lock(&pvc->pvc_lock);
5548 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5549 	mtx_unlock(&pvc->pvc_lock);
5550 	pv = &pc->pc_pventry[0];
5551 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5552 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5553 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5554 	return (pv);
5555 }
5556 
5557 /*
5558  * Returns the number of one bits within the given PV chunk map.
5559  *
5560  * The erratas for Intel processors state that "POPCNT Instruction May
5561  * Take Longer to Execute Than Expected".  It is believed that the
5562  * issue is the spurious dependency on the destination register.
5563  * Provide a hint to the register rename logic that the destination
5564  * value is overwritten, by clearing it, as suggested in the
5565  * optimization manual.  It should be cheap for unaffected processors
5566  * as well.
5567  *
5568  * Reference numbers for erratas are
5569  * 4th Gen Core: HSD146
5570  * 5th Gen Core: BDM85
5571  * 6th Gen Core: SKL029
5572  */
5573 static int
5574 popcnt_pc_map_pq(uint64_t *map)
5575 {
5576 	u_long result, tmp;
5577 
5578 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5579 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5580 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5581 	    : "=&r" (result), "=&r" (tmp)
5582 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5583 	return (result);
5584 }
5585 
5586 /*
5587  * Ensure that the number of spare PV entries in the specified pmap meets or
5588  * exceeds the given count, "needed".
5589  *
5590  * The given PV list lock may be released.
5591  */
5592 static void
5593 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5594 {
5595 	struct pv_chunks_list *pvc;
5596 	struct pch new_tail[PMAP_MEMDOM];
5597 	struct pv_chunk *pc;
5598 	vm_page_t m;
5599 	int avail, free, i;
5600 	bool reclaimed;
5601 
5602 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5603 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5604 
5605 	/*
5606 	 * Newly allocated PV chunks must be stored in a private list until
5607 	 * the required number of PV chunks have been allocated.  Otherwise,
5608 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5609 	 * contrast, these chunks must be added to the pmap upon allocation.
5610 	 */
5611 	for (i = 0; i < PMAP_MEMDOM; i++)
5612 		TAILQ_INIT(&new_tail[i]);
5613 retry:
5614 	avail = 0;
5615 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5616 #ifndef __POPCNT__
5617 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5618 			bit_count((bitstr_t *)pc->pc_map, 0,
5619 			    sizeof(pc->pc_map) * NBBY, &free);
5620 		else
5621 #endif
5622 		free = popcnt_pc_map_pq(pc->pc_map);
5623 		if (free == 0)
5624 			break;
5625 		avail += free;
5626 		if (avail >= needed)
5627 			break;
5628 	}
5629 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5630 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5631 		if (m == NULL) {
5632 			m = reclaim_pv_chunk(pmap, lockp);
5633 			if (m == NULL)
5634 				goto retry;
5635 			reclaimed = true;
5636 		} else
5637 			counter_u64_add(pv_page_count, 1);
5638 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5639 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5640 		dump_add_page(m->phys_addr);
5641 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5642 		pc->pc_pmap = pmap;
5643 		pc->pc_map[0] = PC_FREEN;
5644 		pc->pc_map[1] = PC_FREEN;
5645 		pc->pc_map[2] = PC_FREEL;
5646 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5647 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5648 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5649 
5650 		/*
5651 		 * The reclaim might have freed a chunk from the current pmap.
5652 		 * If that chunk contained available entries, we need to
5653 		 * re-count the number of available entries.
5654 		 */
5655 		if (reclaimed)
5656 			goto retry;
5657 	}
5658 	for (i = 0; i < vm_ndomains; i++) {
5659 		if (TAILQ_EMPTY(&new_tail[i]))
5660 			continue;
5661 		pvc = &pv_chunks[i];
5662 		mtx_lock(&pvc->pvc_lock);
5663 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5664 		mtx_unlock(&pvc->pvc_lock);
5665 	}
5666 }
5667 
5668 /*
5669  * First find and then remove the pv entry for the specified pmap and virtual
5670  * address from the specified pv list.  Returns the pv entry if found and NULL
5671  * otherwise.  This operation can be performed on pv lists for either 4KB or
5672  * 2MB page mappings.
5673  */
5674 static __inline pv_entry_t
5675 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5676 {
5677 	pv_entry_t pv;
5678 
5679 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5680 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5681 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5682 			pvh->pv_gen++;
5683 			break;
5684 		}
5685 	}
5686 	return (pv);
5687 }
5688 
5689 /*
5690  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5691  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5692  * entries for each of the 4KB page mappings.
5693  */
5694 static void
5695 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5696     struct rwlock **lockp)
5697 {
5698 	struct md_page *pvh;
5699 	struct pv_chunk *pc;
5700 	pv_entry_t pv;
5701 	vm_offset_t va_last;
5702 	vm_page_t m;
5703 	int bit, field;
5704 
5705 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5706 	KASSERT((pa & PDRMASK) == 0,
5707 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5708 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5709 
5710 	/*
5711 	 * Transfer the 2mpage's pv entry for this mapping to the first
5712 	 * page's pv list.  Once this transfer begins, the pv list lock
5713 	 * must not be released until the last pv entry is reinstantiated.
5714 	 */
5715 	pvh = pa_to_pvh(pa);
5716 	va = trunc_2mpage(va);
5717 	pv = pmap_pvh_remove(pvh, pmap, va);
5718 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5719 	m = PHYS_TO_VM_PAGE(pa);
5720 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5721 	m->md.pv_gen++;
5722 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5723 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5724 	va_last = va + NBPDR - PAGE_SIZE;
5725 	for (;;) {
5726 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5727 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5728 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5729 		for (field = 0; field < _NPCM; field++) {
5730 			while (pc->pc_map[field]) {
5731 				bit = bsfq(pc->pc_map[field]);
5732 				pc->pc_map[field] &= ~(1ul << bit);
5733 				pv = &pc->pc_pventry[field * 64 + bit];
5734 				va += PAGE_SIZE;
5735 				pv->pv_va = va;
5736 				m++;
5737 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5738 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5739 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5740 				m->md.pv_gen++;
5741 				if (va == va_last)
5742 					goto out;
5743 			}
5744 		}
5745 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5746 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5747 	}
5748 out:
5749 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5750 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5751 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5752 	}
5753 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5754 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5755 }
5756 
5757 #if VM_NRESERVLEVEL > 0
5758 /*
5759  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5760  * replace the many pv entries for the 4KB page mappings by a single pv entry
5761  * for the 2MB page mapping.
5762  */
5763 static void
5764 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5765     struct rwlock **lockp)
5766 {
5767 	struct md_page *pvh;
5768 	pv_entry_t pv;
5769 	vm_offset_t va_last;
5770 	vm_page_t m;
5771 
5772 	KASSERT((pa & PDRMASK) == 0,
5773 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5774 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5775 
5776 	/*
5777 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5778 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5779 	 * a transfer avoids the possibility that get_pv_entry() calls
5780 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5781 	 * mappings that is being promoted.
5782 	 */
5783 	m = PHYS_TO_VM_PAGE(pa);
5784 	va = trunc_2mpage(va);
5785 	pv = pmap_pvh_remove(&m->md, pmap, va);
5786 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5787 	pvh = pa_to_pvh(pa);
5788 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5789 	pvh->pv_gen++;
5790 	/* Free the remaining NPTEPG - 1 pv entries. */
5791 	va_last = va + NBPDR - PAGE_SIZE;
5792 	do {
5793 		m++;
5794 		va += PAGE_SIZE;
5795 		pmap_pvh_free(&m->md, pmap, va);
5796 	} while (va < va_last);
5797 }
5798 #endif /* VM_NRESERVLEVEL > 0 */
5799 
5800 /*
5801  * First find and then destroy the pv entry for the specified pmap and virtual
5802  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5803  * page mappings.
5804  */
5805 static void
5806 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5807 {
5808 	pv_entry_t pv;
5809 
5810 	pv = pmap_pvh_remove(pvh, pmap, va);
5811 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5812 	free_pv_entry(pmap, pv);
5813 }
5814 
5815 /*
5816  * Conditionally create the PV entry for a 4KB page mapping if the required
5817  * memory can be allocated without resorting to reclamation.
5818  */
5819 static boolean_t
5820 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5821     struct rwlock **lockp)
5822 {
5823 	pv_entry_t pv;
5824 
5825 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5826 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5827 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5828 		pv->pv_va = va;
5829 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5830 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5831 		m->md.pv_gen++;
5832 		return (TRUE);
5833 	} else
5834 		return (FALSE);
5835 }
5836 
5837 /*
5838  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5839  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5840  * false if the PV entry cannot be allocated without resorting to reclamation.
5841  */
5842 static bool
5843 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5844     struct rwlock **lockp)
5845 {
5846 	struct md_page *pvh;
5847 	pv_entry_t pv;
5848 	vm_paddr_t pa;
5849 
5850 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5851 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5852 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5853 	    NULL : lockp)) == NULL)
5854 		return (false);
5855 	pv->pv_va = va;
5856 	pa = pde & PG_PS_FRAME;
5857 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5858 	pvh = pa_to_pvh(pa);
5859 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5860 	pvh->pv_gen++;
5861 	return (true);
5862 }
5863 
5864 /*
5865  * Fills a page table page with mappings to consecutive physical pages.
5866  */
5867 static void
5868 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5869 {
5870 	pt_entry_t *pte;
5871 
5872 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5873 		*pte = newpte;
5874 		newpte += PAGE_SIZE;
5875 	}
5876 }
5877 
5878 /*
5879  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5880  * mapping is invalidated.
5881  */
5882 static boolean_t
5883 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5884 {
5885 	struct rwlock *lock;
5886 	boolean_t rv;
5887 
5888 	lock = NULL;
5889 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5890 	if (lock != NULL)
5891 		rw_wunlock(lock);
5892 	return (rv);
5893 }
5894 
5895 static void
5896 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5897 {
5898 #ifdef INVARIANTS
5899 #ifdef DIAGNOSTIC
5900 	pt_entry_t *xpte, *ypte;
5901 
5902 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5903 	    xpte++, newpte += PAGE_SIZE) {
5904 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5905 			printf("pmap_demote_pde: xpte %zd and newpte map "
5906 			    "different pages: found %#lx, expected %#lx\n",
5907 			    xpte - firstpte, *xpte, newpte);
5908 			printf("page table dump\n");
5909 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5910 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5911 			panic("firstpte");
5912 		}
5913 	}
5914 #else
5915 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5916 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5917 	    " addresses"));
5918 #endif
5919 #endif
5920 }
5921 
5922 static void
5923 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5924     pd_entry_t oldpde, struct rwlock **lockp)
5925 {
5926 	struct spglist free;
5927 	vm_offset_t sva;
5928 
5929 	SLIST_INIT(&free);
5930 	sva = trunc_2mpage(va);
5931 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
5932 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5933 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5934 	vm_page_free_pages_toq(&free, true);
5935 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5936 	    va, pmap);
5937 }
5938 
5939 static boolean_t
5940 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5941     struct rwlock **lockp)
5942 {
5943 	pd_entry_t newpde, oldpde;
5944 	pt_entry_t *firstpte, newpte;
5945 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5946 	vm_paddr_t mptepa;
5947 	vm_page_t mpte;
5948 	int PG_PTE_CACHE;
5949 	bool in_kernel;
5950 
5951 	PG_A = pmap_accessed_bit(pmap);
5952 	PG_G = pmap_global_bit(pmap);
5953 	PG_M = pmap_modified_bit(pmap);
5954 	PG_RW = pmap_rw_bit(pmap);
5955 	PG_V = pmap_valid_bit(pmap);
5956 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
5957 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5958 
5959 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5960 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5961 	oldpde = *pde;
5962 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5963 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5964 
5965 	/*
5966 	 * Invalidate the 2MB page mapping and return "failure" if the
5967 	 * mapping was never accessed.
5968 	 */
5969 	if ((oldpde & PG_A) == 0) {
5970 		KASSERT((oldpde & PG_W) == 0,
5971 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
5972 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5973 		return (FALSE);
5974 	}
5975 
5976 	mpte = pmap_remove_pt_page(pmap, va);
5977 	if (mpte == NULL) {
5978 		KASSERT((oldpde & PG_W) == 0,
5979 		    ("pmap_demote_pde: page table page for a wired mapping"
5980 		    " is missing"));
5981 
5982 		/*
5983 		 * If the page table page is missing and the mapping
5984 		 * is for a kernel address, the mapping must belong to
5985 		 * the direct map.  Page table pages are preallocated
5986 		 * for every other part of the kernel address space,
5987 		 * so the direct map region is the only part of the
5988 		 * kernel address space that must be handled here.
5989 		 */
5990 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
5991 		    va < DMAP_MAX_ADDRESS),
5992 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
5993 
5994 		/*
5995 		 * If the 2MB page mapping belongs to the direct map
5996 		 * region of the kernel's address space, then the page
5997 		 * allocation request specifies the highest possible
5998 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5999 		 * priority is normal.
6000 		 */
6001 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6002 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6003 
6004 		/*
6005 		 * If the allocation of the new page table page fails,
6006 		 * invalidate the 2MB page mapping and return "failure".
6007 		 */
6008 		if (mpte == NULL) {
6009 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6010 			return (FALSE);
6011 		}
6012 
6013 		if (!in_kernel)
6014 			mpte->ref_count = NPTEPG;
6015 	}
6016 	mptepa = VM_PAGE_TO_PHYS(mpte);
6017 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6018 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6019 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6020 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6021 	newpte = oldpde & ~PG_PS;
6022 	newpte = pmap_swap_pat(pmap, newpte);
6023 
6024 	/*
6025 	 * If the page table page is not leftover from an earlier promotion,
6026 	 * initialize it.
6027 	 */
6028 	if (vm_page_none_valid(mpte))
6029 		pmap_fill_ptp(firstpte, newpte);
6030 
6031 	pmap_demote_pde_check(firstpte, newpte);
6032 
6033 	/*
6034 	 * If the mapping has changed attributes, update the page table
6035 	 * entries.
6036 	 */
6037 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6038 		pmap_fill_ptp(firstpte, newpte);
6039 
6040 	/*
6041 	 * The spare PV entries must be reserved prior to demoting the
6042 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6043 	 * of the PDE and the PV lists will be inconsistent, which can result
6044 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6045 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6046 	 * PV entry for the 2MB page mapping that is being demoted.
6047 	 */
6048 	if ((oldpde & PG_MANAGED) != 0)
6049 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6050 
6051 	/*
6052 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6053 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6054 	 * set.  Thus, there is no danger of a race with another
6055 	 * processor changing the setting of PG_A and/or PG_M between
6056 	 * the read above and the store below.
6057 	 */
6058 	if (workaround_erratum383)
6059 		pmap_update_pde(pmap, va, pde, newpde);
6060 	else
6061 		pde_store(pde, newpde);
6062 
6063 	/*
6064 	 * Invalidate a stale recursive mapping of the page table page.
6065 	 */
6066 	if (in_kernel)
6067 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6068 
6069 	/*
6070 	 * Demote the PV entry.
6071 	 */
6072 	if ((oldpde & PG_MANAGED) != 0)
6073 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6074 
6075 	counter_u64_add(pmap_pde_demotions, 1);
6076 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6077 	    va, pmap);
6078 	return (TRUE);
6079 }
6080 
6081 /*
6082  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6083  */
6084 static void
6085 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6086 {
6087 	pd_entry_t newpde;
6088 	vm_paddr_t mptepa;
6089 	vm_page_t mpte;
6090 
6091 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6092 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6093 	mpte = pmap_remove_pt_page(pmap, va);
6094 	if (mpte == NULL)
6095 		panic("pmap_remove_kernel_pde: Missing pt page.");
6096 
6097 	mptepa = VM_PAGE_TO_PHYS(mpte);
6098 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6099 
6100 	/*
6101 	 * If this page table page was unmapped by a promotion, then it
6102 	 * contains valid mappings.  Zero it to invalidate those mappings.
6103 	 */
6104 	if (vm_page_any_valid(mpte))
6105 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6106 
6107 	/*
6108 	 * Demote the mapping.
6109 	 */
6110 	if (workaround_erratum383)
6111 		pmap_update_pde(pmap, va, pde, newpde);
6112 	else
6113 		pde_store(pde, newpde);
6114 
6115 	/*
6116 	 * Invalidate a stale recursive mapping of the page table page.
6117 	 */
6118 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6119 }
6120 
6121 /*
6122  * pmap_remove_pde: do the things to unmap a superpage in a process
6123  */
6124 static int
6125 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6126     struct spglist *free, struct rwlock **lockp)
6127 {
6128 	struct md_page *pvh;
6129 	pd_entry_t oldpde;
6130 	vm_offset_t eva, va;
6131 	vm_page_t m, mpte;
6132 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6133 
6134 	PG_G = pmap_global_bit(pmap);
6135 	PG_A = pmap_accessed_bit(pmap);
6136 	PG_M = pmap_modified_bit(pmap);
6137 	PG_RW = pmap_rw_bit(pmap);
6138 
6139 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6140 	KASSERT((sva & PDRMASK) == 0,
6141 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6142 	oldpde = pte_load_clear(pdq);
6143 	if (oldpde & PG_W)
6144 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6145 	if ((oldpde & PG_G) != 0)
6146 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6147 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6148 	if (oldpde & PG_MANAGED) {
6149 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6150 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6151 		pmap_pvh_free(pvh, pmap, sva);
6152 		eva = sva + NBPDR;
6153 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6154 		    va < eva; va += PAGE_SIZE, m++) {
6155 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6156 				vm_page_dirty(m);
6157 			if (oldpde & PG_A)
6158 				vm_page_aflag_set(m, PGA_REFERENCED);
6159 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6160 			    TAILQ_EMPTY(&pvh->pv_list))
6161 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6162 			pmap_delayed_invl_page(m);
6163 		}
6164 	}
6165 	if (pmap == kernel_pmap) {
6166 		pmap_remove_kernel_pde(pmap, pdq, sva);
6167 	} else {
6168 		mpte = pmap_remove_pt_page(pmap, sva);
6169 		if (mpte != NULL) {
6170 			KASSERT(vm_page_all_valid(mpte),
6171 			    ("pmap_remove_pde: pte page not promoted"));
6172 			pmap_pt_page_count_adj(pmap, -1);
6173 			KASSERT(mpte->ref_count == NPTEPG,
6174 			    ("pmap_remove_pde: pte page ref count error"));
6175 			mpte->ref_count = 0;
6176 			pmap_add_delayed_free_list(mpte, free, FALSE);
6177 		}
6178 	}
6179 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6180 }
6181 
6182 /*
6183  * pmap_remove_pte: do the things to unmap a page in a process
6184  */
6185 static int
6186 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6187     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6188 {
6189 	struct md_page *pvh;
6190 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6191 	vm_page_t m;
6192 
6193 	PG_A = pmap_accessed_bit(pmap);
6194 	PG_M = pmap_modified_bit(pmap);
6195 	PG_RW = pmap_rw_bit(pmap);
6196 
6197 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6198 	oldpte = pte_load_clear(ptq);
6199 	if (oldpte & PG_W)
6200 		pmap->pm_stats.wired_count -= 1;
6201 	pmap_resident_count_adj(pmap, -1);
6202 	if (oldpte & PG_MANAGED) {
6203 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6204 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6205 			vm_page_dirty(m);
6206 		if (oldpte & PG_A)
6207 			vm_page_aflag_set(m, PGA_REFERENCED);
6208 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6209 		pmap_pvh_free(&m->md, pmap, va);
6210 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6211 		    (m->flags & PG_FICTITIOUS) == 0) {
6212 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6213 			if (TAILQ_EMPTY(&pvh->pv_list))
6214 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6215 		}
6216 		pmap_delayed_invl_page(m);
6217 	}
6218 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6219 }
6220 
6221 /*
6222  * Remove a single page from a process address space
6223  */
6224 static void
6225 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6226     struct spglist *free)
6227 {
6228 	struct rwlock *lock;
6229 	pt_entry_t *pte, PG_V;
6230 
6231 	PG_V = pmap_valid_bit(pmap);
6232 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6233 	if ((*pde & PG_V) == 0)
6234 		return;
6235 	pte = pmap_pde_to_pte(pde, va);
6236 	if ((*pte & PG_V) == 0)
6237 		return;
6238 	lock = NULL;
6239 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6240 	if (lock != NULL)
6241 		rw_wunlock(lock);
6242 	pmap_invalidate_page(pmap, va);
6243 }
6244 
6245 /*
6246  * Removes the specified range of addresses from the page table page.
6247  */
6248 static bool
6249 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6250     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6251 {
6252 	pt_entry_t PG_G, *pte;
6253 	vm_offset_t va;
6254 	bool anyvalid;
6255 
6256 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6257 	PG_G = pmap_global_bit(pmap);
6258 	anyvalid = false;
6259 	va = eva;
6260 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6261 	    sva += PAGE_SIZE) {
6262 		if (*pte == 0) {
6263 			if (va != eva) {
6264 				pmap_invalidate_range(pmap, va, sva);
6265 				va = eva;
6266 			}
6267 			continue;
6268 		}
6269 		if ((*pte & PG_G) == 0)
6270 			anyvalid = true;
6271 		else if (va == eva)
6272 			va = sva;
6273 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6274 			sva += PAGE_SIZE;
6275 			break;
6276 		}
6277 	}
6278 	if (va != eva)
6279 		pmap_invalidate_range(pmap, va, sva);
6280 	return (anyvalid);
6281 }
6282 
6283 static void
6284 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6285 {
6286 	struct rwlock *lock;
6287 	vm_page_t mt;
6288 	vm_offset_t va_next;
6289 	pml5_entry_t *pml5e;
6290 	pml4_entry_t *pml4e;
6291 	pdp_entry_t *pdpe;
6292 	pd_entry_t ptpaddr, *pde;
6293 	pt_entry_t PG_G, PG_V;
6294 	struct spglist free;
6295 	int anyvalid;
6296 
6297 	PG_G = pmap_global_bit(pmap);
6298 	PG_V = pmap_valid_bit(pmap);
6299 
6300 	/*
6301 	 * If there are no resident pages besides the top level page
6302 	 * table page(s), there is nothing to do.  Kernel pmap always
6303 	 * accounts whole preloaded area as resident, which makes its
6304 	 * resident count > 2.
6305 	 * Perform an unsynchronized read.  This is, however, safe.
6306 	 */
6307 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6308 	    1 : 0))
6309 		return;
6310 
6311 	anyvalid = 0;
6312 	SLIST_INIT(&free);
6313 
6314 	pmap_delayed_invl_start();
6315 	PMAP_LOCK(pmap);
6316 	if (map_delete)
6317 		pmap_pkru_on_remove(pmap, sva, eva);
6318 
6319 	/*
6320 	 * special handling of removing one page.  a very
6321 	 * common operation and easy to short circuit some
6322 	 * code.
6323 	 */
6324 	if (sva + PAGE_SIZE == eva) {
6325 		pde = pmap_pde(pmap, sva);
6326 		if (pde && (*pde & PG_PS) == 0) {
6327 			pmap_remove_page(pmap, sva, pde, &free);
6328 			goto out;
6329 		}
6330 	}
6331 
6332 	lock = NULL;
6333 	for (; sva < eva; sva = va_next) {
6334 		if (pmap->pm_stats.resident_count == 0)
6335 			break;
6336 
6337 		if (pmap_is_la57(pmap)) {
6338 			pml5e = pmap_pml5e(pmap, sva);
6339 			if ((*pml5e & PG_V) == 0) {
6340 				va_next = (sva + NBPML5) & ~PML5MASK;
6341 				if (va_next < sva)
6342 					va_next = eva;
6343 				continue;
6344 			}
6345 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6346 		} else {
6347 			pml4e = pmap_pml4e(pmap, sva);
6348 		}
6349 		if ((*pml4e & PG_V) == 0) {
6350 			va_next = (sva + NBPML4) & ~PML4MASK;
6351 			if (va_next < sva)
6352 				va_next = eva;
6353 			continue;
6354 		}
6355 
6356 		va_next = (sva + NBPDP) & ~PDPMASK;
6357 		if (va_next < sva)
6358 			va_next = eva;
6359 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6360 		if ((*pdpe & PG_V) == 0)
6361 			continue;
6362 		if ((*pdpe & PG_PS) != 0) {
6363 			KASSERT(va_next <= eva,
6364 			    ("partial update of non-transparent 1G mapping "
6365 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6366 			    *pdpe, sva, eva, va_next));
6367 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6368 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6369 			anyvalid = 1;
6370 			*pdpe = 0;
6371 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6372 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6373 			pmap_unwire_ptp(pmap, sva, mt, &free);
6374 			continue;
6375 		}
6376 
6377 		/*
6378 		 * Calculate index for next page table.
6379 		 */
6380 		va_next = (sva + NBPDR) & ~PDRMASK;
6381 		if (va_next < sva)
6382 			va_next = eva;
6383 
6384 		pde = pmap_pdpe_to_pde(pdpe, sva);
6385 		ptpaddr = *pde;
6386 
6387 		/*
6388 		 * Weed out invalid mappings.
6389 		 */
6390 		if (ptpaddr == 0)
6391 			continue;
6392 
6393 		/*
6394 		 * Check for large page.
6395 		 */
6396 		if ((ptpaddr & PG_PS) != 0) {
6397 			/*
6398 			 * Are we removing the entire large page?  If not,
6399 			 * demote the mapping and fall through.
6400 			 */
6401 			if (sva + NBPDR == va_next && eva >= va_next) {
6402 				/*
6403 				 * The TLB entry for a PG_G mapping is
6404 				 * invalidated by pmap_remove_pde().
6405 				 */
6406 				if ((ptpaddr & PG_G) == 0)
6407 					anyvalid = 1;
6408 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6409 				continue;
6410 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6411 			    &lock)) {
6412 				/* The large page mapping was destroyed. */
6413 				continue;
6414 			} else
6415 				ptpaddr = *pde;
6416 		}
6417 
6418 		/*
6419 		 * Limit our scan to either the end of the va represented
6420 		 * by the current page table page, or to the end of the
6421 		 * range being removed.
6422 		 */
6423 		if (va_next > eva)
6424 			va_next = eva;
6425 
6426 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6427 			anyvalid = 1;
6428 	}
6429 	if (lock != NULL)
6430 		rw_wunlock(lock);
6431 out:
6432 	if (anyvalid)
6433 		pmap_invalidate_all(pmap);
6434 	PMAP_UNLOCK(pmap);
6435 	pmap_delayed_invl_finish();
6436 	vm_page_free_pages_toq(&free, true);
6437 }
6438 
6439 /*
6440  *	Remove the given range of addresses from the specified map.
6441  *
6442  *	It is assumed that the start and end are properly
6443  *	rounded to the page size.
6444  */
6445 void
6446 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6447 {
6448 	pmap_remove1(pmap, sva, eva, false);
6449 }
6450 
6451 /*
6452  *	Remove the given range of addresses as part of a logical unmap
6453  *	operation. This has the effect of calling pmap_remove(), but
6454  *	also clears any metadata that should persist for the lifetime
6455  *	of a logical mapping.
6456  */
6457 void
6458 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6459 {
6460 	pmap_remove1(pmap, sva, eva, true);
6461 }
6462 
6463 /*
6464  *	Routine:	pmap_remove_all
6465  *	Function:
6466  *		Removes this physical page from
6467  *		all physical maps in which it resides.
6468  *		Reflects back modify bits to the pager.
6469  *
6470  *	Notes:
6471  *		Original versions of this routine were very
6472  *		inefficient because they iteratively called
6473  *		pmap_remove (slow...)
6474  */
6475 
6476 void
6477 pmap_remove_all(vm_page_t m)
6478 {
6479 	struct md_page *pvh;
6480 	pv_entry_t pv;
6481 	pmap_t pmap;
6482 	struct rwlock *lock;
6483 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6484 	pd_entry_t *pde;
6485 	vm_offset_t va;
6486 	struct spglist free;
6487 	int pvh_gen, md_gen;
6488 
6489 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6490 	    ("pmap_remove_all: page %p is not managed", m));
6491 	SLIST_INIT(&free);
6492 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6493 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6494 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6495 	rw_wlock(lock);
6496 retry:
6497 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6498 		pmap = PV_PMAP(pv);
6499 		if (!PMAP_TRYLOCK(pmap)) {
6500 			pvh_gen = pvh->pv_gen;
6501 			rw_wunlock(lock);
6502 			PMAP_LOCK(pmap);
6503 			rw_wlock(lock);
6504 			if (pvh_gen != pvh->pv_gen) {
6505 				PMAP_UNLOCK(pmap);
6506 				goto retry;
6507 			}
6508 		}
6509 		va = pv->pv_va;
6510 		pde = pmap_pde(pmap, va);
6511 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6512 		PMAP_UNLOCK(pmap);
6513 	}
6514 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6515 		pmap = PV_PMAP(pv);
6516 		if (!PMAP_TRYLOCK(pmap)) {
6517 			pvh_gen = pvh->pv_gen;
6518 			md_gen = m->md.pv_gen;
6519 			rw_wunlock(lock);
6520 			PMAP_LOCK(pmap);
6521 			rw_wlock(lock);
6522 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6523 				PMAP_UNLOCK(pmap);
6524 				goto retry;
6525 			}
6526 		}
6527 		PG_A = pmap_accessed_bit(pmap);
6528 		PG_M = pmap_modified_bit(pmap);
6529 		PG_RW = pmap_rw_bit(pmap);
6530 		pmap_resident_count_adj(pmap, -1);
6531 		pde = pmap_pde(pmap, pv->pv_va);
6532 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6533 		    " a 2mpage in page %p's pv list", m));
6534 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6535 		tpte = pte_load_clear(pte);
6536 		if (tpte & PG_W)
6537 			pmap->pm_stats.wired_count--;
6538 		if (tpte & PG_A)
6539 			vm_page_aflag_set(m, PGA_REFERENCED);
6540 
6541 		/*
6542 		 * Update the vm_page_t clean and reference bits.
6543 		 */
6544 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6545 			vm_page_dirty(m);
6546 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6547 		pmap_invalidate_page(pmap, pv->pv_va);
6548 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6549 		m->md.pv_gen++;
6550 		free_pv_entry(pmap, pv);
6551 		PMAP_UNLOCK(pmap);
6552 	}
6553 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6554 	rw_wunlock(lock);
6555 	pmap_delayed_invl_wait(m);
6556 	vm_page_free_pages_toq(&free, true);
6557 }
6558 
6559 /*
6560  * pmap_protect_pde: do the things to protect a 2mpage in a process
6561  */
6562 static boolean_t
6563 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6564 {
6565 	pd_entry_t newpde, oldpde;
6566 	vm_page_t m, mt;
6567 	boolean_t anychanged;
6568 	pt_entry_t PG_G, PG_M, PG_RW;
6569 
6570 	PG_G = pmap_global_bit(pmap);
6571 	PG_M = pmap_modified_bit(pmap);
6572 	PG_RW = pmap_rw_bit(pmap);
6573 
6574 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6575 	KASSERT((sva & PDRMASK) == 0,
6576 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6577 	anychanged = FALSE;
6578 retry:
6579 	oldpde = newpde = *pde;
6580 	if ((prot & VM_PROT_WRITE) == 0) {
6581 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6582 		    (PG_MANAGED | PG_M | PG_RW)) {
6583 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6584 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6585 				vm_page_dirty(mt);
6586 		}
6587 		newpde &= ~(PG_RW | PG_M);
6588 	}
6589 	if ((prot & VM_PROT_EXECUTE) == 0)
6590 		newpde |= pg_nx;
6591 	if (newpde != oldpde) {
6592 		/*
6593 		 * As an optimization to future operations on this PDE, clear
6594 		 * PG_PROMOTED.  The impending invalidation will remove any
6595 		 * lingering 4KB page mappings from the TLB.
6596 		 */
6597 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6598 			goto retry;
6599 		if ((oldpde & PG_G) != 0)
6600 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6601 		else
6602 			anychanged = TRUE;
6603 	}
6604 	return (anychanged);
6605 }
6606 
6607 /*
6608  *	Set the physical protection on the
6609  *	specified range of this map as requested.
6610  */
6611 void
6612 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6613 {
6614 	vm_page_t m;
6615 	vm_offset_t va_next;
6616 	pml4_entry_t *pml4e;
6617 	pdp_entry_t *pdpe;
6618 	pd_entry_t ptpaddr, *pde;
6619 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6620 	pt_entry_t obits, pbits;
6621 	boolean_t anychanged;
6622 
6623 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6624 	if (prot == VM_PROT_NONE) {
6625 		pmap_remove(pmap, sva, eva);
6626 		return;
6627 	}
6628 
6629 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6630 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6631 		return;
6632 
6633 	PG_G = pmap_global_bit(pmap);
6634 	PG_M = pmap_modified_bit(pmap);
6635 	PG_V = pmap_valid_bit(pmap);
6636 	PG_RW = pmap_rw_bit(pmap);
6637 	anychanged = FALSE;
6638 
6639 	/*
6640 	 * Although this function delays and batches the invalidation
6641 	 * of stale TLB entries, it does not need to call
6642 	 * pmap_delayed_invl_start() and
6643 	 * pmap_delayed_invl_finish(), because it does not
6644 	 * ordinarily destroy mappings.  Stale TLB entries from
6645 	 * protection-only changes need only be invalidated before the
6646 	 * pmap lock is released, because protection-only changes do
6647 	 * not destroy PV entries.  Even operations that iterate over
6648 	 * a physical page's PV list of mappings, like
6649 	 * pmap_remove_write(), acquire the pmap lock for each
6650 	 * mapping.  Consequently, for protection-only changes, the
6651 	 * pmap lock suffices to synchronize both page table and TLB
6652 	 * updates.
6653 	 *
6654 	 * This function only destroys a mapping if pmap_demote_pde()
6655 	 * fails.  In that case, stale TLB entries are immediately
6656 	 * invalidated.
6657 	 */
6658 
6659 	PMAP_LOCK(pmap);
6660 	for (; sva < eva; sva = va_next) {
6661 		pml4e = pmap_pml4e(pmap, sva);
6662 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6663 			va_next = (sva + NBPML4) & ~PML4MASK;
6664 			if (va_next < sva)
6665 				va_next = eva;
6666 			continue;
6667 		}
6668 
6669 		va_next = (sva + NBPDP) & ~PDPMASK;
6670 		if (va_next < sva)
6671 			va_next = eva;
6672 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6673 		if ((*pdpe & PG_V) == 0)
6674 			continue;
6675 		if ((*pdpe & PG_PS) != 0) {
6676 			KASSERT(va_next <= eva,
6677 			    ("partial update of non-transparent 1G mapping "
6678 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6679 			    *pdpe, sva, eva, va_next));
6680 retry_pdpe:
6681 			obits = pbits = *pdpe;
6682 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6683 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6684 			if ((prot & VM_PROT_WRITE) == 0)
6685 				pbits &= ~(PG_RW | PG_M);
6686 			if ((prot & VM_PROT_EXECUTE) == 0)
6687 				pbits |= pg_nx;
6688 
6689 			if (pbits != obits) {
6690 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6691 					/* PG_PS cannot be cleared under us, */
6692 					goto retry_pdpe;
6693 				anychanged = TRUE;
6694 			}
6695 			continue;
6696 		}
6697 
6698 		va_next = (sva + NBPDR) & ~PDRMASK;
6699 		if (va_next < sva)
6700 			va_next = eva;
6701 
6702 		pde = pmap_pdpe_to_pde(pdpe, sva);
6703 		ptpaddr = *pde;
6704 
6705 		/*
6706 		 * Weed out invalid mappings.
6707 		 */
6708 		if (ptpaddr == 0)
6709 			continue;
6710 
6711 		/*
6712 		 * Check for large page.
6713 		 */
6714 		if ((ptpaddr & PG_PS) != 0) {
6715 			/*
6716 			 * Are we protecting the entire large page?  If not,
6717 			 * demote the mapping and fall through.
6718 			 */
6719 			if (sva + NBPDR == va_next && eva >= va_next) {
6720 				/*
6721 				 * The TLB entry for a PG_G mapping is
6722 				 * invalidated by pmap_protect_pde().
6723 				 */
6724 				if (pmap_protect_pde(pmap, pde, sva, prot))
6725 					anychanged = TRUE;
6726 				continue;
6727 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6728 				/*
6729 				 * The large page mapping was destroyed.
6730 				 */
6731 				continue;
6732 			}
6733 		}
6734 
6735 		if (va_next > eva)
6736 			va_next = eva;
6737 
6738 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6739 		    sva += PAGE_SIZE) {
6740 retry:
6741 			obits = pbits = *pte;
6742 			if ((pbits & PG_V) == 0)
6743 				continue;
6744 
6745 			if ((prot & VM_PROT_WRITE) == 0) {
6746 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6747 				    (PG_MANAGED | PG_M | PG_RW)) {
6748 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6749 					vm_page_dirty(m);
6750 				}
6751 				pbits &= ~(PG_RW | PG_M);
6752 			}
6753 			if ((prot & VM_PROT_EXECUTE) == 0)
6754 				pbits |= pg_nx;
6755 
6756 			if (pbits != obits) {
6757 				if (!atomic_cmpset_long(pte, obits, pbits))
6758 					goto retry;
6759 				if (obits & PG_G)
6760 					pmap_invalidate_page(pmap, sva);
6761 				else
6762 					anychanged = TRUE;
6763 			}
6764 		}
6765 	}
6766 	if (anychanged)
6767 		pmap_invalidate_all(pmap);
6768 	PMAP_UNLOCK(pmap);
6769 }
6770 
6771 #if VM_NRESERVLEVEL > 0
6772 static bool
6773 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6774 {
6775 
6776 	if (pmap->pm_type != PT_EPT)
6777 		return (false);
6778 	return ((pde & EPT_PG_EXECUTE) != 0);
6779 }
6780 
6781 /*
6782  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6783  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6784  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6785  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6786  * identical characteristics.
6787  */
6788 static void
6789 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6790     struct rwlock **lockp)
6791 {
6792 	pd_entry_t newpde;
6793 	pt_entry_t *firstpte, oldpte, pa, *pte;
6794 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V, PG_PKU_MASK;
6795 	int PG_PTE_CACHE;
6796 
6797 	PG_A = pmap_accessed_bit(pmap);
6798 	PG_G = pmap_global_bit(pmap);
6799 	PG_M = pmap_modified_bit(pmap);
6800 	PG_V = pmap_valid_bit(pmap);
6801 	PG_RW = pmap_rw_bit(pmap);
6802 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6803 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6804 
6805 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6806 
6807 	/*
6808 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6809 	 * ineligible for promotion due to hardware errata, invalid, or does
6810 	 * not map the first 4KB physical page within a 2MB page.
6811 	 */
6812 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6813 	newpde = *firstpte;
6814 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6815 		return;
6816 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6817 		counter_u64_add(pmap_pde_p_failures, 1);
6818 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6819 		    " in pmap %p", va, pmap);
6820 		return;
6821 	}
6822 
6823 	/*
6824 	 * Both here and in the below "for" loop, to allow for repromotion
6825 	 * after MADV_FREE, conditionally write protect a clean PTE before
6826 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6827 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6828 	 * address range [S, E).  pmap_advise() will demote the superpage
6829 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6830 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6831 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6832 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6833 	 * In other words, there is still a 4KB page in [S, E), call it P,
6834 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6835 	 * we write protect P before aborting the promotion, if and when P is
6836 	 * finally rewritten, there won't be a page fault to trigger
6837 	 * repromotion.
6838 	 */
6839 setpde:
6840 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6841 		/*
6842 		 * When PG_M is already clear, PG_RW can be cleared without
6843 		 * a TLB invalidation.
6844 		 */
6845 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6846 			goto setpde;
6847 		newpde &= ~PG_RW;
6848 	}
6849 	if ((newpde & PG_A) == 0) {
6850 		counter_u64_add(pmap_pde_p_failures, 1);
6851 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6852 		    " in pmap %p", va, pmap);
6853 		return;
6854 	}
6855 
6856 	/*
6857 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6858 	 * PTE maps an unexpected 4KB physical page or does not have identical
6859 	 * characteristics to the first PTE.
6860 	 */
6861 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6862 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6863 		oldpte = *pte;
6864 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6865 			counter_u64_add(pmap_pde_p_failures, 1);
6866 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6867 			    " in pmap %p", va, pmap);
6868 			return;
6869 		}
6870 setpte:
6871 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6872 			/*
6873 			 * When PG_M is already clear, PG_RW can be cleared
6874 			 * without a TLB invalidation.
6875 			 */
6876 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6877 				goto setpte;
6878 			oldpte &= ~PG_RW;
6879 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6880 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6881 			    (va & ~PDRMASK), pmap);
6882 		}
6883 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6884 			counter_u64_add(pmap_pde_p_failures, 1);
6885 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6886 			    " in pmap %p", va, pmap);
6887 			return;
6888 		}
6889 		pa -= PAGE_SIZE;
6890 	}
6891 
6892 	/*
6893 	 * Save the page table page in its current state until the PDE
6894 	 * mapping the superpage is demoted by pmap_demote_pde() or
6895 	 * destroyed by pmap_remove_pde().
6896 	 */
6897 	if (mpte == NULL)
6898 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6899 	KASSERT(mpte >= vm_page_array &&
6900 	    mpte < &vm_page_array[vm_page_array_size],
6901 	    ("pmap_promote_pde: page table page is out of range"));
6902 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6903 	    ("pmap_promote_pde: page table page's pindex is wrong "
6904 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6905 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6906 	if (pmap_insert_pt_page(pmap, mpte, true)) {
6907 		counter_u64_add(pmap_pde_p_failures, 1);
6908 		CTR2(KTR_PMAP,
6909 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6910 		    pmap);
6911 		return;
6912 	}
6913 
6914 	/*
6915 	 * Promote the pv entries.
6916 	 */
6917 	if ((newpde & PG_MANAGED) != 0)
6918 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6919 
6920 	/*
6921 	 * Propagate the PAT index to its proper position.
6922 	 */
6923 	newpde = pmap_swap_pat(pmap, newpde);
6924 
6925 	/*
6926 	 * Map the superpage.
6927 	 */
6928 	if (workaround_erratum383)
6929 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6930 	else
6931 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6932 
6933 	counter_u64_add(pmap_pde_promotions, 1);
6934 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6935 	    " in pmap %p", va, pmap);
6936 }
6937 #endif /* VM_NRESERVLEVEL > 0 */
6938 
6939 static int
6940 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6941     int psind)
6942 {
6943 	vm_page_t mp;
6944 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6945 
6946 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6947 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6948 	    ("psind %d unexpected", psind));
6949 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6950 	    ("unaligned phys address %#lx newpte %#lx psind %d",
6951 	    newpte & PG_FRAME, newpte, psind));
6952 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
6953 	    ("unaligned va %#lx psind %d", va, psind));
6954 	KASSERT(va < VM_MAXUSER_ADDRESS,
6955 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
6956 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
6957 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
6958 
6959 	PG_V = pmap_valid_bit(pmap);
6960 
6961 restart:
6962 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
6963 		return (KERN_PROTECTION_FAILURE);
6964 	pten = newpte;
6965 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6966 		pten |= pmap_pkru_get(pmap, va);
6967 
6968 	if (psind == 2) {	/* 1G */
6969 		pml4e = pmap_pml4e(pmap, va);
6970 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6971 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
6972 			    NULL, va);
6973 			if (mp == NULL)
6974 				goto allocf;
6975 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6976 			pdpe = &pdpe[pmap_pdpe_index(va)];
6977 			origpte = *pdpe;
6978 			MPASS(origpte == 0);
6979 		} else {
6980 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
6981 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
6982 			origpte = *pdpe;
6983 			if ((origpte & PG_V) == 0) {
6984 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
6985 				mp->ref_count++;
6986 			}
6987 		}
6988 		*pdpe = pten;
6989 	} else /* (psind == 1) */ {	/* 2M */
6990 		pde = pmap_pde(pmap, va);
6991 		if (pde == NULL) {
6992 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
6993 			    NULL, va);
6994 			if (mp == NULL)
6995 				goto allocf;
6996 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6997 			pde = &pde[pmap_pde_index(va)];
6998 			origpte = *pde;
6999 			MPASS(origpte == 0);
7000 		} else {
7001 			origpte = *pde;
7002 			if ((origpte & PG_V) == 0) {
7003 				pdpe = pmap_pdpe(pmap, va);
7004 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7005 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7006 				mp->ref_count++;
7007 			}
7008 		}
7009 		*pde = pten;
7010 	}
7011 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7012 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7013 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7014 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7015 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7016 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7017 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7018 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7019 	if ((origpte & PG_V) == 0)
7020 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7021 
7022 	return (KERN_SUCCESS);
7023 
7024 allocf:
7025 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7026 		return (KERN_RESOURCE_SHORTAGE);
7027 	PMAP_UNLOCK(pmap);
7028 	vm_wait(NULL);
7029 	PMAP_LOCK(pmap);
7030 	goto restart;
7031 }
7032 
7033 /*
7034  *	Insert the given physical page (p) at
7035  *	the specified virtual address (v) in the
7036  *	target physical map with the protection requested.
7037  *
7038  *	If specified, the page will be wired down, meaning
7039  *	that the related pte can not be reclaimed.
7040  *
7041  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7042  *	or lose information.  That is, this routine must actually
7043  *	insert this page into the given map NOW.
7044  *
7045  *	When destroying both a page table and PV entry, this function
7046  *	performs the TLB invalidation before releasing the PV list
7047  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7048  */
7049 int
7050 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7051     u_int flags, int8_t psind)
7052 {
7053 	struct rwlock *lock;
7054 	pd_entry_t *pde;
7055 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7056 	pt_entry_t newpte, origpte;
7057 	pv_entry_t pv;
7058 	vm_paddr_t opa, pa;
7059 	vm_page_t mpte, om;
7060 	int rv;
7061 	boolean_t nosleep;
7062 
7063 	PG_A = pmap_accessed_bit(pmap);
7064 	PG_G = pmap_global_bit(pmap);
7065 	PG_M = pmap_modified_bit(pmap);
7066 	PG_V = pmap_valid_bit(pmap);
7067 	PG_RW = pmap_rw_bit(pmap);
7068 
7069 	va = trunc_page(va);
7070 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7071 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7072 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7073 	    va));
7074 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7075 	    ("pmap_enter: managed mapping within the clean submap"));
7076 	if ((m->oflags & VPO_UNMANAGED) == 0)
7077 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7078 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7079 	    ("pmap_enter: flags %u has reserved bits set", flags));
7080 	pa = VM_PAGE_TO_PHYS(m);
7081 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7082 	if ((flags & VM_PROT_WRITE) != 0)
7083 		newpte |= PG_M;
7084 	if ((prot & VM_PROT_WRITE) != 0)
7085 		newpte |= PG_RW;
7086 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7087 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7088 	if ((prot & VM_PROT_EXECUTE) == 0)
7089 		newpte |= pg_nx;
7090 	if ((flags & PMAP_ENTER_WIRED) != 0)
7091 		newpte |= PG_W;
7092 	if (va < VM_MAXUSER_ADDRESS)
7093 		newpte |= PG_U;
7094 	if (pmap == kernel_pmap)
7095 		newpte |= PG_G;
7096 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7097 
7098 	/*
7099 	 * Set modified bit gratuitously for writeable mappings if
7100 	 * the page is unmanaged. We do not want to take a fault
7101 	 * to do the dirty bit accounting for these mappings.
7102 	 */
7103 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7104 		if ((newpte & PG_RW) != 0)
7105 			newpte |= PG_M;
7106 	} else
7107 		newpte |= PG_MANAGED;
7108 
7109 	lock = NULL;
7110 	PMAP_LOCK(pmap);
7111 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7112 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7113 		    ("managed largepage va %#lx flags %#x", va, flags));
7114 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7115 		    psind);
7116 		goto out;
7117 	}
7118 	if (psind == 1) {
7119 		/* Assert the required virtual and physical alignment. */
7120 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7121 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7122 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7123 		goto out;
7124 	}
7125 	mpte = NULL;
7126 
7127 	/*
7128 	 * In the case that a page table page is not
7129 	 * resident, we are creating it here.
7130 	 */
7131 retry:
7132 	pde = pmap_pde(pmap, va);
7133 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7134 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7135 		pte = pmap_pde_to_pte(pde, va);
7136 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7137 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7138 			mpte->ref_count++;
7139 		}
7140 	} else if (va < VM_MAXUSER_ADDRESS) {
7141 		/*
7142 		 * Here if the pte page isn't mapped, or if it has been
7143 		 * deallocated.
7144 		 */
7145 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7146 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7147 		    nosleep ? NULL : &lock, va);
7148 		if (mpte == NULL && nosleep) {
7149 			rv = KERN_RESOURCE_SHORTAGE;
7150 			goto out;
7151 		}
7152 		goto retry;
7153 	} else
7154 		panic("pmap_enter: invalid page directory va=%#lx", va);
7155 
7156 	origpte = *pte;
7157 	pv = NULL;
7158 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7159 		newpte |= pmap_pkru_get(pmap, va);
7160 
7161 	/*
7162 	 * Is the specified virtual address already mapped?
7163 	 */
7164 	if ((origpte & PG_V) != 0) {
7165 		/*
7166 		 * Wiring change, just update stats. We don't worry about
7167 		 * wiring PT pages as they remain resident as long as there
7168 		 * are valid mappings in them. Hence, if a user page is wired,
7169 		 * the PT page will be also.
7170 		 */
7171 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7172 			pmap->pm_stats.wired_count++;
7173 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7174 			pmap->pm_stats.wired_count--;
7175 
7176 		/*
7177 		 * Remove the extra PT page reference.
7178 		 */
7179 		if (mpte != NULL) {
7180 			mpte->ref_count--;
7181 			KASSERT(mpte->ref_count > 0,
7182 			    ("pmap_enter: missing reference to page table page,"
7183 			     " va: 0x%lx", va));
7184 		}
7185 
7186 		/*
7187 		 * Has the physical page changed?
7188 		 */
7189 		opa = origpte & PG_FRAME;
7190 		if (opa == pa) {
7191 			/*
7192 			 * No, might be a protection or wiring change.
7193 			 */
7194 			if ((origpte & PG_MANAGED) != 0 &&
7195 			    (newpte & PG_RW) != 0)
7196 				vm_page_aflag_set(m, PGA_WRITEABLE);
7197 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7198 				goto unchanged;
7199 			goto validate;
7200 		}
7201 
7202 		/*
7203 		 * The physical page has changed.  Temporarily invalidate
7204 		 * the mapping.  This ensures that all threads sharing the
7205 		 * pmap keep a consistent view of the mapping, which is
7206 		 * necessary for the correct handling of COW faults.  It
7207 		 * also permits reuse of the old mapping's PV entry,
7208 		 * avoiding an allocation.
7209 		 *
7210 		 * For consistency, handle unmanaged mappings the same way.
7211 		 */
7212 		origpte = pte_load_clear(pte);
7213 		KASSERT((origpte & PG_FRAME) == opa,
7214 		    ("pmap_enter: unexpected pa update for %#lx", va));
7215 		if ((origpte & PG_MANAGED) != 0) {
7216 			om = PHYS_TO_VM_PAGE(opa);
7217 
7218 			/*
7219 			 * The pmap lock is sufficient to synchronize with
7220 			 * concurrent calls to pmap_page_test_mappings() and
7221 			 * pmap_ts_referenced().
7222 			 */
7223 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7224 				vm_page_dirty(om);
7225 			if ((origpte & PG_A) != 0) {
7226 				pmap_invalidate_page(pmap, va);
7227 				vm_page_aflag_set(om, PGA_REFERENCED);
7228 			}
7229 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7230 			pv = pmap_pvh_remove(&om->md, pmap, va);
7231 			KASSERT(pv != NULL,
7232 			    ("pmap_enter: no PV entry for %#lx", va));
7233 			if ((newpte & PG_MANAGED) == 0)
7234 				free_pv_entry(pmap, pv);
7235 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7236 			    TAILQ_EMPTY(&om->md.pv_list) &&
7237 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7238 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7239 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7240 		} else {
7241 			/*
7242 			 * Since this mapping is unmanaged, assume that PG_A
7243 			 * is set.
7244 			 */
7245 			pmap_invalidate_page(pmap, va);
7246 		}
7247 		origpte = 0;
7248 	} else {
7249 		/*
7250 		 * Increment the counters.
7251 		 */
7252 		if ((newpte & PG_W) != 0)
7253 			pmap->pm_stats.wired_count++;
7254 		pmap_resident_count_adj(pmap, 1);
7255 	}
7256 
7257 	/*
7258 	 * Enter on the PV list if part of our managed memory.
7259 	 */
7260 	if ((newpte & PG_MANAGED) != 0) {
7261 		if (pv == NULL) {
7262 			pv = get_pv_entry(pmap, &lock);
7263 			pv->pv_va = va;
7264 		}
7265 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7266 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7267 		m->md.pv_gen++;
7268 		if ((newpte & PG_RW) != 0)
7269 			vm_page_aflag_set(m, PGA_WRITEABLE);
7270 	}
7271 
7272 	/*
7273 	 * Update the PTE.
7274 	 */
7275 	if ((origpte & PG_V) != 0) {
7276 validate:
7277 		origpte = pte_load_store(pte, newpte);
7278 		KASSERT((origpte & PG_FRAME) == pa,
7279 		    ("pmap_enter: unexpected pa update for %#lx", va));
7280 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7281 		    (PG_M | PG_RW)) {
7282 			if ((origpte & PG_MANAGED) != 0)
7283 				vm_page_dirty(m);
7284 
7285 			/*
7286 			 * Although the PTE may still have PG_RW set, TLB
7287 			 * invalidation may nonetheless be required because
7288 			 * the PTE no longer has PG_M set.
7289 			 */
7290 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7291 			/*
7292 			 * This PTE change does not require TLB invalidation.
7293 			 */
7294 			goto unchanged;
7295 		}
7296 		if ((origpte & PG_A) != 0)
7297 			pmap_invalidate_page(pmap, va);
7298 	} else
7299 		pte_store(pte, newpte);
7300 
7301 unchanged:
7302 
7303 #if VM_NRESERVLEVEL > 0
7304 	/*
7305 	 * If both the page table page and the reservation are fully
7306 	 * populated, then attempt promotion.
7307 	 */
7308 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7309 	    pmap_ps_enabled(pmap) &&
7310 	    (m->flags & PG_FICTITIOUS) == 0 &&
7311 	    vm_reserv_level_iffullpop(m) == 0)
7312 		pmap_promote_pde(pmap, pde, va, mpte, &lock);
7313 #endif
7314 
7315 	rv = KERN_SUCCESS;
7316 out:
7317 	if (lock != NULL)
7318 		rw_wunlock(lock);
7319 	PMAP_UNLOCK(pmap);
7320 	return (rv);
7321 }
7322 
7323 /*
7324  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7325  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7326  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7327  * "no replace", and "no reclaim" are specified.
7328  */
7329 static int
7330 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7331     struct rwlock **lockp)
7332 {
7333 	pd_entry_t newpde;
7334 	pt_entry_t PG_V;
7335 
7336 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7337 	PG_V = pmap_valid_bit(pmap);
7338 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7339 	    PG_PS | PG_V;
7340 	if ((m->oflags & VPO_UNMANAGED) == 0)
7341 		newpde |= PG_MANAGED;
7342 	if ((prot & VM_PROT_EXECUTE) == 0)
7343 		newpde |= pg_nx;
7344 	if (va < VM_MAXUSER_ADDRESS)
7345 		newpde |= PG_U;
7346 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7347 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7348 }
7349 
7350 /*
7351  * Returns true if every page table entry in the specified page table page is
7352  * zero.
7353  */
7354 static bool
7355 pmap_every_pte_zero(vm_paddr_t pa)
7356 {
7357 	pt_entry_t *pt_end, *pte;
7358 
7359 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7360 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7361 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7362 		if (*pte != 0)
7363 			return (false);
7364 	}
7365 	return (true);
7366 }
7367 
7368 /*
7369  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7370  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7371  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7372  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7373  * page mapping already exists within the 2MB virtual address range starting
7374  * at the specified virtual address or (2) the requested 2MB page mapping is
7375  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7376  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7377  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7378  * settings are not the same across the 2MB virtual address range starting at
7379  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7380  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7381  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7382  * failed.
7383  *
7384  * The parameter "m" is only used when creating a managed, writeable mapping.
7385  */
7386 static int
7387 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7388     vm_page_t m, struct rwlock **lockp)
7389 {
7390 	struct spglist free;
7391 	pd_entry_t oldpde, *pde;
7392 	pt_entry_t PG_G, PG_RW, PG_V;
7393 	vm_page_t mt, pdpg;
7394 
7395 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7396 	    ("pmap_enter_pde: cannot create wired user mapping"));
7397 	PG_G = pmap_global_bit(pmap);
7398 	PG_RW = pmap_rw_bit(pmap);
7399 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7400 	    ("pmap_enter_pde: newpde is missing PG_M"));
7401 	PG_V = pmap_valid_bit(pmap);
7402 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7403 
7404 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7405 	    newpde))) {
7406 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7407 		    " in pmap %p", va, pmap);
7408 		return (KERN_FAILURE);
7409 	}
7410 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7411 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7412 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7413 		    " in pmap %p", va, pmap);
7414 		return (KERN_RESOURCE_SHORTAGE);
7415 	}
7416 
7417 	/*
7418 	 * If pkru is not same for the whole pde range, return failure
7419 	 * and let vm_fault() cope.  Check after pde allocation, since
7420 	 * it could sleep.
7421 	 */
7422 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7423 		pmap_abort_ptp(pmap, va, pdpg);
7424 		return (KERN_PROTECTION_FAILURE);
7425 	}
7426 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7427 		newpde &= ~X86_PG_PKU_MASK;
7428 		newpde |= pmap_pkru_get(pmap, va);
7429 	}
7430 
7431 	/*
7432 	 * If there are existing mappings, either abort or remove them.
7433 	 */
7434 	oldpde = *pde;
7435 	if ((oldpde & PG_V) != 0) {
7436 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7437 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7438 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7439 			if ((oldpde & PG_PS) != 0) {
7440 				if (pdpg != NULL)
7441 					pdpg->ref_count--;
7442 				CTR2(KTR_PMAP,
7443 				    "pmap_enter_pde: no space for va %#lx"
7444 				    " in pmap %p", va, pmap);
7445 				return (KERN_NO_SPACE);
7446 			} else if (va < VM_MAXUSER_ADDRESS ||
7447 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7448 				if (pdpg != NULL)
7449 					pdpg->ref_count--;
7450 				CTR2(KTR_PMAP,
7451 				    "pmap_enter_pde: failure for va %#lx"
7452 				    " in pmap %p", va, pmap);
7453 				return (KERN_FAILURE);
7454 			}
7455 		}
7456 		/* Break the existing mapping(s). */
7457 		SLIST_INIT(&free);
7458 		if ((oldpde & PG_PS) != 0) {
7459 			/*
7460 			 * The reference to the PD page that was acquired by
7461 			 * pmap_alloc_pde() ensures that it won't be freed.
7462 			 * However, if the PDE resulted from a promotion, then
7463 			 * a reserved PT page could be freed.
7464 			 */
7465 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7466 			if ((oldpde & PG_G) == 0)
7467 				pmap_invalidate_pde_page(pmap, va, oldpde);
7468 		} else {
7469 			pmap_delayed_invl_start();
7470 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7471 			    lockp))
7472 		               pmap_invalidate_all(pmap);
7473 			pmap_delayed_invl_finish();
7474 		}
7475 		if (va < VM_MAXUSER_ADDRESS) {
7476 			vm_page_free_pages_toq(&free, true);
7477 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7478 			    pde));
7479 		} else {
7480 			KASSERT(SLIST_EMPTY(&free),
7481 			    ("pmap_enter_pde: freed kernel page table page"));
7482 
7483 			/*
7484 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7485 			 * leave the kernel page table page zero filled.
7486 			 */
7487 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7488 			if (pmap_insert_pt_page(pmap, mt, false))
7489 				panic("pmap_enter_pde: trie insert failed");
7490 		}
7491 	}
7492 
7493 	if ((newpde & PG_MANAGED) != 0) {
7494 		/*
7495 		 * Abort this mapping if its PV entry could not be created.
7496 		 */
7497 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7498 			if (pdpg != NULL)
7499 				pmap_abort_ptp(pmap, va, pdpg);
7500 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7501 			    " in pmap %p", va, pmap);
7502 			return (KERN_RESOURCE_SHORTAGE);
7503 		}
7504 		if ((newpde & PG_RW) != 0) {
7505 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7506 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7507 		}
7508 	}
7509 
7510 	/*
7511 	 * Increment counters.
7512 	 */
7513 	if ((newpde & PG_W) != 0)
7514 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7515 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7516 
7517 	/*
7518 	 * Map the superpage.  (This is not a promoted mapping; there will not
7519 	 * be any lingering 4KB page mappings in the TLB.)
7520 	 */
7521 	pde_store(pde, newpde);
7522 
7523 	counter_u64_add(pmap_pde_mappings, 1);
7524 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7525 	    va, pmap);
7526 	return (KERN_SUCCESS);
7527 }
7528 
7529 /*
7530  * Maps a sequence of resident pages belonging to the same object.
7531  * The sequence begins with the given page m_start.  This page is
7532  * mapped at the given virtual address start.  Each subsequent page is
7533  * mapped at a virtual address that is offset from start by the same
7534  * amount as the page is offset from m_start within the object.  The
7535  * last page in the sequence is the page with the largest offset from
7536  * m_start that can be mapped at a virtual address less than the given
7537  * virtual address end.  Not every virtual page between start and end
7538  * is mapped; only those for which a resident page exists with the
7539  * corresponding offset from m_start are mapped.
7540  */
7541 void
7542 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7543     vm_page_t m_start, vm_prot_t prot)
7544 {
7545 	struct rwlock *lock;
7546 	vm_offset_t va;
7547 	vm_page_t m, mpte;
7548 	vm_pindex_t diff, psize;
7549 	int rv;
7550 
7551 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7552 
7553 	psize = atop(end - start);
7554 	mpte = NULL;
7555 	m = m_start;
7556 	lock = NULL;
7557 	PMAP_LOCK(pmap);
7558 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7559 		va = start + ptoa(diff);
7560 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7561 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7562 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7563 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7564 			m = &m[NBPDR / PAGE_SIZE - 1];
7565 		else
7566 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7567 			    mpte, &lock);
7568 		m = TAILQ_NEXT(m, listq);
7569 	}
7570 	if (lock != NULL)
7571 		rw_wunlock(lock);
7572 	PMAP_UNLOCK(pmap);
7573 }
7574 
7575 /*
7576  * this code makes some *MAJOR* assumptions:
7577  * 1. Current pmap & pmap exists.
7578  * 2. Not wired.
7579  * 3. Read access.
7580  * 4. No page table pages.
7581  * but is *MUCH* faster than pmap_enter...
7582  */
7583 
7584 void
7585 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7586 {
7587 	struct rwlock *lock;
7588 
7589 	lock = NULL;
7590 	PMAP_LOCK(pmap);
7591 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7592 	if (lock != NULL)
7593 		rw_wunlock(lock);
7594 	PMAP_UNLOCK(pmap);
7595 }
7596 
7597 static vm_page_t
7598 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7599     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7600 {
7601 	pt_entry_t newpte, *pte, PG_V;
7602 
7603 	KASSERT(!VA_IS_CLEANMAP(va) ||
7604 	    (m->oflags & VPO_UNMANAGED) != 0,
7605 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7606 	PG_V = pmap_valid_bit(pmap);
7607 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7608 
7609 	/*
7610 	 * In the case that a page table page is not
7611 	 * resident, we are creating it here.
7612 	 */
7613 	if (va < VM_MAXUSER_ADDRESS) {
7614 		pdp_entry_t *pdpe;
7615 		pd_entry_t *pde;
7616 		vm_pindex_t ptepindex;
7617 
7618 		/*
7619 		 * Calculate pagetable page index
7620 		 */
7621 		ptepindex = pmap_pde_pindex(va);
7622 		if (mpte && (mpte->pindex == ptepindex)) {
7623 			mpte->ref_count++;
7624 		} else {
7625 			/*
7626 			 * If the page table page is mapped, we just increment
7627 			 * the hold count, and activate it.  Otherwise, we
7628 			 * attempt to allocate a page table page, passing NULL
7629 			 * instead of the PV list lock pointer because we don't
7630 			 * intend to sleep.  If this attempt fails, we don't
7631 			 * retry.  Instead, we give up.
7632 			 */
7633 			pdpe = pmap_pdpe(pmap, va);
7634 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7635 				if ((*pdpe & PG_PS) != 0)
7636 					return (NULL);
7637 				pde = pmap_pdpe_to_pde(pdpe, va);
7638 				if ((*pde & PG_V) != 0) {
7639 					if ((*pde & PG_PS) != 0)
7640 						return (NULL);
7641 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7642 					mpte->ref_count++;
7643 				} else {
7644 					mpte = pmap_allocpte_alloc(pmap,
7645 					    ptepindex, NULL, va);
7646 					if (mpte == NULL)
7647 						return (NULL);
7648 				}
7649 			} else {
7650 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7651 				    NULL, va);
7652 				if (mpte == NULL)
7653 					return (NULL);
7654 			}
7655 		}
7656 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7657 		pte = &pte[pmap_pte_index(va)];
7658 	} else {
7659 		mpte = NULL;
7660 		pte = vtopte(va);
7661 	}
7662 	if (*pte) {
7663 		if (mpte != NULL)
7664 			mpte->ref_count--;
7665 		return (NULL);
7666 	}
7667 
7668 	/*
7669 	 * Enter on the PV list if part of our managed memory.
7670 	 */
7671 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7672 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7673 		if (mpte != NULL)
7674 			pmap_abort_ptp(pmap, va, mpte);
7675 		return (NULL);
7676 	}
7677 
7678 	/*
7679 	 * Increment counters
7680 	 */
7681 	pmap_resident_count_adj(pmap, 1);
7682 
7683 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7684 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
7685 	if ((m->oflags & VPO_UNMANAGED) == 0)
7686 		newpte |= PG_MANAGED;
7687 	if ((prot & VM_PROT_EXECUTE) == 0)
7688 		newpte |= pg_nx;
7689 	if (va < VM_MAXUSER_ADDRESS)
7690 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7691 	pte_store(pte, newpte);
7692 	return (mpte);
7693 }
7694 
7695 /*
7696  * Make a temporary mapping for a physical address.  This is only intended
7697  * to be used for panic dumps.
7698  */
7699 void *
7700 pmap_kenter_temporary(vm_paddr_t pa, int i)
7701 {
7702 	vm_offset_t va;
7703 
7704 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7705 	pmap_kenter(va, pa);
7706 	pmap_invlpg(kernel_pmap, va);
7707 	return ((void *)crashdumpmap);
7708 }
7709 
7710 /*
7711  * This code maps large physical mmap regions into the
7712  * processor address space.  Note that some shortcuts
7713  * are taken, but the code works.
7714  */
7715 void
7716 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7717     vm_pindex_t pindex, vm_size_t size)
7718 {
7719 	pd_entry_t *pde;
7720 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7721 	vm_paddr_t pa, ptepa;
7722 	vm_page_t p, pdpg;
7723 	int pat_mode;
7724 
7725 	PG_A = pmap_accessed_bit(pmap);
7726 	PG_M = pmap_modified_bit(pmap);
7727 	PG_V = pmap_valid_bit(pmap);
7728 	PG_RW = pmap_rw_bit(pmap);
7729 
7730 	VM_OBJECT_ASSERT_WLOCKED(object);
7731 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7732 	    ("pmap_object_init_pt: non-device object"));
7733 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7734 		if (!pmap_ps_enabled(pmap))
7735 			return;
7736 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7737 			return;
7738 		p = vm_page_lookup(object, pindex);
7739 		KASSERT(vm_page_all_valid(p),
7740 		    ("pmap_object_init_pt: invalid page %p", p));
7741 		pat_mode = p->md.pat_mode;
7742 
7743 		/*
7744 		 * Abort the mapping if the first page is not physically
7745 		 * aligned to a 2MB page boundary.
7746 		 */
7747 		ptepa = VM_PAGE_TO_PHYS(p);
7748 		if (ptepa & (NBPDR - 1))
7749 			return;
7750 
7751 		/*
7752 		 * Skip the first page.  Abort the mapping if the rest of
7753 		 * the pages are not physically contiguous or have differing
7754 		 * memory attributes.
7755 		 */
7756 		p = TAILQ_NEXT(p, listq);
7757 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7758 		    pa += PAGE_SIZE) {
7759 			KASSERT(vm_page_all_valid(p),
7760 			    ("pmap_object_init_pt: invalid page %p", p));
7761 			if (pa != VM_PAGE_TO_PHYS(p) ||
7762 			    pat_mode != p->md.pat_mode)
7763 				return;
7764 			p = TAILQ_NEXT(p, listq);
7765 		}
7766 
7767 		/*
7768 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7769 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7770 		 * will not affect the termination of this loop.
7771 		 */
7772 		PMAP_LOCK(pmap);
7773 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7774 		    pa < ptepa + size; pa += NBPDR) {
7775 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7776 			if (pde == NULL) {
7777 				/*
7778 				 * The creation of mappings below is only an
7779 				 * optimization.  If a page directory page
7780 				 * cannot be allocated without blocking,
7781 				 * continue on to the next mapping rather than
7782 				 * blocking.
7783 				 */
7784 				addr += NBPDR;
7785 				continue;
7786 			}
7787 			if ((*pde & PG_V) == 0) {
7788 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7789 				    PG_U | PG_RW | PG_V);
7790 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7791 				counter_u64_add(pmap_pde_mappings, 1);
7792 			} else {
7793 				/* Continue on if the PDE is already valid. */
7794 				pdpg->ref_count--;
7795 				KASSERT(pdpg->ref_count > 0,
7796 				    ("pmap_object_init_pt: missing reference "
7797 				    "to page directory page, va: 0x%lx", addr));
7798 			}
7799 			addr += NBPDR;
7800 		}
7801 		PMAP_UNLOCK(pmap);
7802 	}
7803 }
7804 
7805 /*
7806  *	Clear the wired attribute from the mappings for the specified range of
7807  *	addresses in the given pmap.  Every valid mapping within that range
7808  *	must have the wired attribute set.  In contrast, invalid mappings
7809  *	cannot have the wired attribute set, so they are ignored.
7810  *
7811  *	The wired attribute of the page table entry is not a hardware
7812  *	feature, so there is no need to invalidate any TLB entries.
7813  *	Since pmap_demote_pde() for the wired entry must never fail,
7814  *	pmap_delayed_invl_start()/finish() calls around the
7815  *	function are not needed.
7816  */
7817 void
7818 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7819 {
7820 	vm_offset_t va_next;
7821 	pml4_entry_t *pml4e;
7822 	pdp_entry_t *pdpe;
7823 	pd_entry_t *pde;
7824 	pt_entry_t *pte, PG_V, PG_G __diagused;
7825 
7826 	PG_V = pmap_valid_bit(pmap);
7827 	PG_G = pmap_global_bit(pmap);
7828 	PMAP_LOCK(pmap);
7829 	for (; sva < eva; sva = va_next) {
7830 		pml4e = pmap_pml4e(pmap, sva);
7831 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7832 			va_next = (sva + NBPML4) & ~PML4MASK;
7833 			if (va_next < sva)
7834 				va_next = eva;
7835 			continue;
7836 		}
7837 
7838 		va_next = (sva + NBPDP) & ~PDPMASK;
7839 		if (va_next < sva)
7840 			va_next = eva;
7841 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7842 		if ((*pdpe & PG_V) == 0)
7843 			continue;
7844 		if ((*pdpe & PG_PS) != 0) {
7845 			KASSERT(va_next <= eva,
7846 			    ("partial update of non-transparent 1G mapping "
7847 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7848 			    *pdpe, sva, eva, va_next));
7849 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7850 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7851 			atomic_clear_long(pdpe, PG_W);
7852 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7853 			continue;
7854 		}
7855 
7856 		va_next = (sva + NBPDR) & ~PDRMASK;
7857 		if (va_next < sva)
7858 			va_next = eva;
7859 		pde = pmap_pdpe_to_pde(pdpe, sva);
7860 		if ((*pde & PG_V) == 0)
7861 			continue;
7862 		if ((*pde & PG_PS) != 0) {
7863 			if ((*pde & PG_W) == 0)
7864 				panic("pmap_unwire: pde %#jx is missing PG_W",
7865 				    (uintmax_t)*pde);
7866 
7867 			/*
7868 			 * Are we unwiring the entire large page?  If not,
7869 			 * demote the mapping and fall through.
7870 			 */
7871 			if (sva + NBPDR == va_next && eva >= va_next) {
7872 				atomic_clear_long(pde, PG_W);
7873 				pmap->pm_stats.wired_count -= NBPDR /
7874 				    PAGE_SIZE;
7875 				continue;
7876 			} else if (!pmap_demote_pde(pmap, pde, sva))
7877 				panic("pmap_unwire: demotion failed");
7878 		}
7879 		if (va_next > eva)
7880 			va_next = eva;
7881 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
7882 		    sva += PAGE_SIZE) {
7883 			if ((*pte & PG_V) == 0)
7884 				continue;
7885 			if ((*pte & PG_W) == 0)
7886 				panic("pmap_unwire: pte %#jx is missing PG_W",
7887 				    (uintmax_t)*pte);
7888 
7889 			/*
7890 			 * PG_W must be cleared atomically.  Although the pmap
7891 			 * lock synchronizes access to PG_W, another processor
7892 			 * could be setting PG_M and/or PG_A concurrently.
7893 			 */
7894 			atomic_clear_long(pte, PG_W);
7895 			pmap->pm_stats.wired_count--;
7896 		}
7897 	}
7898 	PMAP_UNLOCK(pmap);
7899 }
7900 
7901 /*
7902  *	Copy the range specified by src_addr/len
7903  *	from the source map to the range dst_addr/len
7904  *	in the destination map.
7905  *
7906  *	This routine is only advisory and need not do anything.
7907  */
7908 void
7909 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
7910     vm_offset_t src_addr)
7911 {
7912 	struct rwlock *lock;
7913 	pml4_entry_t *pml4e;
7914 	pdp_entry_t *pdpe;
7915 	pd_entry_t *pde, srcptepaddr;
7916 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
7917 	vm_offset_t addr, end_addr, va_next;
7918 	vm_page_t dst_pdpg, dstmpte, srcmpte;
7919 
7920 	if (dst_addr != src_addr)
7921 		return;
7922 
7923 	if (dst_pmap->pm_type != src_pmap->pm_type)
7924 		return;
7925 
7926 	/*
7927 	 * EPT page table entries that require emulation of A/D bits are
7928 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
7929 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
7930 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
7931 	 * implementations flag an EPT misconfiguration for exec-only
7932 	 * mappings we skip this function entirely for emulated pmaps.
7933 	 */
7934 	if (pmap_emulate_ad_bits(dst_pmap))
7935 		return;
7936 
7937 	end_addr = src_addr + len;
7938 	lock = NULL;
7939 	if (dst_pmap < src_pmap) {
7940 		PMAP_LOCK(dst_pmap);
7941 		PMAP_LOCK(src_pmap);
7942 	} else {
7943 		PMAP_LOCK(src_pmap);
7944 		PMAP_LOCK(dst_pmap);
7945 	}
7946 
7947 	PG_A = pmap_accessed_bit(dst_pmap);
7948 	PG_M = pmap_modified_bit(dst_pmap);
7949 	PG_V = pmap_valid_bit(dst_pmap);
7950 
7951 	for (addr = src_addr; addr < end_addr; addr = va_next) {
7952 		KASSERT(addr < UPT_MIN_ADDRESS,
7953 		    ("pmap_copy: invalid to pmap_copy page tables"));
7954 
7955 		pml4e = pmap_pml4e(src_pmap, addr);
7956 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7957 			va_next = (addr + NBPML4) & ~PML4MASK;
7958 			if (va_next < addr)
7959 				va_next = end_addr;
7960 			continue;
7961 		}
7962 
7963 		va_next = (addr + NBPDP) & ~PDPMASK;
7964 		if (va_next < addr)
7965 			va_next = end_addr;
7966 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
7967 		if ((*pdpe & PG_V) == 0)
7968 			continue;
7969 		if ((*pdpe & PG_PS) != 0) {
7970 			KASSERT(va_next <= end_addr,
7971 			    ("partial update of non-transparent 1G mapping "
7972 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7973 			    *pdpe, addr, end_addr, va_next));
7974 			MPASS((addr & PDPMASK) == 0);
7975 			MPASS((*pdpe & PG_MANAGED) == 0);
7976 			srcptepaddr = *pdpe;
7977 			pdpe = pmap_pdpe(dst_pmap, addr);
7978 			if (pdpe == NULL) {
7979 				if (pmap_allocpte_alloc(dst_pmap,
7980 				    pmap_pml4e_pindex(addr), NULL, addr) ==
7981 				    NULL)
7982 					break;
7983 				pdpe = pmap_pdpe(dst_pmap, addr);
7984 			} else {
7985 				pml4e = pmap_pml4e(dst_pmap, addr);
7986 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7987 				dst_pdpg->ref_count++;
7988 			}
7989 			KASSERT(*pdpe == 0,
7990 			    ("1G mapping present in dst pmap "
7991 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7992 			    *pdpe, addr, end_addr, va_next));
7993 			*pdpe = srcptepaddr & ~PG_W;
7994 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
7995 			continue;
7996 		}
7997 
7998 		va_next = (addr + NBPDR) & ~PDRMASK;
7999 		if (va_next < addr)
8000 			va_next = end_addr;
8001 
8002 		pde = pmap_pdpe_to_pde(pdpe, addr);
8003 		srcptepaddr = *pde;
8004 		if (srcptepaddr == 0)
8005 			continue;
8006 
8007 		if (srcptepaddr & PG_PS) {
8008 			/*
8009 			 * We can only virtual copy whole superpages.
8010 			 */
8011 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8012 				continue;
8013 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8014 			if (pde == NULL)
8015 				break;
8016 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8017 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8018 			    PMAP_ENTER_NORECLAIM, &lock))) {
8019 				/*
8020 				 * We leave the dirty bit unchanged because
8021 				 * managed read/write superpage mappings are
8022 				 * required to be dirty.  However, managed
8023 				 * superpage mappings are not required to
8024 				 * have their accessed bit set, so we clear
8025 				 * it because we don't know if this mapping
8026 				 * will be used.
8027 				 */
8028 				srcptepaddr &= ~PG_W;
8029 				if ((srcptepaddr & PG_MANAGED) != 0)
8030 					srcptepaddr &= ~PG_A;
8031 				*pde = srcptepaddr;
8032 				pmap_resident_count_adj(dst_pmap, NBPDR /
8033 				    PAGE_SIZE);
8034 				counter_u64_add(pmap_pde_mappings, 1);
8035 			} else
8036 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8037 			continue;
8038 		}
8039 
8040 		srcptepaddr &= PG_FRAME;
8041 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8042 		KASSERT(srcmpte->ref_count > 0,
8043 		    ("pmap_copy: source page table page is unused"));
8044 
8045 		if (va_next > end_addr)
8046 			va_next = end_addr;
8047 
8048 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8049 		src_pte = &src_pte[pmap_pte_index(addr)];
8050 		dstmpte = NULL;
8051 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8052 			ptetemp = *src_pte;
8053 
8054 			/*
8055 			 * We only virtual copy managed pages.
8056 			 */
8057 			if ((ptetemp & PG_MANAGED) == 0)
8058 				continue;
8059 
8060 			if (dstmpte != NULL) {
8061 				KASSERT(dstmpte->pindex ==
8062 				    pmap_pde_pindex(addr),
8063 				    ("dstmpte pindex/addr mismatch"));
8064 				dstmpte->ref_count++;
8065 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8066 			    NULL)) == NULL)
8067 				goto out;
8068 			dst_pte = (pt_entry_t *)
8069 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8070 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8071 			if (*dst_pte == 0 &&
8072 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8073 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8074 				/*
8075 				 * Clear the wired, modified, and accessed
8076 				 * (referenced) bits during the copy.
8077 				 */
8078 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8079 				pmap_resident_count_adj(dst_pmap, 1);
8080 			} else {
8081 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8082 				goto out;
8083 			}
8084 			/* Have we copied all of the valid mappings? */
8085 			if (dstmpte->ref_count >= srcmpte->ref_count)
8086 				break;
8087 		}
8088 	}
8089 out:
8090 	if (lock != NULL)
8091 		rw_wunlock(lock);
8092 	PMAP_UNLOCK(src_pmap);
8093 	PMAP_UNLOCK(dst_pmap);
8094 }
8095 
8096 int
8097 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8098 {
8099 	int error;
8100 
8101 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8102 	    dst_pmap->pm_type != PT_X86 ||
8103 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8104 		return (0);
8105 	for (;;) {
8106 		if (dst_pmap < src_pmap) {
8107 			PMAP_LOCK(dst_pmap);
8108 			PMAP_LOCK(src_pmap);
8109 		} else {
8110 			PMAP_LOCK(src_pmap);
8111 			PMAP_LOCK(dst_pmap);
8112 		}
8113 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8114 		/* Clean up partial copy on failure due to no memory. */
8115 		if (error == ENOMEM)
8116 			pmap_pkru_deassign_all(dst_pmap);
8117 		PMAP_UNLOCK(src_pmap);
8118 		PMAP_UNLOCK(dst_pmap);
8119 		if (error != ENOMEM)
8120 			break;
8121 		vm_wait(NULL);
8122 	}
8123 	return (error);
8124 }
8125 
8126 /*
8127  * Zero the specified hardware page.
8128  */
8129 void
8130 pmap_zero_page(vm_page_t m)
8131 {
8132 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8133 
8134 	pagezero((void *)va);
8135 }
8136 
8137 /*
8138  * Zero an area within a single hardware page.  off and size must not
8139  * cover an area beyond a single hardware page.
8140  */
8141 void
8142 pmap_zero_page_area(vm_page_t m, int off, int size)
8143 {
8144 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8145 
8146 	if (off == 0 && size == PAGE_SIZE)
8147 		pagezero((void *)va);
8148 	else
8149 		bzero((char *)va + off, size);
8150 }
8151 
8152 /*
8153  * Copy 1 specified hardware page to another.
8154  */
8155 void
8156 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8157 {
8158 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8159 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8160 
8161 	pagecopy((void *)src, (void *)dst);
8162 }
8163 
8164 int unmapped_buf_allowed = 1;
8165 
8166 void
8167 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8168     vm_offset_t b_offset, int xfersize)
8169 {
8170 	void *a_cp, *b_cp;
8171 	vm_page_t pages[2];
8172 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8173 	int cnt;
8174 	boolean_t mapped;
8175 
8176 	while (xfersize > 0) {
8177 		a_pg_offset = a_offset & PAGE_MASK;
8178 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8179 		b_pg_offset = b_offset & PAGE_MASK;
8180 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8181 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8182 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8183 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
8184 		a_cp = (char *)vaddr[0] + a_pg_offset;
8185 		b_cp = (char *)vaddr[1] + b_pg_offset;
8186 		bcopy(a_cp, b_cp, cnt);
8187 		if (__predict_false(mapped))
8188 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
8189 		a_offset += cnt;
8190 		b_offset += cnt;
8191 		xfersize -= cnt;
8192 	}
8193 }
8194 
8195 /*
8196  * Returns true if the pmap's pv is one of the first
8197  * 16 pvs linked to from this page.  This count may
8198  * be changed upwards or downwards in the future; it
8199  * is only necessary that true be returned for a small
8200  * subset of pmaps for proper page aging.
8201  */
8202 boolean_t
8203 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8204 {
8205 	struct md_page *pvh;
8206 	struct rwlock *lock;
8207 	pv_entry_t pv;
8208 	int loops = 0;
8209 	boolean_t rv;
8210 
8211 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8212 	    ("pmap_page_exists_quick: page %p is not managed", m));
8213 	rv = FALSE;
8214 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8215 	rw_rlock(lock);
8216 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8217 		if (PV_PMAP(pv) == pmap) {
8218 			rv = TRUE;
8219 			break;
8220 		}
8221 		loops++;
8222 		if (loops >= 16)
8223 			break;
8224 	}
8225 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8226 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8227 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8228 			if (PV_PMAP(pv) == pmap) {
8229 				rv = TRUE;
8230 				break;
8231 			}
8232 			loops++;
8233 			if (loops >= 16)
8234 				break;
8235 		}
8236 	}
8237 	rw_runlock(lock);
8238 	return (rv);
8239 }
8240 
8241 /*
8242  *	pmap_page_wired_mappings:
8243  *
8244  *	Return the number of managed mappings to the given physical page
8245  *	that are wired.
8246  */
8247 int
8248 pmap_page_wired_mappings(vm_page_t m)
8249 {
8250 	struct rwlock *lock;
8251 	struct md_page *pvh;
8252 	pmap_t pmap;
8253 	pt_entry_t *pte;
8254 	pv_entry_t pv;
8255 	int count, md_gen, pvh_gen;
8256 
8257 	if ((m->oflags & VPO_UNMANAGED) != 0)
8258 		return (0);
8259 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8260 	rw_rlock(lock);
8261 restart:
8262 	count = 0;
8263 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8264 		pmap = PV_PMAP(pv);
8265 		if (!PMAP_TRYLOCK(pmap)) {
8266 			md_gen = m->md.pv_gen;
8267 			rw_runlock(lock);
8268 			PMAP_LOCK(pmap);
8269 			rw_rlock(lock);
8270 			if (md_gen != m->md.pv_gen) {
8271 				PMAP_UNLOCK(pmap);
8272 				goto restart;
8273 			}
8274 		}
8275 		pte = pmap_pte(pmap, pv->pv_va);
8276 		if ((*pte & PG_W) != 0)
8277 			count++;
8278 		PMAP_UNLOCK(pmap);
8279 	}
8280 	if ((m->flags & PG_FICTITIOUS) == 0) {
8281 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8282 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8283 			pmap = PV_PMAP(pv);
8284 			if (!PMAP_TRYLOCK(pmap)) {
8285 				md_gen = m->md.pv_gen;
8286 				pvh_gen = pvh->pv_gen;
8287 				rw_runlock(lock);
8288 				PMAP_LOCK(pmap);
8289 				rw_rlock(lock);
8290 				if (md_gen != m->md.pv_gen ||
8291 				    pvh_gen != pvh->pv_gen) {
8292 					PMAP_UNLOCK(pmap);
8293 					goto restart;
8294 				}
8295 			}
8296 			pte = pmap_pde(pmap, pv->pv_va);
8297 			if ((*pte & PG_W) != 0)
8298 				count++;
8299 			PMAP_UNLOCK(pmap);
8300 		}
8301 	}
8302 	rw_runlock(lock);
8303 	return (count);
8304 }
8305 
8306 /*
8307  * Returns TRUE if the given page is mapped individually or as part of
8308  * a 2mpage.  Otherwise, returns FALSE.
8309  */
8310 boolean_t
8311 pmap_page_is_mapped(vm_page_t m)
8312 {
8313 	struct rwlock *lock;
8314 	boolean_t rv;
8315 
8316 	if ((m->oflags & VPO_UNMANAGED) != 0)
8317 		return (FALSE);
8318 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8319 	rw_rlock(lock);
8320 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8321 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8322 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8323 	rw_runlock(lock);
8324 	return (rv);
8325 }
8326 
8327 /*
8328  * Destroy all managed, non-wired mappings in the given user-space
8329  * pmap.  This pmap cannot be active on any processor besides the
8330  * caller.
8331  *
8332  * This function cannot be applied to the kernel pmap.  Moreover, it
8333  * is not intended for general use.  It is only to be used during
8334  * process termination.  Consequently, it can be implemented in ways
8335  * that make it faster than pmap_remove().  First, it can more quickly
8336  * destroy mappings by iterating over the pmap's collection of PV
8337  * entries, rather than searching the page table.  Second, it doesn't
8338  * have to test and clear the page table entries atomically, because
8339  * no processor is currently accessing the user address space.  In
8340  * particular, a page table entry's dirty bit won't change state once
8341  * this function starts.
8342  *
8343  * Although this function destroys all of the pmap's managed,
8344  * non-wired mappings, it can delay and batch the invalidation of TLB
8345  * entries without calling pmap_delayed_invl_start() and
8346  * pmap_delayed_invl_finish().  Because the pmap is not active on
8347  * any other processor, none of these TLB entries will ever be used
8348  * before their eventual invalidation.  Consequently, there is no need
8349  * for either pmap_remove_all() or pmap_remove_write() to wait for
8350  * that eventual TLB invalidation.
8351  */
8352 void
8353 pmap_remove_pages(pmap_t pmap)
8354 {
8355 	pd_entry_t ptepde;
8356 	pt_entry_t *pte, tpte;
8357 	pt_entry_t PG_M, PG_RW, PG_V;
8358 	struct spglist free;
8359 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8360 	vm_page_t m, mpte, mt;
8361 	pv_entry_t pv;
8362 	struct md_page *pvh;
8363 	struct pv_chunk *pc, *npc;
8364 	struct rwlock *lock;
8365 	int64_t bit;
8366 	uint64_t inuse, bitmask;
8367 	int allfree, field, i, idx;
8368 #ifdef PV_STATS
8369 	int freed;
8370 #endif
8371 	boolean_t superpage;
8372 	vm_paddr_t pa;
8373 
8374 	/*
8375 	 * Assert that the given pmap is only active on the current
8376 	 * CPU.  Unfortunately, we cannot block another CPU from
8377 	 * activating the pmap while this function is executing.
8378 	 */
8379 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8380 #ifdef INVARIANTS
8381 	{
8382 		cpuset_t other_cpus;
8383 
8384 		other_cpus = all_cpus;
8385 		critical_enter();
8386 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8387 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8388 		critical_exit();
8389 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8390 	}
8391 #endif
8392 
8393 	lock = NULL;
8394 	PG_M = pmap_modified_bit(pmap);
8395 	PG_V = pmap_valid_bit(pmap);
8396 	PG_RW = pmap_rw_bit(pmap);
8397 
8398 	for (i = 0; i < PMAP_MEMDOM; i++)
8399 		TAILQ_INIT(&free_chunks[i]);
8400 	SLIST_INIT(&free);
8401 	PMAP_LOCK(pmap);
8402 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8403 		allfree = 1;
8404 #ifdef PV_STATS
8405 		freed = 0;
8406 #endif
8407 		for (field = 0; field < _NPCM; field++) {
8408 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8409 			while (inuse != 0) {
8410 				bit = bsfq(inuse);
8411 				bitmask = 1UL << bit;
8412 				idx = field * 64 + bit;
8413 				pv = &pc->pc_pventry[idx];
8414 				inuse &= ~bitmask;
8415 
8416 				pte = pmap_pdpe(pmap, pv->pv_va);
8417 				ptepde = *pte;
8418 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8419 				tpte = *pte;
8420 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8421 					superpage = FALSE;
8422 					ptepde = tpte;
8423 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8424 					    PG_FRAME);
8425 					pte = &pte[pmap_pte_index(pv->pv_va)];
8426 					tpte = *pte;
8427 				} else {
8428 					/*
8429 					 * Keep track whether 'tpte' is a
8430 					 * superpage explicitly instead of
8431 					 * relying on PG_PS being set.
8432 					 *
8433 					 * This is because PG_PS is numerically
8434 					 * identical to PG_PTE_PAT and thus a
8435 					 * regular page could be mistaken for
8436 					 * a superpage.
8437 					 */
8438 					superpage = TRUE;
8439 				}
8440 
8441 				if ((tpte & PG_V) == 0) {
8442 					panic("bad pte va %lx pte %lx",
8443 					    pv->pv_va, tpte);
8444 				}
8445 
8446 /*
8447  * We cannot remove wired pages from a process' mapping at this time
8448  */
8449 				if (tpte & PG_W) {
8450 					allfree = 0;
8451 					continue;
8452 				}
8453 
8454 				/* Mark free */
8455 				pc->pc_map[field] |= bitmask;
8456 
8457 				/*
8458 				 * Because this pmap is not active on other
8459 				 * processors, the dirty bit cannot have
8460 				 * changed state since we last loaded pte.
8461 				 */
8462 				pte_clear(pte);
8463 
8464 				if (superpage)
8465 					pa = tpte & PG_PS_FRAME;
8466 				else
8467 					pa = tpte & PG_FRAME;
8468 
8469 				m = PHYS_TO_VM_PAGE(pa);
8470 				KASSERT(m->phys_addr == pa,
8471 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8472 				    m, (uintmax_t)m->phys_addr,
8473 				    (uintmax_t)tpte));
8474 
8475 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8476 				    m < &vm_page_array[vm_page_array_size],
8477 				    ("pmap_remove_pages: bad tpte %#jx",
8478 				    (uintmax_t)tpte));
8479 
8480 				/*
8481 				 * Update the vm_page_t clean/reference bits.
8482 				 */
8483 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8484 					if (superpage) {
8485 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8486 							vm_page_dirty(mt);
8487 					} else
8488 						vm_page_dirty(m);
8489 				}
8490 
8491 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8492 
8493 				if (superpage) {
8494 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8495 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8496 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8497 					pvh->pv_gen++;
8498 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8499 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8500 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8501 							    TAILQ_EMPTY(&mt->md.pv_list))
8502 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8503 					}
8504 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8505 					if (mpte != NULL) {
8506 						KASSERT(vm_page_all_valid(mpte),
8507 						    ("pmap_remove_pages: pte page not promoted"));
8508 						pmap_pt_page_count_adj(pmap, -1);
8509 						KASSERT(mpte->ref_count == NPTEPG,
8510 						    ("pmap_remove_pages: pte page reference count error"));
8511 						mpte->ref_count = 0;
8512 						pmap_add_delayed_free_list(mpte, &free, FALSE);
8513 					}
8514 				} else {
8515 					pmap_resident_count_adj(pmap, -1);
8516 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8517 					m->md.pv_gen++;
8518 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8519 					    TAILQ_EMPTY(&m->md.pv_list) &&
8520 					    (m->flags & PG_FICTITIOUS) == 0) {
8521 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8522 						if (TAILQ_EMPTY(&pvh->pv_list))
8523 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8524 					}
8525 				}
8526 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8527 #ifdef PV_STATS
8528 				freed++;
8529 #endif
8530 			}
8531 		}
8532 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8533 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8534 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8535 		if (allfree) {
8536 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8537 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8538 		}
8539 	}
8540 	if (lock != NULL)
8541 		rw_wunlock(lock);
8542 	pmap_invalidate_all(pmap);
8543 	pmap_pkru_deassign_all(pmap);
8544 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8545 	PMAP_UNLOCK(pmap);
8546 	vm_page_free_pages_toq(&free, true);
8547 }
8548 
8549 static boolean_t
8550 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8551 {
8552 	struct rwlock *lock;
8553 	pv_entry_t pv;
8554 	struct md_page *pvh;
8555 	pt_entry_t *pte, mask;
8556 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8557 	pmap_t pmap;
8558 	int md_gen, pvh_gen;
8559 	boolean_t rv;
8560 
8561 	rv = FALSE;
8562 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8563 	rw_rlock(lock);
8564 restart:
8565 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8566 		pmap = PV_PMAP(pv);
8567 		if (!PMAP_TRYLOCK(pmap)) {
8568 			md_gen = m->md.pv_gen;
8569 			rw_runlock(lock);
8570 			PMAP_LOCK(pmap);
8571 			rw_rlock(lock);
8572 			if (md_gen != m->md.pv_gen) {
8573 				PMAP_UNLOCK(pmap);
8574 				goto restart;
8575 			}
8576 		}
8577 		pte = pmap_pte(pmap, pv->pv_va);
8578 		mask = 0;
8579 		if (modified) {
8580 			PG_M = pmap_modified_bit(pmap);
8581 			PG_RW = pmap_rw_bit(pmap);
8582 			mask |= PG_RW | PG_M;
8583 		}
8584 		if (accessed) {
8585 			PG_A = pmap_accessed_bit(pmap);
8586 			PG_V = pmap_valid_bit(pmap);
8587 			mask |= PG_V | PG_A;
8588 		}
8589 		rv = (*pte & mask) == mask;
8590 		PMAP_UNLOCK(pmap);
8591 		if (rv)
8592 			goto out;
8593 	}
8594 	if ((m->flags & PG_FICTITIOUS) == 0) {
8595 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8596 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8597 			pmap = PV_PMAP(pv);
8598 			if (!PMAP_TRYLOCK(pmap)) {
8599 				md_gen = m->md.pv_gen;
8600 				pvh_gen = pvh->pv_gen;
8601 				rw_runlock(lock);
8602 				PMAP_LOCK(pmap);
8603 				rw_rlock(lock);
8604 				if (md_gen != m->md.pv_gen ||
8605 				    pvh_gen != pvh->pv_gen) {
8606 					PMAP_UNLOCK(pmap);
8607 					goto restart;
8608 				}
8609 			}
8610 			pte = pmap_pde(pmap, pv->pv_va);
8611 			mask = 0;
8612 			if (modified) {
8613 				PG_M = pmap_modified_bit(pmap);
8614 				PG_RW = pmap_rw_bit(pmap);
8615 				mask |= PG_RW | PG_M;
8616 			}
8617 			if (accessed) {
8618 				PG_A = pmap_accessed_bit(pmap);
8619 				PG_V = pmap_valid_bit(pmap);
8620 				mask |= PG_V | PG_A;
8621 			}
8622 			rv = (*pte & mask) == mask;
8623 			PMAP_UNLOCK(pmap);
8624 			if (rv)
8625 				goto out;
8626 		}
8627 	}
8628 out:
8629 	rw_runlock(lock);
8630 	return (rv);
8631 }
8632 
8633 /*
8634  *	pmap_is_modified:
8635  *
8636  *	Return whether or not the specified physical page was modified
8637  *	in any physical maps.
8638  */
8639 boolean_t
8640 pmap_is_modified(vm_page_t m)
8641 {
8642 
8643 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8644 	    ("pmap_is_modified: page %p is not managed", m));
8645 
8646 	/*
8647 	 * If the page is not busied then this check is racy.
8648 	 */
8649 	if (!pmap_page_is_write_mapped(m))
8650 		return (FALSE);
8651 	return (pmap_page_test_mappings(m, FALSE, TRUE));
8652 }
8653 
8654 /*
8655  *	pmap_is_prefaultable:
8656  *
8657  *	Return whether or not the specified virtual address is eligible
8658  *	for prefault.
8659  */
8660 boolean_t
8661 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8662 {
8663 	pd_entry_t *pde;
8664 	pt_entry_t *pte, PG_V;
8665 	boolean_t rv;
8666 
8667 	PG_V = pmap_valid_bit(pmap);
8668 
8669 	/*
8670 	 * Return TRUE if and only if the PTE for the specified virtual
8671 	 * address is allocated but invalid.
8672 	 */
8673 	rv = FALSE;
8674 	PMAP_LOCK(pmap);
8675 	pde = pmap_pde(pmap, addr);
8676 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8677 		pte = pmap_pde_to_pte(pde, addr);
8678 		rv = (*pte & PG_V) == 0;
8679 	}
8680 	PMAP_UNLOCK(pmap);
8681 	return (rv);
8682 }
8683 
8684 /*
8685  *	pmap_is_referenced:
8686  *
8687  *	Return whether or not the specified physical page was referenced
8688  *	in any physical maps.
8689  */
8690 boolean_t
8691 pmap_is_referenced(vm_page_t m)
8692 {
8693 
8694 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8695 	    ("pmap_is_referenced: page %p is not managed", m));
8696 	return (pmap_page_test_mappings(m, TRUE, FALSE));
8697 }
8698 
8699 /*
8700  * Clear the write and modified bits in each of the given page's mappings.
8701  */
8702 void
8703 pmap_remove_write(vm_page_t m)
8704 {
8705 	struct md_page *pvh;
8706 	pmap_t pmap;
8707 	struct rwlock *lock;
8708 	pv_entry_t next_pv, pv;
8709 	pd_entry_t *pde;
8710 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8711 	vm_offset_t va;
8712 	int pvh_gen, md_gen;
8713 
8714 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8715 	    ("pmap_remove_write: page %p is not managed", m));
8716 
8717 	vm_page_assert_busied(m);
8718 	if (!pmap_page_is_write_mapped(m))
8719 		return;
8720 
8721 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8722 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8723 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8724 	rw_wlock(lock);
8725 retry:
8726 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8727 		pmap = PV_PMAP(pv);
8728 		if (!PMAP_TRYLOCK(pmap)) {
8729 			pvh_gen = pvh->pv_gen;
8730 			rw_wunlock(lock);
8731 			PMAP_LOCK(pmap);
8732 			rw_wlock(lock);
8733 			if (pvh_gen != pvh->pv_gen) {
8734 				PMAP_UNLOCK(pmap);
8735 				goto retry;
8736 			}
8737 		}
8738 		PG_RW = pmap_rw_bit(pmap);
8739 		va = pv->pv_va;
8740 		pde = pmap_pde(pmap, va);
8741 		if ((*pde & PG_RW) != 0)
8742 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8743 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8744 		    ("inconsistent pv lock %p %p for page %p",
8745 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8746 		PMAP_UNLOCK(pmap);
8747 	}
8748 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8749 		pmap = PV_PMAP(pv);
8750 		if (!PMAP_TRYLOCK(pmap)) {
8751 			pvh_gen = pvh->pv_gen;
8752 			md_gen = m->md.pv_gen;
8753 			rw_wunlock(lock);
8754 			PMAP_LOCK(pmap);
8755 			rw_wlock(lock);
8756 			if (pvh_gen != pvh->pv_gen ||
8757 			    md_gen != m->md.pv_gen) {
8758 				PMAP_UNLOCK(pmap);
8759 				goto retry;
8760 			}
8761 		}
8762 		PG_M = pmap_modified_bit(pmap);
8763 		PG_RW = pmap_rw_bit(pmap);
8764 		pde = pmap_pde(pmap, pv->pv_va);
8765 		KASSERT((*pde & PG_PS) == 0,
8766 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8767 		    m));
8768 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8769 		oldpte = *pte;
8770 		if (oldpte & PG_RW) {
8771 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8772 			    ~(PG_RW | PG_M)))
8773 				cpu_spinwait();
8774 			if ((oldpte & PG_M) != 0)
8775 				vm_page_dirty(m);
8776 			pmap_invalidate_page(pmap, pv->pv_va);
8777 		}
8778 		PMAP_UNLOCK(pmap);
8779 	}
8780 	rw_wunlock(lock);
8781 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8782 	pmap_delayed_invl_wait(m);
8783 }
8784 
8785 static __inline boolean_t
8786 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
8787 {
8788 
8789 	if (!pmap_emulate_ad_bits(pmap))
8790 		return (TRUE);
8791 
8792 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
8793 
8794 	/*
8795 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
8796 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
8797 	 * if the EPT_PG_WRITE bit is set.
8798 	 */
8799 	if ((pte & EPT_PG_WRITE) != 0)
8800 		return (FALSE);
8801 
8802 	/*
8803 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
8804 	 */
8805 	if ((pte & EPT_PG_EXECUTE) == 0 ||
8806 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
8807 		return (TRUE);
8808 	else
8809 		return (FALSE);
8810 }
8811 
8812 /*
8813  *	pmap_ts_referenced:
8814  *
8815  *	Return a count of reference bits for a page, clearing those bits.
8816  *	It is not necessary for every reference bit to be cleared, but it
8817  *	is necessary that 0 only be returned when there are truly no
8818  *	reference bits set.
8819  *
8820  *	As an optimization, update the page's dirty field if a modified bit is
8821  *	found while counting reference bits.  This opportunistic update can be
8822  *	performed at low cost and can eliminate the need for some future calls
8823  *	to pmap_is_modified().  However, since this function stops after
8824  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8825  *	dirty pages.  Those dirty pages will only be detected by a future call
8826  *	to pmap_is_modified().
8827  *
8828  *	A DI block is not needed within this function, because
8829  *	invalidations are performed before the PV list lock is
8830  *	released.
8831  */
8832 int
8833 pmap_ts_referenced(vm_page_t m)
8834 {
8835 	struct md_page *pvh;
8836 	pv_entry_t pv, pvf;
8837 	pmap_t pmap;
8838 	struct rwlock *lock;
8839 	pd_entry_t oldpde, *pde;
8840 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8841 	vm_offset_t va;
8842 	vm_paddr_t pa;
8843 	int cleared, md_gen, not_cleared, pvh_gen;
8844 	struct spglist free;
8845 	boolean_t demoted;
8846 
8847 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8848 	    ("pmap_ts_referenced: page %p is not managed", m));
8849 	SLIST_INIT(&free);
8850 	cleared = 0;
8851 	pa = VM_PAGE_TO_PHYS(m);
8852 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8853 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8854 	rw_wlock(lock);
8855 retry:
8856 	not_cleared = 0;
8857 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8858 		goto small_mappings;
8859 	pv = pvf;
8860 	do {
8861 		if (pvf == NULL)
8862 			pvf = pv;
8863 		pmap = PV_PMAP(pv);
8864 		if (!PMAP_TRYLOCK(pmap)) {
8865 			pvh_gen = pvh->pv_gen;
8866 			rw_wunlock(lock);
8867 			PMAP_LOCK(pmap);
8868 			rw_wlock(lock);
8869 			if (pvh_gen != pvh->pv_gen) {
8870 				PMAP_UNLOCK(pmap);
8871 				goto retry;
8872 			}
8873 		}
8874 		PG_A = pmap_accessed_bit(pmap);
8875 		PG_M = pmap_modified_bit(pmap);
8876 		PG_RW = pmap_rw_bit(pmap);
8877 		va = pv->pv_va;
8878 		pde = pmap_pde(pmap, pv->pv_va);
8879 		oldpde = *pde;
8880 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8881 			/*
8882 			 * Although "oldpde" is mapping a 2MB page, because
8883 			 * this function is called at a 4KB page granularity,
8884 			 * we only update the 4KB page under test.
8885 			 */
8886 			vm_page_dirty(m);
8887 		}
8888 		if ((oldpde & PG_A) != 0) {
8889 			/*
8890 			 * Since this reference bit is shared by 512 4KB
8891 			 * pages, it should not be cleared every time it is
8892 			 * tested.  Apply a simple "hash" function on the
8893 			 * physical page number, the virtual superpage number,
8894 			 * and the pmap address to select one 4KB page out of
8895 			 * the 512 on which testing the reference bit will
8896 			 * result in clearing that reference bit.  This
8897 			 * function is designed to avoid the selection of the
8898 			 * same 4KB page for every 2MB page mapping.
8899 			 *
8900 			 * On demotion, a mapping that hasn't been referenced
8901 			 * is simply destroyed.  To avoid the possibility of a
8902 			 * subsequent page fault on a demoted wired mapping,
8903 			 * always leave its reference bit set.  Moreover,
8904 			 * since the superpage is wired, the current state of
8905 			 * its reference bit won't affect page replacement.
8906 			 */
8907 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
8908 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
8909 			    (oldpde & PG_W) == 0) {
8910 				if (safe_to_clear_referenced(pmap, oldpde)) {
8911 					atomic_clear_long(pde, PG_A);
8912 					pmap_invalidate_page(pmap, pv->pv_va);
8913 					demoted = FALSE;
8914 				} else if (pmap_demote_pde_locked(pmap, pde,
8915 				    pv->pv_va, &lock)) {
8916 					/*
8917 					 * Remove the mapping to a single page
8918 					 * so that a subsequent access may
8919 					 * repromote.  Since the underlying
8920 					 * page table page is fully populated,
8921 					 * this removal never frees a page
8922 					 * table page.
8923 					 */
8924 					demoted = TRUE;
8925 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
8926 					    PG_PS_FRAME);
8927 					pte = pmap_pde_to_pte(pde, va);
8928 					pmap_remove_pte(pmap, pte, va, *pde,
8929 					    NULL, &lock);
8930 					pmap_invalidate_page(pmap, va);
8931 				} else
8932 					demoted = TRUE;
8933 
8934 				if (demoted) {
8935 					/*
8936 					 * The superpage mapping was removed
8937 					 * entirely and therefore 'pv' is no
8938 					 * longer valid.
8939 					 */
8940 					if (pvf == pv)
8941 						pvf = NULL;
8942 					pv = NULL;
8943 				}
8944 				cleared++;
8945 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8946 				    ("inconsistent pv lock %p %p for page %p",
8947 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8948 			} else
8949 				not_cleared++;
8950 		}
8951 		PMAP_UNLOCK(pmap);
8952 		/* Rotate the PV list if it has more than one entry. */
8953 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8954 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8955 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
8956 			pvh->pv_gen++;
8957 		}
8958 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
8959 			goto out;
8960 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
8961 small_mappings:
8962 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
8963 		goto out;
8964 	pv = pvf;
8965 	do {
8966 		if (pvf == NULL)
8967 			pvf = pv;
8968 		pmap = PV_PMAP(pv);
8969 		if (!PMAP_TRYLOCK(pmap)) {
8970 			pvh_gen = pvh->pv_gen;
8971 			md_gen = m->md.pv_gen;
8972 			rw_wunlock(lock);
8973 			PMAP_LOCK(pmap);
8974 			rw_wlock(lock);
8975 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8976 				PMAP_UNLOCK(pmap);
8977 				goto retry;
8978 			}
8979 		}
8980 		PG_A = pmap_accessed_bit(pmap);
8981 		PG_M = pmap_modified_bit(pmap);
8982 		PG_RW = pmap_rw_bit(pmap);
8983 		pde = pmap_pde(pmap, pv->pv_va);
8984 		KASSERT((*pde & PG_PS) == 0,
8985 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
8986 		    m));
8987 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8988 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
8989 			vm_page_dirty(m);
8990 		if ((*pte & PG_A) != 0) {
8991 			if (safe_to_clear_referenced(pmap, *pte)) {
8992 				atomic_clear_long(pte, PG_A);
8993 				pmap_invalidate_page(pmap, pv->pv_va);
8994 				cleared++;
8995 			} else if ((*pte & PG_W) == 0) {
8996 				/*
8997 				 * Wired pages cannot be paged out so
8998 				 * doing accessed bit emulation for
8999 				 * them is wasted effort. We do the
9000 				 * hard work for unwired pages only.
9001 				 */
9002 				pmap_remove_pte(pmap, pte, pv->pv_va,
9003 				    *pde, &free, &lock);
9004 				pmap_invalidate_page(pmap, pv->pv_va);
9005 				cleared++;
9006 				if (pvf == pv)
9007 					pvf = NULL;
9008 				pv = NULL;
9009 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9010 				    ("inconsistent pv lock %p %p for page %p",
9011 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9012 			} else
9013 				not_cleared++;
9014 		}
9015 		PMAP_UNLOCK(pmap);
9016 		/* Rotate the PV list if it has more than one entry. */
9017 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9018 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9019 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9020 			m->md.pv_gen++;
9021 		}
9022 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9023 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9024 out:
9025 	rw_wunlock(lock);
9026 	vm_page_free_pages_toq(&free, true);
9027 	return (cleared + not_cleared);
9028 }
9029 
9030 /*
9031  *	Apply the given advice to the specified range of addresses within the
9032  *	given pmap.  Depending on the advice, clear the referenced and/or
9033  *	modified flags in each mapping and set the mapped page's dirty field.
9034  */
9035 void
9036 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9037 {
9038 	struct rwlock *lock;
9039 	pml4_entry_t *pml4e;
9040 	pdp_entry_t *pdpe;
9041 	pd_entry_t oldpde, *pde;
9042 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9043 	vm_offset_t va, va_next;
9044 	vm_page_t m;
9045 	bool anychanged;
9046 
9047 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9048 		return;
9049 
9050 	/*
9051 	 * A/D bit emulation requires an alternate code path when clearing
9052 	 * the modified and accessed bits below. Since this function is
9053 	 * advisory in nature we skip it entirely for pmaps that require
9054 	 * A/D bit emulation.
9055 	 */
9056 	if (pmap_emulate_ad_bits(pmap))
9057 		return;
9058 
9059 	PG_A = pmap_accessed_bit(pmap);
9060 	PG_G = pmap_global_bit(pmap);
9061 	PG_M = pmap_modified_bit(pmap);
9062 	PG_V = pmap_valid_bit(pmap);
9063 	PG_RW = pmap_rw_bit(pmap);
9064 	anychanged = false;
9065 	pmap_delayed_invl_start();
9066 	PMAP_LOCK(pmap);
9067 	for (; sva < eva; sva = va_next) {
9068 		pml4e = pmap_pml4e(pmap, sva);
9069 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9070 			va_next = (sva + NBPML4) & ~PML4MASK;
9071 			if (va_next < sva)
9072 				va_next = eva;
9073 			continue;
9074 		}
9075 
9076 		va_next = (sva + NBPDP) & ~PDPMASK;
9077 		if (va_next < sva)
9078 			va_next = eva;
9079 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9080 		if ((*pdpe & PG_V) == 0)
9081 			continue;
9082 		if ((*pdpe & PG_PS) != 0)
9083 			continue;
9084 
9085 		va_next = (sva + NBPDR) & ~PDRMASK;
9086 		if (va_next < sva)
9087 			va_next = eva;
9088 		pde = pmap_pdpe_to_pde(pdpe, sva);
9089 		oldpde = *pde;
9090 		if ((oldpde & PG_V) == 0)
9091 			continue;
9092 		else if ((oldpde & PG_PS) != 0) {
9093 			if ((oldpde & PG_MANAGED) == 0)
9094 				continue;
9095 			lock = NULL;
9096 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9097 				if (lock != NULL)
9098 					rw_wunlock(lock);
9099 
9100 				/*
9101 				 * The large page mapping was destroyed.
9102 				 */
9103 				continue;
9104 			}
9105 
9106 			/*
9107 			 * Unless the page mappings are wired, remove the
9108 			 * mapping to a single page so that a subsequent
9109 			 * access may repromote.  Choosing the last page
9110 			 * within the address range [sva, min(va_next, eva))
9111 			 * generally results in more repromotions.  Since the
9112 			 * underlying page table page is fully populated, this
9113 			 * removal never frees a page table page.
9114 			 */
9115 			if ((oldpde & PG_W) == 0) {
9116 				va = eva;
9117 				if (va > va_next)
9118 					va = va_next;
9119 				va -= PAGE_SIZE;
9120 				KASSERT(va >= sva,
9121 				    ("pmap_advise: no address gap"));
9122 				pte = pmap_pde_to_pte(pde, va);
9123 				KASSERT((*pte & PG_V) != 0,
9124 				    ("pmap_advise: invalid PTE"));
9125 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9126 				    &lock);
9127 				anychanged = true;
9128 			}
9129 			if (lock != NULL)
9130 				rw_wunlock(lock);
9131 		}
9132 		if (va_next > eva)
9133 			va_next = eva;
9134 		va = va_next;
9135 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9136 		    sva += PAGE_SIZE) {
9137 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9138 				goto maybe_invlrng;
9139 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9140 				if (advice == MADV_DONTNEED) {
9141 					/*
9142 					 * Future calls to pmap_is_modified()
9143 					 * can be avoided by making the page
9144 					 * dirty now.
9145 					 */
9146 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9147 					vm_page_dirty(m);
9148 				}
9149 				atomic_clear_long(pte, PG_M | PG_A);
9150 			} else if ((*pte & PG_A) != 0)
9151 				atomic_clear_long(pte, PG_A);
9152 			else
9153 				goto maybe_invlrng;
9154 
9155 			if ((*pte & PG_G) != 0) {
9156 				if (va == va_next)
9157 					va = sva;
9158 			} else
9159 				anychanged = true;
9160 			continue;
9161 maybe_invlrng:
9162 			if (va != va_next) {
9163 				pmap_invalidate_range(pmap, va, sva);
9164 				va = va_next;
9165 			}
9166 		}
9167 		if (va != va_next)
9168 			pmap_invalidate_range(pmap, va, sva);
9169 	}
9170 	if (anychanged)
9171 		pmap_invalidate_all(pmap);
9172 	PMAP_UNLOCK(pmap);
9173 	pmap_delayed_invl_finish();
9174 }
9175 
9176 /*
9177  *	Clear the modify bits on the specified physical page.
9178  */
9179 void
9180 pmap_clear_modify(vm_page_t m)
9181 {
9182 	struct md_page *pvh;
9183 	pmap_t pmap;
9184 	pv_entry_t next_pv, pv;
9185 	pd_entry_t oldpde, *pde;
9186 	pt_entry_t *pte, PG_M, PG_RW;
9187 	struct rwlock *lock;
9188 	vm_offset_t va;
9189 	int md_gen, pvh_gen;
9190 
9191 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9192 	    ("pmap_clear_modify: page %p is not managed", m));
9193 	vm_page_assert_busied(m);
9194 
9195 	if (!pmap_page_is_write_mapped(m))
9196 		return;
9197 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9198 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9199 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9200 	rw_wlock(lock);
9201 restart:
9202 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9203 		pmap = PV_PMAP(pv);
9204 		if (!PMAP_TRYLOCK(pmap)) {
9205 			pvh_gen = pvh->pv_gen;
9206 			rw_wunlock(lock);
9207 			PMAP_LOCK(pmap);
9208 			rw_wlock(lock);
9209 			if (pvh_gen != pvh->pv_gen) {
9210 				PMAP_UNLOCK(pmap);
9211 				goto restart;
9212 			}
9213 		}
9214 		PG_M = pmap_modified_bit(pmap);
9215 		PG_RW = pmap_rw_bit(pmap);
9216 		va = pv->pv_va;
9217 		pde = pmap_pde(pmap, va);
9218 		oldpde = *pde;
9219 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9220 		if ((oldpde & PG_RW) != 0 &&
9221 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9222 		    (oldpde & PG_W) == 0) {
9223 			/*
9224 			 * Write protect the mapping to a single page so that
9225 			 * a subsequent write access may repromote.
9226 			 */
9227 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9228 			pte = pmap_pde_to_pte(pde, va);
9229 			atomic_clear_long(pte, PG_M | PG_RW);
9230 			vm_page_dirty(m);
9231 			pmap_invalidate_page(pmap, va);
9232 		}
9233 		PMAP_UNLOCK(pmap);
9234 	}
9235 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9236 		pmap = PV_PMAP(pv);
9237 		if (!PMAP_TRYLOCK(pmap)) {
9238 			md_gen = m->md.pv_gen;
9239 			pvh_gen = pvh->pv_gen;
9240 			rw_wunlock(lock);
9241 			PMAP_LOCK(pmap);
9242 			rw_wlock(lock);
9243 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9244 				PMAP_UNLOCK(pmap);
9245 				goto restart;
9246 			}
9247 		}
9248 		PG_M = pmap_modified_bit(pmap);
9249 		PG_RW = pmap_rw_bit(pmap);
9250 		pde = pmap_pde(pmap, pv->pv_va);
9251 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9252 		    " a 2mpage in page %p's pv list", m));
9253 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9254 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9255 			atomic_clear_long(pte, PG_M);
9256 			pmap_invalidate_page(pmap, pv->pv_va);
9257 		}
9258 		PMAP_UNLOCK(pmap);
9259 	}
9260 	rw_wunlock(lock);
9261 }
9262 
9263 /*
9264  * Miscellaneous support routines follow
9265  */
9266 
9267 /* Adjust the properties for a leaf page table entry. */
9268 static __inline void
9269 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9270 {
9271 	u_long opte, npte;
9272 
9273 	opte = *(u_long *)pte;
9274 	do {
9275 		npte = opte & ~mask;
9276 		npte |= bits;
9277 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9278 	    npte));
9279 }
9280 
9281 /*
9282  * Map a set of physical memory pages into the kernel virtual
9283  * address space. Return a pointer to where it is mapped. This
9284  * routine is intended to be used for mapping device memory,
9285  * NOT real memory.
9286  */
9287 static void *
9288 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9289 {
9290 	struct pmap_preinit_mapping *ppim;
9291 	vm_offset_t va, offset;
9292 	vm_size_t tmpsize;
9293 	int i;
9294 
9295 	offset = pa & PAGE_MASK;
9296 	size = round_page(offset + size);
9297 	pa = trunc_page(pa);
9298 
9299 	if (!pmap_initialized) {
9300 		va = 0;
9301 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9302 			ppim = pmap_preinit_mapping + i;
9303 			if (ppim->va == 0) {
9304 				ppim->pa = pa;
9305 				ppim->sz = size;
9306 				ppim->mode = mode;
9307 				ppim->va = virtual_avail;
9308 				virtual_avail += size;
9309 				va = ppim->va;
9310 				break;
9311 			}
9312 		}
9313 		if (va == 0)
9314 			panic("%s: too many preinit mappings", __func__);
9315 	} else {
9316 		/*
9317 		 * If we have a preinit mapping, re-use it.
9318 		 */
9319 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9320 			ppim = pmap_preinit_mapping + i;
9321 			if (ppim->pa == pa && ppim->sz == size &&
9322 			    (ppim->mode == mode ||
9323 			    (flags & MAPDEV_SETATTR) == 0))
9324 				return ((void *)(ppim->va + offset));
9325 		}
9326 		/*
9327 		 * If the specified range of physical addresses fits within
9328 		 * the direct map window, use the direct map.
9329 		 */
9330 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9331 			va = PHYS_TO_DMAP(pa);
9332 			if ((flags & MAPDEV_SETATTR) != 0) {
9333 				PMAP_LOCK(kernel_pmap);
9334 				i = pmap_change_props_locked(va, size,
9335 				    PROT_NONE, mode, flags);
9336 				PMAP_UNLOCK(kernel_pmap);
9337 			} else
9338 				i = 0;
9339 			if (!i)
9340 				return ((void *)(va + offset));
9341 		}
9342 		va = kva_alloc(size);
9343 		if (va == 0)
9344 			panic("%s: Couldn't allocate KVA", __func__);
9345 	}
9346 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9347 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9348 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9349 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9350 		pmap_invalidate_cache_range(va, va + tmpsize);
9351 	return ((void *)(va + offset));
9352 }
9353 
9354 void *
9355 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9356 {
9357 
9358 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9359 	    MAPDEV_SETATTR));
9360 }
9361 
9362 void *
9363 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9364 {
9365 
9366 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9367 }
9368 
9369 void *
9370 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9371 {
9372 
9373 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9374 	    MAPDEV_SETATTR));
9375 }
9376 
9377 void *
9378 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9379 {
9380 
9381 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9382 	    MAPDEV_FLUSHCACHE));
9383 }
9384 
9385 void
9386 pmap_unmapdev(void *p, vm_size_t size)
9387 {
9388 	struct pmap_preinit_mapping *ppim;
9389 	vm_offset_t offset, va;
9390 	int i;
9391 
9392 	va = (vm_offset_t)p;
9393 
9394 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9395 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9396 		return;
9397 	offset = va & PAGE_MASK;
9398 	size = round_page(offset + size);
9399 	va = trunc_page(va);
9400 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9401 		ppim = pmap_preinit_mapping + i;
9402 		if (ppim->va == va && ppim->sz == size) {
9403 			if (pmap_initialized)
9404 				return;
9405 			ppim->pa = 0;
9406 			ppim->va = 0;
9407 			ppim->sz = 0;
9408 			ppim->mode = 0;
9409 			if (va + size == virtual_avail)
9410 				virtual_avail = va;
9411 			return;
9412 		}
9413 	}
9414 	if (pmap_initialized) {
9415 		pmap_qremove(va, atop(size));
9416 		kva_free(va, size);
9417 	}
9418 }
9419 
9420 /*
9421  * Tries to demote a 1GB page mapping.
9422  */
9423 static boolean_t
9424 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9425 {
9426 	pdp_entry_t newpdpe, oldpdpe;
9427 	pd_entry_t *firstpde, newpde, *pde;
9428 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9429 	vm_paddr_t pdpgpa;
9430 	vm_page_t pdpg;
9431 
9432 	PG_A = pmap_accessed_bit(pmap);
9433 	PG_M = pmap_modified_bit(pmap);
9434 	PG_V = pmap_valid_bit(pmap);
9435 	PG_RW = pmap_rw_bit(pmap);
9436 
9437 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9438 	oldpdpe = *pdpe;
9439 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9440 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9441 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9442 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9443 	if (pdpg  == NULL) {
9444 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9445 		    " in pmap %p", va, pmap);
9446 		return (FALSE);
9447 	}
9448 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9449 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9450 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9451 	KASSERT((oldpdpe & PG_A) != 0,
9452 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9453 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9454 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9455 	newpde = oldpdpe;
9456 
9457 	/*
9458 	 * Initialize the page directory page.
9459 	 */
9460 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9461 		*pde = newpde;
9462 		newpde += NBPDR;
9463 	}
9464 
9465 	/*
9466 	 * Demote the mapping.
9467 	 */
9468 	*pdpe = newpdpe;
9469 
9470 	/*
9471 	 * Invalidate a stale recursive mapping of the page directory page.
9472 	 */
9473 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9474 
9475 	counter_u64_add(pmap_pdpe_demotions, 1);
9476 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9477 	    " in pmap %p", va, pmap);
9478 	return (TRUE);
9479 }
9480 
9481 /*
9482  * Sets the memory attribute for the specified page.
9483  */
9484 void
9485 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9486 {
9487 
9488 	m->md.pat_mode = ma;
9489 
9490 	/*
9491 	 * If "m" is a normal page, update its direct mapping.  This update
9492 	 * can be relied upon to perform any cache operations that are
9493 	 * required for data coherence.
9494 	 */
9495 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9496 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9497 	    m->md.pat_mode))
9498 		panic("memory attribute change on the direct map failed");
9499 }
9500 
9501 void
9502 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9503 {
9504 	int error;
9505 
9506 	m->md.pat_mode = ma;
9507 
9508 	if ((m->flags & PG_FICTITIOUS) != 0)
9509 		return;
9510 	PMAP_LOCK(kernel_pmap);
9511 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9512 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9513 	PMAP_UNLOCK(kernel_pmap);
9514 	if (error != 0)
9515 		panic("memory attribute change on the direct map failed");
9516 }
9517 
9518 /*
9519  * Changes the specified virtual address range's memory type to that given by
9520  * the parameter "mode".  The specified virtual address range must be
9521  * completely contained within either the direct map or the kernel map.  If
9522  * the virtual address range is contained within the kernel map, then the
9523  * memory type for each of the corresponding ranges of the direct map is also
9524  * changed.  (The corresponding ranges of the direct map are those ranges that
9525  * map the same physical pages as the specified virtual address range.)  These
9526  * changes to the direct map are necessary because Intel describes the
9527  * behavior of their processors as "undefined" if two or more mappings to the
9528  * same physical page have different memory types.
9529  *
9530  * Returns zero if the change completed successfully, and either EINVAL or
9531  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9532  * of the virtual address range was not mapped, and ENOMEM is returned if
9533  * there was insufficient memory available to complete the change.  In the
9534  * latter case, the memory type may have been changed on some part of the
9535  * virtual address range or the direct map.
9536  */
9537 int
9538 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9539 {
9540 	int error;
9541 
9542 	PMAP_LOCK(kernel_pmap);
9543 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9544 	    MAPDEV_FLUSHCACHE);
9545 	PMAP_UNLOCK(kernel_pmap);
9546 	return (error);
9547 }
9548 
9549 /*
9550  * Changes the specified virtual address range's protections to those
9551  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9552  * in the direct map are updated as well.  Protections on aliasing mappings may
9553  * be a subset of the requested protections; for example, mappings in the direct
9554  * map are never executable.
9555  */
9556 int
9557 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9558 {
9559 	int error;
9560 
9561 	/* Only supported within the kernel map. */
9562 	if (va < VM_MIN_KERNEL_ADDRESS)
9563 		return (EINVAL);
9564 
9565 	PMAP_LOCK(kernel_pmap);
9566 	error = pmap_change_props_locked(va, size, prot, -1,
9567 	    MAPDEV_ASSERTVALID);
9568 	PMAP_UNLOCK(kernel_pmap);
9569 	return (error);
9570 }
9571 
9572 static int
9573 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9574     int mode, int flags)
9575 {
9576 	vm_offset_t base, offset, tmpva;
9577 	vm_paddr_t pa_start, pa_end, pa_end1;
9578 	pdp_entry_t *pdpe;
9579 	pd_entry_t *pde, pde_bits, pde_mask;
9580 	pt_entry_t *pte, pte_bits, pte_mask;
9581 	int error;
9582 	bool changed;
9583 
9584 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9585 	base = trunc_page(va);
9586 	offset = va & PAGE_MASK;
9587 	size = round_page(offset + size);
9588 
9589 	/*
9590 	 * Only supported on kernel virtual addresses, including the direct
9591 	 * map but excluding the recursive map.
9592 	 */
9593 	if (base < DMAP_MIN_ADDRESS)
9594 		return (EINVAL);
9595 
9596 	/*
9597 	 * Construct our flag sets and masks.  "bits" is the subset of
9598 	 * "mask" that will be set in each modified PTE.
9599 	 *
9600 	 * Mappings in the direct map are never allowed to be executable.
9601 	 */
9602 	pde_bits = pte_bits = 0;
9603 	pde_mask = pte_mask = 0;
9604 	if (mode != -1) {
9605 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9606 		pde_mask |= X86_PG_PDE_CACHE;
9607 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9608 		pte_mask |= X86_PG_PTE_CACHE;
9609 	}
9610 	if (prot != VM_PROT_NONE) {
9611 		if ((prot & VM_PROT_WRITE) != 0) {
9612 			pde_bits |= X86_PG_RW;
9613 			pte_bits |= X86_PG_RW;
9614 		}
9615 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9616 		    va < VM_MIN_KERNEL_ADDRESS) {
9617 			pde_bits |= pg_nx;
9618 			pte_bits |= pg_nx;
9619 		}
9620 		pde_mask |= X86_PG_RW | pg_nx;
9621 		pte_mask |= X86_PG_RW | pg_nx;
9622 	}
9623 
9624 	/*
9625 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9626 	 * into 4KB pages if required.
9627 	 */
9628 	for (tmpva = base; tmpva < base + size; ) {
9629 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9630 		if (pdpe == NULL || *pdpe == 0) {
9631 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9632 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9633 			return (EINVAL);
9634 		}
9635 		if (*pdpe & PG_PS) {
9636 			/*
9637 			 * If the current 1GB page already has the required
9638 			 * properties, then we need not demote this page.  Just
9639 			 * increment tmpva to the next 1GB page frame.
9640 			 */
9641 			if ((*pdpe & pde_mask) == pde_bits) {
9642 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9643 				continue;
9644 			}
9645 
9646 			/*
9647 			 * If the current offset aligns with a 1GB page frame
9648 			 * and there is at least 1GB left within the range, then
9649 			 * we need not break down this page into 2MB pages.
9650 			 */
9651 			if ((tmpva & PDPMASK) == 0 &&
9652 			    tmpva + PDPMASK < base + size) {
9653 				tmpva += NBPDP;
9654 				continue;
9655 			}
9656 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9657 				return (ENOMEM);
9658 		}
9659 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9660 		if (*pde == 0) {
9661 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9662 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9663 			return (EINVAL);
9664 		}
9665 		if (*pde & PG_PS) {
9666 			/*
9667 			 * If the current 2MB page already has the required
9668 			 * properties, then we need not demote this page.  Just
9669 			 * increment tmpva to the next 2MB page frame.
9670 			 */
9671 			if ((*pde & pde_mask) == pde_bits) {
9672 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9673 				continue;
9674 			}
9675 
9676 			/*
9677 			 * If the current offset aligns with a 2MB page frame
9678 			 * and there is at least 2MB left within the range, then
9679 			 * we need not break down this page into 4KB pages.
9680 			 */
9681 			if ((tmpva & PDRMASK) == 0 &&
9682 			    tmpva + PDRMASK < base + size) {
9683 				tmpva += NBPDR;
9684 				continue;
9685 			}
9686 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9687 				return (ENOMEM);
9688 		}
9689 		pte = pmap_pde_to_pte(pde, tmpva);
9690 		if (*pte == 0) {
9691 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9692 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9693 			return (EINVAL);
9694 		}
9695 		tmpva += PAGE_SIZE;
9696 	}
9697 	error = 0;
9698 
9699 	/*
9700 	 * Ok, all the pages exist, so run through them updating their
9701 	 * properties if required.
9702 	 */
9703 	changed = false;
9704 	pa_start = pa_end = 0;
9705 	for (tmpva = base; tmpva < base + size; ) {
9706 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9707 		if (*pdpe & PG_PS) {
9708 			if ((*pdpe & pde_mask) != pde_bits) {
9709 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9710 				changed = true;
9711 			}
9712 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9713 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9714 				if (pa_start == pa_end) {
9715 					/* Start physical address run. */
9716 					pa_start = *pdpe & PG_PS_FRAME;
9717 					pa_end = pa_start + NBPDP;
9718 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9719 					pa_end += NBPDP;
9720 				else {
9721 					/* Run ended, update direct map. */
9722 					error = pmap_change_props_locked(
9723 					    PHYS_TO_DMAP(pa_start),
9724 					    pa_end - pa_start, prot, mode,
9725 					    flags);
9726 					if (error != 0)
9727 						break;
9728 					/* Start physical address run. */
9729 					pa_start = *pdpe & PG_PS_FRAME;
9730 					pa_end = pa_start + NBPDP;
9731 				}
9732 			}
9733 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9734 			continue;
9735 		}
9736 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9737 		if (*pde & PG_PS) {
9738 			if ((*pde & pde_mask) != pde_bits) {
9739 				pmap_pte_props(pde, pde_bits, pde_mask);
9740 				changed = true;
9741 			}
9742 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9743 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9744 				if (pa_start == pa_end) {
9745 					/* Start physical address run. */
9746 					pa_start = *pde & PG_PS_FRAME;
9747 					pa_end = pa_start + NBPDR;
9748 				} else if (pa_end == (*pde & PG_PS_FRAME))
9749 					pa_end += NBPDR;
9750 				else {
9751 					/* Run ended, update direct map. */
9752 					error = pmap_change_props_locked(
9753 					    PHYS_TO_DMAP(pa_start),
9754 					    pa_end - pa_start, prot, mode,
9755 					    flags);
9756 					if (error != 0)
9757 						break;
9758 					/* Start physical address run. */
9759 					pa_start = *pde & PG_PS_FRAME;
9760 					pa_end = pa_start + NBPDR;
9761 				}
9762 			}
9763 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9764 		} else {
9765 			pte = pmap_pde_to_pte(pde, tmpva);
9766 			if ((*pte & pte_mask) != pte_bits) {
9767 				pmap_pte_props(pte, pte_bits, pte_mask);
9768 				changed = true;
9769 			}
9770 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9771 			    (*pte & PG_FRAME) < dmaplimit) {
9772 				if (pa_start == pa_end) {
9773 					/* Start physical address run. */
9774 					pa_start = *pte & PG_FRAME;
9775 					pa_end = pa_start + PAGE_SIZE;
9776 				} else if (pa_end == (*pte & PG_FRAME))
9777 					pa_end += PAGE_SIZE;
9778 				else {
9779 					/* Run ended, update direct map. */
9780 					error = pmap_change_props_locked(
9781 					    PHYS_TO_DMAP(pa_start),
9782 					    pa_end - pa_start, prot, mode,
9783 					    flags);
9784 					if (error != 0)
9785 						break;
9786 					/* Start physical address run. */
9787 					pa_start = *pte & PG_FRAME;
9788 					pa_end = pa_start + PAGE_SIZE;
9789 				}
9790 			}
9791 			tmpva += PAGE_SIZE;
9792 		}
9793 	}
9794 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9795 		pa_end1 = MIN(pa_end, dmaplimit);
9796 		if (pa_start != pa_end1)
9797 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9798 			    pa_end1 - pa_start, prot, mode, flags);
9799 	}
9800 
9801 	/*
9802 	 * Flush CPU caches if required to make sure any data isn't cached that
9803 	 * shouldn't be, etc.
9804 	 */
9805 	if (changed) {
9806 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9807 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9808 			pmap_invalidate_cache_range(base, tmpva);
9809 	}
9810 	return (error);
9811 }
9812 
9813 /*
9814  * Demotes any mapping within the direct map region that covers more than the
9815  * specified range of physical addresses.  This range's size must be a power
9816  * of two and its starting address must be a multiple of its size.  Since the
9817  * demotion does not change any attributes of the mapping, a TLB invalidation
9818  * is not mandatory.  The caller may, however, request a TLB invalidation.
9819  */
9820 void
9821 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9822 {
9823 	pdp_entry_t *pdpe;
9824 	pd_entry_t *pde;
9825 	vm_offset_t va;
9826 	boolean_t changed;
9827 
9828 	if (len == 0)
9829 		return;
9830 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9831 	KASSERT((base & (len - 1)) == 0,
9832 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9833 	if (len < NBPDP && base < dmaplimit) {
9834 		va = PHYS_TO_DMAP(base);
9835 		changed = FALSE;
9836 		PMAP_LOCK(kernel_pmap);
9837 		pdpe = pmap_pdpe(kernel_pmap, va);
9838 		if ((*pdpe & X86_PG_V) == 0)
9839 			panic("pmap_demote_DMAP: invalid PDPE");
9840 		if ((*pdpe & PG_PS) != 0) {
9841 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9842 				panic("pmap_demote_DMAP: PDPE failed");
9843 			changed = TRUE;
9844 		}
9845 		if (len < NBPDR) {
9846 			pde = pmap_pdpe_to_pde(pdpe, va);
9847 			if ((*pde & X86_PG_V) == 0)
9848 				panic("pmap_demote_DMAP: invalid PDE");
9849 			if ((*pde & PG_PS) != 0) {
9850 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9851 					panic("pmap_demote_DMAP: PDE failed");
9852 				changed = TRUE;
9853 			}
9854 		}
9855 		if (changed && invalidate)
9856 			pmap_invalidate_page(kernel_pmap, va);
9857 		PMAP_UNLOCK(kernel_pmap);
9858 	}
9859 }
9860 
9861 /*
9862  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9863  * modified by this pmap, returns its physical address so that the caller can
9864  * find other mappings.
9865  */
9866 int
9867 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9868 {
9869 	pdp_entry_t *pdpe;
9870 	pd_entry_t *pdep;
9871 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9872 	vm_paddr_t pa;
9873 	int val;
9874 
9875 	PG_A = pmap_accessed_bit(pmap);
9876 	PG_M = pmap_modified_bit(pmap);
9877 	PG_V = pmap_valid_bit(pmap);
9878 	PG_RW = pmap_rw_bit(pmap);
9879 
9880 	PMAP_LOCK(pmap);
9881 	pte = 0;
9882 	pa = 0;
9883 	val = 0;
9884 	pdpe = pmap_pdpe(pmap, addr);
9885 	if (pdpe == NULL)
9886 		goto out;
9887 	if ((*pdpe & PG_V) != 0) {
9888 		if ((*pdpe & PG_PS) != 0) {
9889 			pte = *pdpe;
9890 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9891 			    PG_FRAME;
9892 			val = MINCORE_PSIND(2);
9893 		} else {
9894 			pdep = pmap_pde(pmap, addr);
9895 			if (pdep != NULL && (*pdep & PG_V) != 0) {
9896 				if ((*pdep & PG_PS) != 0) {
9897 					pte = *pdep;
9898 			/* Compute the physical address of the 4KB page. */
9899 					pa = ((pte & PG_PS_FRAME) | (addr &
9900 					    PDRMASK)) & PG_FRAME;
9901 					val = MINCORE_PSIND(1);
9902 				} else {
9903 					pte = *pmap_pde_to_pte(pdep, addr);
9904 					pa = pte & PG_FRAME;
9905 					val = 0;
9906 				}
9907 			}
9908 		}
9909 	}
9910 	if ((pte & PG_V) != 0) {
9911 		val |= MINCORE_INCORE;
9912 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9913 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
9914 		if ((pte & PG_A) != 0)
9915 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
9916 	}
9917 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
9918 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
9919 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
9920 		*pap = pa;
9921 	}
9922 out:
9923 	PMAP_UNLOCK(pmap);
9924 	return (val);
9925 }
9926 
9927 static uint64_t
9928 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
9929 {
9930 	uint32_t gen, new_gen, pcid_next;
9931 
9932 	CRITICAL_ASSERT(curthread);
9933 	gen = PCPU_GET(pcid_gen);
9934 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
9935 		return (pti ? 0 : CR3_PCID_SAVE);
9936 	if (pmap->pm_pcids[cpuid].pm_gen == gen)
9937 		return (CR3_PCID_SAVE);
9938 	pcid_next = PCPU_GET(pcid_next);
9939 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
9940 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
9941 	    ("cpu %d pcid_next %#x", cpuid, pcid_next));
9942 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
9943 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
9944 		new_gen = gen + 1;
9945 		if (new_gen == 0)
9946 			new_gen = 1;
9947 		PCPU_SET(pcid_gen, new_gen);
9948 		pcid_next = PMAP_PCID_KERN + 1;
9949 	} else {
9950 		new_gen = gen;
9951 	}
9952 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
9953 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
9954 	PCPU_SET(pcid_next, pcid_next + 1);
9955 	return (0);
9956 }
9957 
9958 static uint64_t
9959 pmap_pcid_alloc_checked(pmap_t pmap, u_int cpuid)
9960 {
9961 	uint64_t cached;
9962 
9963 	cached = pmap_pcid_alloc(pmap, cpuid);
9964 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
9965 	    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
9966 	    pmap->pm_pcids[cpuid].pm_pcid));
9967 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
9968 	    pmap == kernel_pmap,
9969 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
9970 	    pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
9971 	return (cached);
9972 }
9973 
9974 static void
9975 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
9976 {
9977 
9978 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
9979 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
9980 }
9981 
9982 static void
9983 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
9984 {
9985 	pmap_t old_pmap;
9986 	uint64_t cached, cr3, kcr3, ucr3;
9987 
9988 	KASSERT((read_rflags() & PSL_I) == 0,
9989 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9990 
9991 	/* See the comment in pmap_invalidate_page_pcid(). */
9992 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
9993 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
9994 		old_pmap = PCPU_GET(curpmap);
9995 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
9996 		old_pmap->pm_pcids[cpuid].pm_gen = 0;
9997 	}
9998 
9999 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
10000 	cr3 = rcr3();
10001 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10002 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid);
10003 	PCPU_SET(curpmap, pmap);
10004 	kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
10005 	ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
10006 	    PMAP_PCID_USER_PT;
10007 
10008 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10009 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10010 
10011 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10012 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10013 	if (cached)
10014 		counter_u64_add(pcid_save_cnt, 1);
10015 
10016 	pmap_activate_sw_pti_post(td, pmap);
10017 }
10018 
10019 static void
10020 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10021     u_int cpuid)
10022 {
10023 	uint64_t cached, cr3;
10024 
10025 	KASSERT((read_rflags() & PSL_I) == 0,
10026 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10027 
10028 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
10029 	cr3 = rcr3();
10030 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10031 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
10032 		    cached);
10033 	PCPU_SET(curpmap, pmap);
10034 	if (cached)
10035 		counter_u64_add(pcid_save_cnt, 1);
10036 }
10037 
10038 static void
10039 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10040     u_int cpuid __unused)
10041 {
10042 
10043 	load_cr3(pmap->pm_cr3);
10044 	PCPU_SET(curpmap, pmap);
10045 }
10046 
10047 static void
10048 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10049     u_int cpuid __unused)
10050 {
10051 
10052 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10053 	PCPU_SET(kcr3, pmap->pm_cr3);
10054 	PCPU_SET(ucr3, pmap->pm_ucr3);
10055 	pmap_activate_sw_pti_post(td, pmap);
10056 }
10057 
10058 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10059     u_int))
10060 {
10061 
10062 	if (pmap_pcid_enabled && pti)
10063 		return (pmap_activate_sw_pcid_pti);
10064 	else if (pmap_pcid_enabled && !pti)
10065 		return (pmap_activate_sw_pcid_nopti);
10066 	else if (!pmap_pcid_enabled && pti)
10067 		return (pmap_activate_sw_nopcid_pti);
10068 	else /* if (!pmap_pcid_enabled && !pti) */
10069 		return (pmap_activate_sw_nopcid_nopti);
10070 }
10071 
10072 void
10073 pmap_activate_sw(struct thread *td)
10074 {
10075 	pmap_t oldpmap, pmap;
10076 	u_int cpuid;
10077 
10078 	oldpmap = PCPU_GET(curpmap);
10079 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10080 	if (oldpmap == pmap) {
10081 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10082 			mfence();
10083 		return;
10084 	}
10085 	cpuid = PCPU_GET(cpuid);
10086 #ifdef SMP
10087 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10088 #else
10089 	CPU_SET(cpuid, &pmap->pm_active);
10090 #endif
10091 	pmap_activate_sw_mode(td, pmap, cpuid);
10092 #ifdef SMP
10093 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10094 #else
10095 	CPU_CLR(cpuid, &oldpmap->pm_active);
10096 #endif
10097 }
10098 
10099 void
10100 pmap_activate(struct thread *td)
10101 {
10102 	/*
10103 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10104 	 * invalidate_all IPI, which checks for curpmap ==
10105 	 * smp_tlb_pmap.  The below sequence of operations has a
10106 	 * window where %CR3 is loaded with the new pmap's PML4
10107 	 * address, but the curpmap value has not yet been updated.
10108 	 * This causes the invltlb IPI handler, which is called
10109 	 * between the updates, to execute as a NOP, which leaves
10110 	 * stale TLB entries.
10111 	 *
10112 	 * Note that the most common use of pmap_activate_sw(), from
10113 	 * a context switch, is immune to this race, because
10114 	 * interrupts are disabled (while the thread lock is owned),
10115 	 * so the IPI is delayed until after curpmap is updated.  Protect
10116 	 * other callers in a similar way, by disabling interrupts
10117 	 * around the %cr3 register reload and curpmap assignment.
10118 	 */
10119 	spinlock_enter();
10120 	pmap_activate_sw(td);
10121 	spinlock_exit();
10122 }
10123 
10124 void
10125 pmap_activate_boot(pmap_t pmap)
10126 {
10127 	uint64_t kcr3;
10128 	u_int cpuid;
10129 
10130 	/*
10131 	 * kernel_pmap must be never deactivated, and we ensure that
10132 	 * by never activating it at all.
10133 	 */
10134 	MPASS(pmap != kernel_pmap);
10135 
10136 	cpuid = PCPU_GET(cpuid);
10137 #ifdef SMP
10138 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10139 #else
10140 	CPU_SET(cpuid, &pmap->pm_active);
10141 #endif
10142 	PCPU_SET(curpmap, pmap);
10143 	if (pti) {
10144 		kcr3 = pmap->pm_cr3;
10145 		if (pmap_pcid_enabled)
10146 			kcr3 |= pmap->pm_pcids[cpuid].pm_pcid | CR3_PCID_SAVE;
10147 	} else {
10148 		kcr3 = PMAP_NO_CR3;
10149 	}
10150 	PCPU_SET(kcr3, kcr3);
10151 	PCPU_SET(ucr3, PMAP_NO_CR3);
10152 }
10153 
10154 void
10155 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10156 {
10157 }
10158 
10159 /*
10160  *	Increase the starting virtual address of the given mapping if a
10161  *	different alignment might result in more superpage mappings.
10162  */
10163 void
10164 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10165     vm_offset_t *addr, vm_size_t size)
10166 {
10167 	vm_offset_t superpage_offset;
10168 
10169 	if (size < NBPDR)
10170 		return;
10171 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10172 		offset += ptoa(object->pg_color);
10173 	superpage_offset = offset & PDRMASK;
10174 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10175 	    (*addr & PDRMASK) == superpage_offset)
10176 		return;
10177 	if ((*addr & PDRMASK) < superpage_offset)
10178 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10179 	else
10180 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10181 }
10182 
10183 #ifdef INVARIANTS
10184 static unsigned long num_dirty_emulations;
10185 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10186 	     &num_dirty_emulations, 0, NULL);
10187 
10188 static unsigned long num_accessed_emulations;
10189 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10190 	     &num_accessed_emulations, 0, NULL);
10191 
10192 static unsigned long num_superpage_accessed_emulations;
10193 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10194 	     &num_superpage_accessed_emulations, 0, NULL);
10195 
10196 static unsigned long ad_emulation_superpage_promotions;
10197 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10198 	     &ad_emulation_superpage_promotions, 0, NULL);
10199 #endif	/* INVARIANTS */
10200 
10201 int
10202 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10203 {
10204 	int rv;
10205 	struct rwlock *lock;
10206 #if VM_NRESERVLEVEL > 0
10207 	vm_page_t m, mpte;
10208 #endif
10209 	pd_entry_t *pde;
10210 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10211 
10212 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10213 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10214 
10215 	if (!pmap_emulate_ad_bits(pmap))
10216 		return (-1);
10217 
10218 	PG_A = pmap_accessed_bit(pmap);
10219 	PG_M = pmap_modified_bit(pmap);
10220 	PG_V = pmap_valid_bit(pmap);
10221 	PG_RW = pmap_rw_bit(pmap);
10222 
10223 	rv = -1;
10224 	lock = NULL;
10225 	PMAP_LOCK(pmap);
10226 
10227 	pde = pmap_pde(pmap, va);
10228 	if (pde == NULL || (*pde & PG_V) == 0)
10229 		goto done;
10230 
10231 	if ((*pde & PG_PS) != 0) {
10232 		if (ftype == VM_PROT_READ) {
10233 #ifdef INVARIANTS
10234 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10235 #endif
10236 			*pde |= PG_A;
10237 			rv = 0;
10238 		}
10239 		goto done;
10240 	}
10241 
10242 	pte = pmap_pde_to_pte(pde, va);
10243 	if ((*pte & PG_V) == 0)
10244 		goto done;
10245 
10246 	if (ftype == VM_PROT_WRITE) {
10247 		if ((*pte & PG_RW) == 0)
10248 			goto done;
10249 		/*
10250 		 * Set the modified and accessed bits simultaneously.
10251 		 *
10252 		 * Intel EPT PTEs that do software emulation of A/D bits map
10253 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10254 		 * An EPT misconfiguration is triggered if the PTE is writable
10255 		 * but not readable (WR=10). This is avoided by setting PG_A
10256 		 * and PG_M simultaneously.
10257 		 */
10258 		*pte |= PG_M | PG_A;
10259 	} else {
10260 		*pte |= PG_A;
10261 	}
10262 
10263 #if VM_NRESERVLEVEL > 0
10264 	/* try to promote the mapping */
10265 	if (va < VM_MAXUSER_ADDRESS)
10266 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10267 	else
10268 		mpte = NULL;
10269 
10270 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10271 
10272 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10273 	    pmap_ps_enabled(pmap) &&
10274 	    (m->flags & PG_FICTITIOUS) == 0 &&
10275 	    vm_reserv_level_iffullpop(m) == 0) {
10276 		pmap_promote_pde(pmap, pde, va, mpte, &lock);
10277 #ifdef INVARIANTS
10278 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10279 #endif
10280 	}
10281 #endif
10282 
10283 #ifdef INVARIANTS
10284 	if (ftype == VM_PROT_WRITE)
10285 		atomic_add_long(&num_dirty_emulations, 1);
10286 	else
10287 		atomic_add_long(&num_accessed_emulations, 1);
10288 #endif
10289 	rv = 0;		/* success */
10290 done:
10291 	if (lock != NULL)
10292 		rw_wunlock(lock);
10293 	PMAP_UNLOCK(pmap);
10294 	return (rv);
10295 }
10296 
10297 void
10298 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10299 {
10300 	pml4_entry_t *pml4;
10301 	pdp_entry_t *pdp;
10302 	pd_entry_t *pde;
10303 	pt_entry_t *pte, PG_V;
10304 	int idx;
10305 
10306 	idx = 0;
10307 	PG_V = pmap_valid_bit(pmap);
10308 	PMAP_LOCK(pmap);
10309 
10310 	pml4 = pmap_pml4e(pmap, va);
10311 	if (pml4 == NULL)
10312 		goto done;
10313 	ptr[idx++] = *pml4;
10314 	if ((*pml4 & PG_V) == 0)
10315 		goto done;
10316 
10317 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10318 	ptr[idx++] = *pdp;
10319 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10320 		goto done;
10321 
10322 	pde = pmap_pdpe_to_pde(pdp, va);
10323 	ptr[idx++] = *pde;
10324 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10325 		goto done;
10326 
10327 	pte = pmap_pde_to_pte(pde, va);
10328 	ptr[idx++] = *pte;
10329 
10330 done:
10331 	PMAP_UNLOCK(pmap);
10332 	*num = idx;
10333 }
10334 
10335 /**
10336  * Get the kernel virtual address of a set of physical pages. If there are
10337  * physical addresses not covered by the DMAP perform a transient mapping
10338  * that will be removed when calling pmap_unmap_io_transient.
10339  *
10340  * \param page        The pages the caller wishes to obtain the virtual
10341  *                    address on the kernel memory map.
10342  * \param vaddr       On return contains the kernel virtual memory address
10343  *                    of the pages passed in the page parameter.
10344  * \param count       Number of pages passed in.
10345  * \param can_fault   TRUE if the thread using the mapped pages can take
10346  *                    page faults, FALSE otherwise.
10347  *
10348  * \returns TRUE if the caller must call pmap_unmap_io_transient when
10349  *          finished or FALSE otherwise.
10350  *
10351  */
10352 boolean_t
10353 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10354     boolean_t can_fault)
10355 {
10356 	vm_paddr_t paddr;
10357 	boolean_t needs_mapping;
10358 	pt_entry_t *pte;
10359 	int cache_bits, error __unused, i;
10360 
10361 	/*
10362 	 * Allocate any KVA space that we need, this is done in a separate
10363 	 * loop to prevent calling vmem_alloc while pinned.
10364 	 */
10365 	needs_mapping = FALSE;
10366 	for (i = 0; i < count; i++) {
10367 		paddr = VM_PAGE_TO_PHYS(page[i]);
10368 		if (__predict_false(paddr >= dmaplimit)) {
10369 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10370 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10371 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10372 			needs_mapping = TRUE;
10373 		} else {
10374 			vaddr[i] = PHYS_TO_DMAP(paddr);
10375 		}
10376 	}
10377 
10378 	/* Exit early if everything is covered by the DMAP */
10379 	if (!needs_mapping)
10380 		return (FALSE);
10381 
10382 	/*
10383 	 * NB:  The sequence of updating a page table followed by accesses
10384 	 * to the corresponding pages used in the !DMAP case is subject to
10385 	 * the situation described in the "AMD64 Architecture Programmer's
10386 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10387 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10388 	 * after modifying the PTE bits is crucial.
10389 	 */
10390 	if (!can_fault)
10391 		sched_pin();
10392 	for (i = 0; i < count; i++) {
10393 		paddr = VM_PAGE_TO_PHYS(page[i]);
10394 		if (paddr >= dmaplimit) {
10395 			if (can_fault) {
10396 				/*
10397 				 * Slow path, since we can get page faults
10398 				 * while mappings are active don't pin the
10399 				 * thread to the CPU and instead add a global
10400 				 * mapping visible to all CPUs.
10401 				 */
10402 				pmap_qenter(vaddr[i], &page[i], 1);
10403 			} else {
10404 				pte = vtopte(vaddr[i]);
10405 				cache_bits = pmap_cache_bits(kernel_pmap,
10406 				    page[i]->md.pat_mode, 0);
10407 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10408 				    cache_bits);
10409 				pmap_invlpg(kernel_pmap, vaddr[i]);
10410 			}
10411 		}
10412 	}
10413 
10414 	return (needs_mapping);
10415 }
10416 
10417 void
10418 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10419     boolean_t can_fault)
10420 {
10421 	vm_paddr_t paddr;
10422 	int i;
10423 
10424 	if (!can_fault)
10425 		sched_unpin();
10426 	for (i = 0; i < count; i++) {
10427 		paddr = VM_PAGE_TO_PHYS(page[i]);
10428 		if (paddr >= dmaplimit) {
10429 			if (can_fault)
10430 				pmap_qremove(vaddr[i], 1);
10431 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10432 		}
10433 	}
10434 }
10435 
10436 vm_offset_t
10437 pmap_quick_enter_page(vm_page_t m)
10438 {
10439 	vm_paddr_t paddr;
10440 
10441 	paddr = VM_PAGE_TO_PHYS(m);
10442 	if (paddr < dmaplimit)
10443 		return (PHYS_TO_DMAP(paddr));
10444 	mtx_lock_spin(&qframe_mtx);
10445 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10446 
10447 	/*
10448 	 * Since qframe is exclusively mapped by us, and we do not set
10449 	 * PG_G, we can use INVLPG here.
10450 	 */
10451 	invlpg(qframe);
10452 
10453 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10454 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10455 	return (qframe);
10456 }
10457 
10458 void
10459 pmap_quick_remove_page(vm_offset_t addr)
10460 {
10461 
10462 	if (addr != qframe)
10463 		return;
10464 	pte_store(vtopte(qframe), 0);
10465 	mtx_unlock_spin(&qframe_mtx);
10466 }
10467 
10468 /*
10469  * Pdp pages from the large map are managed differently from either
10470  * kernel or user page table pages.  They are permanently allocated at
10471  * initialization time, and their reference count is permanently set to
10472  * zero.  The pml4 entries pointing to those pages are copied into
10473  * each allocated pmap.
10474  *
10475  * In contrast, pd and pt pages are managed like user page table
10476  * pages.  They are dynamically allocated, and their reference count
10477  * represents the number of valid entries within the page.
10478  */
10479 static vm_page_t
10480 pmap_large_map_getptp_unlocked(void)
10481 {
10482 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10483 }
10484 
10485 static vm_page_t
10486 pmap_large_map_getptp(void)
10487 {
10488 	vm_page_t m;
10489 
10490 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10491 	m = pmap_large_map_getptp_unlocked();
10492 	if (m == NULL) {
10493 		PMAP_UNLOCK(kernel_pmap);
10494 		vm_wait(NULL);
10495 		PMAP_LOCK(kernel_pmap);
10496 		/* Callers retry. */
10497 	}
10498 	return (m);
10499 }
10500 
10501 static pdp_entry_t *
10502 pmap_large_map_pdpe(vm_offset_t va)
10503 {
10504 	vm_pindex_t pml4_idx;
10505 	vm_paddr_t mphys;
10506 
10507 	pml4_idx = pmap_pml4e_index(va);
10508 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10509 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10510 	    "%#jx lm_ents %d",
10511 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10512 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10513 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10514 	    "LMSPML4I %#jx lm_ents %d",
10515 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10516 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10517 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10518 }
10519 
10520 static pd_entry_t *
10521 pmap_large_map_pde(vm_offset_t va)
10522 {
10523 	pdp_entry_t *pdpe;
10524 	vm_page_t m;
10525 	vm_paddr_t mphys;
10526 
10527 retry:
10528 	pdpe = pmap_large_map_pdpe(va);
10529 	if (*pdpe == 0) {
10530 		m = pmap_large_map_getptp();
10531 		if (m == NULL)
10532 			goto retry;
10533 		mphys = VM_PAGE_TO_PHYS(m);
10534 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10535 	} else {
10536 		MPASS((*pdpe & X86_PG_PS) == 0);
10537 		mphys = *pdpe & PG_FRAME;
10538 	}
10539 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10540 }
10541 
10542 static pt_entry_t *
10543 pmap_large_map_pte(vm_offset_t va)
10544 {
10545 	pd_entry_t *pde;
10546 	vm_page_t m;
10547 	vm_paddr_t mphys;
10548 
10549 retry:
10550 	pde = pmap_large_map_pde(va);
10551 	if (*pde == 0) {
10552 		m = pmap_large_map_getptp();
10553 		if (m == NULL)
10554 			goto retry;
10555 		mphys = VM_PAGE_TO_PHYS(m);
10556 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10557 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10558 	} else {
10559 		MPASS((*pde & X86_PG_PS) == 0);
10560 		mphys = *pde & PG_FRAME;
10561 	}
10562 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10563 }
10564 
10565 static vm_paddr_t
10566 pmap_large_map_kextract(vm_offset_t va)
10567 {
10568 	pdp_entry_t *pdpe, pdp;
10569 	pd_entry_t *pde, pd;
10570 	pt_entry_t *pte, pt;
10571 
10572 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10573 	    ("not largemap range %#lx", (u_long)va));
10574 	pdpe = pmap_large_map_pdpe(va);
10575 	pdp = *pdpe;
10576 	KASSERT((pdp & X86_PG_V) != 0,
10577 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10578 	    (u_long)pdpe, pdp));
10579 	if ((pdp & X86_PG_PS) != 0) {
10580 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10581 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10582 		    (u_long)pdpe, pdp));
10583 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10584 	}
10585 	pde = pmap_pdpe_to_pde(pdpe, va);
10586 	pd = *pde;
10587 	KASSERT((pd & X86_PG_V) != 0,
10588 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10589 	if ((pd & X86_PG_PS) != 0)
10590 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10591 	pte = pmap_pde_to_pte(pde, va);
10592 	pt = *pte;
10593 	KASSERT((pt & X86_PG_V) != 0,
10594 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10595 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10596 }
10597 
10598 static int
10599 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10600     vmem_addr_t *vmem_res)
10601 {
10602 
10603 	/*
10604 	 * Large mappings are all but static.  Consequently, there
10605 	 * is no point in waiting for an earlier allocation to be
10606 	 * freed.
10607 	 */
10608 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10609 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10610 }
10611 
10612 int
10613 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10614     vm_memattr_t mattr)
10615 {
10616 	pdp_entry_t *pdpe;
10617 	pd_entry_t *pde;
10618 	pt_entry_t *pte;
10619 	vm_offset_t va, inc;
10620 	vmem_addr_t vmem_res;
10621 	vm_paddr_t pa;
10622 	int error;
10623 
10624 	if (len == 0 || spa + len < spa)
10625 		return (EINVAL);
10626 
10627 	/* See if DMAP can serve. */
10628 	if (spa + len <= dmaplimit) {
10629 		va = PHYS_TO_DMAP(spa);
10630 		*addr = (void *)va;
10631 		return (pmap_change_attr(va, len, mattr));
10632 	}
10633 
10634 	/*
10635 	 * No, allocate KVA.  Fit the address with best possible
10636 	 * alignment for superpages.  Fall back to worse align if
10637 	 * failed.
10638 	 */
10639 	error = ENOMEM;
10640 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10641 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10642 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10643 		    &vmem_res);
10644 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10645 	    NBPDR) + NBPDR)
10646 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10647 		    &vmem_res);
10648 	if (error != 0)
10649 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10650 	if (error != 0)
10651 		return (error);
10652 
10653 	/*
10654 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10655 	 * in the pagetable to minimize flushing.  No need to
10656 	 * invalidate TLB, since we only update invalid entries.
10657 	 */
10658 	PMAP_LOCK(kernel_pmap);
10659 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10660 	    len -= inc) {
10661 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10662 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10663 			pdpe = pmap_large_map_pdpe(va);
10664 			MPASS(*pdpe == 0);
10665 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10666 			    X86_PG_V | X86_PG_A | pg_nx |
10667 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10668 			inc = NBPDP;
10669 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10670 		    (va & PDRMASK) == 0) {
10671 			pde = pmap_large_map_pde(va);
10672 			MPASS(*pde == 0);
10673 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10674 			    X86_PG_V | X86_PG_A | pg_nx |
10675 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10676 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10677 			    ref_count++;
10678 			inc = NBPDR;
10679 		} else {
10680 			pte = pmap_large_map_pte(va);
10681 			MPASS(*pte == 0);
10682 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10683 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10684 			    mattr, FALSE);
10685 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10686 			    ref_count++;
10687 			inc = PAGE_SIZE;
10688 		}
10689 	}
10690 	PMAP_UNLOCK(kernel_pmap);
10691 	MPASS(len == 0);
10692 
10693 	*addr = (void *)vmem_res;
10694 	return (0);
10695 }
10696 
10697 void
10698 pmap_large_unmap(void *svaa, vm_size_t len)
10699 {
10700 	vm_offset_t sva, va;
10701 	vm_size_t inc;
10702 	pdp_entry_t *pdpe, pdp;
10703 	pd_entry_t *pde, pd;
10704 	pt_entry_t *pte;
10705 	vm_page_t m;
10706 	struct spglist spgf;
10707 
10708 	sva = (vm_offset_t)svaa;
10709 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10710 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10711 		return;
10712 
10713 	SLIST_INIT(&spgf);
10714 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10715 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10716 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10717 	PMAP_LOCK(kernel_pmap);
10718 	for (va = sva; va < sva + len; va += inc) {
10719 		pdpe = pmap_large_map_pdpe(va);
10720 		pdp = *pdpe;
10721 		KASSERT((pdp & X86_PG_V) != 0,
10722 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10723 		    (u_long)pdpe, pdp));
10724 		if ((pdp & X86_PG_PS) != 0) {
10725 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10726 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10727 			    (u_long)pdpe, pdp));
10728 			KASSERT((va & PDPMASK) == 0,
10729 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10730 			    (u_long)pdpe, pdp));
10731 			KASSERT(va + NBPDP <= sva + len,
10732 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10733 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10734 			    (u_long)pdpe, pdp, len));
10735 			*pdpe = 0;
10736 			inc = NBPDP;
10737 			continue;
10738 		}
10739 		pde = pmap_pdpe_to_pde(pdpe, va);
10740 		pd = *pde;
10741 		KASSERT((pd & X86_PG_V) != 0,
10742 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10743 		    (u_long)pde, pd));
10744 		if ((pd & X86_PG_PS) != 0) {
10745 			KASSERT((va & PDRMASK) == 0,
10746 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10747 			    (u_long)pde, pd));
10748 			KASSERT(va + NBPDR <= sva + len,
10749 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10750 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10751 			    pd, len));
10752 			pde_store(pde, 0);
10753 			inc = NBPDR;
10754 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10755 			m->ref_count--;
10756 			if (m->ref_count == 0) {
10757 				*pdpe = 0;
10758 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10759 			}
10760 			continue;
10761 		}
10762 		pte = pmap_pde_to_pte(pde, va);
10763 		KASSERT((*pte & X86_PG_V) != 0,
10764 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10765 		    (u_long)pte, *pte));
10766 		pte_clear(pte);
10767 		inc = PAGE_SIZE;
10768 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10769 		m->ref_count--;
10770 		if (m->ref_count == 0) {
10771 			*pde = 0;
10772 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10773 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10774 			m->ref_count--;
10775 			if (m->ref_count == 0) {
10776 				*pdpe = 0;
10777 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10778 			}
10779 		}
10780 	}
10781 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10782 	PMAP_UNLOCK(kernel_pmap);
10783 	vm_page_free_pages_toq(&spgf, false);
10784 	vmem_free(large_vmem, sva, len);
10785 }
10786 
10787 static void
10788 pmap_large_map_wb_fence_mfence(void)
10789 {
10790 
10791 	mfence();
10792 }
10793 
10794 static void
10795 pmap_large_map_wb_fence_atomic(void)
10796 {
10797 
10798 	atomic_thread_fence_seq_cst();
10799 }
10800 
10801 static void
10802 pmap_large_map_wb_fence_nop(void)
10803 {
10804 }
10805 
10806 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10807 {
10808 
10809 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10810 		return (pmap_large_map_wb_fence_mfence);
10811 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10812 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10813 		return (pmap_large_map_wb_fence_atomic);
10814 	else
10815 		/* clflush is strongly enough ordered */
10816 		return (pmap_large_map_wb_fence_nop);
10817 }
10818 
10819 static void
10820 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10821 {
10822 
10823 	for (; len > 0; len -= cpu_clflush_line_size,
10824 	    va += cpu_clflush_line_size)
10825 		clwb(va);
10826 }
10827 
10828 static void
10829 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10830 {
10831 
10832 	for (; len > 0; len -= cpu_clflush_line_size,
10833 	    va += cpu_clflush_line_size)
10834 		clflushopt(va);
10835 }
10836 
10837 static void
10838 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10839 {
10840 
10841 	for (; len > 0; len -= cpu_clflush_line_size,
10842 	    va += cpu_clflush_line_size)
10843 		clflush(va);
10844 }
10845 
10846 static void
10847 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10848 {
10849 }
10850 
10851 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10852 {
10853 
10854 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10855 		return (pmap_large_map_flush_range_clwb);
10856 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10857 		return (pmap_large_map_flush_range_clflushopt);
10858 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10859 		return (pmap_large_map_flush_range_clflush);
10860 	else
10861 		return (pmap_large_map_flush_range_nop);
10862 }
10863 
10864 static void
10865 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10866 {
10867 	volatile u_long *pe;
10868 	u_long p;
10869 	vm_offset_t va;
10870 	vm_size_t inc;
10871 	bool seen_other;
10872 
10873 	for (va = sva; va < eva; va += inc) {
10874 		inc = 0;
10875 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
10876 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
10877 			p = *pe;
10878 			if ((p & X86_PG_PS) != 0)
10879 				inc = NBPDP;
10880 		}
10881 		if (inc == 0) {
10882 			pe = (volatile u_long *)pmap_large_map_pde(va);
10883 			p = *pe;
10884 			if ((p & X86_PG_PS) != 0)
10885 				inc = NBPDR;
10886 		}
10887 		if (inc == 0) {
10888 			pe = (volatile u_long *)pmap_large_map_pte(va);
10889 			p = *pe;
10890 			inc = PAGE_SIZE;
10891 		}
10892 		seen_other = false;
10893 		for (;;) {
10894 			if ((p & X86_PG_AVAIL1) != 0) {
10895 				/*
10896 				 * Spin-wait for the end of a parallel
10897 				 * write-back.
10898 				 */
10899 				cpu_spinwait();
10900 				p = *pe;
10901 
10902 				/*
10903 				 * If we saw other write-back
10904 				 * occuring, we cannot rely on PG_M to
10905 				 * indicate state of the cache.  The
10906 				 * PG_M bit is cleared before the
10907 				 * flush to avoid ignoring new writes,
10908 				 * and writes which are relevant for
10909 				 * us might happen after.
10910 				 */
10911 				seen_other = true;
10912 				continue;
10913 			}
10914 
10915 			if ((p & X86_PG_M) != 0 || seen_other) {
10916 				if (!atomic_fcmpset_long(pe, &p,
10917 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
10918 					/*
10919 					 * If we saw PG_M without
10920 					 * PG_AVAIL1, and then on the
10921 					 * next attempt we do not
10922 					 * observe either PG_M or
10923 					 * PG_AVAIL1, the other
10924 					 * write-back started after us
10925 					 * and finished before us.  We
10926 					 * can rely on it doing our
10927 					 * work.
10928 					 */
10929 					continue;
10930 				pmap_large_map_flush_range(va, inc);
10931 				atomic_clear_long(pe, X86_PG_AVAIL1);
10932 			}
10933 			break;
10934 		}
10935 		maybe_yield();
10936 	}
10937 }
10938 
10939 /*
10940  * Write-back cache lines for the given address range.
10941  *
10942  * Must be called only on the range or sub-range returned from
10943  * pmap_large_map().  Must not be called on the coalesced ranges.
10944  *
10945  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
10946  * instructions support.
10947  */
10948 void
10949 pmap_large_map_wb(void *svap, vm_size_t len)
10950 {
10951 	vm_offset_t eva, sva;
10952 
10953 	sva = (vm_offset_t)svap;
10954 	eva = sva + len;
10955 	pmap_large_map_wb_fence();
10956 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
10957 		pmap_large_map_flush_range(sva, len);
10958 	} else {
10959 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
10960 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
10961 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
10962 		pmap_large_map_wb_large(sva, eva);
10963 	}
10964 	pmap_large_map_wb_fence();
10965 }
10966 
10967 static vm_page_t
10968 pmap_pti_alloc_page(void)
10969 {
10970 	vm_page_t m;
10971 
10972 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10973 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
10974 	return (m);
10975 }
10976 
10977 static bool
10978 pmap_pti_free_page(vm_page_t m)
10979 {
10980 	if (!vm_page_unwire_noq(m))
10981 		return (false);
10982 	vm_page_xbusy_claim(m);
10983 	vm_page_free_zero(m);
10984 	return (true);
10985 }
10986 
10987 static void
10988 pmap_pti_init(void)
10989 {
10990 	vm_page_t pml4_pg;
10991 	pdp_entry_t *pdpe;
10992 	vm_offset_t va;
10993 	int i;
10994 
10995 	if (!pti)
10996 		return;
10997 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
10998 	VM_OBJECT_WLOCK(pti_obj);
10999 	pml4_pg = pmap_pti_alloc_page();
11000 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11001 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11002 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11003 		pdpe = pmap_pti_pdpe(va);
11004 		pmap_pti_wire_pte(pdpe);
11005 	}
11006 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11007 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11008 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11009 	    sizeof(struct gate_descriptor) * NIDT, false);
11010 	CPU_FOREACH(i) {
11011 		/* Doublefault stack IST 1 */
11012 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11013 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11014 		/* NMI stack IST 2 */
11015 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11016 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11017 		/* MC# stack IST 3 */
11018 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11019 		    sizeof(struct nmi_pcpu);
11020 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11021 		/* DB# stack IST 4 */
11022 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11023 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11024 	}
11025 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11026 	    true);
11027 	pti_finalized = true;
11028 	VM_OBJECT_WUNLOCK(pti_obj);
11029 }
11030 
11031 static void
11032 pmap_cpu_init(void *arg __unused)
11033 {
11034 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11035 	pmap_pti_init();
11036 }
11037 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11038 
11039 static pdp_entry_t *
11040 pmap_pti_pdpe(vm_offset_t va)
11041 {
11042 	pml4_entry_t *pml4e;
11043 	pdp_entry_t *pdpe;
11044 	vm_page_t m;
11045 	vm_pindex_t pml4_idx;
11046 	vm_paddr_t mphys;
11047 
11048 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11049 
11050 	pml4_idx = pmap_pml4e_index(va);
11051 	pml4e = &pti_pml4[pml4_idx];
11052 	m = NULL;
11053 	if (*pml4e == 0) {
11054 		if (pti_finalized)
11055 			panic("pml4 alloc after finalization\n");
11056 		m = pmap_pti_alloc_page();
11057 		if (*pml4e != 0) {
11058 			pmap_pti_free_page(m);
11059 			mphys = *pml4e & ~PAGE_MASK;
11060 		} else {
11061 			mphys = VM_PAGE_TO_PHYS(m);
11062 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11063 		}
11064 	} else {
11065 		mphys = *pml4e & ~PAGE_MASK;
11066 	}
11067 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11068 	return (pdpe);
11069 }
11070 
11071 static void
11072 pmap_pti_wire_pte(void *pte)
11073 {
11074 	vm_page_t m;
11075 
11076 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11077 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11078 	m->ref_count++;
11079 }
11080 
11081 static void
11082 pmap_pti_unwire_pde(void *pde, bool only_ref)
11083 {
11084 	vm_page_t m;
11085 
11086 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11087 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11088 	MPASS(only_ref || m->ref_count > 1);
11089 	pmap_pti_free_page(m);
11090 }
11091 
11092 static void
11093 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11094 {
11095 	vm_page_t m;
11096 	pd_entry_t *pde;
11097 
11098 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11099 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11100 	if (pmap_pti_free_page(m)) {
11101 		pde = pmap_pti_pde(va);
11102 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11103 		*pde = 0;
11104 		pmap_pti_unwire_pde(pde, false);
11105 	}
11106 }
11107 
11108 static pd_entry_t *
11109 pmap_pti_pde(vm_offset_t va)
11110 {
11111 	pdp_entry_t *pdpe;
11112 	pd_entry_t *pde;
11113 	vm_page_t m;
11114 	vm_pindex_t pd_idx;
11115 	vm_paddr_t mphys;
11116 
11117 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11118 
11119 	pdpe = pmap_pti_pdpe(va);
11120 	if (*pdpe == 0) {
11121 		m = pmap_pti_alloc_page();
11122 		if (*pdpe != 0) {
11123 			pmap_pti_free_page(m);
11124 			MPASS((*pdpe & X86_PG_PS) == 0);
11125 			mphys = *pdpe & ~PAGE_MASK;
11126 		} else {
11127 			mphys =  VM_PAGE_TO_PHYS(m);
11128 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11129 		}
11130 	} else {
11131 		MPASS((*pdpe & X86_PG_PS) == 0);
11132 		mphys = *pdpe & ~PAGE_MASK;
11133 	}
11134 
11135 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11136 	pd_idx = pmap_pde_index(va);
11137 	pde += pd_idx;
11138 	return (pde);
11139 }
11140 
11141 static pt_entry_t *
11142 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11143 {
11144 	pd_entry_t *pde;
11145 	pt_entry_t *pte;
11146 	vm_page_t m;
11147 	vm_paddr_t mphys;
11148 
11149 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11150 
11151 	pde = pmap_pti_pde(va);
11152 	if (unwire_pde != NULL) {
11153 		*unwire_pde = true;
11154 		pmap_pti_wire_pte(pde);
11155 	}
11156 	if (*pde == 0) {
11157 		m = pmap_pti_alloc_page();
11158 		if (*pde != 0) {
11159 			pmap_pti_free_page(m);
11160 			MPASS((*pde & X86_PG_PS) == 0);
11161 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11162 		} else {
11163 			mphys = VM_PAGE_TO_PHYS(m);
11164 			*pde = mphys | X86_PG_RW | X86_PG_V;
11165 			if (unwire_pde != NULL)
11166 				*unwire_pde = false;
11167 		}
11168 	} else {
11169 		MPASS((*pde & X86_PG_PS) == 0);
11170 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11171 	}
11172 
11173 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11174 	pte += pmap_pte_index(va);
11175 
11176 	return (pte);
11177 }
11178 
11179 static void
11180 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11181 {
11182 	vm_paddr_t pa;
11183 	pd_entry_t *pde;
11184 	pt_entry_t *pte, ptev;
11185 	bool unwire_pde;
11186 
11187 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11188 
11189 	sva = trunc_page(sva);
11190 	MPASS(sva > VM_MAXUSER_ADDRESS);
11191 	eva = round_page(eva);
11192 	MPASS(sva < eva);
11193 	for (; sva < eva; sva += PAGE_SIZE) {
11194 		pte = pmap_pti_pte(sva, &unwire_pde);
11195 		pa = pmap_kextract(sva);
11196 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11197 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11198 		    VM_MEMATTR_DEFAULT, FALSE);
11199 		if (*pte == 0) {
11200 			pte_store(pte, ptev);
11201 			pmap_pti_wire_pte(pte);
11202 		} else {
11203 			KASSERT(!pti_finalized,
11204 			    ("pti overlap after fin %#lx %#lx %#lx",
11205 			    sva, *pte, ptev));
11206 			KASSERT(*pte == ptev,
11207 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11208 			    sva, *pte, ptev));
11209 		}
11210 		if (unwire_pde) {
11211 			pde = pmap_pti_pde(sva);
11212 			pmap_pti_unwire_pde(pde, true);
11213 		}
11214 	}
11215 }
11216 
11217 void
11218 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11219 {
11220 
11221 	if (!pti)
11222 		return;
11223 	VM_OBJECT_WLOCK(pti_obj);
11224 	pmap_pti_add_kva_locked(sva, eva, exec);
11225 	VM_OBJECT_WUNLOCK(pti_obj);
11226 }
11227 
11228 void
11229 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11230 {
11231 	pt_entry_t *pte;
11232 	vm_offset_t va;
11233 
11234 	if (!pti)
11235 		return;
11236 	sva = rounddown2(sva, PAGE_SIZE);
11237 	MPASS(sva > VM_MAXUSER_ADDRESS);
11238 	eva = roundup2(eva, PAGE_SIZE);
11239 	MPASS(sva < eva);
11240 	VM_OBJECT_WLOCK(pti_obj);
11241 	for (va = sva; va < eva; va += PAGE_SIZE) {
11242 		pte = pmap_pti_pte(va, NULL);
11243 		KASSERT((*pte & X86_PG_V) != 0,
11244 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11245 		    (u_long)pte, *pte));
11246 		pte_clear(pte);
11247 		pmap_pti_unwire_pte(pte, va);
11248 	}
11249 	pmap_invalidate_range(kernel_pmap, sva, eva);
11250 	VM_OBJECT_WUNLOCK(pti_obj);
11251 }
11252 
11253 static void *
11254 pkru_dup_range(void *ctx __unused, void *data)
11255 {
11256 	struct pmap_pkru_range *node, *new_node;
11257 
11258 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11259 	if (new_node == NULL)
11260 		return (NULL);
11261 	node = data;
11262 	memcpy(new_node, node, sizeof(*node));
11263 	return (new_node);
11264 }
11265 
11266 static void
11267 pkru_free_range(void *ctx __unused, void *node)
11268 {
11269 
11270 	uma_zfree(pmap_pkru_ranges_zone, node);
11271 }
11272 
11273 static int
11274 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11275     int flags)
11276 {
11277 	struct pmap_pkru_range *ppr;
11278 	int error;
11279 
11280 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11281 	MPASS(pmap->pm_type == PT_X86);
11282 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11283 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11284 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11285 		return (EBUSY);
11286 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11287 	if (ppr == NULL)
11288 		return (ENOMEM);
11289 	ppr->pkru_keyidx = keyidx;
11290 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11291 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11292 	if (error != 0)
11293 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11294 	return (error);
11295 }
11296 
11297 static int
11298 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11299 {
11300 
11301 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11302 	MPASS(pmap->pm_type == PT_X86);
11303 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11304 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11305 }
11306 
11307 static void
11308 pmap_pkru_deassign_all(pmap_t pmap)
11309 {
11310 
11311 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11312 	if (pmap->pm_type == PT_X86 &&
11313 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11314 		rangeset_remove_all(&pmap->pm_pkru);
11315 }
11316 
11317 static bool
11318 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11319 {
11320 	struct pmap_pkru_range *ppr, *prev_ppr;
11321 	vm_offset_t va;
11322 
11323 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11324 	if (pmap->pm_type != PT_X86 ||
11325 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11326 	    sva >= VM_MAXUSER_ADDRESS)
11327 		return (true);
11328 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11329 	for (va = sva; va < eva; prev_ppr = ppr) {
11330 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
11331 		if (va == sva)
11332 			prev_ppr = ppr;
11333 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
11334 			return (false);
11335 		if (ppr == NULL) {
11336 			va += PAGE_SIZE;
11337 			continue;
11338 		}
11339 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
11340 			return (false);
11341 		va = ppr->pkru_rs_el.re_end;
11342 	}
11343 	return (true);
11344 }
11345 
11346 static pt_entry_t
11347 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11348 {
11349 	struct pmap_pkru_range *ppr;
11350 
11351 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11352 	if (pmap->pm_type != PT_X86 ||
11353 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11354 	    va >= VM_MAXUSER_ADDRESS)
11355 		return (0);
11356 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11357 	if (ppr != NULL)
11358 		return (X86_PG_PKU(ppr->pkru_keyidx));
11359 	return (0);
11360 }
11361 
11362 static bool
11363 pred_pkru_on_remove(void *ctx __unused, void *r)
11364 {
11365 	struct pmap_pkru_range *ppr;
11366 
11367 	ppr = r;
11368 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11369 }
11370 
11371 static void
11372 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11373 {
11374 
11375 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11376 	if (pmap->pm_type == PT_X86 &&
11377 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11378 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11379 		    pred_pkru_on_remove);
11380 	}
11381 }
11382 
11383 static int
11384 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11385 {
11386 
11387 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11388 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11389 	MPASS(dst_pmap->pm_type == PT_X86);
11390 	MPASS(src_pmap->pm_type == PT_X86);
11391 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11392 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11393 		return (0);
11394 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11395 }
11396 
11397 static void
11398 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11399     u_int keyidx)
11400 {
11401 	pml4_entry_t *pml4e;
11402 	pdp_entry_t *pdpe;
11403 	pd_entry_t newpde, ptpaddr, *pde;
11404 	pt_entry_t newpte, *ptep, pte;
11405 	vm_offset_t va, va_next;
11406 	bool changed;
11407 
11408 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11409 	MPASS(pmap->pm_type == PT_X86);
11410 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11411 
11412 	for (changed = false, va = sva; va < eva; va = va_next) {
11413 		pml4e = pmap_pml4e(pmap, va);
11414 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11415 			va_next = (va + NBPML4) & ~PML4MASK;
11416 			if (va_next < va)
11417 				va_next = eva;
11418 			continue;
11419 		}
11420 
11421 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11422 		if ((*pdpe & X86_PG_V) == 0) {
11423 			va_next = (va + NBPDP) & ~PDPMASK;
11424 			if (va_next < va)
11425 				va_next = eva;
11426 			continue;
11427 		}
11428 
11429 		va_next = (va + NBPDR) & ~PDRMASK;
11430 		if (va_next < va)
11431 			va_next = eva;
11432 
11433 		pde = pmap_pdpe_to_pde(pdpe, va);
11434 		ptpaddr = *pde;
11435 		if (ptpaddr == 0)
11436 			continue;
11437 
11438 		MPASS((ptpaddr & X86_PG_V) != 0);
11439 		if ((ptpaddr & PG_PS) != 0) {
11440 			if (va + NBPDR == va_next && eva >= va_next) {
11441 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11442 				    X86_PG_PKU(keyidx);
11443 				if (newpde != ptpaddr) {
11444 					*pde = newpde;
11445 					changed = true;
11446 				}
11447 				continue;
11448 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11449 				continue;
11450 			}
11451 		}
11452 
11453 		if (va_next > eva)
11454 			va_next = eva;
11455 
11456 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11457 		    ptep++, va += PAGE_SIZE) {
11458 			pte = *ptep;
11459 			if ((pte & X86_PG_V) == 0)
11460 				continue;
11461 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11462 			if (newpte != pte) {
11463 				*ptep = newpte;
11464 				changed = true;
11465 			}
11466 		}
11467 	}
11468 	if (changed)
11469 		pmap_invalidate_range(pmap, sva, eva);
11470 }
11471 
11472 static int
11473 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11474     u_int keyidx, int flags)
11475 {
11476 
11477 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11478 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11479 		return (EINVAL);
11480 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11481 		return (EFAULT);
11482 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11483 		return (ENOTSUP);
11484 	return (0);
11485 }
11486 
11487 int
11488 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11489     int flags)
11490 {
11491 	int error;
11492 
11493 	sva = trunc_page(sva);
11494 	eva = round_page(eva);
11495 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11496 	if (error != 0)
11497 		return (error);
11498 	for (;;) {
11499 		PMAP_LOCK(pmap);
11500 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11501 		if (error == 0)
11502 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11503 		PMAP_UNLOCK(pmap);
11504 		if (error != ENOMEM)
11505 			break;
11506 		vm_wait(NULL);
11507 	}
11508 	return (error);
11509 }
11510 
11511 int
11512 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11513 {
11514 	int error;
11515 
11516 	sva = trunc_page(sva);
11517 	eva = round_page(eva);
11518 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11519 	if (error != 0)
11520 		return (error);
11521 	for (;;) {
11522 		PMAP_LOCK(pmap);
11523 		error = pmap_pkru_deassign(pmap, sva, eva);
11524 		if (error == 0)
11525 			pmap_pkru_update_range(pmap, sva, eva, 0);
11526 		PMAP_UNLOCK(pmap);
11527 		if (error != ENOMEM)
11528 			break;
11529 		vm_wait(NULL);
11530 	}
11531 	return (error);
11532 }
11533 
11534 #if defined(KASAN) || defined(KMSAN)
11535 
11536 /*
11537  * Reserve enough memory to:
11538  * 1) allocate PDP pages for the shadow map(s),
11539  * 2) shadow one page of memory, so one PD page, one PT page, and one shadow
11540  *    page per shadow map.
11541  */
11542 #ifdef KASAN
11543 #define	SAN_EARLY_PAGES	(NKASANPML4E + 3)
11544 #else
11545 #define	SAN_EARLY_PAGES	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * 3)
11546 #endif
11547 
11548 static uint64_t __nosanitizeaddress __nosanitizememory
11549 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11550 {
11551 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11552 	static size_t offset = 0;
11553 	uint64_t pa;
11554 
11555 	if (offset == sizeof(data)) {
11556 		panic("%s: ran out of memory for the bootstrap shadow map",
11557 		    __func__);
11558 	}
11559 
11560 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11561 	offset += PAGE_SIZE;
11562 	return (pa);
11563 }
11564 
11565 /*
11566  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11567  * is currently only used to shadow the temporary boot stack set up by locore.
11568  */
11569 static void __nosanitizeaddress __nosanitizememory
11570 pmap_san_enter_early(vm_offset_t va)
11571 {
11572 	static bool first = true;
11573 	pml4_entry_t *pml4e;
11574 	pdp_entry_t *pdpe;
11575 	pd_entry_t *pde;
11576 	pt_entry_t *pte;
11577 	uint64_t cr3, pa, base;
11578 	int i;
11579 
11580 	base = amd64_loadaddr();
11581 	cr3 = rcr3();
11582 
11583 	if (first) {
11584 		/*
11585 		 * If this the first call, we need to allocate new PML4Es for
11586 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11587 		 * was initialized by the boot loader, so we can't simply test
11588 		 * whether the shadow map's PML4Es are zero.
11589 		 */
11590 		first = false;
11591 #ifdef KASAN
11592 		for (i = 0; i < NKASANPML4E; i++) {
11593 			pa = pmap_san_enter_early_alloc_4k(base);
11594 
11595 			pml4e = (pml4_entry_t *)cr3 +
11596 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11597 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11598 		}
11599 #else
11600 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11601 			pa = pmap_san_enter_early_alloc_4k(base);
11602 
11603 			pml4e = (pml4_entry_t *)cr3 +
11604 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11605 			    i * NBPML4);
11606 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11607 		}
11608 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11609 			pa = pmap_san_enter_early_alloc_4k(base);
11610 
11611 			pml4e = (pml4_entry_t *)cr3 +
11612 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11613 			    i * NBPML4);
11614 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11615 		}
11616 #endif
11617 	}
11618 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11619 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11620 	if (*pdpe == 0) {
11621 		pa = pmap_san_enter_early_alloc_4k(base);
11622 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11623 	}
11624 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11625 	if (*pde == 0) {
11626 		pa = pmap_san_enter_early_alloc_4k(base);
11627 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11628 	}
11629 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11630 	if (*pte != 0)
11631 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11632 	pa = pmap_san_enter_early_alloc_4k(base);
11633 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11634 }
11635 
11636 static vm_page_t
11637 pmap_san_enter_alloc_4k(void)
11638 {
11639 	vm_page_t m;
11640 
11641 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11642 	    VM_ALLOC_ZERO);
11643 	if (m == NULL)
11644 		panic("%s: no memory to grow shadow map", __func__);
11645 	return (m);
11646 }
11647 
11648 static vm_page_t
11649 pmap_san_enter_alloc_2m(void)
11650 {
11651 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11652 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11653 }
11654 
11655 /*
11656  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11657  * pages when possible.
11658  */
11659 void __nosanitizeaddress __nosanitizememory
11660 pmap_san_enter(vm_offset_t va)
11661 {
11662 	pdp_entry_t *pdpe;
11663 	pd_entry_t *pde;
11664 	pt_entry_t *pte;
11665 	vm_page_t m;
11666 
11667 	if (kernphys == 0) {
11668 		/*
11669 		 * We're creating a temporary shadow map for the boot stack.
11670 		 */
11671 		pmap_san_enter_early(va);
11672 		return;
11673 	}
11674 
11675 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11676 
11677 	pdpe = pmap_pdpe(kernel_pmap, va);
11678 	if ((*pdpe & X86_PG_V) == 0) {
11679 		m = pmap_san_enter_alloc_4k();
11680 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11681 		    X86_PG_V | pg_nx);
11682 	}
11683 	pde = pmap_pdpe_to_pde(pdpe, va);
11684 	if ((*pde & X86_PG_V) == 0) {
11685 		m = pmap_san_enter_alloc_2m();
11686 		if (m != NULL) {
11687 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11688 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11689 		} else {
11690 			m = pmap_san_enter_alloc_4k();
11691 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11692 			    X86_PG_V | pg_nx);
11693 		}
11694 	}
11695 	if ((*pde & X86_PG_PS) != 0)
11696 		return;
11697 	pte = pmap_pde_to_pte(pde, va);
11698 	if ((*pte & X86_PG_V) != 0)
11699 		return;
11700 	m = pmap_san_enter_alloc_4k();
11701 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11702 	    X86_PG_M | X86_PG_A | pg_nx);
11703 }
11704 #endif
11705 
11706 /*
11707  * Track a range of the kernel's virtual address space that is contiguous
11708  * in various mapping attributes.
11709  */
11710 struct pmap_kernel_map_range {
11711 	vm_offset_t sva;
11712 	pt_entry_t attrs;
11713 	int ptes;
11714 	int pdes;
11715 	int pdpes;
11716 };
11717 
11718 static void
11719 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11720     vm_offset_t eva)
11721 {
11722 	const char *mode;
11723 	int i, pat_idx;
11724 
11725 	if (eva <= range->sva)
11726 		return;
11727 
11728 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11729 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11730 		if (pat_index[i] == pat_idx)
11731 			break;
11732 
11733 	switch (i) {
11734 	case PAT_WRITE_BACK:
11735 		mode = "WB";
11736 		break;
11737 	case PAT_WRITE_THROUGH:
11738 		mode = "WT";
11739 		break;
11740 	case PAT_UNCACHEABLE:
11741 		mode = "UC";
11742 		break;
11743 	case PAT_UNCACHED:
11744 		mode = "U-";
11745 		break;
11746 	case PAT_WRITE_PROTECTED:
11747 		mode = "WP";
11748 		break;
11749 	case PAT_WRITE_COMBINING:
11750 		mode = "WC";
11751 		break;
11752 	default:
11753 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11754 		    __func__, pat_idx, range->sva, eva);
11755 		mode = "??";
11756 		break;
11757 	}
11758 
11759 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11760 	    range->sva, eva,
11761 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11762 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11763 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11764 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11765 	    mode, range->pdpes, range->pdes, range->ptes);
11766 
11767 	/* Reset to sentinel value. */
11768 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11769 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11770 	    NPDEPG - 1, NPTEPG - 1);
11771 }
11772 
11773 /*
11774  * Determine whether the attributes specified by a page table entry match those
11775  * being tracked by the current range.  This is not quite as simple as a direct
11776  * flag comparison since some PAT modes have multiple representations.
11777  */
11778 static bool
11779 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11780 {
11781 	pt_entry_t diff, mask;
11782 
11783 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11784 	diff = (range->attrs ^ attrs) & mask;
11785 	if (diff == 0)
11786 		return (true);
11787 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11788 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11789 	    pmap_pat_index(kernel_pmap, attrs, true))
11790 		return (true);
11791 	return (false);
11792 }
11793 
11794 static void
11795 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11796     pt_entry_t attrs)
11797 {
11798 
11799 	memset(range, 0, sizeof(*range));
11800 	range->sva = va;
11801 	range->attrs = attrs;
11802 }
11803 
11804 /*
11805  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11806  * those of the current run, dump the address range and its attributes, and
11807  * begin a new run.
11808  */
11809 static void
11810 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11811     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11812     pt_entry_t pte)
11813 {
11814 	pt_entry_t attrs;
11815 
11816 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11817 
11818 	attrs |= pdpe & pg_nx;
11819 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11820 	if ((pdpe & PG_PS) != 0) {
11821 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11822 	} else if (pde != 0) {
11823 		attrs |= pde & pg_nx;
11824 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11825 	}
11826 	if ((pde & PG_PS) != 0) {
11827 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11828 	} else if (pte != 0) {
11829 		attrs |= pte & pg_nx;
11830 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11831 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11832 
11833 		/* Canonicalize by always using the PDE PAT bit. */
11834 		if ((attrs & X86_PG_PTE_PAT) != 0)
11835 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11836 	}
11837 
11838 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11839 		sysctl_kmaps_dump(sb, range, va);
11840 		sysctl_kmaps_reinit(range, va, attrs);
11841 	}
11842 }
11843 
11844 static int
11845 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11846 {
11847 	struct pmap_kernel_map_range range;
11848 	struct sbuf sbuf, *sb;
11849 	pml4_entry_t pml4e;
11850 	pdp_entry_t *pdp, pdpe;
11851 	pd_entry_t *pd, pde;
11852 	pt_entry_t *pt, pte;
11853 	vm_offset_t sva;
11854 	vm_paddr_t pa;
11855 	int error, i, j, k, l;
11856 
11857 	error = sysctl_wire_old_buffer(req, 0);
11858 	if (error != 0)
11859 		return (error);
11860 	sb = &sbuf;
11861 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11862 
11863 	/* Sentinel value. */
11864 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11865 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11866 	    NPDEPG - 1, NPTEPG - 1);
11867 
11868 	/*
11869 	 * Iterate over the kernel page tables without holding the kernel pmap
11870 	 * lock.  Outside of the large map, kernel page table pages are never
11871 	 * freed, so at worst we will observe inconsistencies in the output.
11872 	 * Within the large map, ensure that PDP and PD page addresses are
11873 	 * valid before descending.
11874 	 */
11875 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11876 		switch (i) {
11877 		case PML4PML4I:
11878 			sbuf_printf(sb, "\nRecursive map:\n");
11879 			break;
11880 		case DMPML4I:
11881 			sbuf_printf(sb, "\nDirect map:\n");
11882 			break;
11883 #ifdef KASAN
11884 		case KASANPML4I:
11885 			sbuf_printf(sb, "\nKASAN shadow map:\n");
11886 			break;
11887 #endif
11888 #ifdef KMSAN
11889 		case KMSANSHADPML4I:
11890 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
11891 			break;
11892 		case KMSANORIGPML4I:
11893 			sbuf_printf(sb, "\nKMSAN origin map:\n");
11894 			break;
11895 #endif
11896 		case KPML4BASE:
11897 			sbuf_printf(sb, "\nKernel map:\n");
11898 			break;
11899 		case LMSPML4I:
11900 			sbuf_printf(sb, "\nLarge map:\n");
11901 			break;
11902 		}
11903 
11904 		/* Convert to canonical form. */
11905 		if (sva == 1ul << 47)
11906 			sva |= -1ul << 48;
11907 
11908 restart:
11909 		pml4e = kernel_pml4[i];
11910 		if ((pml4e & X86_PG_V) == 0) {
11911 			sva = rounddown2(sva, NBPML4);
11912 			sysctl_kmaps_dump(sb, &range, sva);
11913 			sva += NBPML4;
11914 			continue;
11915 		}
11916 		pa = pml4e & PG_FRAME;
11917 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
11918 
11919 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
11920 			pdpe = pdp[j];
11921 			if ((pdpe & X86_PG_V) == 0) {
11922 				sva = rounddown2(sva, NBPDP);
11923 				sysctl_kmaps_dump(sb, &range, sva);
11924 				sva += NBPDP;
11925 				continue;
11926 			}
11927 			pa = pdpe & PG_FRAME;
11928 			if ((pdpe & PG_PS) != 0) {
11929 				sva = rounddown2(sva, NBPDP);
11930 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
11931 				    0, 0);
11932 				range.pdpes++;
11933 				sva += NBPDP;
11934 				continue;
11935 			}
11936 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11937 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
11938 				/*
11939 				 * Page table pages for the large map may be
11940 				 * freed.  Validate the next-level address
11941 				 * before descending.
11942 				 */
11943 				goto restart;
11944 			}
11945 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
11946 
11947 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
11948 				pde = pd[k];
11949 				if ((pde & X86_PG_V) == 0) {
11950 					sva = rounddown2(sva, NBPDR);
11951 					sysctl_kmaps_dump(sb, &range, sva);
11952 					sva += NBPDR;
11953 					continue;
11954 				}
11955 				pa = pde & PG_FRAME;
11956 				if ((pde & PG_PS) != 0) {
11957 					sva = rounddown2(sva, NBPDR);
11958 					sysctl_kmaps_check(sb, &range, sva,
11959 					    pml4e, pdpe, pde, 0);
11960 					range.pdes++;
11961 					sva += NBPDR;
11962 					continue;
11963 				}
11964 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11965 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
11966 					/*
11967 					 * Page table pages for the large map
11968 					 * may be freed.  Validate the
11969 					 * next-level address before descending.
11970 					 */
11971 					goto restart;
11972 				}
11973 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
11974 
11975 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
11976 				    sva += PAGE_SIZE) {
11977 					pte = pt[l];
11978 					if ((pte & X86_PG_V) == 0) {
11979 						sysctl_kmaps_dump(sb, &range,
11980 						    sva);
11981 						continue;
11982 					}
11983 					sysctl_kmaps_check(sb, &range, sva,
11984 					    pml4e, pdpe, pde, pte);
11985 					range.ptes++;
11986 				}
11987 			}
11988 		}
11989 	}
11990 
11991 	error = sbuf_finish(sb);
11992 	sbuf_delete(sb);
11993 	return (error);
11994 }
11995 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
11996     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
11997     NULL, 0, sysctl_kmaps, "A",
11998     "Dump kernel address layout");
11999 
12000 #ifdef DDB
12001 DB_SHOW_COMMAND(pte, pmap_print_pte)
12002 {
12003 	pmap_t pmap;
12004 	pml5_entry_t *pml5;
12005 	pml4_entry_t *pml4;
12006 	pdp_entry_t *pdp;
12007 	pd_entry_t *pde;
12008 	pt_entry_t *pte, PG_V;
12009 	vm_offset_t va;
12010 
12011 	if (!have_addr) {
12012 		db_printf("show pte addr\n");
12013 		return;
12014 	}
12015 	va = (vm_offset_t)addr;
12016 
12017 	if (kdb_thread != NULL)
12018 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12019 	else
12020 		pmap = PCPU_GET(curpmap);
12021 
12022 	PG_V = pmap_valid_bit(pmap);
12023 	db_printf("VA 0x%016lx", va);
12024 
12025 	if (pmap_is_la57(pmap)) {
12026 		pml5 = pmap_pml5e(pmap, va);
12027 		db_printf(" pml5e 0x%016lx", *pml5);
12028 		if ((*pml5 & PG_V) == 0) {
12029 			db_printf("\n");
12030 			return;
12031 		}
12032 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12033 	} else {
12034 		pml4 = pmap_pml4e(pmap, va);
12035 	}
12036 	db_printf(" pml4e 0x%016lx", *pml4);
12037 	if ((*pml4 & PG_V) == 0) {
12038 		db_printf("\n");
12039 		return;
12040 	}
12041 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12042 	db_printf(" pdpe 0x%016lx", *pdp);
12043 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12044 		db_printf("\n");
12045 		return;
12046 	}
12047 	pde = pmap_pdpe_to_pde(pdp, va);
12048 	db_printf(" pde 0x%016lx", *pde);
12049 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12050 		db_printf("\n");
12051 		return;
12052 	}
12053 	pte = pmap_pde_to_pte(pde, va);
12054 	db_printf(" pte 0x%016lx\n", *pte);
12055 }
12056 
12057 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12058 {
12059 	vm_paddr_t a;
12060 
12061 	if (have_addr) {
12062 		a = (vm_paddr_t)addr;
12063 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12064 	} else {
12065 		db_printf("show phys2dmap addr\n");
12066 	}
12067 }
12068 
12069 static void
12070 ptpages_show_page(int level, int idx, vm_page_t pg)
12071 {
12072 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12073 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12074 }
12075 
12076 static void
12077 ptpages_show_complain(int level, int idx, uint64_t pte)
12078 {
12079 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12080 }
12081 
12082 static void
12083 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12084 {
12085 	vm_page_t pg3, pg2, pg1;
12086 	pml4_entry_t *pml4;
12087 	pdp_entry_t *pdp;
12088 	pd_entry_t *pd;
12089 	int i4, i3, i2;
12090 
12091 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12092 	for (i4 = 0; i4 < num_entries; i4++) {
12093 		if ((pml4[i4] & PG_V) == 0)
12094 			continue;
12095 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12096 		if (pg3 == NULL) {
12097 			ptpages_show_complain(3, i4, pml4[i4]);
12098 			continue;
12099 		}
12100 		ptpages_show_page(3, i4, pg3);
12101 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12102 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12103 			if ((pdp[i3] & PG_V) == 0)
12104 				continue;
12105 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12106 			if (pg3 == NULL) {
12107 				ptpages_show_complain(2, i3, pdp[i3]);
12108 				continue;
12109 			}
12110 			ptpages_show_page(2, i3, pg2);
12111 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12112 			for (i2 = 0; i2 < NPDEPG; i2++) {
12113 				if ((pd[i2] & PG_V) == 0)
12114 					continue;
12115 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12116 				if (pg1 == NULL) {
12117 					ptpages_show_complain(1, i2, pd[i2]);
12118 					continue;
12119 				}
12120 				ptpages_show_page(1, i2, pg1);
12121 			}
12122 		}
12123 	}
12124 }
12125 
12126 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12127 {
12128 	pmap_t pmap;
12129 	vm_page_t pg;
12130 	pml5_entry_t *pml5;
12131 	uint64_t PG_V;
12132 	int i5;
12133 
12134 	if (have_addr)
12135 		pmap = (pmap_t)addr;
12136 	else
12137 		pmap = PCPU_GET(curpmap);
12138 
12139 	PG_V = pmap_valid_bit(pmap);
12140 
12141 	if (pmap_is_la57(pmap)) {
12142 		pml5 = pmap->pm_pmltop;
12143 		for (i5 = 0; i5 < NUPML5E; i5++) {
12144 			if ((pml5[i5] & PG_V) == 0)
12145 				continue;
12146 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12147 			if (pg == NULL) {
12148 				ptpages_show_complain(4, i5, pml5[i5]);
12149 				continue;
12150 			}
12151 			ptpages_show_page(4, i5, pg);
12152 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12153 		}
12154 	} else {
12155 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12156 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12157 	}
12158 }
12159 #endif
12160