xref: /freebsd/sys/amd64/amd64/pmap.c (revision 315ee00f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
48  */
49 /*-
50  * Copyright (c) 2003 Networks Associates Technology, Inc.
51  * Copyright (c) 2014-2020 The FreeBSD Foundation
52  * All rights reserved.
53  *
54  * This software was developed for the FreeBSD Project by Jake Burkholder,
55  * Safeport Network Services, and Network Associates Laboratories, the
56  * Security Research Division of Network Associates, Inc. under
57  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58  * CHATS research program.
59  *
60  * Portions of this software were developed by
61  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
62  * the FreeBSD Foundation.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #define	AMD64_NPT_AWARE
87 
88 #include <sys/cdefs.h>
89 /*
90  *	Manages physical address maps.
91  *
92  *	Since the information managed by this module is
93  *	also stored by the logical address mapping module,
94  *	this module may throw away valid virtual-to-physical
95  *	mappings at almost any time.  However, invalidations
96  *	of virtual-to-physical mappings must be done as
97  *	requested.
98  *
99  *	In order to cope with hardware architectures which
100  *	make virtual-to-physical map invalidates expensive,
101  *	this module may delay invalidate or reduced protection
102  *	operations until such time as they are actually
103  *	necessary.  This module is given full information as
104  *	to which processors are currently using which maps,
105  *	and to when physical maps must be made correct.
106  */
107 
108 #include "opt_ddb.h"
109 #include "opt_pmap.h"
110 #include "opt_vm.h"
111 
112 #include <sys/param.h>
113 #include <sys/asan.h>
114 #include <sys/bitstring.h>
115 #include <sys/bus.h>
116 #include <sys/systm.h>
117 #include <sys/counter.h>
118 #include <sys/kernel.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/malloc.h>
122 #include <sys/mman.h>
123 #include <sys/msan.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/rangeset.h>
127 #include <sys/rwlock.h>
128 #include <sys/sbuf.h>
129 #include <sys/smr.h>
130 #include <sys/sx.h>
131 #include <sys/turnstile.h>
132 #include <sys/vmem.h>
133 #include <sys/vmmeter.h>
134 #include <sys/sched.h>
135 #include <sys/sysctl.h>
136 #include <sys/smp.h>
137 #ifdef DDB
138 #include <sys/kdb.h>
139 #include <ddb/ddb.h>
140 #endif
141 
142 #include <vm/vm.h>
143 #include <vm/vm_param.h>
144 #include <vm/vm_kern.h>
145 #include <vm/vm_page.h>
146 #include <vm/vm_map.h>
147 #include <vm/vm_object.h>
148 #include <vm/vm_extern.h>
149 #include <vm/vm_pageout.h>
150 #include <vm/vm_pager.h>
151 #include <vm/vm_phys.h>
152 #include <vm/vm_radix.h>
153 #include <vm/vm_reserv.h>
154 #include <vm/vm_dumpset.h>
155 #include <vm/uma.h>
156 
157 #include <machine/asan.h>
158 #include <machine/intr_machdep.h>
159 #include <x86/apicvar.h>
160 #include <x86/ifunc.h>
161 #include <machine/cpu.h>
162 #include <machine/cputypes.h>
163 #include <machine/md_var.h>
164 #include <machine/msan.h>
165 #include <machine/pcb.h>
166 #include <machine/specialreg.h>
167 #ifdef SMP
168 #include <machine/smp.h>
169 #endif
170 #include <machine/sysarch.h>
171 #include <machine/tss.h>
172 
173 #ifdef NUMA
174 #define	PMAP_MEMDOM	MAXMEMDOM
175 #else
176 #define	PMAP_MEMDOM	1
177 #endif
178 
179 static __inline boolean_t
180 pmap_type_guest(pmap_t pmap)
181 {
182 
183 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
184 }
185 
186 static __inline boolean_t
187 pmap_emulate_ad_bits(pmap_t pmap)
188 {
189 
190 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
191 }
192 
193 static __inline pt_entry_t
194 pmap_valid_bit(pmap_t pmap)
195 {
196 	pt_entry_t mask;
197 
198 	switch (pmap->pm_type) {
199 	case PT_X86:
200 	case PT_RVI:
201 		mask = X86_PG_V;
202 		break;
203 	case PT_EPT:
204 		if (pmap_emulate_ad_bits(pmap))
205 			mask = EPT_PG_EMUL_V;
206 		else
207 			mask = EPT_PG_READ;
208 		break;
209 	default:
210 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
211 	}
212 
213 	return (mask);
214 }
215 
216 static __inline pt_entry_t
217 pmap_rw_bit(pmap_t pmap)
218 {
219 	pt_entry_t mask;
220 
221 	switch (pmap->pm_type) {
222 	case PT_X86:
223 	case PT_RVI:
224 		mask = X86_PG_RW;
225 		break;
226 	case PT_EPT:
227 		if (pmap_emulate_ad_bits(pmap))
228 			mask = EPT_PG_EMUL_RW;
229 		else
230 			mask = EPT_PG_WRITE;
231 		break;
232 	default:
233 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
234 	}
235 
236 	return (mask);
237 }
238 
239 static pt_entry_t pg_g;
240 
241 static __inline pt_entry_t
242 pmap_global_bit(pmap_t pmap)
243 {
244 	pt_entry_t mask;
245 
246 	switch (pmap->pm_type) {
247 	case PT_X86:
248 		mask = pg_g;
249 		break;
250 	case PT_RVI:
251 	case PT_EPT:
252 		mask = 0;
253 		break;
254 	default:
255 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
256 	}
257 
258 	return (mask);
259 }
260 
261 static __inline pt_entry_t
262 pmap_accessed_bit(pmap_t pmap)
263 {
264 	pt_entry_t mask;
265 
266 	switch (pmap->pm_type) {
267 	case PT_X86:
268 	case PT_RVI:
269 		mask = X86_PG_A;
270 		break;
271 	case PT_EPT:
272 		if (pmap_emulate_ad_bits(pmap))
273 			mask = EPT_PG_READ;
274 		else
275 			mask = EPT_PG_A;
276 		break;
277 	default:
278 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
279 	}
280 
281 	return (mask);
282 }
283 
284 static __inline pt_entry_t
285 pmap_modified_bit(pmap_t pmap)
286 {
287 	pt_entry_t mask;
288 
289 	switch (pmap->pm_type) {
290 	case PT_X86:
291 	case PT_RVI:
292 		mask = X86_PG_M;
293 		break;
294 	case PT_EPT:
295 		if (pmap_emulate_ad_bits(pmap))
296 			mask = EPT_PG_WRITE;
297 		else
298 			mask = EPT_PG_M;
299 		break;
300 	default:
301 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
302 	}
303 
304 	return (mask);
305 }
306 
307 static __inline pt_entry_t
308 pmap_pku_mask_bit(pmap_t pmap)
309 {
310 
311 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
312 }
313 
314 static __inline boolean_t
315 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
316 {
317 
318 	if (!pmap_emulate_ad_bits(pmap))
319 		return (TRUE);
320 
321 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
322 
323 	/*
324 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
325 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
326 	 * if the EPT_PG_WRITE bit is set.
327 	 */
328 	if ((pte & EPT_PG_WRITE) != 0)
329 		return (FALSE);
330 
331 	/*
332 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
333 	 */
334 	if ((pte & EPT_PG_EXECUTE) == 0 ||
335 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
336 		return (TRUE);
337 	else
338 		return (FALSE);
339 }
340 
341 #if !defined(DIAGNOSTIC)
342 #ifdef __GNUC_GNU_INLINE__
343 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
344 #else
345 #define PMAP_INLINE	extern inline
346 #endif
347 #else
348 #define PMAP_INLINE
349 #endif
350 
351 #ifdef PV_STATS
352 #define PV_STAT(x)	do { x ; } while (0)
353 #else
354 #define PV_STAT(x)	do { } while (0)
355 #endif
356 
357 #undef pa_index
358 #ifdef NUMA
359 #define	pa_index(pa)	({					\
360 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
361 	    ("address %lx beyond the last segment", (pa)));	\
362 	(pa) >> PDRSHIFT;					\
363 })
364 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
365 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
366 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
367 	struct rwlock *_lock;					\
368 	if (__predict_false((pa) > pmap_last_pa))		\
369 		_lock = &pv_dummy_large.pv_lock;		\
370 	else							\
371 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
372 	_lock;							\
373 })
374 #else
375 #define	pa_index(pa)	((pa) >> PDRSHIFT)
376 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
377 
378 #define	NPV_LIST_LOCKS	MAXCPU
379 
380 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
381 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
382 #endif
383 
384 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
385 	struct rwlock **_lockp = (lockp);		\
386 	struct rwlock *_new_lock;			\
387 							\
388 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
389 	if (_new_lock != *_lockp) {			\
390 		if (*_lockp != NULL)			\
391 			rw_wunlock(*_lockp);		\
392 		*_lockp = _new_lock;			\
393 		rw_wlock(*_lockp);			\
394 	}						\
395 } while (0)
396 
397 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
398 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
399 
400 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
401 	struct rwlock **_lockp = (lockp);		\
402 							\
403 	if (*_lockp != NULL) {				\
404 		rw_wunlock(*_lockp);			\
405 		*_lockp = NULL;				\
406 	}						\
407 } while (0)
408 
409 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
410 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
411 
412 /*
413  * Statically allocate kernel pmap memory.  However, memory for
414  * pm_pcids is obtained after the dynamic allocator is operational.
415  * Initialize it with a non-canonical pointer to catch early accesses
416  * regardless of the active mapping.
417  */
418 struct pmap kernel_pmap_store = {
419 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
420 };
421 
422 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
423 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
424 
425 int nkpt;
426 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
427     "Number of kernel page table pages allocated on bootup");
428 
429 static int ndmpdp;
430 vm_paddr_t dmaplimit;
431 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
432 pt_entry_t pg_nx;
433 
434 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
435     "VM/pmap parameters");
436 
437 static int __read_frequently pg_ps_enabled = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
439     &pg_ps_enabled, 0, "Are large page mappings enabled?");
440 
441 int __read_frequently la57 = 0;
442 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
443     &la57, 0,
444     "5-level paging for host is enabled");
445 
446 static bool
447 pmap_is_la57(pmap_t pmap)
448 {
449 	if (pmap->pm_type == PT_X86)
450 		return (la57);
451 	return (false);		/* XXXKIB handle EPT */
452 }
453 
454 #define	PAT_INDEX_SIZE	8
455 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
456 
457 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
458 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
459 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
460 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
461 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
462 					   if supported */
463 
464 #ifdef KASAN
465 static uint64_t		KASANPDPphys;
466 #endif
467 #ifdef KMSAN
468 static uint64_t		KMSANSHADPDPphys;
469 static uint64_t		KMSANORIGPDPphys;
470 
471 /*
472  * To support systems with large amounts of memory, it is necessary to extend
473  * the maximum size of the direct map.  This could eat into the space reserved
474  * for the shadow map.
475  */
476 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
477 #endif
478 
479 static pml4_entry_t	*kernel_pml4;
480 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
481 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
482 static int		ndmpdpphys;	/* number of DMPDPphys pages */
483 
484 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
485 vm_paddr_t		KERNend;	/* and the end */
486 
487 /*
488  * pmap_mapdev support pre initialization (i.e. console)
489  */
490 #define	PMAP_PREINIT_MAPPING_COUNT	8
491 static struct pmap_preinit_mapping {
492 	vm_paddr_t	pa;
493 	vm_offset_t	va;
494 	vm_size_t	sz;
495 	int		mode;
496 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
497 static int pmap_initialized;
498 
499 /*
500  * Data for the pv entry allocation mechanism.
501  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
502  */
503 #ifdef NUMA
504 static __inline int
505 pc_to_domain(struct pv_chunk *pc)
506 {
507 
508 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
509 }
510 #else
511 static __inline int
512 pc_to_domain(struct pv_chunk *pc __unused)
513 {
514 
515 	return (0);
516 }
517 #endif
518 
519 struct pv_chunks_list {
520 	struct mtx pvc_lock;
521 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
522 	int active_reclaims;
523 } __aligned(CACHE_LINE_SIZE);
524 
525 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
526 
527 #ifdef	NUMA
528 struct pmap_large_md_page {
529 	struct rwlock   pv_lock;
530 	struct md_page  pv_page;
531 	u_long pv_invl_gen;
532 };
533 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
534 #define pv_dummy pv_dummy_large.pv_page
535 __read_mostly static struct pmap_large_md_page *pv_table;
536 __read_mostly vm_paddr_t pmap_last_pa;
537 #else
538 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
539 static u_long pv_invl_gen[NPV_LIST_LOCKS];
540 static struct md_page *pv_table;
541 static struct md_page pv_dummy;
542 #endif
543 
544 /*
545  * All those kernel PT submaps that BSD is so fond of
546  */
547 pt_entry_t *CMAP1 = NULL;
548 caddr_t CADDR1 = 0;
549 static vm_offset_t qframe = 0;
550 static struct mtx qframe_mtx;
551 
552 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
553 
554 static vmem_t *large_vmem;
555 static u_int lm_ents;
556 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
557 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
558 
559 int pmap_pcid_enabled = 1;
560 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
561     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
562 int invpcid_works = 0;
563 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
564     "Is the invpcid instruction available ?");
565 int pmap_pcid_invlpg_workaround = 0;
566 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
567     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
568     &pmap_pcid_invlpg_workaround, 0,
569     "Enable small core PCID/INVLPG workaround");
570 int pmap_pcid_invlpg_workaround_uena = 1;
571 
572 int __read_frequently pti = 0;
573 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
574     &pti, 0,
575     "Page Table Isolation enabled");
576 static vm_object_t pti_obj;
577 static pml4_entry_t *pti_pml4;
578 static vm_pindex_t pti_pg_idx;
579 static bool pti_finalized;
580 
581 struct pmap_pkru_range {
582 	struct rs_el	pkru_rs_el;
583 	u_int		pkru_keyidx;
584 	int		pkru_flags;
585 };
586 
587 static uma_zone_t pmap_pkru_ranges_zone;
588 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
589 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
590 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
591 static void *pkru_dup_range(void *ctx, void *data);
592 static void pkru_free_range(void *ctx, void *node);
593 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
594 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
595 static void pmap_pkru_deassign_all(pmap_t pmap);
596 
597 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
598 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
599     &pcid_save_cnt, "Count of saved TLB context on switch");
600 
601 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
602     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
603 static struct mtx invl_gen_mtx;
604 /* Fake lock object to satisfy turnstiles interface. */
605 static struct lock_object invl_gen_ts = {
606 	.lo_name = "invlts",
607 };
608 static struct pmap_invl_gen pmap_invl_gen_head = {
609 	.gen = 1,
610 	.next = NULL,
611 };
612 static u_long pmap_invl_gen = 1;
613 static int pmap_invl_waiters;
614 static struct callout pmap_invl_callout;
615 static bool pmap_invl_callout_inited;
616 
617 #define	PMAP_ASSERT_NOT_IN_DI() \
618     KASSERT(pmap_not_in_di(), ("DI already started"))
619 
620 static bool
621 pmap_di_locked(void)
622 {
623 	int tun;
624 
625 	if ((cpu_feature2 & CPUID2_CX16) == 0)
626 		return (true);
627 	tun = 0;
628 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
629 	return (tun != 0);
630 }
631 
632 static int
633 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
634 {
635 	int locked;
636 
637 	locked = pmap_di_locked();
638 	return (sysctl_handle_int(oidp, &locked, 0, req));
639 }
640 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
641     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
642     "Locked delayed invalidation");
643 
644 static bool pmap_not_in_di_l(void);
645 static bool pmap_not_in_di_u(void);
646 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
647 {
648 
649 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
650 }
651 
652 static bool
653 pmap_not_in_di_l(void)
654 {
655 	struct pmap_invl_gen *invl_gen;
656 
657 	invl_gen = &curthread->td_md.md_invl_gen;
658 	return (invl_gen->gen == 0);
659 }
660 
661 static void
662 pmap_thread_init_invl_gen_l(struct thread *td)
663 {
664 	struct pmap_invl_gen *invl_gen;
665 
666 	invl_gen = &td->td_md.md_invl_gen;
667 	invl_gen->gen = 0;
668 }
669 
670 static void
671 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
672 {
673 	struct turnstile *ts;
674 
675 	ts = turnstile_trywait(&invl_gen_ts);
676 	if (*m_gen > atomic_load_long(invl_gen))
677 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
678 	else
679 		turnstile_cancel(ts);
680 }
681 
682 static void
683 pmap_delayed_invl_finish_unblock(u_long new_gen)
684 {
685 	struct turnstile *ts;
686 
687 	turnstile_chain_lock(&invl_gen_ts);
688 	ts = turnstile_lookup(&invl_gen_ts);
689 	if (new_gen != 0)
690 		pmap_invl_gen = new_gen;
691 	if (ts != NULL) {
692 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
693 		turnstile_unpend(ts);
694 	}
695 	turnstile_chain_unlock(&invl_gen_ts);
696 }
697 
698 /*
699  * Start a new Delayed Invalidation (DI) block of code, executed by
700  * the current thread.  Within a DI block, the current thread may
701  * destroy both the page table and PV list entries for a mapping and
702  * then release the corresponding PV list lock before ensuring that
703  * the mapping is flushed from the TLBs of any processors with the
704  * pmap active.
705  */
706 static void
707 pmap_delayed_invl_start_l(void)
708 {
709 	struct pmap_invl_gen *invl_gen;
710 	u_long currgen;
711 
712 	invl_gen = &curthread->td_md.md_invl_gen;
713 	PMAP_ASSERT_NOT_IN_DI();
714 	mtx_lock(&invl_gen_mtx);
715 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
716 		currgen = pmap_invl_gen;
717 	else
718 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
719 	invl_gen->gen = currgen + 1;
720 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
721 	mtx_unlock(&invl_gen_mtx);
722 }
723 
724 /*
725  * Finish the DI block, previously started by the current thread.  All
726  * required TLB flushes for the pages marked by
727  * pmap_delayed_invl_page() must be finished before this function is
728  * called.
729  *
730  * This function works by bumping the global DI generation number to
731  * the generation number of the current thread's DI, unless there is a
732  * pending DI that started earlier.  In the latter case, bumping the
733  * global DI generation number would incorrectly signal that the
734  * earlier DI had finished.  Instead, this function bumps the earlier
735  * DI's generation number to match the generation number of the
736  * current thread's DI.
737  */
738 static void
739 pmap_delayed_invl_finish_l(void)
740 {
741 	struct pmap_invl_gen *invl_gen, *next;
742 
743 	invl_gen = &curthread->td_md.md_invl_gen;
744 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
745 	mtx_lock(&invl_gen_mtx);
746 	next = LIST_NEXT(invl_gen, link);
747 	if (next == NULL)
748 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
749 	else
750 		next->gen = invl_gen->gen;
751 	LIST_REMOVE(invl_gen, link);
752 	mtx_unlock(&invl_gen_mtx);
753 	invl_gen->gen = 0;
754 }
755 
756 static bool
757 pmap_not_in_di_u(void)
758 {
759 	struct pmap_invl_gen *invl_gen;
760 
761 	invl_gen = &curthread->td_md.md_invl_gen;
762 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
763 }
764 
765 static void
766 pmap_thread_init_invl_gen_u(struct thread *td)
767 {
768 	struct pmap_invl_gen *invl_gen;
769 
770 	invl_gen = &td->td_md.md_invl_gen;
771 	invl_gen->gen = 0;
772 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
773 }
774 
775 static bool
776 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
777 {
778 	uint64_t new_high, new_low, old_high, old_low;
779 	char res;
780 
781 	old_low = new_low = 0;
782 	old_high = new_high = (uintptr_t)0;
783 
784 	__asm volatile("lock;cmpxchg16b\t%1"
785 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
786 	    : "b"(new_low), "c" (new_high)
787 	    : "memory", "cc");
788 	if (res == 0) {
789 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
790 			return (false);
791 		out->gen = old_low;
792 		out->next = (void *)old_high;
793 	} else {
794 		out->gen = new_low;
795 		out->next = (void *)new_high;
796 	}
797 	return (true);
798 }
799 
800 static bool
801 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
802     struct pmap_invl_gen *new_val)
803 {
804 	uint64_t new_high, new_low, old_high, old_low;
805 	char res;
806 
807 	new_low = new_val->gen;
808 	new_high = (uintptr_t)new_val->next;
809 	old_low = old_val->gen;
810 	old_high = (uintptr_t)old_val->next;
811 
812 	__asm volatile("lock;cmpxchg16b\t%1"
813 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
814 	    : "b"(new_low), "c" (new_high)
815 	    : "memory", "cc");
816 	return (res);
817 }
818 
819 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
820 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
821     &pv_page_count, "Current number of allocated pv pages");
822 
823 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
824 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
825     &user_pt_page_count,
826     "Current number of allocated page table pages for userspace");
827 
828 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
830     &kernel_pt_page_count,
831     "Current number of allocated page table pages for the kernel");
832 
833 #ifdef PV_STATS
834 
835 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
836 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
837     CTLFLAG_RD, &invl_start_restart,
838     "Number of delayed TLB invalidation request restarts");
839 
840 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
841 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
842     &invl_finish_restart,
843     "Number of delayed TLB invalidation completion restarts");
844 
845 static int invl_max_qlen;
846 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
847     &invl_max_qlen, 0,
848     "Maximum delayed TLB invalidation request queue length");
849 #endif
850 
851 #define di_delay	locks_delay
852 
853 static void
854 pmap_delayed_invl_start_u(void)
855 {
856 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
857 	struct thread *td;
858 	struct lock_delay_arg lda;
859 	uintptr_t prevl;
860 	u_char pri;
861 #ifdef PV_STATS
862 	int i, ii;
863 #endif
864 
865 	td = curthread;
866 	invl_gen = &td->td_md.md_invl_gen;
867 	PMAP_ASSERT_NOT_IN_DI();
868 	lock_delay_arg_init(&lda, &di_delay);
869 	invl_gen->saved_pri = 0;
870 	pri = td->td_base_pri;
871 	if (pri > PVM) {
872 		thread_lock(td);
873 		pri = td->td_base_pri;
874 		if (pri > PVM) {
875 			invl_gen->saved_pri = pri;
876 			sched_prio(td, PVM);
877 		}
878 		thread_unlock(td);
879 	}
880 again:
881 	PV_STAT(i = 0);
882 	for (p = &pmap_invl_gen_head;; p = prev.next) {
883 		PV_STAT(i++);
884 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
885 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
886 			PV_STAT(counter_u64_add(invl_start_restart, 1));
887 			lock_delay(&lda);
888 			goto again;
889 		}
890 		if (prevl == 0)
891 			break;
892 		prev.next = (void *)prevl;
893 	}
894 #ifdef PV_STATS
895 	if ((ii = invl_max_qlen) < i)
896 		atomic_cmpset_int(&invl_max_qlen, ii, i);
897 #endif
898 
899 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
900 		PV_STAT(counter_u64_add(invl_start_restart, 1));
901 		lock_delay(&lda);
902 		goto again;
903 	}
904 
905 	new_prev.gen = prev.gen;
906 	new_prev.next = invl_gen;
907 	invl_gen->gen = prev.gen + 1;
908 
909 	/* Formal fence between store to invl->gen and updating *p. */
910 	atomic_thread_fence_rel();
911 
912 	/*
913 	 * After inserting an invl_gen element with invalid bit set,
914 	 * this thread blocks any other thread trying to enter the
915 	 * delayed invalidation block.  Do not allow to remove us from
916 	 * the CPU, because it causes starvation for other threads.
917 	 */
918 	critical_enter();
919 
920 	/*
921 	 * ABA for *p is not possible there, since p->gen can only
922 	 * increase.  So if the *p thread finished its di, then
923 	 * started a new one and got inserted into the list at the
924 	 * same place, its gen will appear greater than the previously
925 	 * read gen.
926 	 */
927 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
928 		critical_exit();
929 		PV_STAT(counter_u64_add(invl_start_restart, 1));
930 		lock_delay(&lda);
931 		goto again;
932 	}
933 
934 	/*
935 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
936 	 * invl_gen->next, allowing other threads to iterate past us.
937 	 * pmap_di_store_invl() provides fence between the generation
938 	 * write and the update of next.
939 	 */
940 	invl_gen->next = NULL;
941 	critical_exit();
942 }
943 
944 static bool
945 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
946     struct pmap_invl_gen *p)
947 {
948 	struct pmap_invl_gen prev, new_prev;
949 	u_long mygen;
950 
951 	/*
952 	 * Load invl_gen->gen after setting invl_gen->next
953 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
954 	 * generations to propagate to our invl_gen->gen.  Lock prefix
955 	 * in atomic_set_ptr() worked as seq_cst fence.
956 	 */
957 	mygen = atomic_load_long(&invl_gen->gen);
958 
959 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
960 		return (false);
961 
962 	KASSERT(prev.gen < mygen,
963 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
964 	new_prev.gen = mygen;
965 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
966 	    ~PMAP_INVL_GEN_NEXT_INVALID);
967 
968 	/* Formal fence between load of prev and storing update to it. */
969 	atomic_thread_fence_rel();
970 
971 	return (pmap_di_store_invl(p, &prev, &new_prev));
972 }
973 
974 static void
975 pmap_delayed_invl_finish_u(void)
976 {
977 	struct pmap_invl_gen *invl_gen, *p;
978 	struct thread *td;
979 	struct lock_delay_arg lda;
980 	uintptr_t prevl;
981 
982 	td = curthread;
983 	invl_gen = &td->td_md.md_invl_gen;
984 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
985 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
986 	    ("missed invl_start: INVALID"));
987 	lock_delay_arg_init(&lda, &di_delay);
988 
989 again:
990 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
991 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
992 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
993 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
994 			lock_delay(&lda);
995 			goto again;
996 		}
997 		if ((void *)prevl == invl_gen)
998 			break;
999 	}
1000 
1001 	/*
1002 	 * It is legitimate to not find ourself on the list if a
1003 	 * thread before us finished its DI and started it again.
1004 	 */
1005 	if (__predict_false(p == NULL)) {
1006 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1007 		lock_delay(&lda);
1008 		goto again;
1009 	}
1010 
1011 	critical_enter();
1012 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1013 	    PMAP_INVL_GEN_NEXT_INVALID);
1014 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1015 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1016 		    PMAP_INVL_GEN_NEXT_INVALID);
1017 		critical_exit();
1018 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1019 		lock_delay(&lda);
1020 		goto again;
1021 	}
1022 	critical_exit();
1023 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1024 		pmap_delayed_invl_finish_unblock(0);
1025 	if (invl_gen->saved_pri != 0) {
1026 		thread_lock(td);
1027 		sched_prio(td, invl_gen->saved_pri);
1028 		thread_unlock(td);
1029 	}
1030 }
1031 
1032 #ifdef DDB
1033 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1034 {
1035 	struct pmap_invl_gen *p, *pn;
1036 	struct thread *td;
1037 	uintptr_t nextl;
1038 	bool first;
1039 
1040 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1041 	    first = false) {
1042 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1043 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1044 		td = first ? NULL : __containerof(p, struct thread,
1045 		    td_md.md_invl_gen);
1046 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1047 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1048 		    td != NULL ? td->td_tid : -1);
1049 	}
1050 }
1051 #endif
1052 
1053 #ifdef PV_STATS
1054 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1055 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1056     CTLFLAG_RD, &invl_wait,
1057     "Number of times DI invalidation blocked pmap_remove_all/write");
1058 
1059 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1060 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1061      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1062 
1063 #endif
1064 
1065 #ifdef NUMA
1066 static u_long *
1067 pmap_delayed_invl_genp(vm_page_t m)
1068 {
1069 	vm_paddr_t pa;
1070 	u_long *gen;
1071 
1072 	pa = VM_PAGE_TO_PHYS(m);
1073 	if (__predict_false((pa) > pmap_last_pa))
1074 		gen = &pv_dummy_large.pv_invl_gen;
1075 	else
1076 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1077 
1078 	return (gen);
1079 }
1080 #else
1081 static u_long *
1082 pmap_delayed_invl_genp(vm_page_t m)
1083 {
1084 
1085 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1086 }
1087 #endif
1088 
1089 static void
1090 pmap_delayed_invl_callout_func(void *arg __unused)
1091 {
1092 
1093 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1094 		return;
1095 	pmap_delayed_invl_finish_unblock(0);
1096 }
1097 
1098 static void
1099 pmap_delayed_invl_callout_init(void *arg __unused)
1100 {
1101 
1102 	if (pmap_di_locked())
1103 		return;
1104 	callout_init(&pmap_invl_callout, 1);
1105 	pmap_invl_callout_inited = true;
1106 }
1107 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1108     pmap_delayed_invl_callout_init, NULL);
1109 
1110 /*
1111  * Ensure that all currently executing DI blocks, that need to flush
1112  * TLB for the given page m, actually flushed the TLB at the time the
1113  * function returned.  If the page m has an empty PV list and we call
1114  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1115  * valid mapping for the page m in either its page table or TLB.
1116  *
1117  * This function works by blocking until the global DI generation
1118  * number catches up with the generation number associated with the
1119  * given page m and its PV list.  Since this function's callers
1120  * typically own an object lock and sometimes own a page lock, it
1121  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1122  * processor.
1123  */
1124 static void
1125 pmap_delayed_invl_wait_l(vm_page_t m)
1126 {
1127 	u_long *m_gen;
1128 #ifdef PV_STATS
1129 	bool accounted = false;
1130 #endif
1131 
1132 	m_gen = pmap_delayed_invl_genp(m);
1133 	while (*m_gen > pmap_invl_gen) {
1134 #ifdef PV_STATS
1135 		if (!accounted) {
1136 			counter_u64_add(invl_wait, 1);
1137 			accounted = true;
1138 		}
1139 #endif
1140 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1141 	}
1142 }
1143 
1144 static void
1145 pmap_delayed_invl_wait_u(vm_page_t m)
1146 {
1147 	u_long *m_gen;
1148 	struct lock_delay_arg lda;
1149 	bool fast;
1150 
1151 	fast = true;
1152 	m_gen = pmap_delayed_invl_genp(m);
1153 	lock_delay_arg_init(&lda, &di_delay);
1154 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1155 		if (fast || !pmap_invl_callout_inited) {
1156 			PV_STAT(counter_u64_add(invl_wait, 1));
1157 			lock_delay(&lda);
1158 			fast = false;
1159 		} else {
1160 			/*
1161 			 * The page's invalidation generation number
1162 			 * is still below the current thread's number.
1163 			 * Prepare to block so that we do not waste
1164 			 * CPU cycles or worse, suffer livelock.
1165 			 *
1166 			 * Since it is impossible to block without
1167 			 * racing with pmap_delayed_invl_finish_u(),
1168 			 * prepare for the race by incrementing
1169 			 * pmap_invl_waiters and arming a 1-tick
1170 			 * callout which will unblock us if we lose
1171 			 * the race.
1172 			 */
1173 			atomic_add_int(&pmap_invl_waiters, 1);
1174 
1175 			/*
1176 			 * Re-check the current thread's invalidation
1177 			 * generation after incrementing
1178 			 * pmap_invl_waiters, so that there is no race
1179 			 * with pmap_delayed_invl_finish_u() setting
1180 			 * the page generation and checking
1181 			 * pmap_invl_waiters.  The only race allowed
1182 			 * is for a missed unblock, which is handled
1183 			 * by the callout.
1184 			 */
1185 			if (*m_gen >
1186 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1187 				callout_reset(&pmap_invl_callout, 1,
1188 				    pmap_delayed_invl_callout_func, NULL);
1189 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1190 				pmap_delayed_invl_wait_block(m_gen,
1191 				    &pmap_invl_gen_head.gen);
1192 			}
1193 			atomic_add_int(&pmap_invl_waiters, -1);
1194 		}
1195 	}
1196 }
1197 
1198 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1199 {
1200 
1201 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1202 	    pmap_thread_init_invl_gen_u);
1203 }
1204 
1205 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1206 {
1207 
1208 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1209 	    pmap_delayed_invl_start_u);
1210 }
1211 
1212 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1213 {
1214 
1215 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1216 	    pmap_delayed_invl_finish_u);
1217 }
1218 
1219 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1220 {
1221 
1222 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1223 	    pmap_delayed_invl_wait_u);
1224 }
1225 
1226 /*
1227  * Mark the page m's PV list as participating in the current thread's
1228  * DI block.  Any threads concurrently using m's PV list to remove or
1229  * restrict all mappings to m will wait for the current thread's DI
1230  * block to complete before proceeding.
1231  *
1232  * The function works by setting the DI generation number for m's PV
1233  * list to at least the DI generation number of the current thread.
1234  * This forces a caller of pmap_delayed_invl_wait() to block until
1235  * current thread calls pmap_delayed_invl_finish().
1236  */
1237 static void
1238 pmap_delayed_invl_page(vm_page_t m)
1239 {
1240 	u_long gen, *m_gen;
1241 
1242 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1243 	gen = curthread->td_md.md_invl_gen.gen;
1244 	if (gen == 0)
1245 		return;
1246 	m_gen = pmap_delayed_invl_genp(m);
1247 	if (*m_gen < gen)
1248 		*m_gen = gen;
1249 }
1250 
1251 /*
1252  * Crashdump maps.
1253  */
1254 static caddr_t crashdumpmap;
1255 
1256 /*
1257  * Internal flags for pmap_enter()'s helper functions.
1258  */
1259 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1260 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1261 
1262 /*
1263  * Internal flags for pmap_mapdev_internal() and
1264  * pmap_change_props_locked().
1265  */
1266 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1267 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1268 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1269 
1270 TAILQ_HEAD(pv_chunklist, pv_chunk);
1271 
1272 static void	free_pv_chunk(struct pv_chunk *pc);
1273 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1274 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1275 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1276 static int	popcnt_pc_map_pq(uint64_t *map);
1277 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1278 static void	reserve_pv_entries(pmap_t pmap, int needed,
1279 		    struct rwlock **lockp);
1280 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1281 		    struct rwlock **lockp);
1282 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1283 		    u_int flags, struct rwlock **lockp);
1284 #if VM_NRESERVLEVEL > 0
1285 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1286 		    struct rwlock **lockp);
1287 #endif
1288 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1289 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1290 		    vm_offset_t va);
1291 
1292 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1293 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1294     vm_prot_t prot, int mode, int flags);
1295 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1296 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1297     vm_offset_t va, struct rwlock **lockp);
1298 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1299     vm_offset_t va);
1300 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1301 		    vm_prot_t prot, struct rwlock **lockp);
1302 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1303 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1304 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1305     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1306 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1307 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1308     bool allpte_PG_A_set);
1309 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1310     vm_offset_t eva);
1311 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1312     vm_offset_t eva);
1313 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1314 		    pd_entry_t pde);
1315 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1316 static vm_page_t pmap_large_map_getptp_unlocked(void);
1317 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1318 #if VM_NRESERVLEVEL > 0
1319 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1320     vm_page_t mpte, struct rwlock **lockp);
1321 #endif
1322 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1323     vm_prot_t prot);
1324 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1325 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1326     bool exec);
1327 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1328 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1329 static void pmap_pti_wire_pte(void *pte);
1330 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1331     struct spglist *free, struct rwlock **lockp);
1332 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1333     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1334 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1335 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1336     struct spglist *free);
1337 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1338 		    pd_entry_t *pde, struct spglist *free,
1339 		    struct rwlock **lockp);
1340 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1341     vm_page_t m, struct rwlock **lockp);
1342 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1343     pd_entry_t newpde);
1344 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1345 
1346 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1347 		struct rwlock **lockp);
1348 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1349 		struct rwlock **lockp, vm_offset_t va);
1350 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1351 		struct rwlock **lockp, vm_offset_t va);
1352 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1353 		struct rwlock **lockp);
1354 
1355 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1356     struct spglist *free);
1357 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1358 
1359 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1360 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1361 
1362 /********************/
1363 /* Inline functions */
1364 /********************/
1365 
1366 /*
1367  * Return a non-clipped indexes for a given VA, which are page table
1368  * pages indexes at the corresponding level.
1369  */
1370 static __inline vm_pindex_t
1371 pmap_pde_pindex(vm_offset_t va)
1372 {
1373 	return (va >> PDRSHIFT);
1374 }
1375 
1376 static __inline vm_pindex_t
1377 pmap_pdpe_pindex(vm_offset_t va)
1378 {
1379 	return (NUPDE + (va >> PDPSHIFT));
1380 }
1381 
1382 static __inline vm_pindex_t
1383 pmap_pml4e_pindex(vm_offset_t va)
1384 {
1385 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1386 }
1387 
1388 static __inline vm_pindex_t
1389 pmap_pml5e_pindex(vm_offset_t va)
1390 {
1391 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1392 }
1393 
1394 static __inline pml4_entry_t *
1395 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1396 {
1397 
1398 	MPASS(pmap_is_la57(pmap));
1399 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1400 }
1401 
1402 static __inline pml4_entry_t *
1403 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1404 {
1405 
1406 	MPASS(pmap_is_la57(pmap));
1407 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1408 }
1409 
1410 static __inline pml4_entry_t *
1411 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1412 {
1413 	pml4_entry_t *pml4e;
1414 
1415 	/* XXX MPASS(pmap_is_la57(pmap); */
1416 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1417 	return (&pml4e[pmap_pml4e_index(va)]);
1418 }
1419 
1420 /* Return a pointer to the PML4 slot that corresponds to a VA */
1421 static __inline pml4_entry_t *
1422 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1423 {
1424 	pml5_entry_t *pml5e;
1425 	pml4_entry_t *pml4e;
1426 	pt_entry_t PG_V;
1427 
1428 	if (pmap_is_la57(pmap)) {
1429 		pml5e = pmap_pml5e(pmap, va);
1430 		PG_V = pmap_valid_bit(pmap);
1431 		if ((*pml5e & PG_V) == 0)
1432 			return (NULL);
1433 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1434 	} else {
1435 		pml4e = pmap->pm_pmltop;
1436 	}
1437 	return (&pml4e[pmap_pml4e_index(va)]);
1438 }
1439 
1440 static __inline pml4_entry_t *
1441 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1442 {
1443 	MPASS(!pmap_is_la57(pmap));
1444 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1445 }
1446 
1447 /* Return a pointer to the PDP slot that corresponds to a VA */
1448 static __inline pdp_entry_t *
1449 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1450 {
1451 	pdp_entry_t *pdpe;
1452 
1453 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1454 	return (&pdpe[pmap_pdpe_index(va)]);
1455 }
1456 
1457 /* Return a pointer to the PDP slot that corresponds to a VA */
1458 static __inline pdp_entry_t *
1459 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1460 {
1461 	pml4_entry_t *pml4e;
1462 	pt_entry_t PG_V;
1463 
1464 	PG_V = pmap_valid_bit(pmap);
1465 	pml4e = pmap_pml4e(pmap, va);
1466 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1467 		return (NULL);
1468 	return (pmap_pml4e_to_pdpe(pml4e, va));
1469 }
1470 
1471 /* Return a pointer to the PD slot that corresponds to a VA */
1472 static __inline pd_entry_t *
1473 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1474 {
1475 	pd_entry_t *pde;
1476 
1477 	KASSERT((*pdpe & PG_PS) == 0,
1478 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1479 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1480 	return (&pde[pmap_pde_index(va)]);
1481 }
1482 
1483 /* Return a pointer to the PD slot that corresponds to a VA */
1484 static __inline pd_entry_t *
1485 pmap_pde(pmap_t pmap, vm_offset_t va)
1486 {
1487 	pdp_entry_t *pdpe;
1488 	pt_entry_t PG_V;
1489 
1490 	PG_V = pmap_valid_bit(pmap);
1491 	pdpe = pmap_pdpe(pmap, va);
1492 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1493 		return (NULL);
1494 	KASSERT((*pdpe & PG_PS) == 0,
1495 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1496 	return (pmap_pdpe_to_pde(pdpe, va));
1497 }
1498 
1499 /* Return a pointer to the PT slot that corresponds to a VA */
1500 static __inline pt_entry_t *
1501 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1502 {
1503 	pt_entry_t *pte;
1504 
1505 	KASSERT((*pde & PG_PS) == 0,
1506 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1507 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1508 	return (&pte[pmap_pte_index(va)]);
1509 }
1510 
1511 /* Return a pointer to the PT slot that corresponds to a VA */
1512 static __inline pt_entry_t *
1513 pmap_pte(pmap_t pmap, vm_offset_t va)
1514 {
1515 	pd_entry_t *pde;
1516 	pt_entry_t PG_V;
1517 
1518 	PG_V = pmap_valid_bit(pmap);
1519 	pde = pmap_pde(pmap, va);
1520 	if (pde == NULL || (*pde & PG_V) == 0)
1521 		return (NULL);
1522 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1523 		return ((pt_entry_t *)pde);
1524 	return (pmap_pde_to_pte(pde, va));
1525 }
1526 
1527 static __inline void
1528 pmap_resident_count_adj(pmap_t pmap, int count)
1529 {
1530 
1531 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1532 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1533 	    ("pmap %p resident count underflow %ld %d", pmap,
1534 	    pmap->pm_stats.resident_count, count));
1535 	pmap->pm_stats.resident_count += count;
1536 }
1537 
1538 static __inline void
1539 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1540 {
1541 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1542 	    ("pmap %p resident count underflow %ld %d", pmap,
1543 	    pmap->pm_stats.resident_count, count));
1544 	pmap->pm_stats.resident_count += count;
1545 }
1546 
1547 static __inline void
1548 pmap_pt_page_count_adj(pmap_t pmap, int count)
1549 {
1550 	if (pmap == kernel_pmap)
1551 		counter_u64_add(kernel_pt_page_count, count);
1552 	else {
1553 		if (pmap != NULL)
1554 			pmap_resident_count_adj(pmap, count);
1555 		counter_u64_add(user_pt_page_count, count);
1556 	}
1557 }
1558 
1559 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1560     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1561 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1562 
1563 PMAP_INLINE pt_entry_t *
1564 vtopte(vm_offset_t va)
1565 {
1566 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1567 
1568 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1569 }
1570 
1571 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1572     NPML4EPGSHIFT)) - 1) << 3;
1573 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1574 
1575 static __inline pd_entry_t *
1576 vtopde(vm_offset_t va)
1577 {
1578 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1579 
1580 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1581 }
1582 
1583 static u_int64_t
1584 allocpages(vm_paddr_t *firstaddr, int n)
1585 {
1586 	u_int64_t ret;
1587 
1588 	ret = *firstaddr;
1589 	bzero((void *)ret, n * PAGE_SIZE);
1590 	*firstaddr += n * PAGE_SIZE;
1591 	return (ret);
1592 }
1593 
1594 CTASSERT(powerof2(NDMPML4E));
1595 
1596 /* number of kernel PDP slots */
1597 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1598 
1599 static void
1600 nkpt_init(vm_paddr_t addr)
1601 {
1602 	int pt_pages;
1603 
1604 #ifdef NKPT
1605 	pt_pages = NKPT;
1606 #else
1607 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1608 	pt_pages += NKPDPE(pt_pages);
1609 
1610 	/*
1611 	 * Add some slop beyond the bare minimum required for bootstrapping
1612 	 * the kernel.
1613 	 *
1614 	 * This is quite important when allocating KVA for kernel modules.
1615 	 * The modules are required to be linked in the negative 2GB of
1616 	 * the address space.  If we run out of KVA in this region then
1617 	 * pmap_growkernel() will need to allocate page table pages to map
1618 	 * the entire 512GB of KVA space which is an unnecessary tax on
1619 	 * physical memory.
1620 	 *
1621 	 * Secondly, device memory mapped as part of setting up the low-
1622 	 * level console(s) is taken from KVA, starting at virtual_avail.
1623 	 * This is because cninit() is called after pmap_bootstrap() but
1624 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1625 	 * not uncommon.
1626 	 */
1627 	pt_pages += 32;		/* 64MB additional slop. */
1628 #endif
1629 	nkpt = pt_pages;
1630 }
1631 
1632 /*
1633  * Returns the proper write/execute permission for a physical page that is
1634  * part of the initial boot allocations.
1635  *
1636  * If the page has kernel text, it is marked as read-only. If the page has
1637  * kernel read-only data, it is marked as read-only/not-executable. If the
1638  * page has only read-write data, it is marked as read-write/not-executable.
1639  * If the page is below/above the kernel range, it is marked as read-write.
1640  *
1641  * This function operates on 2M pages, since we map the kernel space that
1642  * way.
1643  */
1644 static inline pt_entry_t
1645 bootaddr_rwx(vm_paddr_t pa)
1646 {
1647 	/*
1648 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1649 	 * need not be executable.  The .bss section is padded to a 2MB
1650 	 * boundary, so memory following the kernel need not be executable
1651 	 * either.  Preloaded kernel modules have their mapping permissions
1652 	 * fixed up by the linker.
1653 	 */
1654 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1655 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1656 		return (X86_PG_RW | pg_nx);
1657 
1658 	/*
1659 	 * The linker should ensure that the read-only and read-write
1660 	 * portions don't share the same 2M page, so this shouldn't
1661 	 * impact read-only data. However, in any case, any page with
1662 	 * read-write data needs to be read-write.
1663 	 */
1664 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1665 		return (X86_PG_RW | pg_nx);
1666 
1667 	/*
1668 	 * Mark any 2M page containing kernel text as read-only. Mark
1669 	 * other pages with read-only data as read-only and not executable.
1670 	 * (It is likely a small portion of the read-only data section will
1671 	 * be marked as read-only, but executable. This should be acceptable
1672 	 * since the read-only protection will keep the data from changing.)
1673 	 * Note that fixups to the .text section will still work until we
1674 	 * set CR0.WP.
1675 	 */
1676 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1677 		return (0);
1678 	return (pg_nx);
1679 }
1680 
1681 static void
1682 create_pagetables(vm_paddr_t *firstaddr)
1683 {
1684 	pd_entry_t *pd_p;
1685 	pdp_entry_t *pdp_p;
1686 	pml4_entry_t *p4_p;
1687 	uint64_t DMPDkernphys;
1688 	vm_paddr_t pax;
1689 #ifdef KASAN
1690 	pt_entry_t *pt_p;
1691 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1692 	vm_offset_t kasankernbase;
1693 	int kasankpdpi, kasankpdi, nkasanpte;
1694 #endif
1695 	int i, j, ndm1g, nkpdpe, nkdmpde;
1696 
1697 	TSENTER();
1698 	/* Allocate page table pages for the direct map */
1699 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1700 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1701 		ndmpdp = 4;
1702 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1703 	if (ndmpdpphys > NDMPML4E) {
1704 		/*
1705 		 * Each NDMPML4E allows 512 GB, so limit to that,
1706 		 * and then readjust ndmpdp and ndmpdpphys.
1707 		 */
1708 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1709 		Maxmem = atop(NDMPML4E * NBPML4);
1710 		ndmpdpphys = NDMPML4E;
1711 		ndmpdp = NDMPML4E * NPDEPG;
1712 	}
1713 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1714 	ndm1g = 0;
1715 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1716 		/*
1717 		 * Calculate the number of 1G pages that will fully fit in
1718 		 * Maxmem.
1719 		 */
1720 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1721 
1722 		/*
1723 		 * Allocate 2M pages for the kernel. These will be used in
1724 		 * place of the one or more 1G pages from ndm1g that maps
1725 		 * kernel memory into DMAP.
1726 		 */
1727 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1728 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1729 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1730 	}
1731 	if (ndm1g < ndmpdp)
1732 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1733 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1734 
1735 	/* Allocate pages. */
1736 	KPML4phys = allocpages(firstaddr, 1);
1737 	KPDPphys = allocpages(firstaddr, NKPML4E);
1738 #ifdef KASAN
1739 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1740 	KASANPDphys = allocpages(firstaddr, 1);
1741 #endif
1742 #ifdef KMSAN
1743 	/*
1744 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1745 	 * no need to shadow memory above KERNBASE.
1746 	 */
1747 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1748 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1749 #endif
1750 
1751 	/*
1752 	 * Allocate the initial number of kernel page table pages required to
1753 	 * bootstrap.  We defer this until after all memory-size dependent
1754 	 * allocations are done (e.g. direct map), so that we don't have to
1755 	 * build in too much slop in our estimate.
1756 	 *
1757 	 * Note that when NKPML4E > 1, we have an empty page underneath
1758 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1759 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1760 	 */
1761 	nkpt_init(*firstaddr);
1762 	nkpdpe = NKPDPE(nkpt);
1763 
1764 	KPTphys = allocpages(firstaddr, nkpt);
1765 	KPDphys = allocpages(firstaddr, nkpdpe);
1766 
1767 #ifdef KASAN
1768 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1769 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1770 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1771 #endif
1772 
1773 	/*
1774 	 * Connect the zero-filled PT pages to their PD entries.  This
1775 	 * implicitly maps the PT pages at their correct locations within
1776 	 * the PTmap.
1777 	 */
1778 	pd_p = (pd_entry_t *)KPDphys;
1779 	for (i = 0; i < nkpt; i++)
1780 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1781 
1782 	/*
1783 	 * Map from start of the kernel in physical memory (staging
1784 	 * area) to the end of loader preallocated memory using 2MB
1785 	 * pages.  This replaces some of the PD entries created above.
1786 	 * For compatibility, identity map 2M at the start.
1787 	 */
1788 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1789 	    X86_PG_RW | pg_nx;
1790 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1791 		/* Preset PG_M and PG_A because demotion expects it. */
1792 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1793 		    X86_PG_A | bootaddr_rwx(pax);
1794 	}
1795 
1796 	/*
1797 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1798 	 * to record the physical blocks we've actually mapped into kernel
1799 	 * virtual address space.
1800 	 */
1801 	if (*firstaddr < round_2mpage(KERNend))
1802 		*firstaddr = round_2mpage(KERNend);
1803 
1804 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1805 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1806 	for (i = 0; i < nkpdpe; i++)
1807 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1808 
1809 #ifdef KASAN
1810 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1811 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1812 	kasankpdi = pmap_pde_index(kasankernbase);
1813 
1814 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1815 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1816 
1817 	pd_p = (pd_entry_t *)KASANPDphys;
1818 	for (i = 0; i < nkasanpte; i++)
1819 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1820 		    X86_PG_V | pg_nx;
1821 
1822 	pt_p = (pt_entry_t *)KASANPTphys;
1823 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1824 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1825 		    X86_PG_M | X86_PG_A | pg_nx;
1826 #endif
1827 
1828 	/*
1829 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1830 	 * the end of physical memory is not aligned to a 1GB page boundary,
1831 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1832 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1833 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1834 	 * that are partially used.
1835 	 */
1836 	pd_p = (pd_entry_t *)DMPDphys;
1837 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1838 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1839 		/* Preset PG_M and PG_A because demotion expects it. */
1840 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1841 		    X86_PG_M | X86_PG_A | pg_nx;
1842 	}
1843 	pdp_p = (pdp_entry_t *)DMPDPphys;
1844 	for (i = 0; i < ndm1g; i++) {
1845 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1846 		/* Preset PG_M and PG_A because demotion expects it. */
1847 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1848 		    X86_PG_M | X86_PG_A | pg_nx;
1849 	}
1850 	for (j = 0; i < ndmpdp; i++, j++) {
1851 		pdp_p[i] = DMPDphys + ptoa(j);
1852 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1853 	}
1854 
1855 	/*
1856 	 * Instead of using a 1G page for the memory containing the kernel,
1857 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1858 	 * pages, this will partially overwrite the PDPEs above.)
1859 	 */
1860 	if (ndm1g > 0) {
1861 		pd_p = (pd_entry_t *)DMPDkernphys;
1862 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1863 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1864 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1865 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1866 		}
1867 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1868 		for (i = 0; i < nkdmpde; i++) {
1869 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1870 			    X86_PG_RW | X86_PG_V | pg_nx;
1871 		}
1872 	}
1873 
1874 	/* And recursively map PML4 to itself in order to get PTmap */
1875 	p4_p = (pml4_entry_t *)KPML4phys;
1876 	p4_p[PML4PML4I] = KPML4phys;
1877 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1878 
1879 #ifdef KASAN
1880 	/* Connect the KASAN shadow map slots up to the PML4. */
1881 	for (i = 0; i < NKASANPML4E; i++) {
1882 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1883 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1884 	}
1885 #endif
1886 
1887 #ifdef KMSAN
1888 	/* Connect the KMSAN shadow map slots up to the PML4. */
1889 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1890 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1891 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1892 	}
1893 
1894 	/* Connect the KMSAN origin map slots up to the PML4. */
1895 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1896 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1897 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1898 	}
1899 #endif
1900 
1901 	/* Connect the Direct Map slots up to the PML4. */
1902 	for (i = 0; i < ndmpdpphys; i++) {
1903 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1904 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1905 	}
1906 
1907 	/* Connect the KVA slots up to the PML4 */
1908 	for (i = 0; i < NKPML4E; i++) {
1909 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1910 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1911 	}
1912 
1913 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1914 	TSEXIT();
1915 }
1916 
1917 /*
1918  *	Bootstrap the system enough to run with virtual memory.
1919  *
1920  *	On amd64 this is called after mapping has already been enabled
1921  *	and just syncs the pmap module with what has already been done.
1922  *	[We can't call it easily with mapping off since the kernel is not
1923  *	mapped with PA == VA, hence we would have to relocate every address
1924  *	from the linked base (virtual) address "KERNBASE" to the actual
1925  *	(physical) address starting relative to 0]
1926  */
1927 void
1928 pmap_bootstrap(vm_paddr_t *firstaddr)
1929 {
1930 	vm_offset_t va;
1931 	pt_entry_t *pte, *pcpu_pte;
1932 	struct region_descriptor r_gdt;
1933 	uint64_t cr4, pcpu0_phys;
1934 	u_long res;
1935 	int i;
1936 
1937 	TSENTER();
1938 	KERNend = *firstaddr;
1939 	res = atop(KERNend - (vm_paddr_t)kernphys);
1940 
1941 	if (!pti)
1942 		pg_g = X86_PG_G;
1943 
1944 	/*
1945 	 * Create an initial set of page tables to run the kernel in.
1946 	 */
1947 	create_pagetables(firstaddr);
1948 
1949 	pcpu0_phys = allocpages(firstaddr, 1);
1950 
1951 	/*
1952 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1953 	 * preallocated kernel page table pages so that vm_page structures
1954 	 * representing these pages will be created.  The vm_page structures
1955 	 * are required for promotion of the corresponding kernel virtual
1956 	 * addresses to superpage mappings.
1957 	 */
1958 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1959 
1960 	/*
1961 	 * Account for the virtual addresses mapped by create_pagetables().
1962 	 */
1963 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1964 	    (vm_paddr_t)kernphys);
1965 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1966 
1967 	/*
1968 	 * Enable PG_G global pages, then switch to the kernel page
1969 	 * table from the bootstrap page table.  After the switch, it
1970 	 * is possible to enable SMEP and SMAP since PG_U bits are
1971 	 * correct now.
1972 	 */
1973 	cr4 = rcr4();
1974 	cr4 |= CR4_PGE;
1975 	load_cr4(cr4);
1976 	load_cr3(KPML4phys);
1977 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1978 		cr4 |= CR4_SMEP;
1979 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1980 		cr4 |= CR4_SMAP;
1981 	load_cr4(cr4);
1982 
1983 	/*
1984 	 * Initialize the kernel pmap (which is statically allocated).
1985 	 * Count bootstrap data as being resident in case any of this data is
1986 	 * later unmapped (using pmap_remove()) and freed.
1987 	 */
1988 	PMAP_LOCK_INIT(kernel_pmap);
1989 	kernel_pmap->pm_pmltop = kernel_pml4;
1990 	kernel_pmap->pm_cr3 = KPML4phys;
1991 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1992 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1993 	kernel_pmap->pm_stats.resident_count = res;
1994 	vm_radix_init(&kernel_pmap->pm_root);
1995 	kernel_pmap->pm_flags = pmap_flags;
1996 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1997 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1998 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1999 	}
2000 
2001 	/*
2002 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
2003 	 * enumerated, the mask will be set equal to all_cpus.
2004 	 */
2005 	CPU_FILL(&kernel_pmap->pm_active);
2006 
2007  	/*
2008 	 * Initialize the TLB invalidations generation number lock.
2009 	 */
2010 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2011 
2012 	/*
2013 	 * Reserve some special page table entries/VA space for temporary
2014 	 * mapping of pages.
2015 	 */
2016 #define	SYSMAP(c, p, v, n)	\
2017 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2018 
2019 	va = virtual_avail;
2020 	pte = vtopte(va);
2021 
2022 	/*
2023 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2024 	 * memory test.
2025 	 */
2026 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2027 	CADDR1 = crashdumpmap;
2028 
2029 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2030 	virtual_avail = va;
2031 
2032 	/*
2033 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2034 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2035 	 * number of CPUs and NUMA affinity.
2036 	 */
2037 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2038 	    X86_PG_M | X86_PG_A;
2039 	for (i = 1; i < MAXCPU; i++)
2040 		pcpu_pte[i] = 0;
2041 
2042 	/*
2043 	 * Re-initialize PCPU area for BSP after switching.
2044 	 * Make hardware use gdt and common_tss from the new PCPU.
2045 	 */
2046 	STAILQ_INIT(&cpuhead);
2047 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2048 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2049 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2050 	amd64_bsp_ist_init(&__pcpu[0]);
2051 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2052 	    IOPERM_BITMAP_SIZE;
2053 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2054 	    sizeof(struct user_segment_descriptor));
2055 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2056 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2057 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2058 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2059 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2060 	lgdt(&r_gdt);
2061 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2062 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2063 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2064 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2065 
2066 	/*
2067 	 * Initialize the PAT MSR.
2068 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2069 	 * side-effect, invalidates stale PG_G TLB entries that might
2070 	 * have been created in our pre-boot environment.
2071 	 */
2072 	pmap_init_pat();
2073 
2074 	/* Initialize TLB Context Id. */
2075 	if (pmap_pcid_enabled) {
2076 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2077 		    offsetof(struct pcpu, pc_kpmap_store);
2078 
2079 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2080 		PCPU_SET(kpmap_store.pm_gen, 1);
2081 
2082 		/*
2083 		 * PMAP_PCID_KERN + 1 is used for initialization of
2084 		 * proc0 pmap.  The pmap' pcid state might be used by
2085 		 * EFIRT entry before first context switch, so it
2086 		 * needs to be valid.
2087 		 */
2088 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2089 		PCPU_SET(pcid_gen, 1);
2090 
2091 		/*
2092 		 * pcpu area for APs is zeroed during AP startup.
2093 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2094 		 * during pcpu setup.
2095 		 */
2096 		load_cr4(rcr4() | CR4_PCIDE);
2097 	}
2098 	TSEXIT();
2099 }
2100 
2101 /*
2102  * Setup the PAT MSR.
2103  */
2104 void
2105 pmap_init_pat(void)
2106 {
2107 	uint64_t pat_msr;
2108 	u_long cr0, cr4;
2109 	int i;
2110 
2111 	/* Bail if this CPU doesn't implement PAT. */
2112 	if ((cpu_feature & CPUID_PAT) == 0)
2113 		panic("no PAT??");
2114 
2115 	/* Set default PAT index table. */
2116 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2117 		pat_index[i] = -1;
2118 	pat_index[PAT_WRITE_BACK] = 0;
2119 	pat_index[PAT_WRITE_THROUGH] = 1;
2120 	pat_index[PAT_UNCACHEABLE] = 3;
2121 	pat_index[PAT_WRITE_COMBINING] = 6;
2122 	pat_index[PAT_WRITE_PROTECTED] = 5;
2123 	pat_index[PAT_UNCACHED] = 2;
2124 
2125 	/*
2126 	 * Initialize default PAT entries.
2127 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2128 	 * Program 5 and 6 as WP and WC.
2129 	 *
2130 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2131 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2132 	 * to its overload with PG_PS.
2133 	 */
2134 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2135 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2136 	    PAT_VALUE(2, PAT_UNCACHED) |
2137 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2138 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2139 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2140 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2141 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2142 
2143 	/* Disable PGE. */
2144 	cr4 = rcr4();
2145 	load_cr4(cr4 & ~CR4_PGE);
2146 
2147 	/* Disable caches (CD = 1, NW = 0). */
2148 	cr0 = rcr0();
2149 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2150 
2151 	/* Flushes caches and TLBs. */
2152 	wbinvd();
2153 	invltlb();
2154 
2155 	/* Update PAT and index table. */
2156 	wrmsr(MSR_PAT, pat_msr);
2157 
2158 	/* Flush caches and TLBs again. */
2159 	wbinvd();
2160 	invltlb();
2161 
2162 	/* Restore caches and PGE. */
2163 	load_cr0(cr0);
2164 	load_cr4(cr4);
2165 }
2166 
2167 vm_page_t
2168 pmap_page_alloc_below_4g(bool zeroed)
2169 {
2170 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2171 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2172 }
2173 
2174 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2175     la57_trampoline_gdt[], la57_trampoline_end[];
2176 
2177 static void
2178 pmap_bootstrap_la57(void *arg __unused)
2179 {
2180 	char *v_code;
2181 	pml5_entry_t *v_pml5;
2182 	pml4_entry_t *v_pml4;
2183 	pdp_entry_t *v_pdp;
2184 	pd_entry_t *v_pd;
2185 	pt_entry_t *v_pt;
2186 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2187 	void (*la57_tramp)(uint64_t pml5);
2188 	struct region_descriptor r_gdt;
2189 
2190 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2191 		return;
2192 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2193 	if (!la57)
2194 		return;
2195 
2196 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2197 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2198 
2199 	m_code = pmap_page_alloc_below_4g(true);
2200 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2201 	m_pml5 = pmap_page_alloc_below_4g(true);
2202 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2203 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2204 	m_pml4 = pmap_page_alloc_below_4g(true);
2205 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2206 	m_pdp = pmap_page_alloc_below_4g(true);
2207 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2208 	m_pd = pmap_page_alloc_below_4g(true);
2209 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2210 	m_pt = pmap_page_alloc_below_4g(true);
2211 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2212 
2213 	/*
2214 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2215 	 * address being below 4G.  Since kernel KVA is in upper half,
2216 	 * the pml4e should be zero and free for temporary use.
2217 	 */
2218 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2219 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2220 	    X86_PG_M;
2221 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2222 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2223 	    X86_PG_M;
2224 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2225 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2226 	    X86_PG_M;
2227 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2228 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2229 	    X86_PG_M;
2230 
2231 	/*
2232 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2233 	 * entering all existing kernel mappings into level 5 table.
2234 	 */
2235 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2236 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2237 
2238 	/*
2239 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2240 	 */
2241 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2242 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2243 	    X86_PG_M;
2244 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2245 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2246 	    X86_PG_M;
2247 
2248 	/*
2249 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2250 	 */
2251 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2252 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2253 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2254 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2255 	invlpg((vm_offset_t)la57_tramp);
2256 	la57_tramp(KPML5phys);
2257 
2258 	/*
2259 	 * gdt was necessary reset, switch back to our gdt.
2260 	 */
2261 	lgdt(&r_gdt);
2262 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2263 	load_ds(_udatasel);
2264 	load_es(_udatasel);
2265 	load_fs(_ufssel);
2266 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2267 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2268 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2269 
2270 	/*
2271 	 * Now unmap the trampoline, and free the pages.
2272 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2273 	 */
2274 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2275 	invlpg((vm_offset_t)v_code);
2276 	vm_page_free(m_code);
2277 	vm_page_free(m_pdp);
2278 	vm_page_free(m_pd);
2279 	vm_page_free(m_pt);
2280 
2281 	/*
2282 	 * Recursively map PML5 to itself in order to get PTmap and
2283 	 * PDmap.
2284 	 */
2285 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2286 
2287 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2288 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2289 	PTmap = (vm_offset_t)P5Tmap;
2290 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2291 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2292 	PDmap = (vm_offset_t)P5Dmap;
2293 
2294 	kernel_pmap->pm_cr3 = KPML5phys;
2295 	kernel_pmap->pm_pmltop = v_pml5;
2296 	pmap_pt_page_count_adj(kernel_pmap, 1);
2297 }
2298 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2299 
2300 /*
2301  *	Initialize a vm_page's machine-dependent fields.
2302  */
2303 void
2304 pmap_page_init(vm_page_t m)
2305 {
2306 
2307 	TAILQ_INIT(&m->md.pv_list);
2308 	m->md.pat_mode = PAT_WRITE_BACK;
2309 }
2310 
2311 static int pmap_allow_2m_x_ept;
2312 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2313     &pmap_allow_2m_x_ept, 0,
2314     "Allow executable superpage mappings in EPT");
2315 
2316 void
2317 pmap_allow_2m_x_ept_recalculate(void)
2318 {
2319 	/*
2320 	 * SKL002, SKL012S.  Since the EPT format is only used by
2321 	 * Intel CPUs, the vendor check is merely a formality.
2322 	 */
2323 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2324 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2325 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2326 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2327 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2328 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2329 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2331 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2332 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2333 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2334 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2335 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2336 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2337 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2338 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2339 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2340 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2341 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2342 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2343 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2344 		pmap_allow_2m_x_ept = 1;
2345 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2346 }
2347 
2348 static bool
2349 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2350 {
2351 
2352 	return (pmap->pm_type != PT_EPT || !executable ||
2353 	    !pmap_allow_2m_x_ept);
2354 }
2355 
2356 #ifdef NUMA
2357 static void
2358 pmap_init_pv_table(void)
2359 {
2360 	struct pmap_large_md_page *pvd;
2361 	vm_size_t s;
2362 	long start, end, highest, pv_npg;
2363 	int domain, i, j, pages;
2364 
2365 	/*
2366 	 * For correctness we depend on the size being evenly divisible into a
2367 	 * page. As a tradeoff between performance and total memory use, the
2368 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2369 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2370 	 * avoidable traffic due to adjacent cacheline prefetcher.
2371 	 *
2372 	 * Assert the size so that accidental changes fail to compile.
2373 	 */
2374 	CTASSERT((sizeof(*pvd) == 64));
2375 
2376 	/*
2377 	 * Calculate the size of the array.
2378 	 */
2379 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2380 	pv_npg = howmany(pmap_last_pa, NBPDR);
2381 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2382 	s = round_page(s);
2383 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2384 	if (pv_table == NULL)
2385 		panic("%s: kva_alloc failed\n", __func__);
2386 
2387 	/*
2388 	 * Iterate physical segments to allocate space for respective pages.
2389 	 */
2390 	highest = -1;
2391 	s = 0;
2392 	for (i = 0; i < vm_phys_nsegs; i++) {
2393 		end = vm_phys_segs[i].end / NBPDR;
2394 		domain = vm_phys_segs[i].domain;
2395 
2396 		if (highest >= end)
2397 			continue;
2398 
2399 		start = highest + 1;
2400 		pvd = &pv_table[start];
2401 
2402 		pages = end - start + 1;
2403 		s = round_page(pages * sizeof(*pvd));
2404 		highest = start + (s / sizeof(*pvd)) - 1;
2405 
2406 		for (j = 0; j < s; j += PAGE_SIZE) {
2407 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2408 			if (m == NULL)
2409 				panic("failed to allocate PV table page");
2410 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2411 		}
2412 
2413 		for (j = 0; j < s / sizeof(*pvd); j++) {
2414 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2415 			TAILQ_INIT(&pvd->pv_page.pv_list);
2416 			pvd->pv_page.pv_gen = 0;
2417 			pvd->pv_page.pat_mode = 0;
2418 			pvd->pv_invl_gen = 0;
2419 			pvd++;
2420 		}
2421 	}
2422 	pvd = &pv_dummy_large;
2423 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2424 	TAILQ_INIT(&pvd->pv_page.pv_list);
2425 	pvd->pv_page.pv_gen = 0;
2426 	pvd->pv_page.pat_mode = 0;
2427 	pvd->pv_invl_gen = 0;
2428 }
2429 #else
2430 static void
2431 pmap_init_pv_table(void)
2432 {
2433 	vm_size_t s;
2434 	long i, pv_npg;
2435 
2436 	/*
2437 	 * Initialize the pool of pv list locks.
2438 	 */
2439 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2440 		rw_init(&pv_list_locks[i], "pmap pv list");
2441 
2442 	/*
2443 	 * Calculate the size of the pv head table for superpages.
2444 	 */
2445 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2446 
2447 	/*
2448 	 * Allocate memory for the pv head table for superpages.
2449 	 */
2450 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2451 	s = round_page(s);
2452 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2453 	for (i = 0; i < pv_npg; i++)
2454 		TAILQ_INIT(&pv_table[i].pv_list);
2455 	TAILQ_INIT(&pv_dummy.pv_list);
2456 }
2457 #endif
2458 
2459 /*
2460  *	Initialize the pmap module.
2461  *	Called by vm_init, to initialize any structures that the pmap
2462  *	system needs to map virtual memory.
2463  */
2464 void
2465 pmap_init(void)
2466 {
2467 	struct pmap_preinit_mapping *ppim;
2468 	vm_page_t m, mpte;
2469 	int error, i, ret, skz63;
2470 
2471 	/* L1TF, reserve page @0 unconditionally */
2472 	vm_page_blacklist_add(0, bootverbose);
2473 
2474 	/* Detect bare-metal Skylake Server and Skylake-X. */
2475 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2476 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2477 		/*
2478 		 * Skylake-X errata SKZ63. Processor May Hang When
2479 		 * Executing Code In an HLE Transaction Region between
2480 		 * 40000000H and 403FFFFFH.
2481 		 *
2482 		 * Mark the pages in the range as preallocated.  It
2483 		 * seems to be impossible to distinguish between
2484 		 * Skylake Server and Skylake X.
2485 		 */
2486 		skz63 = 1;
2487 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2488 		if (skz63 != 0) {
2489 			if (bootverbose)
2490 				printf("SKZ63: skipping 4M RAM starting "
2491 				    "at physical 1G\n");
2492 			for (i = 0; i < atop(0x400000); i++) {
2493 				ret = vm_page_blacklist_add(0x40000000 +
2494 				    ptoa(i), FALSE);
2495 				if (!ret && bootverbose)
2496 					printf("page at %#lx already used\n",
2497 					    0x40000000 + ptoa(i));
2498 			}
2499 		}
2500 	}
2501 
2502 	/* IFU */
2503 	pmap_allow_2m_x_ept_recalculate();
2504 
2505 	/*
2506 	 * Initialize the vm page array entries for the kernel pmap's
2507 	 * page table pages.
2508 	 */
2509 	PMAP_LOCK(kernel_pmap);
2510 	for (i = 0; i < nkpt; i++) {
2511 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2512 		KASSERT(mpte >= vm_page_array &&
2513 		    mpte < &vm_page_array[vm_page_array_size],
2514 		    ("pmap_init: page table page is out of range"));
2515 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2516 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2517 		mpte->ref_count = 1;
2518 
2519 		/*
2520 		 * Collect the page table pages that were replaced by a 2MB
2521 		 * page in create_pagetables().  They are zero filled.
2522 		 */
2523 		if ((i == 0 ||
2524 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2525 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2526 			panic("pmap_init: pmap_insert_pt_page failed");
2527 	}
2528 	PMAP_UNLOCK(kernel_pmap);
2529 	vm_wire_add(nkpt);
2530 
2531 	/*
2532 	 * If the kernel is running on a virtual machine, then it must assume
2533 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2534 	 * be prepared for the hypervisor changing the vendor and family that
2535 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2536 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2537 	 * include at least one feature that is only supported by older Intel
2538 	 * or newer AMD processors.
2539 	 */
2540 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2541 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2542 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2543 	    AMDID2_FMA4)) == 0)
2544 		workaround_erratum383 = 1;
2545 
2546 	/*
2547 	 * Are large page mappings enabled?
2548 	 */
2549 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2550 	if (pg_ps_enabled) {
2551 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2552 		    ("pmap_init: can't assign to pagesizes[1]"));
2553 		pagesizes[1] = NBPDR;
2554 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2555 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2556 			    ("pmap_init: can't assign to pagesizes[2]"));
2557 			pagesizes[2] = NBPDP;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * Initialize pv chunk lists.
2563 	 */
2564 	for (i = 0; i < PMAP_MEMDOM; i++) {
2565 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2566 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2567 	}
2568 	pmap_init_pv_table();
2569 
2570 	pmap_initialized = 1;
2571 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2572 		ppim = pmap_preinit_mapping + i;
2573 		if (ppim->va == 0)
2574 			continue;
2575 		/* Make the direct map consistent */
2576 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2577 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2578 			    ppim->sz, ppim->mode);
2579 		}
2580 		if (!bootverbose)
2581 			continue;
2582 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2583 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2584 	}
2585 
2586 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2587 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2588 	    (vmem_addr_t *)&qframe);
2589 	if (error != 0)
2590 		panic("qframe allocation failed");
2591 
2592 	lm_ents = 8;
2593 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2594 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2595 		lm_ents = LMEPML4I - LMSPML4I + 1;
2596 #ifdef KMSAN
2597 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2598 		printf(
2599 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2600 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2601 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2602 	}
2603 #endif
2604 	if (bootverbose)
2605 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2606 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2607 	if (lm_ents != 0) {
2608 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2609 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2610 		if (large_vmem == NULL) {
2611 			printf("pmap: cannot create large map\n");
2612 			lm_ents = 0;
2613 		}
2614 		for (i = 0; i < lm_ents; i++) {
2615 			m = pmap_large_map_getptp_unlocked();
2616 			/* XXXKIB la57 */
2617 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2618 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2619 			    VM_PAGE_TO_PHYS(m);
2620 		}
2621 	}
2622 }
2623 
2624 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2625     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2626     "Maximum number of PML4 entries for use by large map (tunable).  "
2627     "Each entry corresponds to 512GB of address space.");
2628 
2629 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2630     "2MB page mapping counters");
2631 
2632 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2633 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2634     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2635 
2636 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2637 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2638     &pmap_pde_mappings, "2MB page mappings");
2639 
2640 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2641 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2642     &pmap_pde_p_failures, "2MB page promotion failures");
2643 
2644 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2645 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2646     &pmap_pde_promotions, "2MB page promotions");
2647 
2648 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2649     "1GB page mapping counters");
2650 
2651 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2652 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2653     &pmap_pdpe_demotions, "1GB page demotions");
2654 
2655 /***************************************************
2656  * Low level helper routines.....
2657  ***************************************************/
2658 
2659 static pt_entry_t
2660 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2661 {
2662 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2663 
2664 	switch (pmap->pm_type) {
2665 	case PT_X86:
2666 	case PT_RVI:
2667 		/* Verify that both PAT bits are not set at the same time */
2668 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2669 		    ("Invalid PAT bits in entry %#lx", entry));
2670 
2671 		/* Swap the PAT bits if one of them is set */
2672 		if ((entry & x86_pat_bits) != 0)
2673 			entry ^= x86_pat_bits;
2674 		break;
2675 	case PT_EPT:
2676 		/*
2677 		 * Nothing to do - the memory attributes are represented
2678 		 * the same way for regular pages and superpages.
2679 		 */
2680 		break;
2681 	default:
2682 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2683 	}
2684 
2685 	return (entry);
2686 }
2687 
2688 boolean_t
2689 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2690 {
2691 
2692 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2693 	    pat_index[(int)mode] >= 0);
2694 }
2695 
2696 /*
2697  * Determine the appropriate bits to set in a PTE or PDE for a specified
2698  * caching mode.
2699  */
2700 int
2701 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2702 {
2703 	int cache_bits, pat_flag, pat_idx;
2704 
2705 	if (!pmap_is_valid_memattr(pmap, mode))
2706 		panic("Unknown caching mode %d\n", mode);
2707 
2708 	switch (pmap->pm_type) {
2709 	case PT_X86:
2710 	case PT_RVI:
2711 		/* The PAT bit is different for PTE's and PDE's. */
2712 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2713 
2714 		/* Map the caching mode to a PAT index. */
2715 		pat_idx = pat_index[mode];
2716 
2717 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2718 		cache_bits = 0;
2719 		if (pat_idx & 0x4)
2720 			cache_bits |= pat_flag;
2721 		if (pat_idx & 0x2)
2722 			cache_bits |= PG_NC_PCD;
2723 		if (pat_idx & 0x1)
2724 			cache_bits |= PG_NC_PWT;
2725 		break;
2726 
2727 	case PT_EPT:
2728 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2729 		break;
2730 
2731 	default:
2732 		panic("unsupported pmap type %d", pmap->pm_type);
2733 	}
2734 
2735 	return (cache_bits);
2736 }
2737 
2738 static int
2739 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2740 {
2741 	int mask;
2742 
2743 	switch (pmap->pm_type) {
2744 	case PT_X86:
2745 	case PT_RVI:
2746 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2747 		break;
2748 	case PT_EPT:
2749 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2750 		break;
2751 	default:
2752 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2753 	}
2754 
2755 	return (mask);
2756 }
2757 
2758 static int
2759 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2760 {
2761 	int pat_flag, pat_idx;
2762 
2763 	pat_idx = 0;
2764 	switch (pmap->pm_type) {
2765 	case PT_X86:
2766 	case PT_RVI:
2767 		/* The PAT bit is different for PTE's and PDE's. */
2768 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2769 
2770 		if ((pte & pat_flag) != 0)
2771 			pat_idx |= 0x4;
2772 		if ((pte & PG_NC_PCD) != 0)
2773 			pat_idx |= 0x2;
2774 		if ((pte & PG_NC_PWT) != 0)
2775 			pat_idx |= 0x1;
2776 		break;
2777 	case PT_EPT:
2778 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2779 			panic("EPT PTE %#lx has no PAT memory type", pte);
2780 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2781 		break;
2782 	}
2783 
2784 	/* See pmap_init_pat(). */
2785 	if (pat_idx == 4)
2786 		pat_idx = 0;
2787 	if (pat_idx == 7)
2788 		pat_idx = 3;
2789 
2790 	return (pat_idx);
2791 }
2792 
2793 bool
2794 pmap_ps_enabled(pmap_t pmap)
2795 {
2796 
2797 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2798 }
2799 
2800 static void
2801 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2802 {
2803 
2804 	switch (pmap->pm_type) {
2805 	case PT_X86:
2806 		break;
2807 	case PT_RVI:
2808 	case PT_EPT:
2809 		/*
2810 		 * XXX
2811 		 * This is a little bogus since the generation number is
2812 		 * supposed to be bumped up when a region of the address
2813 		 * space is invalidated in the page tables.
2814 		 *
2815 		 * In this case the old PDE entry is valid but yet we want
2816 		 * to make sure that any mappings using the old entry are
2817 		 * invalidated in the TLB.
2818 		 *
2819 		 * The reason this works as expected is because we rendezvous
2820 		 * "all" host cpus and force any vcpu context to exit as a
2821 		 * side-effect.
2822 		 */
2823 		atomic_add_long(&pmap->pm_eptgen, 1);
2824 		break;
2825 	default:
2826 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2827 	}
2828 	pde_store(pde, newpde);
2829 }
2830 
2831 /*
2832  * After changing the page size for the specified virtual address in the page
2833  * table, flush the corresponding entries from the processor's TLB.  Only the
2834  * calling processor's TLB is affected.
2835  *
2836  * The calling thread must be pinned to a processor.
2837  */
2838 static void
2839 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2840 {
2841 	pt_entry_t PG_G;
2842 
2843 	if (pmap_type_guest(pmap))
2844 		return;
2845 
2846 	KASSERT(pmap->pm_type == PT_X86,
2847 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2848 
2849 	PG_G = pmap_global_bit(pmap);
2850 
2851 	if ((newpde & PG_PS) == 0)
2852 		/* Demotion: flush a specific 2MB page mapping. */
2853 		pmap_invlpg(pmap, va);
2854 	else if ((newpde & PG_G) == 0)
2855 		/*
2856 		 * Promotion: flush every 4KB page mapping from the TLB
2857 		 * because there are too many to flush individually.
2858 		 */
2859 		invltlb();
2860 	else {
2861 		/*
2862 		 * Promotion: flush every 4KB page mapping from the TLB,
2863 		 * including any global (PG_G) mappings.
2864 		 */
2865 		invltlb_glob();
2866 	}
2867 }
2868 
2869 /*
2870  * The amd64 pmap uses different approaches to TLB invalidation
2871  * depending on the kernel configuration, available hardware features,
2872  * and known hardware errata.  The kernel configuration option that
2873  * has the greatest operational impact on TLB invalidation is PTI,
2874  * which is enabled automatically on affected Intel CPUs.  The most
2875  * impactful hardware features are first PCID, and then INVPCID
2876  * instruction presence.  PCID usage is quite different for PTI
2877  * vs. non-PTI.
2878  *
2879  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2880  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2881  *   space is served by two page tables, user and kernel.  The user
2882  *   page table only maps user space and a kernel trampoline.  The
2883  *   kernel trampoline includes the entirety of the kernel text but
2884  *   only the kernel data that is needed to switch from user to kernel
2885  *   mode.  The kernel page table maps the user and kernel address
2886  *   spaces in their entirety.  It is identical to the per-process
2887  *   page table used in non-PTI mode.
2888  *
2889  *   User page tables are only used when the CPU is in user mode.
2890  *   Consequently, some TLB invalidations can be postponed until the
2891  *   switch from kernel to user mode.  In contrast, the user
2892  *   space part of the kernel page table is used for copyout(9), so
2893  *   TLB invalidations on this page table cannot be similarly postponed.
2894  *
2895  *   The existence of a user mode page table for the given pmap is
2896  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2897  *   which case pm_ucr3 contains the %cr3 register value for the user
2898  *   mode page table's root.
2899  *
2900  * * The pm_active bitmask indicates which CPUs currently have the
2901  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2902  *   cleared on switching off this CPU.  For the kernel page table,
2903  *   the pm_active field is immutable and contains all CPUs.  The
2904  *   kernel page table is always logically active on every processor,
2905  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2906  *
2907  *   When requesting invalidation of virtual addresses with
2908  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2909  *   all CPUs recorded as active in pm_active.  Updates to and reads
2910  *   from pm_active are not synchronized, and so they may race with
2911  *   each other.  Shootdown handlers are prepared to handle the race.
2912  *
2913  * * PCID is an optional feature of the long mode x86 MMU where TLB
2914  *   entries are tagged with the 'Process ID' of the address space
2915  *   they belong to.  This feature provides a limited namespace for
2916  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2917  *   total.
2918  *
2919  *   Allocation of a PCID to a pmap is done by an algorithm described
2920  *   in section 15.12, "Other TLB Consistency Algorithms", of
2921  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2922  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2923  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2924  *   the CPU is about to start caching TLB entries from a pmap,
2925  *   i.e., on the context switch that activates the pmap on the CPU.
2926  *
2927  *   The PCID allocator maintains a per-CPU, per-pmap generation
2928  *   count, pm_gen, which is incremented each time a new PCID is
2929  *   allocated.  On TLB invalidation, the generation counters for the
2930  *   pmap are zeroed, which signals the context switch code that the
2931  *   previously allocated PCID is no longer valid.  Effectively,
2932  *   zeroing any of these counters triggers a TLB shootdown for the
2933  *   given CPU/address space, due to the allocation of a new PCID.
2934  *
2935  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2936  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2937  *   be initiated by an ordinary memory access to reset the target
2938  *   CPU's generation count within the pmap.  The CPU initiating the
2939  *   TLB shootdown does not need to send an IPI to the target CPU.
2940  *
2941  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2942  *   for complete (kernel) page tables, and PCIDs for user mode page
2943  *   tables.  A user PCID value is obtained from the kernel PCID value
2944  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2945  *
2946  *   User space page tables are activated on return to user mode, by
2947  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2948  *   clearing bit 63 of the loaded ucr3, this effectively causes
2949  *   complete invalidation of the user mode TLB entries for the
2950  *   current pmap.  In which case, local invalidations of individual
2951  *   pages in the user page table are skipped.
2952  *
2953  * * Local invalidation, all modes.  If the requested invalidation is
2954  *   for a specific address or the total invalidation of a currently
2955  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2956  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2957  *   user space page table(s).
2958  *
2959  *   If the INVPCID instruction is available, it is used to flush user
2960  *   entries from the kernel page table.
2961  *
2962  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2963  *   entries for the given page that either match the current PCID or
2964  *   are global. Since TLB entries for the same page under different
2965  *   PCIDs are unaffected, kernel pages which reside in all address
2966  *   spaces could be problematic.  We avoid the problem by creating
2967  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2968  *   disabled.
2969  *
2970  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2971  *   address space, all other 4095 PCIDs are used for user mode spaces
2972  *   as described above.  A context switch allocates a new PCID if
2973  *   the recorded PCID is zero or the recorded generation does not match
2974  *   the CPU's generation, effectively flushing the TLB for this address space.
2975  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2976  *	local user page: INVLPG
2977  *	local kernel page: INVLPG
2978  *	local user total: INVPCID(CTX)
2979  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2980  *	remote user page, inactive pmap: zero pm_gen
2981  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2982  *	(Both actions are required to handle the aforementioned pm_active races.)
2983  *	remote kernel page: IPI:INVLPG
2984  *	remote user total, inactive pmap: zero pm_gen
2985  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2986  *          reload %cr3)
2987  *	(See note above about pm_active races.)
2988  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2989  *
2990  * PTI enabled, PCID present.
2991  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2992  *          for upt
2993  *	local kernel page: INVLPG
2994  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2995  *          on loading UCR3 into %cr3 for upt
2996  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2997  *	remote user page, inactive pmap: zero pm_gen
2998  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2999  *          INVPCID(ADDR) for upt)
3000  *	remote kernel page: IPI:INVLPG
3001  *	remote user total, inactive pmap: zero pm_gen
3002  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3003  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3004  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3005  *
3006  *  No PCID.
3007  *	local user page: INVLPG
3008  *	local kernel page: INVLPG
3009  *	local user total: reload %cr3
3010  *	local kernel total: invltlb_glob()
3011  *	remote user page, inactive pmap: -
3012  *	remote user page, active pmap: IPI:INVLPG
3013  *	remote kernel page: IPI:INVLPG
3014  *	remote user total, inactive pmap: -
3015  *	remote user total, active pmap: IPI:(reload %cr3)
3016  *	remote kernel total: IPI:invltlb_glob()
3017  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3018  *  TLB invalidation, no specific action is required for user page table.
3019  *
3020  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3021  * XXX TODO
3022  */
3023 
3024 #ifdef SMP
3025 /*
3026  * Interrupt the cpus that are executing in the guest context.
3027  * This will force the vcpu to exit and the cached EPT mappings
3028  * will be invalidated by the host before the next vmresume.
3029  */
3030 static __inline void
3031 pmap_invalidate_ept(pmap_t pmap)
3032 {
3033 	smr_seq_t goal;
3034 	int ipinum;
3035 
3036 	sched_pin();
3037 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3038 	    ("pmap_invalidate_ept: absurd pm_active"));
3039 
3040 	/*
3041 	 * The TLB mappings associated with a vcpu context are not
3042 	 * flushed each time a different vcpu is chosen to execute.
3043 	 *
3044 	 * This is in contrast with a process's vtop mappings that
3045 	 * are flushed from the TLB on each context switch.
3046 	 *
3047 	 * Therefore we need to do more than just a TLB shootdown on
3048 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3049 	 * track of the number of invalidations performed on this pmap.
3050 	 *
3051 	 * Each vcpu keeps a cache of this counter and compares it
3052 	 * just before a vmresume. If the counter is out-of-date an
3053 	 * invept will be done to flush stale mappings from the TLB.
3054 	 *
3055 	 * To ensure that all vCPU threads have observed the new counter
3056 	 * value before returning, we use SMR.  Ordering is important here:
3057 	 * the VMM enters an SMR read section before loading the counter
3058 	 * and after updating the pm_active bit set.  Thus, pm_active is
3059 	 * a superset of active readers, and any reader that has observed
3060 	 * the goal has observed the new counter value.
3061 	 */
3062 	atomic_add_long(&pmap->pm_eptgen, 1);
3063 
3064 	goal = smr_advance(pmap->pm_eptsmr);
3065 
3066 	/*
3067 	 * Force the vcpu to exit and trap back into the hypervisor.
3068 	 */
3069 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3070 	ipi_selected(pmap->pm_active, ipinum);
3071 	sched_unpin();
3072 
3073 	/*
3074 	 * Ensure that all active vCPUs will observe the new generation counter
3075 	 * value before executing any more guest instructions.
3076 	 */
3077 	smr_wait(pmap->pm_eptsmr, goal);
3078 }
3079 
3080 static inline void
3081 pmap_invalidate_preipi_pcid(pmap_t pmap)
3082 {
3083 	struct pmap_pcid *pcidp;
3084 	u_int cpuid, i;
3085 
3086 	sched_pin();
3087 
3088 	cpuid = PCPU_GET(cpuid);
3089 	if (pmap != PCPU_GET(curpmap))
3090 		cpuid = 0xffffffff;	/* An impossible value */
3091 
3092 	CPU_FOREACH(i) {
3093 		if (cpuid != i) {
3094 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3095 			pcidp->pm_gen = 0;
3096 		}
3097 	}
3098 
3099 	/*
3100 	 * The fence is between stores to pm_gen and the read of the
3101 	 * pm_active mask.  We need to ensure that it is impossible
3102 	 * for us to miss the bit update in pm_active and
3103 	 * simultaneously observe a non-zero pm_gen in
3104 	 * pmap_activate_sw(), otherwise TLB update is missed.
3105 	 * Without the fence, IA32 allows such an outcome.  Note that
3106 	 * pm_active is updated by a locked operation, which provides
3107 	 * the reciprocal fence.
3108 	 */
3109 	atomic_thread_fence_seq_cst();
3110 }
3111 
3112 static void
3113 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3114 {
3115 	sched_pin();
3116 }
3117 
3118 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3119 {
3120 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3121 	    pmap_invalidate_preipi_nopcid);
3122 }
3123 
3124 static inline void
3125 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3126     const bool invpcid_works1)
3127 {
3128 	struct invpcid_descr d;
3129 	uint64_t kcr3, ucr3;
3130 	uint32_t pcid;
3131 
3132 	/*
3133 	 * Because pm_pcid is recalculated on a context switch, we
3134 	 * must ensure there is no preemption, not just pinning.
3135 	 * Otherwise, we might use a stale value below.
3136 	 */
3137 	CRITICAL_ASSERT(curthread);
3138 
3139 	/*
3140 	 * No need to do anything with user page tables invalidation
3141 	 * if there is no user page table, or invalidation is deferred
3142 	 * until the return to userspace.  ucr3_load_mask is stable
3143 	 * because we have preemption disabled.
3144 	 */
3145 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3146 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3147 		return;
3148 
3149 	pcid = pmap_get_pcid(pmap);
3150 	if (invpcid_works1) {
3151 		d.pcid = pcid | PMAP_PCID_USER_PT;
3152 		d.pad = 0;
3153 		d.addr = va;
3154 		invpcid(&d, INVPCID_ADDR);
3155 	} else {
3156 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3157 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3158 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3159 	}
3160 }
3161 
3162 static void
3163 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3164 {
3165 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3166 }
3167 
3168 static void
3169 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3170 {
3171 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3172 }
3173 
3174 static void
3175 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3176 {
3177 }
3178 
3179 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3180 {
3181 	if (pmap_pcid_enabled)
3182 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3183 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3184 	return (pmap_invalidate_page_nopcid_cb);
3185 }
3186 
3187 static void
3188 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3189     vm_offset_t addr2 __unused)
3190 {
3191 	if (pmap == kernel_pmap) {
3192 		pmap_invlpg(kernel_pmap, va);
3193 	} else if (pmap == PCPU_GET(curpmap)) {
3194 		invlpg(va);
3195 		pmap_invalidate_page_cb(pmap, va);
3196 	}
3197 }
3198 
3199 void
3200 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3201 {
3202 	if (pmap_type_guest(pmap)) {
3203 		pmap_invalidate_ept(pmap);
3204 		return;
3205 	}
3206 
3207 	KASSERT(pmap->pm_type == PT_X86,
3208 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3209 
3210 	pmap_invalidate_preipi(pmap);
3211 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3212 }
3213 
3214 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3215 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3216 
3217 static void
3218 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3219     const bool invpcid_works1)
3220 {
3221 	struct invpcid_descr d;
3222 	uint64_t kcr3, ucr3;
3223 	uint32_t pcid;
3224 
3225 	CRITICAL_ASSERT(curthread);
3226 
3227 	if (pmap != PCPU_GET(curpmap) ||
3228 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3229 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3230 		return;
3231 
3232 	pcid = pmap_get_pcid(pmap);
3233 	if (invpcid_works1) {
3234 		d.pcid = pcid | PMAP_PCID_USER_PT;
3235 		d.pad = 0;
3236 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3237 			invpcid(&d, INVPCID_ADDR);
3238 	} else {
3239 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3240 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3241 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3242 	}
3243 }
3244 
3245 static void
3246 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3247     vm_offset_t eva)
3248 {
3249 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3250 }
3251 
3252 static void
3253 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3254     vm_offset_t eva)
3255 {
3256 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3257 }
3258 
3259 static void
3260 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3261     vm_offset_t eva __unused)
3262 {
3263 }
3264 
3265 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3266     vm_offset_t))
3267 {
3268 	if (pmap_pcid_enabled)
3269 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3270 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3271 	return (pmap_invalidate_range_nopcid_cb);
3272 }
3273 
3274 static void
3275 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3276 {
3277 	vm_offset_t addr;
3278 
3279 	if (pmap == kernel_pmap) {
3280 		if (PCPU_GET(pcid_invlpg_workaround)) {
3281 			struct invpcid_descr d = { 0 };
3282 
3283 			invpcid(&d, INVPCID_CTXGLOB);
3284 		} else {
3285 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3286 				invlpg(addr);
3287 		}
3288 	} else if (pmap == PCPU_GET(curpmap)) {
3289 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3290 			invlpg(addr);
3291 		pmap_invalidate_range_cb(pmap, sva, eva);
3292 	}
3293 }
3294 
3295 void
3296 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3297 {
3298 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3299 		pmap_invalidate_all(pmap);
3300 		return;
3301 	}
3302 
3303 	if (pmap_type_guest(pmap)) {
3304 		pmap_invalidate_ept(pmap);
3305 		return;
3306 	}
3307 
3308 	KASSERT(pmap->pm_type == PT_X86,
3309 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3310 
3311 	pmap_invalidate_preipi(pmap);
3312 	smp_masked_invlpg_range(sva, eva, pmap,
3313 	    pmap_invalidate_range_curcpu_cb);
3314 }
3315 
3316 static inline void
3317 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3318 {
3319 	struct invpcid_descr d;
3320 	uint64_t kcr3;
3321 	uint32_t pcid;
3322 
3323 	if (pmap == kernel_pmap) {
3324 		if (invpcid_works1) {
3325 			bzero(&d, sizeof(d));
3326 			invpcid(&d, INVPCID_CTXGLOB);
3327 		} else {
3328 			invltlb_glob();
3329 		}
3330 	} else if (pmap == PCPU_GET(curpmap)) {
3331 		CRITICAL_ASSERT(curthread);
3332 
3333 		pcid = pmap_get_pcid(pmap);
3334 		if (invpcid_works1) {
3335 			d.pcid = pcid;
3336 			d.pad = 0;
3337 			d.addr = 0;
3338 			invpcid(&d, INVPCID_CTX);
3339 		} else {
3340 			kcr3 = pmap->pm_cr3 | pcid;
3341 			load_cr3(kcr3);
3342 		}
3343 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3344 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3345 	}
3346 }
3347 
3348 static void
3349 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3350 {
3351 	pmap_invalidate_all_pcid_cb(pmap, true);
3352 }
3353 
3354 static void
3355 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3356 {
3357 	pmap_invalidate_all_pcid_cb(pmap, false);
3358 }
3359 
3360 static void
3361 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3362 {
3363 	if (pmap == kernel_pmap)
3364 		invltlb_glob();
3365 	else if (pmap == PCPU_GET(curpmap))
3366 		invltlb();
3367 }
3368 
3369 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3370 {
3371 	if (pmap_pcid_enabled)
3372 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3373 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3374 	return (pmap_invalidate_all_nopcid_cb);
3375 }
3376 
3377 static void
3378 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3379     vm_offset_t addr2 __unused)
3380 {
3381 	pmap_invalidate_all_cb(pmap);
3382 }
3383 
3384 void
3385 pmap_invalidate_all(pmap_t pmap)
3386 {
3387 	if (pmap_type_guest(pmap)) {
3388 		pmap_invalidate_ept(pmap);
3389 		return;
3390 	}
3391 
3392 	KASSERT(pmap->pm_type == PT_X86,
3393 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3394 
3395 	pmap_invalidate_preipi(pmap);
3396 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3397 }
3398 
3399 static void
3400 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3401     vm_offset_t addr2 __unused)
3402 {
3403 	wbinvd();
3404 }
3405 
3406 void
3407 pmap_invalidate_cache(void)
3408 {
3409 	sched_pin();
3410 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3411 }
3412 
3413 struct pde_action {
3414 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3415 	pmap_t pmap;
3416 	vm_offset_t va;
3417 	pd_entry_t *pde;
3418 	pd_entry_t newpde;
3419 	u_int store;		/* processor that updates the PDE */
3420 };
3421 
3422 static void
3423 pmap_update_pde_action(void *arg)
3424 {
3425 	struct pde_action *act = arg;
3426 
3427 	if (act->store == PCPU_GET(cpuid))
3428 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3429 }
3430 
3431 static void
3432 pmap_update_pde_teardown(void *arg)
3433 {
3434 	struct pde_action *act = arg;
3435 
3436 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3437 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3438 }
3439 
3440 /*
3441  * Change the page size for the specified virtual address in a way that
3442  * prevents any possibility of the TLB ever having two entries that map the
3443  * same virtual address using different page sizes.  This is the recommended
3444  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3445  * machine check exception for a TLB state that is improperly diagnosed as a
3446  * hardware error.
3447  */
3448 static void
3449 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3450 {
3451 	struct pde_action act;
3452 	cpuset_t active, other_cpus;
3453 	u_int cpuid;
3454 
3455 	sched_pin();
3456 	cpuid = PCPU_GET(cpuid);
3457 	other_cpus = all_cpus;
3458 	CPU_CLR(cpuid, &other_cpus);
3459 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3460 		active = all_cpus;
3461 	else {
3462 		active = pmap->pm_active;
3463 	}
3464 	if (CPU_OVERLAP(&active, &other_cpus)) {
3465 		act.store = cpuid;
3466 		act.invalidate = active;
3467 		act.va = va;
3468 		act.pmap = pmap;
3469 		act.pde = pde;
3470 		act.newpde = newpde;
3471 		CPU_SET(cpuid, &active);
3472 		smp_rendezvous_cpus(active,
3473 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3474 		    pmap_update_pde_teardown, &act);
3475 	} else {
3476 		pmap_update_pde_store(pmap, pde, newpde);
3477 		if (CPU_ISSET(cpuid, &active))
3478 			pmap_update_pde_invalidate(pmap, va, newpde);
3479 	}
3480 	sched_unpin();
3481 }
3482 #else /* !SMP */
3483 /*
3484  * Normal, non-SMP, invalidation functions.
3485  */
3486 void
3487 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3488 {
3489 	struct invpcid_descr d;
3490 	struct pmap_pcid *pcidp;
3491 	uint64_t kcr3, ucr3;
3492 	uint32_t pcid;
3493 
3494 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3495 		pmap->pm_eptgen++;
3496 		return;
3497 	}
3498 	KASSERT(pmap->pm_type == PT_X86,
3499 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3500 
3501 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3502 		invlpg(va);
3503 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3504 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3505 			critical_enter();
3506 			pcid = pmap_get_pcid(pmap);
3507 			if (invpcid_works) {
3508 				d.pcid = pcid | PMAP_PCID_USER_PT;
3509 				d.pad = 0;
3510 				d.addr = va;
3511 				invpcid(&d, INVPCID_ADDR);
3512 			} else {
3513 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3514 				ucr3 = pmap->pm_ucr3 | pcid |
3515 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3516 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3517 			}
3518 			critical_exit();
3519 		}
3520 	} else if (pmap_pcid_enabled) {
3521 		pcidp = zpcpu_get(pmap->pm_pcidp);
3522 		pcidp->pm_gen = 0;
3523 	}
3524 }
3525 
3526 void
3527 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3528 {
3529 	struct invpcid_descr d;
3530 	struct pmap_pcid *pcidp;
3531 	vm_offset_t addr;
3532 	uint64_t kcr3, ucr3;
3533 	uint32_t pcid;
3534 
3535 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3536 		pmap->pm_eptgen++;
3537 		return;
3538 	}
3539 	KASSERT(pmap->pm_type == PT_X86,
3540 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3541 
3542 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3543 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3544 			invlpg(addr);
3545 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3546 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3547 			critical_enter();
3548 			pcid = pmap_get_pcid(pmap);
3549 			if (invpcid_works) {
3550 				d.pcid = pcid | PMAP_PCID_USER_PT;
3551 				d.pad = 0;
3552 				d.addr = sva;
3553 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3554 					invpcid(&d, INVPCID_ADDR);
3555 			} else {
3556 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3557 				ucr3 = pmap->pm_ucr3 | pcid |
3558 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3559 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3560 			}
3561 			critical_exit();
3562 		}
3563 	} else if (pmap_pcid_enabled) {
3564 		pcidp = zpcpu_get(pmap->pm_pcidp);
3565 		pcidp->pm_gen = 0;
3566 	}
3567 }
3568 
3569 void
3570 pmap_invalidate_all(pmap_t pmap)
3571 {
3572 	struct invpcid_descr d;
3573 	struct pmap_pcid *pcidp;
3574 	uint64_t kcr3, ucr3;
3575 	uint32_t pcid;
3576 
3577 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3578 		pmap->pm_eptgen++;
3579 		return;
3580 	}
3581 	KASSERT(pmap->pm_type == PT_X86,
3582 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3583 
3584 	if (pmap == kernel_pmap) {
3585 		if (pmap_pcid_enabled && invpcid_works) {
3586 			bzero(&d, sizeof(d));
3587 			invpcid(&d, INVPCID_CTXGLOB);
3588 		} else {
3589 			invltlb_glob();
3590 		}
3591 	} else if (pmap == PCPU_GET(curpmap)) {
3592 		if (pmap_pcid_enabled) {
3593 			critical_enter();
3594 			pcid = pmap_get_pcid(pmap);
3595 			if (invpcid_works) {
3596 				d.pcid = pcid;
3597 				d.pad = 0;
3598 				d.addr = 0;
3599 				invpcid(&d, INVPCID_CTX);
3600 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3601 					d.pcid |= PMAP_PCID_USER_PT;
3602 					invpcid(&d, INVPCID_CTX);
3603 				}
3604 			} else {
3605 				kcr3 = pmap->pm_cr3 | pcid;
3606 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3607 					ucr3 = pmap->pm_ucr3 | pcid |
3608 					    PMAP_PCID_USER_PT;
3609 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3610 				} else
3611 					load_cr3(kcr3);
3612 			}
3613 			critical_exit();
3614 		} else {
3615 			invltlb();
3616 		}
3617 	} else if (pmap_pcid_enabled) {
3618 		pcidp = zpcpu_get(pmap->pm_pcidp);
3619 		pcidp->pm_gen = 0;
3620 	}
3621 }
3622 
3623 PMAP_INLINE void
3624 pmap_invalidate_cache(void)
3625 {
3626 
3627 	wbinvd();
3628 }
3629 
3630 static void
3631 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3632 {
3633 	struct pmap_pcid *pcidp;
3634 
3635 	pmap_update_pde_store(pmap, pde, newpde);
3636 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3637 		pmap_update_pde_invalidate(pmap, va, newpde);
3638 	else {
3639 		pcidp = zpcpu_get(pmap->pm_pcidp);
3640 		pcidp->pm_gen = 0;
3641 	}
3642 }
3643 #endif /* !SMP */
3644 
3645 static void
3646 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3647 {
3648 
3649 	/*
3650 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3651 	 * by a promotion that did not invalidate the 512 4KB page mappings
3652 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3653 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3654 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3655 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3656 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3657 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3658 	 * TLB.
3659 	 */
3660 	if ((pde & PG_PROMOTED) != 0)
3661 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3662 	else
3663 		pmap_invalidate_page(pmap, va);
3664 }
3665 
3666 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3667     (vm_offset_t sva, vm_offset_t eva))
3668 {
3669 
3670 	if ((cpu_feature & CPUID_SS) != 0)
3671 		return (pmap_invalidate_cache_range_selfsnoop);
3672 	if ((cpu_feature & CPUID_CLFSH) != 0)
3673 		return (pmap_force_invalidate_cache_range);
3674 	return (pmap_invalidate_cache_range_all);
3675 }
3676 
3677 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3678 
3679 static void
3680 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3681 {
3682 
3683 	KASSERT((sva & PAGE_MASK) == 0,
3684 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3685 	KASSERT((eva & PAGE_MASK) == 0,
3686 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3687 }
3688 
3689 static void
3690 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3691 {
3692 
3693 	pmap_invalidate_cache_range_check_align(sva, eva);
3694 }
3695 
3696 void
3697 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3698 {
3699 
3700 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3701 
3702 	/*
3703 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3704 	 * registers if we use CLFLUSH on the local APIC range.  The
3705 	 * local APIC is always uncached, so we don't need to flush
3706 	 * for that range anyway.
3707 	 */
3708 	if (pmap_kextract(sva) == lapic_paddr)
3709 		return;
3710 
3711 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3712 		/*
3713 		 * Do per-cache line flush.  Use a locked
3714 		 * instruction to insure that previous stores are
3715 		 * included in the write-back.  The processor
3716 		 * propagates flush to other processors in the cache
3717 		 * coherence domain.
3718 		 */
3719 		atomic_thread_fence_seq_cst();
3720 		for (; sva < eva; sva += cpu_clflush_line_size)
3721 			clflushopt(sva);
3722 		atomic_thread_fence_seq_cst();
3723 	} else {
3724 		/*
3725 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3726 		 */
3727 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3728 			mfence();
3729 		for (; sva < eva; sva += cpu_clflush_line_size)
3730 			clflush(sva);
3731 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3732 			mfence();
3733 	}
3734 }
3735 
3736 static void
3737 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3738 {
3739 
3740 	pmap_invalidate_cache_range_check_align(sva, eva);
3741 	pmap_invalidate_cache();
3742 }
3743 
3744 /*
3745  * Remove the specified set of pages from the data and instruction caches.
3746  *
3747  * In contrast to pmap_invalidate_cache_range(), this function does not
3748  * rely on the CPU's self-snoop feature, because it is intended for use
3749  * when moving pages into a different cache domain.
3750  */
3751 void
3752 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3753 {
3754 	vm_offset_t daddr, eva;
3755 	int i;
3756 	bool useclflushopt;
3757 
3758 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3759 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3760 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3761 		pmap_invalidate_cache();
3762 	else {
3763 		if (useclflushopt)
3764 			atomic_thread_fence_seq_cst();
3765 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3766 			mfence();
3767 		for (i = 0; i < count; i++) {
3768 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3769 			eva = daddr + PAGE_SIZE;
3770 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3771 				if (useclflushopt)
3772 					clflushopt(daddr);
3773 				else
3774 					clflush(daddr);
3775 			}
3776 		}
3777 		if (useclflushopt)
3778 			atomic_thread_fence_seq_cst();
3779 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3780 			mfence();
3781 	}
3782 }
3783 
3784 void
3785 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3786 {
3787 
3788 	pmap_invalidate_cache_range_check_align(sva, eva);
3789 
3790 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3791 		pmap_force_invalidate_cache_range(sva, eva);
3792 		return;
3793 	}
3794 
3795 	/* See comment in pmap_force_invalidate_cache_range(). */
3796 	if (pmap_kextract(sva) == lapic_paddr)
3797 		return;
3798 
3799 	atomic_thread_fence_seq_cst();
3800 	for (; sva < eva; sva += cpu_clflush_line_size)
3801 		clwb(sva);
3802 	atomic_thread_fence_seq_cst();
3803 }
3804 
3805 void
3806 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3807 {
3808 	pt_entry_t *pte;
3809 	vm_offset_t vaddr;
3810 	int error __diagused;
3811 	int pte_bits;
3812 
3813 	KASSERT((spa & PAGE_MASK) == 0,
3814 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3815 	KASSERT((epa & PAGE_MASK) == 0,
3816 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3817 
3818 	if (spa < dmaplimit) {
3819 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3820 		    dmaplimit, epa)));
3821 		if (dmaplimit >= epa)
3822 			return;
3823 		spa = dmaplimit;
3824 	}
3825 
3826 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3827 	    X86_PG_V;
3828 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3829 	    &vaddr);
3830 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3831 	pte = vtopte(vaddr);
3832 	for (; spa < epa; spa += PAGE_SIZE) {
3833 		sched_pin();
3834 		pte_store(pte, spa | pte_bits);
3835 		pmap_invlpg(kernel_pmap, vaddr);
3836 		/* XXXKIB atomic inside flush_cache_range are excessive */
3837 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3838 		sched_unpin();
3839 	}
3840 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3841 }
3842 
3843 /*
3844  *	Routine:	pmap_extract
3845  *	Function:
3846  *		Extract the physical page address associated
3847  *		with the given map/virtual_address pair.
3848  */
3849 vm_paddr_t
3850 pmap_extract(pmap_t pmap, vm_offset_t va)
3851 {
3852 	pdp_entry_t *pdpe;
3853 	pd_entry_t *pde;
3854 	pt_entry_t *pte, PG_V;
3855 	vm_paddr_t pa;
3856 
3857 	pa = 0;
3858 	PG_V = pmap_valid_bit(pmap);
3859 	PMAP_LOCK(pmap);
3860 	pdpe = pmap_pdpe(pmap, va);
3861 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3862 		if ((*pdpe & PG_PS) != 0)
3863 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3864 		else {
3865 			pde = pmap_pdpe_to_pde(pdpe, va);
3866 			if ((*pde & PG_V) != 0) {
3867 				if ((*pde & PG_PS) != 0) {
3868 					pa = (*pde & PG_PS_FRAME) |
3869 					    (va & PDRMASK);
3870 				} else {
3871 					pte = pmap_pde_to_pte(pde, va);
3872 					pa = (*pte & PG_FRAME) |
3873 					    (va & PAGE_MASK);
3874 				}
3875 			}
3876 		}
3877 	}
3878 	PMAP_UNLOCK(pmap);
3879 	return (pa);
3880 }
3881 
3882 /*
3883  *	Routine:	pmap_extract_and_hold
3884  *	Function:
3885  *		Atomically extract and hold the physical page
3886  *		with the given pmap and virtual address pair
3887  *		if that mapping permits the given protection.
3888  */
3889 vm_page_t
3890 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3891 {
3892 	pdp_entry_t pdpe, *pdpep;
3893 	pd_entry_t pde, *pdep;
3894 	pt_entry_t pte, PG_RW, PG_V;
3895 	vm_page_t m;
3896 
3897 	m = NULL;
3898 	PG_RW = pmap_rw_bit(pmap);
3899 	PG_V = pmap_valid_bit(pmap);
3900 	PMAP_LOCK(pmap);
3901 
3902 	pdpep = pmap_pdpe(pmap, va);
3903 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3904 		goto out;
3905 	if ((pdpe & PG_PS) != 0) {
3906 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3907 			goto out;
3908 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3909 		goto check_page;
3910 	}
3911 
3912 	pdep = pmap_pdpe_to_pde(pdpep, va);
3913 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3914 		goto out;
3915 	if ((pde & PG_PS) != 0) {
3916 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3917 			goto out;
3918 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3919 		goto check_page;
3920 	}
3921 
3922 	pte = *pmap_pde_to_pte(pdep, va);
3923 	if ((pte & PG_V) == 0 ||
3924 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3925 		goto out;
3926 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3927 
3928 check_page:
3929 	if (m != NULL && !vm_page_wire_mapped(m))
3930 		m = NULL;
3931 out:
3932 	PMAP_UNLOCK(pmap);
3933 	return (m);
3934 }
3935 
3936 vm_paddr_t
3937 pmap_kextract(vm_offset_t va)
3938 {
3939 	pd_entry_t pde;
3940 	vm_paddr_t pa;
3941 
3942 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3943 		pa = DMAP_TO_PHYS(va);
3944 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3945 		pa = pmap_large_map_kextract(va);
3946 	} else {
3947 		pde = *vtopde(va);
3948 		if (pde & PG_PS) {
3949 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3950 		} else {
3951 			/*
3952 			 * Beware of a concurrent promotion that changes the
3953 			 * PDE at this point!  For example, vtopte() must not
3954 			 * be used to access the PTE because it would use the
3955 			 * new PDE.  It is, however, safe to use the old PDE
3956 			 * because the page table page is preserved by the
3957 			 * promotion.
3958 			 */
3959 			pa = *pmap_pde_to_pte(&pde, va);
3960 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3961 		}
3962 	}
3963 	return (pa);
3964 }
3965 
3966 /***************************************************
3967  * Low level mapping routines.....
3968  ***************************************************/
3969 
3970 /*
3971  * Add a wired page to the kva.
3972  * Note: not SMP coherent.
3973  */
3974 PMAP_INLINE void
3975 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3976 {
3977 	pt_entry_t *pte;
3978 
3979 	pte = vtopte(va);
3980 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3981 	    X86_PG_RW | X86_PG_V);
3982 }
3983 
3984 static __inline void
3985 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3986 {
3987 	pt_entry_t *pte;
3988 	int cache_bits;
3989 
3990 	pte = vtopte(va);
3991 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3992 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3993 	    X86_PG_RW | X86_PG_V | cache_bits);
3994 }
3995 
3996 /*
3997  * Remove a page from the kernel pagetables.
3998  * Note: not SMP coherent.
3999  */
4000 PMAP_INLINE void
4001 pmap_kremove(vm_offset_t va)
4002 {
4003 	pt_entry_t *pte;
4004 
4005 	pte = vtopte(va);
4006 	pte_clear(pte);
4007 }
4008 
4009 /*
4010  *	Used to map a range of physical addresses into kernel
4011  *	virtual address space.
4012  *
4013  *	The value passed in '*virt' is a suggested virtual address for
4014  *	the mapping. Architectures which can support a direct-mapped
4015  *	physical to virtual region can return the appropriate address
4016  *	within that region, leaving '*virt' unchanged. Other
4017  *	architectures should map the pages starting at '*virt' and
4018  *	update '*virt' with the first usable address after the mapped
4019  *	region.
4020  */
4021 vm_offset_t
4022 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4023 {
4024 	return PHYS_TO_DMAP(start);
4025 }
4026 
4027 /*
4028  * Add a list of wired pages to the kva
4029  * this routine is only used for temporary
4030  * kernel mappings that do not need to have
4031  * page modification or references recorded.
4032  * Note that old mappings are simply written
4033  * over.  The page *must* be wired.
4034  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4035  */
4036 void
4037 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4038 {
4039 	pt_entry_t *endpte, oldpte, pa, *pte;
4040 	vm_page_t m;
4041 	int cache_bits;
4042 
4043 	oldpte = 0;
4044 	pte = vtopte(sva);
4045 	endpte = pte + count;
4046 	while (pte < endpte) {
4047 		m = *ma++;
4048 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4049 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4050 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4051 			oldpte |= *pte;
4052 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4053 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4054 		}
4055 		pte++;
4056 	}
4057 	if (__predict_false((oldpte & X86_PG_V) != 0))
4058 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4059 		    PAGE_SIZE);
4060 }
4061 
4062 /*
4063  * This routine tears out page mappings from the
4064  * kernel -- it is meant only for temporary mappings.
4065  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4066  */
4067 void
4068 pmap_qremove(vm_offset_t sva, int count)
4069 {
4070 	vm_offset_t va;
4071 
4072 	va = sva;
4073 	while (count-- > 0) {
4074 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4075 		pmap_kremove(va);
4076 		va += PAGE_SIZE;
4077 	}
4078 	pmap_invalidate_range(kernel_pmap, sva, va);
4079 }
4080 
4081 /***************************************************
4082  * Page table page management routines.....
4083  ***************************************************/
4084 /*
4085  * Schedule the specified unused page table page to be freed.  Specifically,
4086  * add the page to the specified list of pages that will be released to the
4087  * physical memory manager after the TLB has been updated.
4088  */
4089 static __inline void
4090 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4091     boolean_t set_PG_ZERO)
4092 {
4093 
4094 	if (set_PG_ZERO)
4095 		m->flags |= PG_ZERO;
4096 	else
4097 		m->flags &= ~PG_ZERO;
4098 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4099 }
4100 
4101 /*
4102  * Inserts the specified page table page into the specified pmap's collection
4103  * of idle page table pages.  Each of a pmap's page table pages is responsible
4104  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4105  * ordered by this virtual address range.
4106  *
4107  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4108  * "mpte"'s valid field will be set to 0.
4109  *
4110  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4111  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4112  * valid field will be set to 1.
4113  *
4114  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4115  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4116  * field will be set to VM_PAGE_BITS_ALL.
4117  */
4118 static __inline int
4119 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4120     bool allpte_PG_A_set)
4121 {
4122 
4123 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4124 	KASSERT(promoted || !allpte_PG_A_set,
4125 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4126 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4127 	return (vm_radix_insert(&pmap->pm_root, mpte));
4128 }
4129 
4130 /*
4131  * Removes the page table page mapping the specified virtual address from the
4132  * specified pmap's collection of idle page table pages, and returns it.
4133  * Otherwise, returns NULL if there is no page table page corresponding to the
4134  * specified virtual address.
4135  */
4136 static __inline vm_page_t
4137 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4138 {
4139 
4140 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4141 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4142 }
4143 
4144 /*
4145  * Decrements a page table page's reference count, which is used to record the
4146  * number of valid page table entries within the page.  If the reference count
4147  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4148  * page table page was unmapped and FALSE otherwise.
4149  */
4150 static inline boolean_t
4151 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4152 {
4153 
4154 	--m->ref_count;
4155 	if (m->ref_count == 0) {
4156 		_pmap_unwire_ptp(pmap, va, m, free);
4157 		return (TRUE);
4158 	} else
4159 		return (FALSE);
4160 }
4161 
4162 static void
4163 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4164 {
4165 	pml5_entry_t *pml5;
4166 	pml4_entry_t *pml4;
4167 	pdp_entry_t *pdp;
4168 	pd_entry_t *pd;
4169 	vm_page_t pdpg, pdppg, pml4pg;
4170 
4171 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4172 
4173 	/*
4174 	 * unmap the page table page
4175 	 */
4176 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4177 		/* PML4 page */
4178 		MPASS(pmap_is_la57(pmap));
4179 		pml5 = pmap_pml5e(pmap, va);
4180 		*pml5 = 0;
4181 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4182 			pml5 = pmap_pml5e_u(pmap, va);
4183 			*pml5 = 0;
4184 		}
4185 	} else if (m->pindex >= NUPDE + NUPDPE) {
4186 		/* PDP page */
4187 		pml4 = pmap_pml4e(pmap, va);
4188 		*pml4 = 0;
4189 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4190 		    va <= VM_MAXUSER_ADDRESS) {
4191 			pml4 = pmap_pml4e_u(pmap, va);
4192 			*pml4 = 0;
4193 		}
4194 	} else if (m->pindex >= NUPDE) {
4195 		/* PD page */
4196 		pdp = pmap_pdpe(pmap, va);
4197 		*pdp = 0;
4198 	} else {
4199 		/* PTE page */
4200 		pd = pmap_pde(pmap, va);
4201 		*pd = 0;
4202 	}
4203 	if (m->pindex < NUPDE) {
4204 		/* We just released a PT, unhold the matching PD */
4205 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4206 		pmap_unwire_ptp(pmap, va, pdpg, free);
4207 	} else if (m->pindex < NUPDE + NUPDPE) {
4208 		/* We just released a PD, unhold the matching PDP */
4209 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4210 		pmap_unwire_ptp(pmap, va, pdppg, free);
4211 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4212 		/* We just released a PDP, unhold the matching PML4 */
4213 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4214 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4215 	}
4216 
4217 	pmap_pt_page_count_adj(pmap, -1);
4218 
4219 	/*
4220 	 * Put page on a list so that it is released after
4221 	 * *ALL* TLB shootdown is done
4222 	 */
4223 	pmap_add_delayed_free_list(m, free, TRUE);
4224 }
4225 
4226 /*
4227  * After removing a page table entry, this routine is used to
4228  * conditionally free the page, and manage the reference count.
4229  */
4230 static int
4231 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4232     struct spglist *free)
4233 {
4234 	vm_page_t mpte;
4235 
4236 	if (va >= VM_MAXUSER_ADDRESS)
4237 		return (0);
4238 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4239 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4240 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4241 }
4242 
4243 /*
4244  * Release a page table page reference after a failed attempt to create a
4245  * mapping.
4246  */
4247 static void
4248 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4249 {
4250 	struct spglist free;
4251 
4252 	SLIST_INIT(&free);
4253 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4254 		/*
4255 		 * Although "va" was never mapped, paging-structure caches
4256 		 * could nonetheless have entries that refer to the freed
4257 		 * page table pages.  Invalidate those entries.
4258 		 */
4259 		pmap_invalidate_page(pmap, va);
4260 		vm_page_free_pages_toq(&free, true);
4261 	}
4262 }
4263 
4264 static void
4265 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4266 {
4267 	struct pmap_pcid *pcidp;
4268 	int i;
4269 
4270 	CPU_FOREACH(i) {
4271 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4272 		pcidp->pm_pcid = pcid;
4273 		pcidp->pm_gen = gen;
4274 	}
4275 }
4276 
4277 void
4278 pmap_pinit0(pmap_t pmap)
4279 {
4280 	struct proc *p;
4281 	struct thread *td;
4282 
4283 	PMAP_LOCK_INIT(pmap);
4284 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4285 	pmap->pm_pmltopu = NULL;
4286 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4287 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4288 	pmap->pm_ucr3 = PMAP_NO_CR3;
4289 	vm_radix_init(&pmap->pm_root);
4290 	CPU_ZERO(&pmap->pm_active);
4291 	TAILQ_INIT(&pmap->pm_pvchunk);
4292 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4293 	pmap->pm_flags = pmap_flags;
4294 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4295 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4296 	pmap_activate_boot(pmap);
4297 	td = curthread;
4298 	if (pti) {
4299 		p = td->td_proc;
4300 		PROC_LOCK(p);
4301 		p->p_md.md_flags |= P_MD_KPTI;
4302 		PROC_UNLOCK(p);
4303 	}
4304 	pmap_thread_init_invl_gen(td);
4305 
4306 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4307 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4308 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4309 		    UMA_ALIGN_PTR, 0);
4310 	}
4311 }
4312 
4313 void
4314 pmap_pinit_pml4(vm_page_t pml4pg)
4315 {
4316 	pml4_entry_t *pm_pml4;
4317 	int i;
4318 
4319 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4320 
4321 	/* Wire in kernel global address entries. */
4322 	for (i = 0; i < NKPML4E; i++) {
4323 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4324 		    X86_PG_V;
4325 	}
4326 #ifdef KASAN
4327 	for (i = 0; i < NKASANPML4E; i++) {
4328 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4329 		    X86_PG_V | pg_nx;
4330 	}
4331 #endif
4332 #ifdef KMSAN
4333 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4334 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4335 		    X86_PG_RW | X86_PG_V | pg_nx;
4336 	}
4337 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4338 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4339 		    X86_PG_RW | X86_PG_V | pg_nx;
4340 	}
4341 #endif
4342 	for (i = 0; i < ndmpdpphys; i++) {
4343 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4344 		    X86_PG_V;
4345 	}
4346 
4347 	/* install self-referential address mapping entry(s) */
4348 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4349 	    X86_PG_A | X86_PG_M;
4350 
4351 	/* install large map entries if configured */
4352 	for (i = 0; i < lm_ents; i++)
4353 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4354 }
4355 
4356 void
4357 pmap_pinit_pml5(vm_page_t pml5pg)
4358 {
4359 	pml5_entry_t *pm_pml5;
4360 
4361 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4362 
4363 	/*
4364 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4365 	 * entering all existing kernel mappings into level 5 table.
4366 	 */
4367 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4368 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4369 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4370 
4371 	/*
4372 	 * Install self-referential address mapping entry.
4373 	 */
4374 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4375 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4376 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4377 }
4378 
4379 static void
4380 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4381 {
4382 	pml4_entry_t *pm_pml4u;
4383 	int i;
4384 
4385 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4386 	for (i = 0; i < NPML4EPG; i++)
4387 		pm_pml4u[i] = pti_pml4[i];
4388 }
4389 
4390 static void
4391 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4392 {
4393 	pml5_entry_t *pm_pml5u;
4394 
4395 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4396 	pagezero(pm_pml5u);
4397 
4398 	/*
4399 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4400 	 * table, entering all kernel mappings needed for usermode
4401 	 * into level 5 table.
4402 	 */
4403 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4404 	    pmap_kextract((vm_offset_t)pti_pml4) |
4405 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4406 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4407 }
4408 
4409 /* Allocate a page table page and do related bookkeeping */
4410 static vm_page_t
4411 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4412 {
4413 	vm_page_t m;
4414 
4415 	m = vm_page_alloc_noobj(flags);
4416 	if (__predict_false(m == NULL))
4417 		return (NULL);
4418 	m->pindex = pindex;
4419 	pmap_pt_page_count_adj(pmap, 1);
4420 	return (m);
4421 }
4422 
4423 static void
4424 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4425 {
4426 	/*
4427 	 * This function assumes the page will need to be unwired,
4428 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4429 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4430 	 * of pmap_free_pt_page() require unwiring.  The case in which
4431 	 * a PT page doesn't require unwiring because its ref_count has
4432 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4433 	 */
4434 	vm_page_unwire_noq(m);
4435 	if (zerofilled)
4436 		vm_page_free_zero(m);
4437 	else
4438 		vm_page_free(m);
4439 
4440 	pmap_pt_page_count_adj(pmap, -1);
4441 }
4442 
4443 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4444 
4445 /*
4446  * Initialize a preallocated and zeroed pmap structure,
4447  * such as one in a vmspace structure.
4448  */
4449 int
4450 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4451 {
4452 	vm_page_t pmltop_pg, pmltop_pgu;
4453 	vm_paddr_t pmltop_phys;
4454 
4455 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4456 
4457 	/*
4458 	 * Allocate the page directory page.  Pass NULL instead of a
4459 	 * pointer to the pmap here to avoid calling
4460 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4461 	 * since that requires pmap lock.  Instead do the accounting
4462 	 * manually.
4463 	 *
4464 	 * Note that final call to pmap_remove() optimization that
4465 	 * checks for zero resident_count is basically disabled by
4466 	 * accounting for top-level page.  But the optimization was
4467 	 * not effective since we started using non-managed mapping of
4468 	 * the shared page.
4469 	 */
4470 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4471 	    VM_ALLOC_WAITOK);
4472 	pmap_pt_page_count_pinit(pmap, 1);
4473 
4474 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4475 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4476 
4477 	if (pmap_pcid_enabled) {
4478 		if (pmap->pm_pcidp == NULL)
4479 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4480 			    M_WAITOK);
4481 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4482 	}
4483 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4484 	pmap->pm_ucr3 = PMAP_NO_CR3;
4485 	pmap->pm_pmltopu = NULL;
4486 
4487 	pmap->pm_type = pm_type;
4488 
4489 	/*
4490 	 * Do not install the host kernel mappings in the nested page
4491 	 * tables. These mappings are meaningless in the guest physical
4492 	 * address space.
4493 	 * Install minimal kernel mappings in PTI case.
4494 	 */
4495 	switch (pm_type) {
4496 	case PT_X86:
4497 		pmap->pm_cr3 = pmltop_phys;
4498 		if (pmap_is_la57(pmap))
4499 			pmap_pinit_pml5(pmltop_pg);
4500 		else
4501 			pmap_pinit_pml4(pmltop_pg);
4502 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4503 			/*
4504 			 * As with pmltop_pg, pass NULL instead of a
4505 			 * pointer to the pmap to ensure that the PTI
4506 			 * page counted explicitly.
4507 			 */
4508 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4509 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4510 			pmap_pt_page_count_pinit(pmap, 1);
4511 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4512 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4513 			if (pmap_is_la57(pmap))
4514 				pmap_pinit_pml5_pti(pmltop_pgu);
4515 			else
4516 				pmap_pinit_pml4_pti(pmltop_pgu);
4517 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4518 		}
4519 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4520 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4521 			    pkru_free_range, pmap, M_NOWAIT);
4522 		}
4523 		break;
4524 	case PT_EPT:
4525 	case PT_RVI:
4526 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4527 		break;
4528 	}
4529 
4530 	vm_radix_init(&pmap->pm_root);
4531 	CPU_ZERO(&pmap->pm_active);
4532 	TAILQ_INIT(&pmap->pm_pvchunk);
4533 	pmap->pm_flags = flags;
4534 	pmap->pm_eptgen = 0;
4535 
4536 	return (1);
4537 }
4538 
4539 int
4540 pmap_pinit(pmap_t pmap)
4541 {
4542 
4543 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4544 }
4545 
4546 static void
4547 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4548 {
4549 	vm_page_t mpg;
4550 	struct spglist free;
4551 
4552 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4553 	if (mpg->ref_count != 0)
4554 		return;
4555 	SLIST_INIT(&free);
4556 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4557 	pmap_invalidate_page(pmap, va);
4558 	vm_page_free_pages_toq(&free, true);
4559 }
4560 
4561 static pml4_entry_t *
4562 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4563     bool addref)
4564 {
4565 	vm_pindex_t pml5index;
4566 	pml5_entry_t *pml5;
4567 	pml4_entry_t *pml4;
4568 	vm_page_t pml4pg;
4569 	pt_entry_t PG_V;
4570 	bool allocated;
4571 
4572 	if (!pmap_is_la57(pmap))
4573 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4574 
4575 	PG_V = pmap_valid_bit(pmap);
4576 	pml5index = pmap_pml5e_index(va);
4577 	pml5 = &pmap->pm_pmltop[pml5index];
4578 	if ((*pml5 & PG_V) == 0) {
4579 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4580 		    va) == NULL)
4581 			return (NULL);
4582 		allocated = true;
4583 	} else {
4584 		allocated = false;
4585 	}
4586 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4587 	pml4 = &pml4[pmap_pml4e_index(va)];
4588 	if ((*pml4 & PG_V) == 0) {
4589 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4590 		if (allocated && !addref)
4591 			pml4pg->ref_count--;
4592 		else if (!allocated && addref)
4593 			pml4pg->ref_count++;
4594 	}
4595 	return (pml4);
4596 }
4597 
4598 static pdp_entry_t *
4599 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4600     bool addref)
4601 {
4602 	vm_page_t pdppg;
4603 	pml4_entry_t *pml4;
4604 	pdp_entry_t *pdp;
4605 	pt_entry_t PG_V;
4606 	bool allocated;
4607 
4608 	PG_V = pmap_valid_bit(pmap);
4609 
4610 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4611 	if (pml4 == NULL)
4612 		return (NULL);
4613 
4614 	if ((*pml4 & PG_V) == 0) {
4615 		/* Have to allocate a new pdp, recurse */
4616 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4617 		    va) == NULL) {
4618 			if (pmap_is_la57(pmap))
4619 				pmap_allocpte_free_unref(pmap, va,
4620 				    pmap_pml5e(pmap, va));
4621 			return (NULL);
4622 		}
4623 		allocated = true;
4624 	} else {
4625 		allocated = false;
4626 	}
4627 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4628 	pdp = &pdp[pmap_pdpe_index(va)];
4629 	if ((*pdp & PG_V) == 0) {
4630 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4631 		if (allocated && !addref)
4632 			pdppg->ref_count--;
4633 		else if (!allocated && addref)
4634 			pdppg->ref_count++;
4635 	}
4636 	return (pdp);
4637 }
4638 
4639 /*
4640  * The ptepindexes, i.e. page indices, of the page table pages encountered
4641  * while translating virtual address va are defined as follows:
4642  * - for the page table page (last level),
4643  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4644  *   in other words, it is just the index of the PDE that maps the page
4645  *   table page.
4646  * - for the page directory page,
4647  *      ptepindex = NUPDE (number of userland PD entries) +
4648  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4649  *   i.e. index of PDPE is put after the last index of PDE,
4650  * - for the page directory pointer page,
4651  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4652  *          NPML4EPGSHIFT),
4653  *   i.e. index of pml4e is put after the last index of PDPE,
4654  * - for the PML4 page (if LA57 mode is enabled),
4655  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4656  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4657  *   i.e. index of pml5e is put after the last index of PML4E.
4658  *
4659  * Define an order on the paging entries, where all entries of the
4660  * same height are put together, then heights are put from deepest to
4661  * root.  Then ptexpindex is the sequential number of the
4662  * corresponding paging entry in this order.
4663  *
4664  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4665  * LA57 paging structures even in LA48 paging mode. Moreover, the
4666  * ptepindexes are calculated as if the paging structures were 5-level
4667  * regardless of the actual mode of operation.
4668  *
4669  * The root page at PML4/PML5 does not participate in this indexing scheme,
4670  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4671  */
4672 static vm_page_t
4673 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4674     vm_offset_t va)
4675 {
4676 	vm_pindex_t pml5index, pml4index;
4677 	pml5_entry_t *pml5, *pml5u;
4678 	pml4_entry_t *pml4, *pml4u;
4679 	pdp_entry_t *pdp;
4680 	pd_entry_t *pd;
4681 	vm_page_t m, pdpg;
4682 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4683 
4684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4685 
4686 	PG_A = pmap_accessed_bit(pmap);
4687 	PG_M = pmap_modified_bit(pmap);
4688 	PG_V = pmap_valid_bit(pmap);
4689 	PG_RW = pmap_rw_bit(pmap);
4690 
4691 	/*
4692 	 * Allocate a page table page.
4693 	 */
4694 	m = pmap_alloc_pt_page(pmap, ptepindex,
4695 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4696 	if (m == NULL)
4697 		return (NULL);
4698 
4699 	/*
4700 	 * Map the pagetable page into the process address space, if
4701 	 * it isn't already there.
4702 	 */
4703 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4704 		MPASS(pmap_is_la57(pmap));
4705 
4706 		pml5index = pmap_pml5e_index(va);
4707 		pml5 = &pmap->pm_pmltop[pml5index];
4708 		KASSERT((*pml5 & PG_V) == 0,
4709 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4710 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4711 
4712 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4713 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4714 				*pml5 |= pg_nx;
4715 
4716 			pml5u = &pmap->pm_pmltopu[pml5index];
4717 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4718 			    PG_A | PG_M;
4719 		}
4720 	} else if (ptepindex >= NUPDE + NUPDPE) {
4721 		pml4index = pmap_pml4e_index(va);
4722 		/* Wire up a new PDPE page */
4723 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4724 		if (pml4 == NULL) {
4725 			pmap_free_pt_page(pmap, m, true);
4726 			return (NULL);
4727 		}
4728 		KASSERT((*pml4 & PG_V) == 0,
4729 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4730 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4731 
4732 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4733 		    pml4index < NUPML4E) {
4734 			/*
4735 			 * PTI: Make all user-space mappings in the
4736 			 * kernel-mode page table no-execute so that
4737 			 * we detect any programming errors that leave
4738 			 * the kernel-mode page table active on return
4739 			 * to user space.
4740 			 */
4741 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4742 				*pml4 |= pg_nx;
4743 
4744 			pml4u = &pmap->pm_pmltopu[pml4index];
4745 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4746 			    PG_A | PG_M;
4747 		}
4748 	} else if (ptepindex >= NUPDE) {
4749 		/* Wire up a new PDE page */
4750 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4751 		if (pdp == NULL) {
4752 			pmap_free_pt_page(pmap, m, true);
4753 			return (NULL);
4754 		}
4755 		KASSERT((*pdp & PG_V) == 0,
4756 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4757 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4758 	} else {
4759 		/* Wire up a new PTE page */
4760 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4761 		if (pdp == NULL) {
4762 			pmap_free_pt_page(pmap, m, true);
4763 			return (NULL);
4764 		}
4765 		if ((*pdp & PG_V) == 0) {
4766 			/* Have to allocate a new pd, recurse */
4767 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4768 		      lockp, va) == NULL) {
4769 				pmap_allocpte_free_unref(pmap, va,
4770 				    pmap_pml4e(pmap, va));
4771 				pmap_free_pt_page(pmap, m, true);
4772 				return (NULL);
4773 			}
4774 		} else {
4775 			/* Add reference to the pd page */
4776 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4777 			pdpg->ref_count++;
4778 		}
4779 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4780 
4781 		/* Now we know where the page directory page is */
4782 		pd = &pd[pmap_pde_index(va)];
4783 		KASSERT((*pd & PG_V) == 0,
4784 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4785 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4786 	}
4787 
4788 	return (m);
4789 }
4790 
4791 /*
4792  * This routine is called if the desired page table page does not exist.
4793  *
4794  * If page table page allocation fails, this routine may sleep before
4795  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4796  * occurs right before returning to the caller. This way, we never
4797  * drop pmap lock to sleep while a page table page has ref_count == 0,
4798  * which prevents the page from being freed under us.
4799  */
4800 static vm_page_t
4801 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4802     vm_offset_t va)
4803 {
4804 	vm_page_t m;
4805 
4806 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4807 	if (m == NULL && lockp != NULL) {
4808 		RELEASE_PV_LIST_LOCK(lockp);
4809 		PMAP_UNLOCK(pmap);
4810 		PMAP_ASSERT_NOT_IN_DI();
4811 		vm_wait(NULL);
4812 		PMAP_LOCK(pmap);
4813 	}
4814 	return (m);
4815 }
4816 
4817 static pd_entry_t *
4818 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4819     struct rwlock **lockp)
4820 {
4821 	pdp_entry_t *pdpe, PG_V;
4822 	pd_entry_t *pde;
4823 	vm_page_t pdpg;
4824 	vm_pindex_t pdpindex;
4825 
4826 	PG_V = pmap_valid_bit(pmap);
4827 
4828 retry:
4829 	pdpe = pmap_pdpe(pmap, va);
4830 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4831 		pde = pmap_pdpe_to_pde(pdpe, va);
4832 		if (va < VM_MAXUSER_ADDRESS) {
4833 			/* Add a reference to the pd page. */
4834 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4835 			pdpg->ref_count++;
4836 		} else
4837 			pdpg = NULL;
4838 	} else if (va < VM_MAXUSER_ADDRESS) {
4839 		/* Allocate a pd page. */
4840 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4841 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4842 		if (pdpg == NULL) {
4843 			if (lockp != NULL)
4844 				goto retry;
4845 			else
4846 				return (NULL);
4847 		}
4848 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4849 		pde = &pde[pmap_pde_index(va)];
4850 	} else
4851 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4852 		    va);
4853 	*pdpgp = pdpg;
4854 	return (pde);
4855 }
4856 
4857 static vm_page_t
4858 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4859 {
4860 	vm_pindex_t ptepindex;
4861 	pd_entry_t *pd, PG_V;
4862 	vm_page_t m;
4863 
4864 	PG_V = pmap_valid_bit(pmap);
4865 
4866 	/*
4867 	 * Calculate pagetable page index
4868 	 */
4869 	ptepindex = pmap_pde_pindex(va);
4870 retry:
4871 	/*
4872 	 * Get the page directory entry
4873 	 */
4874 	pd = pmap_pde(pmap, va);
4875 
4876 	/*
4877 	 * This supports switching from a 2MB page to a
4878 	 * normal 4K page.
4879 	 */
4880 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4881 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4882 			/*
4883 			 * Invalidation of the 2MB page mapping may have caused
4884 			 * the deallocation of the underlying PD page.
4885 			 */
4886 			pd = NULL;
4887 		}
4888 	}
4889 
4890 	/*
4891 	 * If the page table page is mapped, we just increment the
4892 	 * hold count, and activate it.
4893 	 */
4894 	if (pd != NULL && (*pd & PG_V) != 0) {
4895 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4896 		m->ref_count++;
4897 	} else {
4898 		/*
4899 		 * Here if the pte page isn't mapped, or if it has been
4900 		 * deallocated.
4901 		 */
4902 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4903 		if (m == NULL && lockp != NULL)
4904 			goto retry;
4905 	}
4906 	return (m);
4907 }
4908 
4909 /***************************************************
4910  * Pmap allocation/deallocation routines.
4911  ***************************************************/
4912 
4913 /*
4914  * Release any resources held by the given physical map.
4915  * Called when a pmap initialized by pmap_pinit is being released.
4916  * Should only be called if the map contains no valid mappings.
4917  */
4918 void
4919 pmap_release(pmap_t pmap)
4920 {
4921 	vm_page_t m;
4922 	int i;
4923 
4924 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4925 	    ("pmap_release: pmap %p has reserved page table page(s)",
4926 	    pmap));
4927 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4928 	    ("releasing active pmap %p", pmap));
4929 
4930 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4931 
4932 	if (pmap_is_la57(pmap)) {
4933 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4934 		pmap->pm_pmltop[PML5PML5I] = 0;
4935 	} else {
4936 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4937 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4938 #ifdef KASAN
4939 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4940 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4941 #endif
4942 #ifdef KMSAN
4943 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4944 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4945 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4946 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4947 #endif
4948 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4949 			pmap->pm_pmltop[DMPML4I + i] = 0;
4950 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4951 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4952 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4953 	}
4954 
4955 	pmap_free_pt_page(NULL, m, true);
4956 	pmap_pt_page_count_pinit(pmap, -1);
4957 
4958 	if (pmap->pm_pmltopu != NULL) {
4959 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4960 		    pm_pmltopu));
4961 		pmap_free_pt_page(NULL, m, false);
4962 		pmap_pt_page_count_pinit(pmap, -1);
4963 	}
4964 	if (pmap->pm_type == PT_X86 &&
4965 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4966 		rangeset_fini(&pmap->pm_pkru);
4967 
4968 	KASSERT(pmap->pm_stats.resident_count == 0,
4969 	    ("pmap_release: pmap %p resident count %ld != 0",
4970 	    pmap, pmap->pm_stats.resident_count));
4971 }
4972 
4973 static int
4974 kvm_size(SYSCTL_HANDLER_ARGS)
4975 {
4976 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4977 
4978 	return sysctl_handle_long(oidp, &ksize, 0, req);
4979 }
4980 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4981     0, 0, kvm_size, "LU",
4982     "Size of KVM");
4983 
4984 static int
4985 kvm_free(SYSCTL_HANDLER_ARGS)
4986 {
4987 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4988 
4989 	return sysctl_handle_long(oidp, &kfree, 0, req);
4990 }
4991 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4992     0, 0, kvm_free, "LU",
4993     "Amount of KVM free");
4994 
4995 #ifdef KMSAN
4996 static void
4997 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4998 {
4999 	pdp_entry_t *pdpe;
5000 	pd_entry_t *pde;
5001 	pt_entry_t *pte;
5002 	vm_paddr_t dummypa, dummypd, dummypt;
5003 	int i, npde, npdpg;
5004 
5005 	npdpg = howmany(size, NBPDP);
5006 	npde = size / NBPDR;
5007 
5008 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5009 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5010 
5011 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5012 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5013 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5014 	for (i = 0; i < npdpg; i++)
5015 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5016 
5017 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5018 	for (i = 0; i < NPTEPG; i++)
5019 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5020 		    X86_PG_A | X86_PG_M | pg_nx);
5021 
5022 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5023 	for (i = 0; i < npde; i++)
5024 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5025 
5026 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5027 	for (i = 0; i < npdpg; i++)
5028 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5029 		    X86_PG_RW | pg_nx);
5030 }
5031 
5032 static void
5033 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5034 {
5035 	vm_size_t size;
5036 
5037 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5038 
5039 	/*
5040 	 * The end of the page array's KVA region is 2MB aligned, see
5041 	 * kmem_init().
5042 	 */
5043 	size = round_2mpage(end) - start;
5044 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5045 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5046 }
5047 #endif
5048 
5049 /*
5050  * Allocate physical memory for the vm_page array and map it into KVA,
5051  * attempting to back the vm_pages with domain-local memory.
5052  */
5053 void
5054 pmap_page_array_startup(long pages)
5055 {
5056 	pdp_entry_t *pdpe;
5057 	pd_entry_t *pde, newpdir;
5058 	vm_offset_t va, start, end;
5059 	vm_paddr_t pa;
5060 	long pfn;
5061 	int domain, i;
5062 
5063 	vm_page_array_size = pages;
5064 
5065 	start = VM_MIN_KERNEL_ADDRESS;
5066 	end = start + pages * sizeof(struct vm_page);
5067 	for (va = start; va < end; va += NBPDR) {
5068 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5069 		domain = vm_phys_domain(ptoa(pfn));
5070 		pdpe = pmap_pdpe(kernel_pmap, va);
5071 		if ((*pdpe & X86_PG_V) == 0) {
5072 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5073 			dump_add_page(pa);
5074 			pagezero((void *)PHYS_TO_DMAP(pa));
5075 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5076 			    X86_PG_A | X86_PG_M);
5077 		}
5078 		pde = pmap_pdpe_to_pde(pdpe, va);
5079 		if ((*pde & X86_PG_V) != 0)
5080 			panic("Unexpected pde");
5081 		pa = vm_phys_early_alloc(domain, NBPDR);
5082 		for (i = 0; i < NPDEPG; i++)
5083 			dump_add_page(pa + i * PAGE_SIZE);
5084 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5085 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5086 		pde_store(pde, newpdir);
5087 	}
5088 	vm_page_array = (vm_page_t)start;
5089 
5090 #ifdef KMSAN
5091 	pmap_kmsan_page_array_startup(start, end);
5092 #endif
5093 }
5094 
5095 /*
5096  * grow the number of kernel page table entries, if needed
5097  */
5098 void
5099 pmap_growkernel(vm_offset_t addr)
5100 {
5101 	vm_paddr_t paddr;
5102 	vm_page_t nkpg;
5103 	pd_entry_t *pde, newpdir;
5104 	pdp_entry_t *pdpe;
5105 	vm_offset_t end;
5106 
5107 	TSENTER();
5108 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5109 
5110 	/*
5111 	 * The kernel map covers two distinct regions of KVA: that used
5112 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5113 	 * of the virtual address space.  The latter is used to map the
5114 	 * kernel and loadable kernel modules.  This scheme enables the
5115 	 * use of a special code generation model for kernel code which
5116 	 * takes advantage of compact addressing modes in machine code.
5117 	 *
5118 	 * Both regions grow upwards; to avoid wasting memory, the gap
5119 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5120 	 * kernel's region is grown, otherwise the kmem region is grown.
5121 	 *
5122 	 * The correctness of this action is based on the following
5123 	 * argument: vm_map_insert() allocates contiguous ranges of the
5124 	 * kernel virtual address space.  It calls this function if a range
5125 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5126 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5127 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5128 	 * than the kernel.  Thus, there is no immediate need to allocate
5129 	 * any new kernel page table pages between "kernel_vm_end" and
5130 	 * "KERNBASE".
5131 	 */
5132 	if (KERNBASE < addr) {
5133 		end = KERNBASE + nkpt * NBPDR;
5134 		if (end == 0) {
5135 			TSEXIT();
5136 			return;
5137 		}
5138 	} else {
5139 		end = kernel_vm_end;
5140 	}
5141 
5142 	addr = roundup2(addr, NBPDR);
5143 	if (addr - 1 >= vm_map_max(kernel_map))
5144 		addr = vm_map_max(kernel_map);
5145 	if (addr <= end) {
5146 		/*
5147 		 * The grown region is already mapped, so there is
5148 		 * nothing to do.
5149 		 */
5150 		TSEXIT();
5151 		return;
5152 	}
5153 
5154 	kasan_shadow_map(end, addr - end);
5155 	kmsan_shadow_map(end, addr - end);
5156 	while (end < addr) {
5157 		pdpe = pmap_pdpe(kernel_pmap, end);
5158 		if ((*pdpe & X86_PG_V) == 0) {
5159 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5160 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
5161 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5162 			if (nkpg == NULL)
5163 				panic("pmap_growkernel: no memory to grow kernel");
5164 			paddr = VM_PAGE_TO_PHYS(nkpg);
5165 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5166 			    X86_PG_A | X86_PG_M);
5167 			continue; /* try again */
5168 		}
5169 		pde = pmap_pdpe_to_pde(pdpe, end);
5170 		if ((*pde & X86_PG_V) != 0) {
5171 			end = (end + NBPDR) & ~PDRMASK;
5172 			if (end - 1 >= vm_map_max(kernel_map)) {
5173 				end = vm_map_max(kernel_map);
5174 				break;
5175 			}
5176 			continue;
5177 		}
5178 
5179 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5180 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5181 		if (nkpg == NULL)
5182 			panic("pmap_growkernel: no memory to grow kernel");
5183 		paddr = VM_PAGE_TO_PHYS(nkpg);
5184 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5185 		pde_store(pde, newpdir);
5186 
5187 		end = (end + NBPDR) & ~PDRMASK;
5188 		if (end - 1 >= vm_map_max(kernel_map)) {
5189 			end = vm_map_max(kernel_map);
5190 			break;
5191 		}
5192 	}
5193 
5194 	if (end <= KERNBASE)
5195 		kernel_vm_end = end;
5196 	else
5197 		nkpt = howmany(end - KERNBASE, NBPDR);
5198 	TSEXIT();
5199 }
5200 
5201 /***************************************************
5202  * page management routines.
5203  ***************************************************/
5204 
5205 static const uint64_t pc_freemask[_NPCM] = {
5206 	[0 ... _NPCM - 2] = PC_FREEN,
5207 	[_NPCM - 1] = PC_FREEL
5208 };
5209 
5210 #ifdef PV_STATS
5211 
5212 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5213 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5214     &pc_chunk_count, "Current number of pv entry cnunks");
5215 
5216 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5218     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5219 
5220 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5222     &pc_chunk_frees, "Total number of pv entry chunks freed");
5223 
5224 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5225 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5226     &pc_chunk_tryfail,
5227     "Number of failed attempts to get a pv entry chunk page");
5228 
5229 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5230 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5231     &pv_entry_frees, "Total number of pv entries freed");
5232 
5233 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5234 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5235     &pv_entry_allocs, "Total number of pv entries allocated");
5236 
5237 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5238 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5239     &pv_entry_count, "Current number of pv entries");
5240 
5241 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5242 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5243     &pv_entry_spare, "Current number of spare pv entries");
5244 #endif
5245 
5246 static void
5247 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5248 {
5249 
5250 	if (pmap == NULL)
5251 		return;
5252 	pmap_invalidate_all(pmap);
5253 	if (pmap != locked_pmap)
5254 		PMAP_UNLOCK(pmap);
5255 	if (start_di)
5256 		pmap_delayed_invl_finish();
5257 }
5258 
5259 /*
5260  * We are in a serious low memory condition.  Resort to
5261  * drastic measures to free some pages so we can allocate
5262  * another pv entry chunk.
5263  *
5264  * Returns NULL if PV entries were reclaimed from the specified pmap.
5265  *
5266  * We do not, however, unmap 2mpages because subsequent accesses will
5267  * allocate per-page pv entries until repromotion occurs, thereby
5268  * exacerbating the shortage of free pv entries.
5269  */
5270 static vm_page_t
5271 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5272 {
5273 	struct pv_chunks_list *pvc;
5274 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5275 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5276 	struct md_page *pvh;
5277 	pd_entry_t *pde;
5278 	pmap_t next_pmap, pmap;
5279 	pt_entry_t *pte, tpte;
5280 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5281 	pv_entry_t pv;
5282 	vm_offset_t va;
5283 	vm_page_t m, m_pc;
5284 	struct spglist free;
5285 	uint64_t inuse;
5286 	int bit, field, freed;
5287 	bool start_di, restart;
5288 
5289 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5290 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5291 	pmap = NULL;
5292 	m_pc = NULL;
5293 	PG_G = PG_A = PG_M = PG_RW = 0;
5294 	SLIST_INIT(&free);
5295 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5296 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5297 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5298 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5299 
5300 	/*
5301 	 * A delayed invalidation block should already be active if
5302 	 * pmap_advise() or pmap_remove() called this function by way
5303 	 * of pmap_demote_pde_locked().
5304 	 */
5305 	start_di = pmap_not_in_di();
5306 
5307 	pvc = &pv_chunks[domain];
5308 	mtx_lock(&pvc->pvc_lock);
5309 	pvc->active_reclaims++;
5310 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5311 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5312 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5313 	    SLIST_EMPTY(&free)) {
5314 		next_pmap = pc->pc_pmap;
5315 		if (next_pmap == NULL) {
5316 			/*
5317 			 * The next chunk is a marker.  However, it is
5318 			 * not our marker, so active_reclaims must be
5319 			 * > 1.  Consequently, the next_chunk code
5320 			 * will not rotate the pv_chunks list.
5321 			 */
5322 			goto next_chunk;
5323 		}
5324 		mtx_unlock(&pvc->pvc_lock);
5325 
5326 		/*
5327 		 * A pv_chunk can only be removed from the pc_lru list
5328 		 * when both pc_chunks_mutex is owned and the
5329 		 * corresponding pmap is locked.
5330 		 */
5331 		if (pmap != next_pmap) {
5332 			restart = false;
5333 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5334 			    start_di);
5335 			pmap = next_pmap;
5336 			/* Avoid deadlock and lock recursion. */
5337 			if (pmap > locked_pmap) {
5338 				RELEASE_PV_LIST_LOCK(lockp);
5339 				PMAP_LOCK(pmap);
5340 				if (start_di)
5341 					pmap_delayed_invl_start();
5342 				mtx_lock(&pvc->pvc_lock);
5343 				restart = true;
5344 			} else if (pmap != locked_pmap) {
5345 				if (PMAP_TRYLOCK(pmap)) {
5346 					if (start_di)
5347 						pmap_delayed_invl_start();
5348 					mtx_lock(&pvc->pvc_lock);
5349 					restart = true;
5350 				} else {
5351 					pmap = NULL; /* pmap is not locked */
5352 					mtx_lock(&pvc->pvc_lock);
5353 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5354 					if (pc == NULL ||
5355 					    pc->pc_pmap != next_pmap)
5356 						continue;
5357 					goto next_chunk;
5358 				}
5359 			} else if (start_di)
5360 				pmap_delayed_invl_start();
5361 			PG_G = pmap_global_bit(pmap);
5362 			PG_A = pmap_accessed_bit(pmap);
5363 			PG_M = pmap_modified_bit(pmap);
5364 			PG_RW = pmap_rw_bit(pmap);
5365 			if (restart)
5366 				continue;
5367 		}
5368 
5369 		/*
5370 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5371 		 */
5372 		freed = 0;
5373 		for (field = 0; field < _NPCM; field++) {
5374 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5375 			    inuse != 0; inuse &= ~(1UL << bit)) {
5376 				bit = bsfq(inuse);
5377 				pv = &pc->pc_pventry[field * 64 + bit];
5378 				va = pv->pv_va;
5379 				pde = pmap_pde(pmap, va);
5380 				if ((*pde & PG_PS) != 0)
5381 					continue;
5382 				pte = pmap_pde_to_pte(pde, va);
5383 				if ((*pte & PG_W) != 0)
5384 					continue;
5385 				tpte = pte_load_clear(pte);
5386 				if ((tpte & PG_G) != 0)
5387 					pmap_invalidate_page(pmap, va);
5388 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5389 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5390 					vm_page_dirty(m);
5391 				if ((tpte & PG_A) != 0)
5392 					vm_page_aflag_set(m, PGA_REFERENCED);
5393 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5394 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5395 				m->md.pv_gen++;
5396 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5397 				    (m->flags & PG_FICTITIOUS) == 0) {
5398 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5399 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5400 						vm_page_aflag_clear(m,
5401 						    PGA_WRITEABLE);
5402 					}
5403 				}
5404 				pmap_delayed_invl_page(m);
5405 				pc->pc_map[field] |= 1UL << bit;
5406 				pmap_unuse_pt(pmap, va, *pde, &free);
5407 				freed++;
5408 			}
5409 		}
5410 		if (freed == 0) {
5411 			mtx_lock(&pvc->pvc_lock);
5412 			goto next_chunk;
5413 		}
5414 		/* Every freed mapping is for a 4 KB page. */
5415 		pmap_resident_count_adj(pmap, -freed);
5416 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5417 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5418 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5419 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5420 		if (pc_is_free(pc)) {
5421 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5422 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5423 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5424 			/* Entire chunk is free; return it. */
5425 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5426 			dump_drop_page(m_pc->phys_addr);
5427 			mtx_lock(&pvc->pvc_lock);
5428 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5429 			break;
5430 		}
5431 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5432 		mtx_lock(&pvc->pvc_lock);
5433 		/* One freed pv entry in locked_pmap is sufficient. */
5434 		if (pmap == locked_pmap)
5435 			break;
5436 next_chunk:
5437 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5438 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5439 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5440 			/*
5441 			 * Rotate the pv chunks list so that we do not
5442 			 * scan the same pv chunks that could not be
5443 			 * freed (because they contained a wired
5444 			 * and/or superpage mapping) on every
5445 			 * invocation of reclaim_pv_chunk().
5446 			 */
5447 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5448 				MPASS(pc->pc_pmap != NULL);
5449 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5450 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5451 			}
5452 		}
5453 	}
5454 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5455 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5456 	pvc->active_reclaims--;
5457 	mtx_unlock(&pvc->pvc_lock);
5458 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5459 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5460 		m_pc = SLIST_FIRST(&free);
5461 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5462 		/* Recycle a freed page table page. */
5463 		m_pc->ref_count = 1;
5464 	}
5465 	vm_page_free_pages_toq(&free, true);
5466 	return (m_pc);
5467 }
5468 
5469 static vm_page_t
5470 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5471 {
5472 	vm_page_t m;
5473 	int i, domain;
5474 
5475 	domain = PCPU_GET(domain);
5476 	for (i = 0; i < vm_ndomains; i++) {
5477 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5478 		if (m != NULL)
5479 			break;
5480 		domain = (domain + 1) % vm_ndomains;
5481 	}
5482 
5483 	return (m);
5484 }
5485 
5486 /*
5487  * free the pv_entry back to the free list
5488  */
5489 static void
5490 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5491 {
5492 	struct pv_chunk *pc;
5493 	int idx, field, bit;
5494 
5495 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5496 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5497 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5498 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5499 	pc = pv_to_chunk(pv);
5500 	idx = pv - &pc->pc_pventry[0];
5501 	field = idx / 64;
5502 	bit = idx % 64;
5503 	pc->pc_map[field] |= 1ul << bit;
5504 	if (!pc_is_free(pc)) {
5505 		/* 98% of the time, pc is already at the head of the list. */
5506 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5507 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5508 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5509 		}
5510 		return;
5511 	}
5512 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5513 	free_pv_chunk(pc);
5514 }
5515 
5516 static void
5517 free_pv_chunk_dequeued(struct pv_chunk *pc)
5518 {
5519 	vm_page_t m;
5520 
5521 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5522 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5523 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5524 	counter_u64_add(pv_page_count, -1);
5525 	/* entire chunk is free, return it */
5526 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5527 	dump_drop_page(m->phys_addr);
5528 	vm_page_unwire_noq(m);
5529 	vm_page_free(m);
5530 }
5531 
5532 static void
5533 free_pv_chunk(struct pv_chunk *pc)
5534 {
5535 	struct pv_chunks_list *pvc;
5536 
5537 	pvc = &pv_chunks[pc_to_domain(pc)];
5538 	mtx_lock(&pvc->pvc_lock);
5539 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5540 	mtx_unlock(&pvc->pvc_lock);
5541 	free_pv_chunk_dequeued(pc);
5542 }
5543 
5544 static void
5545 free_pv_chunk_batch(struct pv_chunklist *batch)
5546 {
5547 	struct pv_chunks_list *pvc;
5548 	struct pv_chunk *pc, *npc;
5549 	int i;
5550 
5551 	for (i = 0; i < vm_ndomains; i++) {
5552 		if (TAILQ_EMPTY(&batch[i]))
5553 			continue;
5554 		pvc = &pv_chunks[i];
5555 		mtx_lock(&pvc->pvc_lock);
5556 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5557 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5558 		}
5559 		mtx_unlock(&pvc->pvc_lock);
5560 	}
5561 
5562 	for (i = 0; i < vm_ndomains; i++) {
5563 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5564 			free_pv_chunk_dequeued(pc);
5565 		}
5566 	}
5567 }
5568 
5569 /*
5570  * Returns a new PV entry, allocating a new PV chunk from the system when
5571  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5572  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5573  * returned.
5574  *
5575  * The given PV list lock may be released.
5576  */
5577 static pv_entry_t
5578 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5579 {
5580 	struct pv_chunks_list *pvc;
5581 	int bit, field;
5582 	pv_entry_t pv;
5583 	struct pv_chunk *pc;
5584 	vm_page_t m;
5585 
5586 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5587 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5588 retry:
5589 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5590 	if (pc != NULL) {
5591 		for (field = 0; field < _NPCM; field++) {
5592 			if (pc->pc_map[field]) {
5593 				bit = bsfq(pc->pc_map[field]);
5594 				break;
5595 			}
5596 		}
5597 		if (field < _NPCM) {
5598 			pv = &pc->pc_pventry[field * 64 + bit];
5599 			pc->pc_map[field] &= ~(1ul << bit);
5600 			/* If this was the last item, move it to tail */
5601 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5602 			    pc->pc_map[2] == 0) {
5603 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5604 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5605 				    pc_list);
5606 			}
5607 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5608 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5609 			return (pv);
5610 		}
5611 	}
5612 	/* No free items, allocate another chunk */
5613 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5614 	if (m == NULL) {
5615 		if (lockp == NULL) {
5616 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5617 			return (NULL);
5618 		}
5619 		m = reclaim_pv_chunk(pmap, lockp);
5620 		if (m == NULL)
5621 			goto retry;
5622 	} else
5623 		counter_u64_add(pv_page_count, 1);
5624 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5625 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5626 	dump_add_page(m->phys_addr);
5627 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5628 	pc->pc_pmap = pmap;
5629 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5630 	pc->pc_map[1] = PC_FREEN;
5631 	pc->pc_map[2] = PC_FREEL;
5632 	pvc = &pv_chunks[vm_page_domain(m)];
5633 	mtx_lock(&pvc->pvc_lock);
5634 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5635 	mtx_unlock(&pvc->pvc_lock);
5636 	pv = &pc->pc_pventry[0];
5637 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5638 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5639 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5640 	return (pv);
5641 }
5642 
5643 /*
5644  * Returns the number of one bits within the given PV chunk map.
5645  *
5646  * The erratas for Intel processors state that "POPCNT Instruction May
5647  * Take Longer to Execute Than Expected".  It is believed that the
5648  * issue is the spurious dependency on the destination register.
5649  * Provide a hint to the register rename logic that the destination
5650  * value is overwritten, by clearing it, as suggested in the
5651  * optimization manual.  It should be cheap for unaffected processors
5652  * as well.
5653  *
5654  * Reference numbers for erratas are
5655  * 4th Gen Core: HSD146
5656  * 5th Gen Core: BDM85
5657  * 6th Gen Core: SKL029
5658  */
5659 static int
5660 popcnt_pc_map_pq(uint64_t *map)
5661 {
5662 	u_long result, tmp;
5663 
5664 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5665 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5666 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5667 	    : "=&r" (result), "=&r" (tmp)
5668 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5669 	return (result);
5670 }
5671 
5672 /*
5673  * Ensure that the number of spare PV entries in the specified pmap meets or
5674  * exceeds the given count, "needed".
5675  *
5676  * The given PV list lock may be released.
5677  */
5678 static void
5679 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5680 {
5681 	struct pv_chunks_list *pvc;
5682 	struct pch new_tail[PMAP_MEMDOM];
5683 	struct pv_chunk *pc;
5684 	vm_page_t m;
5685 	int avail, free, i;
5686 	bool reclaimed;
5687 
5688 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5689 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5690 
5691 	/*
5692 	 * Newly allocated PV chunks must be stored in a private list until
5693 	 * the required number of PV chunks have been allocated.  Otherwise,
5694 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5695 	 * contrast, these chunks must be added to the pmap upon allocation.
5696 	 */
5697 	for (i = 0; i < PMAP_MEMDOM; i++)
5698 		TAILQ_INIT(&new_tail[i]);
5699 retry:
5700 	avail = 0;
5701 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5702 #ifndef __POPCNT__
5703 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5704 			bit_count((bitstr_t *)pc->pc_map, 0,
5705 			    sizeof(pc->pc_map) * NBBY, &free);
5706 		else
5707 #endif
5708 		free = popcnt_pc_map_pq(pc->pc_map);
5709 		if (free == 0)
5710 			break;
5711 		avail += free;
5712 		if (avail >= needed)
5713 			break;
5714 	}
5715 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5716 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5717 		if (m == NULL) {
5718 			m = reclaim_pv_chunk(pmap, lockp);
5719 			if (m == NULL)
5720 				goto retry;
5721 			reclaimed = true;
5722 		} else
5723 			counter_u64_add(pv_page_count, 1);
5724 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5725 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5726 		dump_add_page(m->phys_addr);
5727 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5728 		pc->pc_pmap = pmap;
5729 		pc->pc_map[0] = PC_FREEN;
5730 		pc->pc_map[1] = PC_FREEN;
5731 		pc->pc_map[2] = PC_FREEL;
5732 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5733 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5734 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5735 
5736 		/*
5737 		 * The reclaim might have freed a chunk from the current pmap.
5738 		 * If that chunk contained available entries, we need to
5739 		 * re-count the number of available entries.
5740 		 */
5741 		if (reclaimed)
5742 			goto retry;
5743 	}
5744 	for (i = 0; i < vm_ndomains; i++) {
5745 		if (TAILQ_EMPTY(&new_tail[i]))
5746 			continue;
5747 		pvc = &pv_chunks[i];
5748 		mtx_lock(&pvc->pvc_lock);
5749 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5750 		mtx_unlock(&pvc->pvc_lock);
5751 	}
5752 }
5753 
5754 /*
5755  * First find and then remove the pv entry for the specified pmap and virtual
5756  * address from the specified pv list.  Returns the pv entry if found and NULL
5757  * otherwise.  This operation can be performed on pv lists for either 4KB or
5758  * 2MB page mappings.
5759  */
5760 static __inline pv_entry_t
5761 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5762 {
5763 	pv_entry_t pv;
5764 
5765 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5766 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5767 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5768 			pvh->pv_gen++;
5769 			break;
5770 		}
5771 	}
5772 	return (pv);
5773 }
5774 
5775 /*
5776  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5777  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5778  * entries for each of the 4KB page mappings.
5779  */
5780 static void
5781 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5782     struct rwlock **lockp)
5783 {
5784 	struct md_page *pvh;
5785 	struct pv_chunk *pc;
5786 	pv_entry_t pv;
5787 	vm_offset_t va_last;
5788 	vm_page_t m;
5789 	int bit, field;
5790 
5791 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5792 	KASSERT((pa & PDRMASK) == 0,
5793 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5794 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5795 
5796 	/*
5797 	 * Transfer the 2mpage's pv entry for this mapping to the first
5798 	 * page's pv list.  Once this transfer begins, the pv list lock
5799 	 * must not be released until the last pv entry is reinstantiated.
5800 	 */
5801 	pvh = pa_to_pvh(pa);
5802 	va = trunc_2mpage(va);
5803 	pv = pmap_pvh_remove(pvh, pmap, va);
5804 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5805 	m = PHYS_TO_VM_PAGE(pa);
5806 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5807 	m->md.pv_gen++;
5808 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5809 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5810 	va_last = va + NBPDR - PAGE_SIZE;
5811 	for (;;) {
5812 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5813 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5814 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5815 		for (field = 0; field < _NPCM; field++) {
5816 			while (pc->pc_map[field]) {
5817 				bit = bsfq(pc->pc_map[field]);
5818 				pc->pc_map[field] &= ~(1ul << bit);
5819 				pv = &pc->pc_pventry[field * 64 + bit];
5820 				va += PAGE_SIZE;
5821 				pv->pv_va = va;
5822 				m++;
5823 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5824 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5825 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5826 				m->md.pv_gen++;
5827 				if (va == va_last)
5828 					goto out;
5829 			}
5830 		}
5831 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5832 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5833 	}
5834 out:
5835 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5836 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5837 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5838 	}
5839 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5840 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5841 }
5842 
5843 #if VM_NRESERVLEVEL > 0
5844 /*
5845  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5846  * replace the many pv entries for the 4KB page mappings by a single pv entry
5847  * for the 2MB page mapping.
5848  */
5849 static void
5850 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5851     struct rwlock **lockp)
5852 {
5853 	struct md_page *pvh;
5854 	pv_entry_t pv;
5855 	vm_offset_t va_last;
5856 	vm_page_t m;
5857 
5858 	KASSERT((pa & PDRMASK) == 0,
5859 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5860 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5861 
5862 	/*
5863 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5864 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5865 	 * a transfer avoids the possibility that get_pv_entry() calls
5866 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5867 	 * mappings that is being promoted.
5868 	 */
5869 	m = PHYS_TO_VM_PAGE(pa);
5870 	va = trunc_2mpage(va);
5871 	pv = pmap_pvh_remove(&m->md, pmap, va);
5872 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5873 	pvh = pa_to_pvh(pa);
5874 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5875 	pvh->pv_gen++;
5876 	/* Free the remaining NPTEPG - 1 pv entries. */
5877 	va_last = va + NBPDR - PAGE_SIZE;
5878 	do {
5879 		m++;
5880 		va += PAGE_SIZE;
5881 		pmap_pvh_free(&m->md, pmap, va);
5882 	} while (va < va_last);
5883 }
5884 #endif /* VM_NRESERVLEVEL > 0 */
5885 
5886 /*
5887  * First find and then destroy the pv entry for the specified pmap and virtual
5888  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5889  * page mappings.
5890  */
5891 static void
5892 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5893 {
5894 	pv_entry_t pv;
5895 
5896 	pv = pmap_pvh_remove(pvh, pmap, va);
5897 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5898 	free_pv_entry(pmap, pv);
5899 }
5900 
5901 /*
5902  * Conditionally create the PV entry for a 4KB page mapping if the required
5903  * memory can be allocated without resorting to reclamation.
5904  */
5905 static boolean_t
5906 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5907     struct rwlock **lockp)
5908 {
5909 	pv_entry_t pv;
5910 
5911 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5912 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5913 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5914 		pv->pv_va = va;
5915 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5916 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5917 		m->md.pv_gen++;
5918 		return (TRUE);
5919 	} else
5920 		return (FALSE);
5921 }
5922 
5923 /*
5924  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5925  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5926  * false if the PV entry cannot be allocated without resorting to reclamation.
5927  */
5928 static bool
5929 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5930     struct rwlock **lockp)
5931 {
5932 	struct md_page *pvh;
5933 	pv_entry_t pv;
5934 	vm_paddr_t pa;
5935 
5936 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5937 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5938 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5939 	    NULL : lockp)) == NULL)
5940 		return (false);
5941 	pv->pv_va = va;
5942 	pa = pde & PG_PS_FRAME;
5943 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5944 	pvh = pa_to_pvh(pa);
5945 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5946 	pvh->pv_gen++;
5947 	return (true);
5948 }
5949 
5950 /*
5951  * Fills a page table page with mappings to consecutive physical pages.
5952  */
5953 static void
5954 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5955 {
5956 	pt_entry_t *pte;
5957 
5958 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5959 		*pte = newpte;
5960 		newpte += PAGE_SIZE;
5961 	}
5962 }
5963 
5964 /*
5965  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5966  * mapping is invalidated.
5967  */
5968 static boolean_t
5969 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5970 {
5971 	struct rwlock *lock;
5972 	boolean_t rv;
5973 
5974 	lock = NULL;
5975 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5976 	if (lock != NULL)
5977 		rw_wunlock(lock);
5978 	return (rv);
5979 }
5980 
5981 static void
5982 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5983 {
5984 #ifdef INVARIANTS
5985 #ifdef DIAGNOSTIC
5986 	pt_entry_t *xpte, *ypte;
5987 
5988 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5989 	    xpte++, newpte += PAGE_SIZE) {
5990 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5991 			printf("pmap_demote_pde: xpte %zd and newpte map "
5992 			    "different pages: found %#lx, expected %#lx\n",
5993 			    xpte - firstpte, *xpte, newpte);
5994 			printf("page table dump\n");
5995 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5996 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5997 			panic("firstpte");
5998 		}
5999 	}
6000 #else
6001 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
6002 	    ("pmap_demote_pde: firstpte and newpte map different physical"
6003 	    " addresses"));
6004 #endif
6005 #endif
6006 }
6007 
6008 static void
6009 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6010     pd_entry_t oldpde, struct rwlock **lockp)
6011 {
6012 	struct spglist free;
6013 	vm_offset_t sva;
6014 
6015 	SLIST_INIT(&free);
6016 	sva = trunc_2mpage(va);
6017 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6018 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6019 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6020 	vm_page_free_pages_toq(&free, true);
6021 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6022 	    va, pmap);
6023 }
6024 
6025 static boolean_t
6026 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6027     struct rwlock **lockp)
6028 {
6029 	pd_entry_t newpde, oldpde;
6030 	pt_entry_t *firstpte, newpte;
6031 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6032 	vm_paddr_t mptepa;
6033 	vm_page_t mpte;
6034 	int PG_PTE_CACHE;
6035 	bool in_kernel;
6036 
6037 	PG_A = pmap_accessed_bit(pmap);
6038 	PG_G = pmap_global_bit(pmap);
6039 	PG_M = pmap_modified_bit(pmap);
6040 	PG_RW = pmap_rw_bit(pmap);
6041 	PG_V = pmap_valid_bit(pmap);
6042 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6043 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6044 
6045 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6046 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6047 	oldpde = *pde;
6048 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6049 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6050 
6051 	/*
6052 	 * Invalidate the 2MB page mapping and return "failure" if the
6053 	 * mapping was never accessed.
6054 	 */
6055 	if ((oldpde & PG_A) == 0) {
6056 		KASSERT((oldpde & PG_W) == 0,
6057 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6058 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6059 		return (FALSE);
6060 	}
6061 
6062 	mpte = pmap_remove_pt_page(pmap, va);
6063 	if (mpte == NULL) {
6064 		KASSERT((oldpde & PG_W) == 0,
6065 		    ("pmap_demote_pde: page table page for a wired mapping"
6066 		    " is missing"));
6067 
6068 		/*
6069 		 * If the page table page is missing and the mapping
6070 		 * is for a kernel address, the mapping must belong to
6071 		 * the direct map.  Page table pages are preallocated
6072 		 * for every other part of the kernel address space,
6073 		 * so the direct map region is the only part of the
6074 		 * kernel address space that must be handled here.
6075 		 */
6076 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6077 		    va < DMAP_MAX_ADDRESS),
6078 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6079 
6080 		/*
6081 		 * If the 2MB page mapping belongs to the direct map
6082 		 * region of the kernel's address space, then the page
6083 		 * allocation request specifies the highest possible
6084 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6085 		 * priority is normal.
6086 		 */
6087 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6088 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6089 
6090 		/*
6091 		 * If the allocation of the new page table page fails,
6092 		 * invalidate the 2MB page mapping and return "failure".
6093 		 */
6094 		if (mpte == NULL) {
6095 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6096 			return (FALSE);
6097 		}
6098 
6099 		if (!in_kernel)
6100 			mpte->ref_count = NPTEPG;
6101 	}
6102 	mptepa = VM_PAGE_TO_PHYS(mpte);
6103 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6104 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6105 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6106 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6107 	newpte = oldpde & ~PG_PS;
6108 	newpte = pmap_swap_pat(pmap, newpte);
6109 
6110 	/*
6111 	 * If the PTP is not leftover from an earlier promotion or it does not
6112 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6113 	 * have PG_A set.
6114 	 */
6115 	if (!vm_page_all_valid(mpte))
6116 		pmap_fill_ptp(firstpte, newpte);
6117 
6118 	pmap_demote_pde_check(firstpte, newpte);
6119 
6120 	/*
6121 	 * If the mapping has changed attributes, update the PTEs.
6122 	 */
6123 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6124 		pmap_fill_ptp(firstpte, newpte);
6125 
6126 	/*
6127 	 * The spare PV entries must be reserved prior to demoting the
6128 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6129 	 * of the PDE and the PV lists will be inconsistent, which can result
6130 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6131 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6132 	 * PV entry for the 2MB page mapping that is being demoted.
6133 	 */
6134 	if ((oldpde & PG_MANAGED) != 0)
6135 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6136 
6137 	/*
6138 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6139 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6140 	 * set.  Thus, there is no danger of a race with another
6141 	 * processor changing the setting of PG_A and/or PG_M between
6142 	 * the read above and the store below.
6143 	 */
6144 	if (workaround_erratum383)
6145 		pmap_update_pde(pmap, va, pde, newpde);
6146 	else
6147 		pde_store(pde, newpde);
6148 
6149 	/*
6150 	 * Invalidate a stale recursive mapping of the page table page.
6151 	 */
6152 	if (in_kernel)
6153 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6154 
6155 	/*
6156 	 * Demote the PV entry.
6157 	 */
6158 	if ((oldpde & PG_MANAGED) != 0)
6159 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6160 
6161 	counter_u64_add(pmap_pde_demotions, 1);
6162 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6163 	    va, pmap);
6164 	return (TRUE);
6165 }
6166 
6167 /*
6168  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6169  */
6170 static void
6171 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6172 {
6173 	pd_entry_t newpde;
6174 	vm_paddr_t mptepa;
6175 	vm_page_t mpte;
6176 
6177 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6178 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6179 	mpte = pmap_remove_pt_page(pmap, va);
6180 	if (mpte == NULL)
6181 		panic("pmap_remove_kernel_pde: Missing pt page.");
6182 
6183 	mptepa = VM_PAGE_TO_PHYS(mpte);
6184 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6185 
6186 	/*
6187 	 * If this page table page was unmapped by a promotion, then it
6188 	 * contains valid mappings.  Zero it to invalidate those mappings.
6189 	 */
6190 	if (vm_page_any_valid(mpte))
6191 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6192 
6193 	/*
6194 	 * Demote the mapping.
6195 	 */
6196 	if (workaround_erratum383)
6197 		pmap_update_pde(pmap, va, pde, newpde);
6198 	else
6199 		pde_store(pde, newpde);
6200 
6201 	/*
6202 	 * Invalidate a stale recursive mapping of the page table page.
6203 	 */
6204 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6205 }
6206 
6207 /*
6208  * pmap_remove_pde: do the things to unmap a superpage in a process
6209  */
6210 static int
6211 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6212     struct spglist *free, struct rwlock **lockp)
6213 {
6214 	struct md_page *pvh;
6215 	pd_entry_t oldpde;
6216 	vm_offset_t eva, va;
6217 	vm_page_t m, mpte;
6218 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6219 
6220 	PG_G = pmap_global_bit(pmap);
6221 	PG_A = pmap_accessed_bit(pmap);
6222 	PG_M = pmap_modified_bit(pmap);
6223 	PG_RW = pmap_rw_bit(pmap);
6224 
6225 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6226 	KASSERT((sva & PDRMASK) == 0,
6227 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6228 	oldpde = pte_load_clear(pdq);
6229 	if (oldpde & PG_W)
6230 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6231 	if ((oldpde & PG_G) != 0)
6232 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6233 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6234 	if (oldpde & PG_MANAGED) {
6235 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6236 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6237 		pmap_pvh_free(pvh, pmap, sva);
6238 		eva = sva + NBPDR;
6239 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6240 		    va < eva; va += PAGE_SIZE, m++) {
6241 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6242 				vm_page_dirty(m);
6243 			if (oldpde & PG_A)
6244 				vm_page_aflag_set(m, PGA_REFERENCED);
6245 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6246 			    TAILQ_EMPTY(&pvh->pv_list))
6247 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6248 			pmap_delayed_invl_page(m);
6249 		}
6250 	}
6251 	if (pmap == kernel_pmap) {
6252 		pmap_remove_kernel_pde(pmap, pdq, sva);
6253 	} else {
6254 		mpte = pmap_remove_pt_page(pmap, sva);
6255 		if (mpte != NULL) {
6256 			KASSERT(vm_page_any_valid(mpte),
6257 			    ("pmap_remove_pde: pte page not promoted"));
6258 			pmap_pt_page_count_adj(pmap, -1);
6259 			KASSERT(mpte->ref_count == NPTEPG,
6260 			    ("pmap_remove_pde: pte page ref count error"));
6261 			mpte->ref_count = 0;
6262 			pmap_add_delayed_free_list(mpte, free, FALSE);
6263 		}
6264 	}
6265 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6266 }
6267 
6268 /*
6269  * pmap_remove_pte: do the things to unmap a page in a process
6270  */
6271 static int
6272 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6273     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6274 {
6275 	struct md_page *pvh;
6276 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6277 	vm_page_t m;
6278 
6279 	PG_A = pmap_accessed_bit(pmap);
6280 	PG_M = pmap_modified_bit(pmap);
6281 	PG_RW = pmap_rw_bit(pmap);
6282 
6283 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6284 	oldpte = pte_load_clear(ptq);
6285 	if (oldpte & PG_W)
6286 		pmap->pm_stats.wired_count -= 1;
6287 	pmap_resident_count_adj(pmap, -1);
6288 	if (oldpte & PG_MANAGED) {
6289 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6290 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6291 			vm_page_dirty(m);
6292 		if (oldpte & PG_A)
6293 			vm_page_aflag_set(m, PGA_REFERENCED);
6294 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6295 		pmap_pvh_free(&m->md, pmap, va);
6296 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6297 		    (m->flags & PG_FICTITIOUS) == 0) {
6298 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6299 			if (TAILQ_EMPTY(&pvh->pv_list))
6300 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6301 		}
6302 		pmap_delayed_invl_page(m);
6303 	}
6304 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6305 }
6306 
6307 /*
6308  * Remove a single page from a process address space
6309  */
6310 static void
6311 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6312     struct spglist *free)
6313 {
6314 	struct rwlock *lock;
6315 	pt_entry_t *pte, PG_V;
6316 
6317 	PG_V = pmap_valid_bit(pmap);
6318 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6319 	if ((*pde & PG_V) == 0)
6320 		return;
6321 	pte = pmap_pde_to_pte(pde, va);
6322 	if ((*pte & PG_V) == 0)
6323 		return;
6324 	lock = NULL;
6325 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6326 	if (lock != NULL)
6327 		rw_wunlock(lock);
6328 	pmap_invalidate_page(pmap, va);
6329 }
6330 
6331 /*
6332  * Removes the specified range of addresses from the page table page.
6333  */
6334 static bool
6335 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6336     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6337 {
6338 	pt_entry_t PG_G, *pte;
6339 	vm_offset_t va;
6340 	bool anyvalid;
6341 
6342 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6343 	PG_G = pmap_global_bit(pmap);
6344 	anyvalid = false;
6345 	va = eva;
6346 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6347 	    sva += PAGE_SIZE) {
6348 		if (*pte == 0) {
6349 			if (va != eva) {
6350 				pmap_invalidate_range(pmap, va, sva);
6351 				va = eva;
6352 			}
6353 			continue;
6354 		}
6355 		if ((*pte & PG_G) == 0)
6356 			anyvalid = true;
6357 		else if (va == eva)
6358 			va = sva;
6359 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6360 			sva += PAGE_SIZE;
6361 			break;
6362 		}
6363 	}
6364 	if (va != eva)
6365 		pmap_invalidate_range(pmap, va, sva);
6366 	return (anyvalid);
6367 }
6368 
6369 static void
6370 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6371 {
6372 	struct rwlock *lock;
6373 	vm_page_t mt;
6374 	vm_offset_t va_next;
6375 	pml5_entry_t *pml5e;
6376 	pml4_entry_t *pml4e;
6377 	pdp_entry_t *pdpe;
6378 	pd_entry_t ptpaddr, *pde;
6379 	pt_entry_t PG_G, PG_V;
6380 	struct spglist free;
6381 	int anyvalid;
6382 
6383 	PG_G = pmap_global_bit(pmap);
6384 	PG_V = pmap_valid_bit(pmap);
6385 
6386 	/*
6387 	 * If there are no resident pages besides the top level page
6388 	 * table page(s), there is nothing to do.  Kernel pmap always
6389 	 * accounts whole preloaded area as resident, which makes its
6390 	 * resident count > 2.
6391 	 * Perform an unsynchronized read.  This is, however, safe.
6392 	 */
6393 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6394 	    1 : 0))
6395 		return;
6396 
6397 	anyvalid = 0;
6398 	SLIST_INIT(&free);
6399 
6400 	pmap_delayed_invl_start();
6401 	PMAP_LOCK(pmap);
6402 	if (map_delete)
6403 		pmap_pkru_on_remove(pmap, sva, eva);
6404 
6405 	/*
6406 	 * special handling of removing one page.  a very
6407 	 * common operation and easy to short circuit some
6408 	 * code.
6409 	 */
6410 	if (sva + PAGE_SIZE == eva) {
6411 		pde = pmap_pde(pmap, sva);
6412 		if (pde && (*pde & PG_PS) == 0) {
6413 			pmap_remove_page(pmap, sva, pde, &free);
6414 			goto out;
6415 		}
6416 	}
6417 
6418 	lock = NULL;
6419 	for (; sva < eva; sva = va_next) {
6420 		if (pmap->pm_stats.resident_count == 0)
6421 			break;
6422 
6423 		if (pmap_is_la57(pmap)) {
6424 			pml5e = pmap_pml5e(pmap, sva);
6425 			if ((*pml5e & PG_V) == 0) {
6426 				va_next = (sva + NBPML5) & ~PML5MASK;
6427 				if (va_next < sva)
6428 					va_next = eva;
6429 				continue;
6430 			}
6431 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6432 		} else {
6433 			pml4e = pmap_pml4e(pmap, sva);
6434 		}
6435 		if ((*pml4e & PG_V) == 0) {
6436 			va_next = (sva + NBPML4) & ~PML4MASK;
6437 			if (va_next < sva)
6438 				va_next = eva;
6439 			continue;
6440 		}
6441 
6442 		va_next = (sva + NBPDP) & ~PDPMASK;
6443 		if (va_next < sva)
6444 			va_next = eva;
6445 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6446 		if ((*pdpe & PG_V) == 0)
6447 			continue;
6448 		if ((*pdpe & PG_PS) != 0) {
6449 			KASSERT(va_next <= eva,
6450 			    ("partial update of non-transparent 1G mapping "
6451 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6452 			    *pdpe, sva, eva, va_next));
6453 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6454 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6455 			anyvalid = 1;
6456 			*pdpe = 0;
6457 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6458 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6459 			pmap_unwire_ptp(pmap, sva, mt, &free);
6460 			continue;
6461 		}
6462 
6463 		/*
6464 		 * Calculate index for next page table.
6465 		 */
6466 		va_next = (sva + NBPDR) & ~PDRMASK;
6467 		if (va_next < sva)
6468 			va_next = eva;
6469 
6470 		pde = pmap_pdpe_to_pde(pdpe, sva);
6471 		ptpaddr = *pde;
6472 
6473 		/*
6474 		 * Weed out invalid mappings.
6475 		 */
6476 		if (ptpaddr == 0)
6477 			continue;
6478 
6479 		/*
6480 		 * Check for large page.
6481 		 */
6482 		if ((ptpaddr & PG_PS) != 0) {
6483 			/*
6484 			 * Are we removing the entire large page?  If not,
6485 			 * demote the mapping and fall through.
6486 			 */
6487 			if (sva + NBPDR == va_next && eva >= va_next) {
6488 				/*
6489 				 * The TLB entry for a PG_G mapping is
6490 				 * invalidated by pmap_remove_pde().
6491 				 */
6492 				if ((ptpaddr & PG_G) == 0)
6493 					anyvalid = 1;
6494 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6495 				continue;
6496 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6497 			    &lock)) {
6498 				/* The large page mapping was destroyed. */
6499 				continue;
6500 			} else
6501 				ptpaddr = *pde;
6502 		}
6503 
6504 		/*
6505 		 * Limit our scan to either the end of the va represented
6506 		 * by the current page table page, or to the end of the
6507 		 * range being removed.
6508 		 */
6509 		if (va_next > eva)
6510 			va_next = eva;
6511 
6512 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6513 			anyvalid = 1;
6514 	}
6515 	if (lock != NULL)
6516 		rw_wunlock(lock);
6517 out:
6518 	if (anyvalid)
6519 		pmap_invalidate_all(pmap);
6520 	PMAP_UNLOCK(pmap);
6521 	pmap_delayed_invl_finish();
6522 	vm_page_free_pages_toq(&free, true);
6523 }
6524 
6525 /*
6526  *	Remove the given range of addresses from the specified map.
6527  *
6528  *	It is assumed that the start and end are properly
6529  *	rounded to the page size.
6530  */
6531 void
6532 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6533 {
6534 	pmap_remove1(pmap, sva, eva, false);
6535 }
6536 
6537 /*
6538  *	Remove the given range of addresses as part of a logical unmap
6539  *	operation. This has the effect of calling pmap_remove(), but
6540  *	also clears any metadata that should persist for the lifetime
6541  *	of a logical mapping.
6542  */
6543 void
6544 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6545 {
6546 	pmap_remove1(pmap, sva, eva, true);
6547 }
6548 
6549 /*
6550  *	Routine:	pmap_remove_all
6551  *	Function:
6552  *		Removes this physical page from
6553  *		all physical maps in which it resides.
6554  *		Reflects back modify bits to the pager.
6555  *
6556  *	Notes:
6557  *		Original versions of this routine were very
6558  *		inefficient because they iteratively called
6559  *		pmap_remove (slow...)
6560  */
6561 
6562 void
6563 pmap_remove_all(vm_page_t m)
6564 {
6565 	struct md_page *pvh;
6566 	pv_entry_t pv;
6567 	pmap_t pmap;
6568 	struct rwlock *lock;
6569 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6570 	pd_entry_t *pde;
6571 	vm_offset_t va;
6572 	struct spglist free;
6573 	int pvh_gen, md_gen;
6574 
6575 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6576 	    ("pmap_remove_all: page %p is not managed", m));
6577 	SLIST_INIT(&free);
6578 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6579 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6580 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6581 	rw_wlock(lock);
6582 retry:
6583 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6584 		pmap = PV_PMAP(pv);
6585 		if (!PMAP_TRYLOCK(pmap)) {
6586 			pvh_gen = pvh->pv_gen;
6587 			rw_wunlock(lock);
6588 			PMAP_LOCK(pmap);
6589 			rw_wlock(lock);
6590 			if (pvh_gen != pvh->pv_gen) {
6591 				PMAP_UNLOCK(pmap);
6592 				goto retry;
6593 			}
6594 		}
6595 		va = pv->pv_va;
6596 		pde = pmap_pde(pmap, va);
6597 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6598 		PMAP_UNLOCK(pmap);
6599 	}
6600 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6601 		pmap = PV_PMAP(pv);
6602 		if (!PMAP_TRYLOCK(pmap)) {
6603 			pvh_gen = pvh->pv_gen;
6604 			md_gen = m->md.pv_gen;
6605 			rw_wunlock(lock);
6606 			PMAP_LOCK(pmap);
6607 			rw_wlock(lock);
6608 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6609 				PMAP_UNLOCK(pmap);
6610 				goto retry;
6611 			}
6612 		}
6613 		PG_A = pmap_accessed_bit(pmap);
6614 		PG_M = pmap_modified_bit(pmap);
6615 		PG_RW = pmap_rw_bit(pmap);
6616 		pmap_resident_count_adj(pmap, -1);
6617 		pde = pmap_pde(pmap, pv->pv_va);
6618 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6619 		    " a 2mpage in page %p's pv list", m));
6620 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6621 		tpte = pte_load_clear(pte);
6622 		if (tpte & PG_W)
6623 			pmap->pm_stats.wired_count--;
6624 		if (tpte & PG_A)
6625 			vm_page_aflag_set(m, PGA_REFERENCED);
6626 
6627 		/*
6628 		 * Update the vm_page_t clean and reference bits.
6629 		 */
6630 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6631 			vm_page_dirty(m);
6632 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6633 		pmap_invalidate_page(pmap, pv->pv_va);
6634 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6635 		m->md.pv_gen++;
6636 		free_pv_entry(pmap, pv);
6637 		PMAP_UNLOCK(pmap);
6638 	}
6639 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6640 	rw_wunlock(lock);
6641 	pmap_delayed_invl_wait(m);
6642 	vm_page_free_pages_toq(&free, true);
6643 }
6644 
6645 /*
6646  * pmap_protect_pde: do the things to protect a 2mpage in a process
6647  */
6648 static boolean_t
6649 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6650 {
6651 	pd_entry_t newpde, oldpde;
6652 	vm_page_t m, mt;
6653 	boolean_t anychanged;
6654 	pt_entry_t PG_G, PG_M, PG_RW;
6655 
6656 	PG_G = pmap_global_bit(pmap);
6657 	PG_M = pmap_modified_bit(pmap);
6658 	PG_RW = pmap_rw_bit(pmap);
6659 
6660 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6661 	KASSERT((sva & PDRMASK) == 0,
6662 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6663 	anychanged = FALSE;
6664 retry:
6665 	oldpde = newpde = *pde;
6666 	if ((prot & VM_PROT_WRITE) == 0) {
6667 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6668 		    (PG_MANAGED | PG_M | PG_RW)) {
6669 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6670 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6671 				vm_page_dirty(mt);
6672 		}
6673 		newpde &= ~(PG_RW | PG_M);
6674 	}
6675 	if ((prot & VM_PROT_EXECUTE) == 0)
6676 		newpde |= pg_nx;
6677 	if (newpde != oldpde) {
6678 		/*
6679 		 * As an optimization to future operations on this PDE, clear
6680 		 * PG_PROMOTED.  The impending invalidation will remove any
6681 		 * lingering 4KB page mappings from the TLB.
6682 		 */
6683 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6684 			goto retry;
6685 		if ((oldpde & PG_G) != 0)
6686 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6687 		else
6688 			anychanged = TRUE;
6689 	}
6690 	return (anychanged);
6691 }
6692 
6693 /*
6694  *	Set the physical protection on the
6695  *	specified range of this map as requested.
6696  */
6697 void
6698 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6699 {
6700 	vm_page_t m;
6701 	vm_offset_t va_next;
6702 	pml4_entry_t *pml4e;
6703 	pdp_entry_t *pdpe;
6704 	pd_entry_t ptpaddr, *pde;
6705 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6706 	pt_entry_t obits, pbits;
6707 	boolean_t anychanged;
6708 
6709 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6710 	if (prot == VM_PROT_NONE) {
6711 		pmap_remove(pmap, sva, eva);
6712 		return;
6713 	}
6714 
6715 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6716 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6717 		return;
6718 
6719 	PG_G = pmap_global_bit(pmap);
6720 	PG_M = pmap_modified_bit(pmap);
6721 	PG_V = pmap_valid_bit(pmap);
6722 	PG_RW = pmap_rw_bit(pmap);
6723 	anychanged = FALSE;
6724 
6725 	/*
6726 	 * Although this function delays and batches the invalidation
6727 	 * of stale TLB entries, it does not need to call
6728 	 * pmap_delayed_invl_start() and
6729 	 * pmap_delayed_invl_finish(), because it does not
6730 	 * ordinarily destroy mappings.  Stale TLB entries from
6731 	 * protection-only changes need only be invalidated before the
6732 	 * pmap lock is released, because protection-only changes do
6733 	 * not destroy PV entries.  Even operations that iterate over
6734 	 * a physical page's PV list of mappings, like
6735 	 * pmap_remove_write(), acquire the pmap lock for each
6736 	 * mapping.  Consequently, for protection-only changes, the
6737 	 * pmap lock suffices to synchronize both page table and TLB
6738 	 * updates.
6739 	 *
6740 	 * This function only destroys a mapping if pmap_demote_pde()
6741 	 * fails.  In that case, stale TLB entries are immediately
6742 	 * invalidated.
6743 	 */
6744 
6745 	PMAP_LOCK(pmap);
6746 	for (; sva < eva; sva = va_next) {
6747 		pml4e = pmap_pml4e(pmap, sva);
6748 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6749 			va_next = (sva + NBPML4) & ~PML4MASK;
6750 			if (va_next < sva)
6751 				va_next = eva;
6752 			continue;
6753 		}
6754 
6755 		va_next = (sva + NBPDP) & ~PDPMASK;
6756 		if (va_next < sva)
6757 			va_next = eva;
6758 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6759 		if ((*pdpe & PG_V) == 0)
6760 			continue;
6761 		if ((*pdpe & PG_PS) != 0) {
6762 			KASSERT(va_next <= eva,
6763 			    ("partial update of non-transparent 1G mapping "
6764 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6765 			    *pdpe, sva, eva, va_next));
6766 retry_pdpe:
6767 			obits = pbits = *pdpe;
6768 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6769 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6770 			if ((prot & VM_PROT_WRITE) == 0)
6771 				pbits &= ~(PG_RW | PG_M);
6772 			if ((prot & VM_PROT_EXECUTE) == 0)
6773 				pbits |= pg_nx;
6774 
6775 			if (pbits != obits) {
6776 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6777 					/* PG_PS cannot be cleared under us, */
6778 					goto retry_pdpe;
6779 				anychanged = TRUE;
6780 			}
6781 			continue;
6782 		}
6783 
6784 		va_next = (sva + NBPDR) & ~PDRMASK;
6785 		if (va_next < sva)
6786 			va_next = eva;
6787 
6788 		pde = pmap_pdpe_to_pde(pdpe, sva);
6789 		ptpaddr = *pde;
6790 
6791 		/*
6792 		 * Weed out invalid mappings.
6793 		 */
6794 		if (ptpaddr == 0)
6795 			continue;
6796 
6797 		/*
6798 		 * Check for large page.
6799 		 */
6800 		if ((ptpaddr & PG_PS) != 0) {
6801 			/*
6802 			 * Are we protecting the entire large page?  If not,
6803 			 * demote the mapping and fall through.
6804 			 */
6805 			if (sva + NBPDR == va_next && eva >= va_next) {
6806 				/*
6807 				 * The TLB entry for a PG_G mapping is
6808 				 * invalidated by pmap_protect_pde().
6809 				 */
6810 				if (pmap_protect_pde(pmap, pde, sva, prot))
6811 					anychanged = TRUE;
6812 				continue;
6813 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6814 				/*
6815 				 * The large page mapping was destroyed.
6816 				 */
6817 				continue;
6818 			}
6819 		}
6820 
6821 		if (va_next > eva)
6822 			va_next = eva;
6823 
6824 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6825 		    sva += PAGE_SIZE) {
6826 retry:
6827 			obits = pbits = *pte;
6828 			if ((pbits & PG_V) == 0)
6829 				continue;
6830 
6831 			if ((prot & VM_PROT_WRITE) == 0) {
6832 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6833 				    (PG_MANAGED | PG_M | PG_RW)) {
6834 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6835 					vm_page_dirty(m);
6836 				}
6837 				pbits &= ~(PG_RW | PG_M);
6838 			}
6839 			if ((prot & VM_PROT_EXECUTE) == 0)
6840 				pbits |= pg_nx;
6841 
6842 			if (pbits != obits) {
6843 				if (!atomic_cmpset_long(pte, obits, pbits))
6844 					goto retry;
6845 				if (obits & PG_G)
6846 					pmap_invalidate_page(pmap, sva);
6847 				else
6848 					anychanged = TRUE;
6849 			}
6850 		}
6851 	}
6852 	if (anychanged)
6853 		pmap_invalidate_all(pmap);
6854 	PMAP_UNLOCK(pmap);
6855 }
6856 
6857 static bool
6858 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6859 {
6860 
6861 	if (pmap->pm_type != PT_EPT)
6862 		return (false);
6863 	return ((pde & EPT_PG_EXECUTE) != 0);
6864 }
6865 
6866 #if VM_NRESERVLEVEL > 0
6867 /*
6868  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6869  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6870  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6871  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6872  * identical characteristics.
6873  */
6874 static bool
6875 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6876     struct rwlock **lockp)
6877 {
6878 	pd_entry_t newpde;
6879 	pt_entry_t *firstpte, oldpte, pa, *pte;
6880 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6881 	int PG_PTE_CACHE;
6882 
6883 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6884 	if (!pmap_ps_enabled(pmap))
6885 		return (false);
6886 
6887 	PG_A = pmap_accessed_bit(pmap);
6888 	PG_G = pmap_global_bit(pmap);
6889 	PG_M = pmap_modified_bit(pmap);
6890 	PG_V = pmap_valid_bit(pmap);
6891 	PG_RW = pmap_rw_bit(pmap);
6892 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6893 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6894 
6895 	/*
6896 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6897 	 * ineligible for promotion due to hardware errata, invalid, or does
6898 	 * not map the first 4KB physical page within a 2MB page.
6899 	 */
6900 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6901 	newpde = *firstpte;
6902 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6903 		return (false);
6904 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6905 		counter_u64_add(pmap_pde_p_failures, 1);
6906 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6907 		    " in pmap %p", va, pmap);
6908 		return (false);
6909 	}
6910 
6911 	/*
6912 	 * Both here and in the below "for" loop, to allow for repromotion
6913 	 * after MADV_FREE, conditionally write protect a clean PTE before
6914 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6915 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6916 	 * address range [S, E).  pmap_advise() will demote the superpage
6917 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6918 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6919 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6920 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6921 	 * In other words, there is still a 4KB page in [S, E), call it P,
6922 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6923 	 * we write protect P before aborting the promotion, if and when P is
6924 	 * finally rewritten, there won't be a page fault to trigger
6925 	 * repromotion.
6926 	 */
6927 setpde:
6928 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6929 		/*
6930 		 * When PG_M is already clear, PG_RW can be cleared without
6931 		 * a TLB invalidation.
6932 		 */
6933 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6934 			goto setpde;
6935 		newpde &= ~PG_RW;
6936 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6937 		    " in pmap %p", va & ~PDRMASK, pmap);
6938 	}
6939 
6940 	/*
6941 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6942 	 * PTE maps an unexpected 4KB physical page or does not have identical
6943 	 * characteristics to the first PTE.
6944 	 */
6945 	allpte_PG_A = newpde & PG_A;
6946 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6947 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6948 		oldpte = *pte;
6949 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6950 			counter_u64_add(pmap_pde_p_failures, 1);
6951 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6952 			    " in pmap %p", va, pmap);
6953 			return (false);
6954 		}
6955 setpte:
6956 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6957 			/*
6958 			 * When PG_M is already clear, PG_RW can be cleared
6959 			 * without a TLB invalidation.
6960 			 */
6961 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6962 				goto setpte;
6963 			oldpte &= ~PG_RW;
6964 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6965 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6966 			    (va & ~PDRMASK), pmap);
6967 		}
6968 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6969 			counter_u64_add(pmap_pde_p_failures, 1);
6970 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6971 			    " in pmap %p", va, pmap);
6972 			return (false);
6973 		}
6974 		allpte_PG_A &= oldpte;
6975 		pa -= PAGE_SIZE;
6976 	}
6977 
6978 	/*
6979 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6980 	 * so that promotions triggered by speculative mappings, such as
6981 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6982 	 * as referenced.
6983 	 */
6984 	newpde &= ~PG_A | allpte_PG_A;
6985 
6986 	/*
6987 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6988 	 * MMUs supporting EPT.
6989 	 */
6990 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6991 	    ("unsupported EPT PTE"));
6992 
6993 	/*
6994 	 * Save the PTP in its current state until the PDE mapping the
6995 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6996 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
6997 	 * that the PTP be refilled on demotion.
6998 	 */
6999 	if (mpte == NULL)
7000 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7001 	KASSERT(mpte >= vm_page_array &&
7002 	    mpte < &vm_page_array[vm_page_array_size],
7003 	    ("pmap_promote_pde: page table page is out of range"));
7004 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7005 	    ("pmap_promote_pde: page table page's pindex is wrong "
7006 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7007 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7008 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7009 		counter_u64_add(pmap_pde_p_failures, 1);
7010 		CTR2(KTR_PMAP,
7011 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7012 		    pmap);
7013 		return (false);
7014 	}
7015 
7016 	/*
7017 	 * Promote the pv entries.
7018 	 */
7019 	if ((newpde & PG_MANAGED) != 0)
7020 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7021 
7022 	/*
7023 	 * Propagate the PAT index to its proper position.
7024 	 */
7025 	newpde = pmap_swap_pat(pmap, newpde);
7026 
7027 	/*
7028 	 * Map the superpage.
7029 	 */
7030 	if (workaround_erratum383)
7031 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7032 	else
7033 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7034 
7035 	counter_u64_add(pmap_pde_promotions, 1);
7036 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7037 	    " in pmap %p", va, pmap);
7038 	return (true);
7039 }
7040 #endif /* VM_NRESERVLEVEL > 0 */
7041 
7042 static int
7043 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7044     int psind)
7045 {
7046 	vm_page_t mp;
7047 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7048 
7049 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7050 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7051 	    ("psind %d unexpected", psind));
7052 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7053 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7054 	    newpte & PG_FRAME, newpte, psind));
7055 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7056 	    ("unaligned va %#lx psind %d", va, psind));
7057 	KASSERT(va < VM_MAXUSER_ADDRESS,
7058 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7059 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7060 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7061 
7062 	PG_V = pmap_valid_bit(pmap);
7063 
7064 restart:
7065 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
7066 		return (KERN_PROTECTION_FAILURE);
7067 	pten = newpte;
7068 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7069 		pten |= pmap_pkru_get(pmap, va);
7070 
7071 	if (psind == 2) {	/* 1G */
7072 		pml4e = pmap_pml4e(pmap, va);
7073 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7074 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7075 			    NULL, va);
7076 			if (mp == NULL)
7077 				goto allocf;
7078 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7079 			pdpe = &pdpe[pmap_pdpe_index(va)];
7080 			origpte = *pdpe;
7081 			MPASS(origpte == 0);
7082 		} else {
7083 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7084 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7085 			origpte = *pdpe;
7086 			if ((origpte & PG_V) == 0) {
7087 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7088 				mp->ref_count++;
7089 			}
7090 		}
7091 		*pdpe = pten;
7092 	} else /* (psind == 1) */ {	/* 2M */
7093 		pde = pmap_pde(pmap, va);
7094 		if (pde == NULL) {
7095 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7096 			    NULL, va);
7097 			if (mp == NULL)
7098 				goto allocf;
7099 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7100 			pde = &pde[pmap_pde_index(va)];
7101 			origpte = *pde;
7102 			MPASS(origpte == 0);
7103 		} else {
7104 			origpte = *pde;
7105 			if ((origpte & PG_V) == 0) {
7106 				pdpe = pmap_pdpe(pmap, va);
7107 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7108 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7109 				mp->ref_count++;
7110 			}
7111 		}
7112 		*pde = pten;
7113 	}
7114 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7115 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7116 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7117 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7118 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7119 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7120 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7121 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7122 	if ((origpte & PG_V) == 0)
7123 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7124 
7125 	return (KERN_SUCCESS);
7126 
7127 allocf:
7128 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7129 		return (KERN_RESOURCE_SHORTAGE);
7130 	PMAP_UNLOCK(pmap);
7131 	vm_wait(NULL);
7132 	PMAP_LOCK(pmap);
7133 	goto restart;
7134 }
7135 
7136 /*
7137  *	Insert the given physical page (p) at
7138  *	the specified virtual address (v) in the
7139  *	target physical map with the protection requested.
7140  *
7141  *	If specified, the page will be wired down, meaning
7142  *	that the related pte can not be reclaimed.
7143  *
7144  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7145  *	or lose information.  That is, this routine must actually
7146  *	insert this page into the given map NOW.
7147  *
7148  *	When destroying both a page table and PV entry, this function
7149  *	performs the TLB invalidation before releasing the PV list
7150  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7151  */
7152 int
7153 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7154     u_int flags, int8_t psind)
7155 {
7156 	struct rwlock *lock;
7157 	pd_entry_t *pde;
7158 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7159 	pt_entry_t newpte, origpte;
7160 	pv_entry_t pv;
7161 	vm_paddr_t opa, pa;
7162 	vm_page_t mpte, om;
7163 	int rv;
7164 	boolean_t nosleep;
7165 
7166 	PG_A = pmap_accessed_bit(pmap);
7167 	PG_G = pmap_global_bit(pmap);
7168 	PG_M = pmap_modified_bit(pmap);
7169 	PG_V = pmap_valid_bit(pmap);
7170 	PG_RW = pmap_rw_bit(pmap);
7171 
7172 	va = trunc_page(va);
7173 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7174 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7175 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7176 	    va));
7177 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7178 	    ("pmap_enter: managed mapping within the clean submap"));
7179 	if ((m->oflags & VPO_UNMANAGED) == 0)
7180 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7181 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7182 	    ("pmap_enter: flags %u has reserved bits set", flags));
7183 	pa = VM_PAGE_TO_PHYS(m);
7184 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7185 	if ((flags & VM_PROT_WRITE) != 0)
7186 		newpte |= PG_M;
7187 	if ((prot & VM_PROT_WRITE) != 0)
7188 		newpte |= PG_RW;
7189 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7190 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7191 	if ((prot & VM_PROT_EXECUTE) == 0)
7192 		newpte |= pg_nx;
7193 	if ((flags & PMAP_ENTER_WIRED) != 0)
7194 		newpte |= PG_W;
7195 	if (va < VM_MAXUSER_ADDRESS)
7196 		newpte |= PG_U;
7197 	if (pmap == kernel_pmap)
7198 		newpte |= PG_G;
7199 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7200 
7201 	/*
7202 	 * Set modified bit gratuitously for writeable mappings if
7203 	 * the page is unmanaged. We do not want to take a fault
7204 	 * to do the dirty bit accounting for these mappings.
7205 	 */
7206 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7207 		if ((newpte & PG_RW) != 0)
7208 			newpte |= PG_M;
7209 	} else
7210 		newpte |= PG_MANAGED;
7211 
7212 	lock = NULL;
7213 	PMAP_LOCK(pmap);
7214 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7215 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7216 		    ("managed largepage va %#lx flags %#x", va, flags));
7217 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7218 		    psind);
7219 		goto out;
7220 	}
7221 	if (psind == 1) {
7222 		/* Assert the required virtual and physical alignment. */
7223 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7224 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7225 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7226 		goto out;
7227 	}
7228 	mpte = NULL;
7229 
7230 	/*
7231 	 * In the case that a page table page is not
7232 	 * resident, we are creating it here.
7233 	 */
7234 retry:
7235 	pde = pmap_pde(pmap, va);
7236 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7237 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7238 		pte = pmap_pde_to_pte(pde, va);
7239 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7240 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7241 			mpte->ref_count++;
7242 		}
7243 	} else if (va < VM_MAXUSER_ADDRESS) {
7244 		/*
7245 		 * Here if the pte page isn't mapped, or if it has been
7246 		 * deallocated.
7247 		 */
7248 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7249 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7250 		    nosleep ? NULL : &lock, va);
7251 		if (mpte == NULL && nosleep) {
7252 			rv = KERN_RESOURCE_SHORTAGE;
7253 			goto out;
7254 		}
7255 		goto retry;
7256 	} else
7257 		panic("pmap_enter: invalid page directory va=%#lx", va);
7258 
7259 	origpte = *pte;
7260 	pv = NULL;
7261 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7262 		newpte |= pmap_pkru_get(pmap, va);
7263 
7264 	/*
7265 	 * Is the specified virtual address already mapped?
7266 	 */
7267 	if ((origpte & PG_V) != 0) {
7268 		/*
7269 		 * Wiring change, just update stats. We don't worry about
7270 		 * wiring PT pages as they remain resident as long as there
7271 		 * are valid mappings in them. Hence, if a user page is wired,
7272 		 * the PT page will be also.
7273 		 */
7274 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7275 			pmap->pm_stats.wired_count++;
7276 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7277 			pmap->pm_stats.wired_count--;
7278 
7279 		/*
7280 		 * Remove the extra PT page reference.
7281 		 */
7282 		if (mpte != NULL) {
7283 			mpte->ref_count--;
7284 			KASSERT(mpte->ref_count > 0,
7285 			    ("pmap_enter: missing reference to page table page,"
7286 			     " va: 0x%lx", va));
7287 		}
7288 
7289 		/*
7290 		 * Has the physical page changed?
7291 		 */
7292 		opa = origpte & PG_FRAME;
7293 		if (opa == pa) {
7294 			/*
7295 			 * No, might be a protection or wiring change.
7296 			 */
7297 			if ((origpte & PG_MANAGED) != 0 &&
7298 			    (newpte & PG_RW) != 0)
7299 				vm_page_aflag_set(m, PGA_WRITEABLE);
7300 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7301 				goto unchanged;
7302 			goto validate;
7303 		}
7304 
7305 		/*
7306 		 * The physical page has changed.  Temporarily invalidate
7307 		 * the mapping.  This ensures that all threads sharing the
7308 		 * pmap keep a consistent view of the mapping, which is
7309 		 * necessary for the correct handling of COW faults.  It
7310 		 * also permits reuse of the old mapping's PV entry,
7311 		 * avoiding an allocation.
7312 		 *
7313 		 * For consistency, handle unmanaged mappings the same way.
7314 		 */
7315 		origpte = pte_load_clear(pte);
7316 		KASSERT((origpte & PG_FRAME) == opa,
7317 		    ("pmap_enter: unexpected pa update for %#lx", va));
7318 		if ((origpte & PG_MANAGED) != 0) {
7319 			om = PHYS_TO_VM_PAGE(opa);
7320 
7321 			/*
7322 			 * The pmap lock is sufficient to synchronize with
7323 			 * concurrent calls to pmap_page_test_mappings() and
7324 			 * pmap_ts_referenced().
7325 			 */
7326 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7327 				vm_page_dirty(om);
7328 			if ((origpte & PG_A) != 0) {
7329 				pmap_invalidate_page(pmap, va);
7330 				vm_page_aflag_set(om, PGA_REFERENCED);
7331 			}
7332 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7333 			pv = pmap_pvh_remove(&om->md, pmap, va);
7334 			KASSERT(pv != NULL,
7335 			    ("pmap_enter: no PV entry for %#lx", va));
7336 			if ((newpte & PG_MANAGED) == 0)
7337 				free_pv_entry(pmap, pv);
7338 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7339 			    TAILQ_EMPTY(&om->md.pv_list) &&
7340 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7341 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7342 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7343 		} else {
7344 			/*
7345 			 * Since this mapping is unmanaged, assume that PG_A
7346 			 * is set.
7347 			 */
7348 			pmap_invalidate_page(pmap, va);
7349 		}
7350 		origpte = 0;
7351 	} else {
7352 		/*
7353 		 * Increment the counters.
7354 		 */
7355 		if ((newpte & PG_W) != 0)
7356 			pmap->pm_stats.wired_count++;
7357 		pmap_resident_count_adj(pmap, 1);
7358 	}
7359 
7360 	/*
7361 	 * Enter on the PV list if part of our managed memory.
7362 	 */
7363 	if ((newpte & PG_MANAGED) != 0) {
7364 		if (pv == NULL) {
7365 			pv = get_pv_entry(pmap, &lock);
7366 			pv->pv_va = va;
7367 		}
7368 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7369 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7370 		m->md.pv_gen++;
7371 		if ((newpte & PG_RW) != 0)
7372 			vm_page_aflag_set(m, PGA_WRITEABLE);
7373 	}
7374 
7375 	/*
7376 	 * Update the PTE.
7377 	 */
7378 	if ((origpte & PG_V) != 0) {
7379 validate:
7380 		origpte = pte_load_store(pte, newpte);
7381 		KASSERT((origpte & PG_FRAME) == pa,
7382 		    ("pmap_enter: unexpected pa update for %#lx", va));
7383 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7384 		    (PG_M | PG_RW)) {
7385 			if ((origpte & PG_MANAGED) != 0)
7386 				vm_page_dirty(m);
7387 
7388 			/*
7389 			 * Although the PTE may still have PG_RW set, TLB
7390 			 * invalidation may nonetheless be required because
7391 			 * the PTE no longer has PG_M set.
7392 			 */
7393 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7394 			/*
7395 			 * This PTE change does not require TLB invalidation.
7396 			 */
7397 			goto unchanged;
7398 		}
7399 		if ((origpte & PG_A) != 0)
7400 			pmap_invalidate_page(pmap, va);
7401 	} else
7402 		pte_store(pte, newpte);
7403 
7404 unchanged:
7405 
7406 #if VM_NRESERVLEVEL > 0
7407 	/*
7408 	 * If both the page table page and the reservation are fully
7409 	 * populated, then attempt promotion.
7410 	 */
7411 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7412 	    (m->flags & PG_FICTITIOUS) == 0 &&
7413 	    vm_reserv_level_iffullpop(m) == 0)
7414 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7415 #endif
7416 
7417 	rv = KERN_SUCCESS;
7418 out:
7419 	if (lock != NULL)
7420 		rw_wunlock(lock);
7421 	PMAP_UNLOCK(pmap);
7422 	return (rv);
7423 }
7424 
7425 /*
7426  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7427  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7428  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7429  * "no replace", and "no reclaim" are specified.
7430  */
7431 static int
7432 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7433     struct rwlock **lockp)
7434 {
7435 	pd_entry_t newpde;
7436 	pt_entry_t PG_V;
7437 
7438 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7439 	PG_V = pmap_valid_bit(pmap);
7440 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7441 	    PG_PS | PG_V;
7442 	if ((m->oflags & VPO_UNMANAGED) == 0)
7443 		newpde |= PG_MANAGED;
7444 	if ((prot & VM_PROT_EXECUTE) == 0)
7445 		newpde |= pg_nx;
7446 	if (va < VM_MAXUSER_ADDRESS)
7447 		newpde |= PG_U;
7448 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7449 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7450 }
7451 
7452 /*
7453  * Returns true if every page table entry in the specified page table page is
7454  * zero.
7455  */
7456 static bool
7457 pmap_every_pte_zero(vm_paddr_t pa)
7458 {
7459 	pt_entry_t *pt_end, *pte;
7460 
7461 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7462 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7463 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7464 		if (*pte != 0)
7465 			return (false);
7466 	}
7467 	return (true);
7468 }
7469 
7470 /*
7471  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7472  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7473  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7474  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7475  * page mapping already exists within the 2MB virtual address range starting
7476  * at the specified virtual address or (2) the requested 2MB page mapping is
7477  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7478  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7479  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7480  * settings are not the same across the 2MB virtual address range starting at
7481  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7482  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7483  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7484  * failed.
7485  *
7486  * The parameter "m" is only used when creating a managed, writeable mapping.
7487  */
7488 static int
7489 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7490     vm_page_t m, struct rwlock **lockp)
7491 {
7492 	struct spglist free;
7493 	pd_entry_t oldpde, *pde;
7494 	pt_entry_t PG_G, PG_RW, PG_V;
7495 	vm_page_t mt, pdpg;
7496 
7497 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7498 	    ("pmap_enter_pde: cannot create wired user mapping"));
7499 	PG_G = pmap_global_bit(pmap);
7500 	PG_RW = pmap_rw_bit(pmap);
7501 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7502 	    ("pmap_enter_pde: newpde is missing PG_M"));
7503 	PG_V = pmap_valid_bit(pmap);
7504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7505 
7506 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7507 	    newpde))) {
7508 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7509 		    " in pmap %p", va, pmap);
7510 		return (KERN_FAILURE);
7511 	}
7512 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7513 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7514 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7515 		    " in pmap %p", va, pmap);
7516 		return (KERN_RESOURCE_SHORTAGE);
7517 	}
7518 
7519 	/*
7520 	 * If pkru is not same for the whole pde range, return failure
7521 	 * and let vm_fault() cope.  Check after pde allocation, since
7522 	 * it could sleep.
7523 	 */
7524 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7525 		pmap_abort_ptp(pmap, va, pdpg);
7526 		return (KERN_PROTECTION_FAILURE);
7527 	}
7528 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7529 		newpde &= ~X86_PG_PKU_MASK;
7530 		newpde |= pmap_pkru_get(pmap, va);
7531 	}
7532 
7533 	/*
7534 	 * If there are existing mappings, either abort or remove them.
7535 	 */
7536 	oldpde = *pde;
7537 	if ((oldpde & PG_V) != 0) {
7538 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7539 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7540 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7541 			if ((oldpde & PG_PS) != 0) {
7542 				if (pdpg != NULL)
7543 					pdpg->ref_count--;
7544 				CTR2(KTR_PMAP,
7545 				    "pmap_enter_pde: no space for va %#lx"
7546 				    " in pmap %p", va, pmap);
7547 				return (KERN_NO_SPACE);
7548 			} else if (va < VM_MAXUSER_ADDRESS ||
7549 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7550 				if (pdpg != NULL)
7551 					pdpg->ref_count--;
7552 				CTR2(KTR_PMAP,
7553 				    "pmap_enter_pde: failure for va %#lx"
7554 				    " in pmap %p", va, pmap);
7555 				return (KERN_FAILURE);
7556 			}
7557 		}
7558 		/* Break the existing mapping(s). */
7559 		SLIST_INIT(&free);
7560 		if ((oldpde & PG_PS) != 0) {
7561 			/*
7562 			 * The reference to the PD page that was acquired by
7563 			 * pmap_alloc_pde() ensures that it won't be freed.
7564 			 * However, if the PDE resulted from a promotion, then
7565 			 * a reserved PT page could be freed.
7566 			 */
7567 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7568 			if ((oldpde & PG_G) == 0)
7569 				pmap_invalidate_pde_page(pmap, va, oldpde);
7570 		} else {
7571 			pmap_delayed_invl_start();
7572 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7573 			    lockp))
7574 		               pmap_invalidate_all(pmap);
7575 			pmap_delayed_invl_finish();
7576 		}
7577 		if (va < VM_MAXUSER_ADDRESS) {
7578 			vm_page_free_pages_toq(&free, true);
7579 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7580 			    pde));
7581 		} else {
7582 			KASSERT(SLIST_EMPTY(&free),
7583 			    ("pmap_enter_pde: freed kernel page table page"));
7584 
7585 			/*
7586 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7587 			 * leave the kernel page table page zero filled.
7588 			 */
7589 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7590 			if (pmap_insert_pt_page(pmap, mt, false, false))
7591 				panic("pmap_enter_pde: trie insert failed");
7592 		}
7593 	}
7594 
7595 	if ((newpde & PG_MANAGED) != 0) {
7596 		/*
7597 		 * Abort this mapping if its PV entry could not be created.
7598 		 */
7599 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7600 			if (pdpg != NULL)
7601 				pmap_abort_ptp(pmap, va, pdpg);
7602 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7603 			    " in pmap %p", va, pmap);
7604 			return (KERN_RESOURCE_SHORTAGE);
7605 		}
7606 		if ((newpde & PG_RW) != 0) {
7607 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7608 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7609 		}
7610 	}
7611 
7612 	/*
7613 	 * Increment counters.
7614 	 */
7615 	if ((newpde & PG_W) != 0)
7616 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7617 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7618 
7619 	/*
7620 	 * Map the superpage.  (This is not a promoted mapping; there will not
7621 	 * be any lingering 4KB page mappings in the TLB.)
7622 	 */
7623 	pde_store(pde, newpde);
7624 
7625 	counter_u64_add(pmap_pde_mappings, 1);
7626 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7627 	    va, pmap);
7628 	return (KERN_SUCCESS);
7629 }
7630 
7631 /*
7632  * Maps a sequence of resident pages belonging to the same object.
7633  * The sequence begins with the given page m_start.  This page is
7634  * mapped at the given virtual address start.  Each subsequent page is
7635  * mapped at a virtual address that is offset from start by the same
7636  * amount as the page is offset from m_start within the object.  The
7637  * last page in the sequence is the page with the largest offset from
7638  * m_start that can be mapped at a virtual address less than the given
7639  * virtual address end.  Not every virtual page between start and end
7640  * is mapped; only those for which a resident page exists with the
7641  * corresponding offset from m_start are mapped.
7642  */
7643 void
7644 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7645     vm_page_t m_start, vm_prot_t prot)
7646 {
7647 	struct rwlock *lock;
7648 	vm_offset_t va;
7649 	vm_page_t m, mpte;
7650 	vm_pindex_t diff, psize;
7651 	int rv;
7652 
7653 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7654 
7655 	psize = atop(end - start);
7656 	mpte = NULL;
7657 	m = m_start;
7658 	lock = NULL;
7659 	PMAP_LOCK(pmap);
7660 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7661 		va = start + ptoa(diff);
7662 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7663 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7664 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7665 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7666 			m = &m[NBPDR / PAGE_SIZE - 1];
7667 		else
7668 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7669 			    mpte, &lock);
7670 		m = TAILQ_NEXT(m, listq);
7671 	}
7672 	if (lock != NULL)
7673 		rw_wunlock(lock);
7674 	PMAP_UNLOCK(pmap);
7675 }
7676 
7677 /*
7678  * this code makes some *MAJOR* assumptions:
7679  * 1. Current pmap & pmap exists.
7680  * 2. Not wired.
7681  * 3. Read access.
7682  * 4. No page table pages.
7683  * but is *MUCH* faster than pmap_enter...
7684  */
7685 
7686 void
7687 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7688 {
7689 	struct rwlock *lock;
7690 
7691 	lock = NULL;
7692 	PMAP_LOCK(pmap);
7693 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7694 	if (lock != NULL)
7695 		rw_wunlock(lock);
7696 	PMAP_UNLOCK(pmap);
7697 }
7698 
7699 static vm_page_t
7700 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7701     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7702 {
7703 	pd_entry_t *pde;
7704 	pt_entry_t newpte, *pte, PG_V;
7705 
7706 	KASSERT(!VA_IS_CLEANMAP(va) ||
7707 	    (m->oflags & VPO_UNMANAGED) != 0,
7708 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7709 	PG_V = pmap_valid_bit(pmap);
7710 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7711 	pde = NULL;
7712 
7713 	/*
7714 	 * In the case that a page table page is not
7715 	 * resident, we are creating it here.
7716 	 */
7717 	if (va < VM_MAXUSER_ADDRESS) {
7718 		pdp_entry_t *pdpe;
7719 		vm_pindex_t ptepindex;
7720 
7721 		/*
7722 		 * Calculate pagetable page index
7723 		 */
7724 		ptepindex = pmap_pde_pindex(va);
7725 		if (mpte && (mpte->pindex == ptepindex)) {
7726 			mpte->ref_count++;
7727 		} else {
7728 			/*
7729 			 * If the page table page is mapped, we just increment
7730 			 * the hold count, and activate it.  Otherwise, we
7731 			 * attempt to allocate a page table page, passing NULL
7732 			 * instead of the PV list lock pointer because we don't
7733 			 * intend to sleep.  If this attempt fails, we don't
7734 			 * retry.  Instead, we give up.
7735 			 */
7736 			pdpe = pmap_pdpe(pmap, va);
7737 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7738 				if ((*pdpe & PG_PS) != 0)
7739 					return (NULL);
7740 				pde = pmap_pdpe_to_pde(pdpe, va);
7741 				if ((*pde & PG_V) != 0) {
7742 					if ((*pde & PG_PS) != 0)
7743 						return (NULL);
7744 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7745 					mpte->ref_count++;
7746 				} else {
7747 					mpte = pmap_allocpte_alloc(pmap,
7748 					    ptepindex, NULL, va);
7749 					if (mpte == NULL)
7750 						return (NULL);
7751 				}
7752 			} else {
7753 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7754 				    NULL, va);
7755 				if (mpte == NULL)
7756 					return (NULL);
7757 			}
7758 		}
7759 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7760 		pte = &pte[pmap_pte_index(va)];
7761 	} else {
7762 		mpte = NULL;
7763 		pte = vtopte(va);
7764 	}
7765 	if (*pte) {
7766 		if (mpte != NULL)
7767 			mpte->ref_count--;
7768 		return (NULL);
7769 	}
7770 
7771 	/*
7772 	 * Enter on the PV list if part of our managed memory.
7773 	 */
7774 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7775 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7776 		if (mpte != NULL)
7777 			pmap_abort_ptp(pmap, va, mpte);
7778 		return (NULL);
7779 	}
7780 
7781 	/*
7782 	 * Increment counters
7783 	 */
7784 	pmap_resident_count_adj(pmap, 1);
7785 
7786 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7787 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
7788 	if ((m->oflags & VPO_UNMANAGED) == 0)
7789 		newpte |= PG_MANAGED;
7790 	if ((prot & VM_PROT_EXECUTE) == 0)
7791 		newpte |= pg_nx;
7792 	if (va < VM_MAXUSER_ADDRESS)
7793 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7794 	pte_store(pte, newpte);
7795 
7796 #if VM_NRESERVLEVEL > 0
7797 	/*
7798 	 * If both the PTP and the reservation are fully populated, then
7799 	 * attempt promotion.
7800 	 */
7801 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7802 	    (m->flags & PG_FICTITIOUS) == 0 &&
7803 	    vm_reserv_level_iffullpop(m) == 0) {
7804 		if (pde == NULL)
7805 			pde = pmap_pde(pmap, va);
7806 
7807 		/*
7808 		 * If promotion succeeds, then the next call to this function
7809 		 * should not be given the unmapped PTP as a hint.
7810 		 */
7811 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7812 			mpte = NULL;
7813 	}
7814 #endif
7815 
7816 	return (mpte);
7817 }
7818 
7819 /*
7820  * Make a temporary mapping for a physical address.  This is only intended
7821  * to be used for panic dumps.
7822  */
7823 void *
7824 pmap_kenter_temporary(vm_paddr_t pa, int i)
7825 {
7826 	vm_offset_t va;
7827 
7828 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7829 	pmap_kenter(va, pa);
7830 	pmap_invlpg(kernel_pmap, va);
7831 	return ((void *)crashdumpmap);
7832 }
7833 
7834 /*
7835  * This code maps large physical mmap regions into the
7836  * processor address space.  Note that some shortcuts
7837  * are taken, but the code works.
7838  */
7839 void
7840 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7841     vm_pindex_t pindex, vm_size_t size)
7842 {
7843 	pd_entry_t *pde;
7844 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7845 	vm_paddr_t pa, ptepa;
7846 	vm_page_t p, pdpg;
7847 	int pat_mode;
7848 
7849 	PG_A = pmap_accessed_bit(pmap);
7850 	PG_M = pmap_modified_bit(pmap);
7851 	PG_V = pmap_valid_bit(pmap);
7852 	PG_RW = pmap_rw_bit(pmap);
7853 
7854 	VM_OBJECT_ASSERT_WLOCKED(object);
7855 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7856 	    ("pmap_object_init_pt: non-device object"));
7857 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7858 		if (!pmap_ps_enabled(pmap))
7859 			return;
7860 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7861 			return;
7862 		p = vm_page_lookup(object, pindex);
7863 		KASSERT(vm_page_all_valid(p),
7864 		    ("pmap_object_init_pt: invalid page %p", p));
7865 		pat_mode = p->md.pat_mode;
7866 
7867 		/*
7868 		 * Abort the mapping if the first page is not physically
7869 		 * aligned to a 2MB page boundary.
7870 		 */
7871 		ptepa = VM_PAGE_TO_PHYS(p);
7872 		if (ptepa & (NBPDR - 1))
7873 			return;
7874 
7875 		/*
7876 		 * Skip the first page.  Abort the mapping if the rest of
7877 		 * the pages are not physically contiguous or have differing
7878 		 * memory attributes.
7879 		 */
7880 		p = TAILQ_NEXT(p, listq);
7881 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7882 		    pa += PAGE_SIZE) {
7883 			KASSERT(vm_page_all_valid(p),
7884 			    ("pmap_object_init_pt: invalid page %p", p));
7885 			if (pa != VM_PAGE_TO_PHYS(p) ||
7886 			    pat_mode != p->md.pat_mode)
7887 				return;
7888 			p = TAILQ_NEXT(p, listq);
7889 		}
7890 
7891 		/*
7892 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7893 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7894 		 * will not affect the termination of this loop.
7895 		 */
7896 		PMAP_LOCK(pmap);
7897 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7898 		    pa < ptepa + size; pa += NBPDR) {
7899 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7900 			if (pde == NULL) {
7901 				/*
7902 				 * The creation of mappings below is only an
7903 				 * optimization.  If a page directory page
7904 				 * cannot be allocated without blocking,
7905 				 * continue on to the next mapping rather than
7906 				 * blocking.
7907 				 */
7908 				addr += NBPDR;
7909 				continue;
7910 			}
7911 			if ((*pde & PG_V) == 0) {
7912 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7913 				    PG_U | PG_RW | PG_V);
7914 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7915 				counter_u64_add(pmap_pde_mappings, 1);
7916 			} else {
7917 				/* Continue on if the PDE is already valid. */
7918 				pdpg->ref_count--;
7919 				KASSERT(pdpg->ref_count > 0,
7920 				    ("pmap_object_init_pt: missing reference "
7921 				    "to page directory page, va: 0x%lx", addr));
7922 			}
7923 			addr += NBPDR;
7924 		}
7925 		PMAP_UNLOCK(pmap);
7926 	}
7927 }
7928 
7929 /*
7930  *	Clear the wired attribute from the mappings for the specified range of
7931  *	addresses in the given pmap.  Every valid mapping within that range
7932  *	must have the wired attribute set.  In contrast, invalid mappings
7933  *	cannot have the wired attribute set, so they are ignored.
7934  *
7935  *	The wired attribute of the page table entry is not a hardware
7936  *	feature, so there is no need to invalidate any TLB entries.
7937  *	Since pmap_demote_pde() for the wired entry must never fail,
7938  *	pmap_delayed_invl_start()/finish() calls around the
7939  *	function are not needed.
7940  */
7941 void
7942 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7943 {
7944 	vm_offset_t va_next;
7945 	pml4_entry_t *pml4e;
7946 	pdp_entry_t *pdpe;
7947 	pd_entry_t *pde;
7948 	pt_entry_t *pte, PG_V, PG_G __diagused;
7949 
7950 	PG_V = pmap_valid_bit(pmap);
7951 	PG_G = pmap_global_bit(pmap);
7952 	PMAP_LOCK(pmap);
7953 	for (; sva < eva; sva = va_next) {
7954 		pml4e = pmap_pml4e(pmap, sva);
7955 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7956 			va_next = (sva + NBPML4) & ~PML4MASK;
7957 			if (va_next < sva)
7958 				va_next = eva;
7959 			continue;
7960 		}
7961 
7962 		va_next = (sva + NBPDP) & ~PDPMASK;
7963 		if (va_next < sva)
7964 			va_next = eva;
7965 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7966 		if ((*pdpe & PG_V) == 0)
7967 			continue;
7968 		if ((*pdpe & PG_PS) != 0) {
7969 			KASSERT(va_next <= eva,
7970 			    ("partial update of non-transparent 1G mapping "
7971 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7972 			    *pdpe, sva, eva, va_next));
7973 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7974 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7975 			atomic_clear_long(pdpe, PG_W);
7976 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7977 			continue;
7978 		}
7979 
7980 		va_next = (sva + NBPDR) & ~PDRMASK;
7981 		if (va_next < sva)
7982 			va_next = eva;
7983 		pde = pmap_pdpe_to_pde(pdpe, sva);
7984 		if ((*pde & PG_V) == 0)
7985 			continue;
7986 		if ((*pde & PG_PS) != 0) {
7987 			if ((*pde & PG_W) == 0)
7988 				panic("pmap_unwire: pde %#jx is missing PG_W",
7989 				    (uintmax_t)*pde);
7990 
7991 			/*
7992 			 * Are we unwiring the entire large page?  If not,
7993 			 * demote the mapping and fall through.
7994 			 */
7995 			if (sva + NBPDR == va_next && eva >= va_next) {
7996 				atomic_clear_long(pde, PG_W);
7997 				pmap->pm_stats.wired_count -= NBPDR /
7998 				    PAGE_SIZE;
7999 				continue;
8000 			} else if (!pmap_demote_pde(pmap, pde, sva))
8001 				panic("pmap_unwire: demotion failed");
8002 		}
8003 		if (va_next > eva)
8004 			va_next = eva;
8005 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8006 		    sva += PAGE_SIZE) {
8007 			if ((*pte & PG_V) == 0)
8008 				continue;
8009 			if ((*pte & PG_W) == 0)
8010 				panic("pmap_unwire: pte %#jx is missing PG_W",
8011 				    (uintmax_t)*pte);
8012 
8013 			/*
8014 			 * PG_W must be cleared atomically.  Although the pmap
8015 			 * lock synchronizes access to PG_W, another processor
8016 			 * could be setting PG_M and/or PG_A concurrently.
8017 			 */
8018 			atomic_clear_long(pte, PG_W);
8019 			pmap->pm_stats.wired_count--;
8020 		}
8021 	}
8022 	PMAP_UNLOCK(pmap);
8023 }
8024 
8025 /*
8026  *	Copy the range specified by src_addr/len
8027  *	from the source map to the range dst_addr/len
8028  *	in the destination map.
8029  *
8030  *	This routine is only advisory and need not do anything.
8031  */
8032 void
8033 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8034     vm_offset_t src_addr)
8035 {
8036 	struct rwlock *lock;
8037 	pml4_entry_t *pml4e;
8038 	pdp_entry_t *pdpe;
8039 	pd_entry_t *pde, srcptepaddr;
8040 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8041 	vm_offset_t addr, end_addr, va_next;
8042 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8043 
8044 	if (dst_addr != src_addr)
8045 		return;
8046 
8047 	if (dst_pmap->pm_type != src_pmap->pm_type)
8048 		return;
8049 
8050 	/*
8051 	 * EPT page table entries that require emulation of A/D bits are
8052 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8053 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8054 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8055 	 * implementations flag an EPT misconfiguration for exec-only
8056 	 * mappings we skip this function entirely for emulated pmaps.
8057 	 */
8058 	if (pmap_emulate_ad_bits(dst_pmap))
8059 		return;
8060 
8061 	end_addr = src_addr + len;
8062 	lock = NULL;
8063 	if (dst_pmap < src_pmap) {
8064 		PMAP_LOCK(dst_pmap);
8065 		PMAP_LOCK(src_pmap);
8066 	} else {
8067 		PMAP_LOCK(src_pmap);
8068 		PMAP_LOCK(dst_pmap);
8069 	}
8070 
8071 	PG_A = pmap_accessed_bit(dst_pmap);
8072 	PG_M = pmap_modified_bit(dst_pmap);
8073 	PG_V = pmap_valid_bit(dst_pmap);
8074 
8075 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8076 		KASSERT(addr < UPT_MIN_ADDRESS,
8077 		    ("pmap_copy: invalid to pmap_copy page tables"));
8078 
8079 		pml4e = pmap_pml4e(src_pmap, addr);
8080 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8081 			va_next = (addr + NBPML4) & ~PML4MASK;
8082 			if (va_next < addr)
8083 				va_next = end_addr;
8084 			continue;
8085 		}
8086 
8087 		va_next = (addr + NBPDP) & ~PDPMASK;
8088 		if (va_next < addr)
8089 			va_next = end_addr;
8090 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8091 		if ((*pdpe & PG_V) == 0)
8092 			continue;
8093 		if ((*pdpe & PG_PS) != 0) {
8094 			KASSERT(va_next <= end_addr,
8095 			    ("partial update of non-transparent 1G mapping "
8096 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8097 			    *pdpe, addr, end_addr, va_next));
8098 			MPASS((addr & PDPMASK) == 0);
8099 			MPASS((*pdpe & PG_MANAGED) == 0);
8100 			srcptepaddr = *pdpe;
8101 			pdpe = pmap_pdpe(dst_pmap, addr);
8102 			if (pdpe == NULL) {
8103 				if (pmap_allocpte_alloc(dst_pmap,
8104 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8105 				    NULL)
8106 					break;
8107 				pdpe = pmap_pdpe(dst_pmap, addr);
8108 			} else {
8109 				pml4e = pmap_pml4e(dst_pmap, addr);
8110 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8111 				dst_pdpg->ref_count++;
8112 			}
8113 			KASSERT(*pdpe == 0,
8114 			    ("1G mapping present in dst pmap "
8115 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8116 			    *pdpe, addr, end_addr, va_next));
8117 			*pdpe = srcptepaddr & ~PG_W;
8118 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8119 			continue;
8120 		}
8121 
8122 		va_next = (addr + NBPDR) & ~PDRMASK;
8123 		if (va_next < addr)
8124 			va_next = end_addr;
8125 
8126 		pde = pmap_pdpe_to_pde(pdpe, addr);
8127 		srcptepaddr = *pde;
8128 		if (srcptepaddr == 0)
8129 			continue;
8130 
8131 		if (srcptepaddr & PG_PS) {
8132 			/*
8133 			 * We can only virtual copy whole superpages.
8134 			 */
8135 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8136 				continue;
8137 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8138 			if (pde == NULL)
8139 				break;
8140 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8141 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8142 			    PMAP_ENTER_NORECLAIM, &lock))) {
8143 				/*
8144 				 * We leave the dirty bit unchanged because
8145 				 * managed read/write superpage mappings are
8146 				 * required to be dirty.  However, managed
8147 				 * superpage mappings are not required to
8148 				 * have their accessed bit set, so we clear
8149 				 * it because we don't know if this mapping
8150 				 * will be used.
8151 				 */
8152 				srcptepaddr &= ~PG_W;
8153 				if ((srcptepaddr & PG_MANAGED) != 0)
8154 					srcptepaddr &= ~PG_A;
8155 				*pde = srcptepaddr;
8156 				pmap_resident_count_adj(dst_pmap, NBPDR /
8157 				    PAGE_SIZE);
8158 				counter_u64_add(pmap_pde_mappings, 1);
8159 			} else
8160 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8161 			continue;
8162 		}
8163 
8164 		srcptepaddr &= PG_FRAME;
8165 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8166 		KASSERT(srcmpte->ref_count > 0,
8167 		    ("pmap_copy: source page table page is unused"));
8168 
8169 		if (va_next > end_addr)
8170 			va_next = end_addr;
8171 
8172 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8173 		src_pte = &src_pte[pmap_pte_index(addr)];
8174 		dstmpte = NULL;
8175 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8176 			ptetemp = *src_pte;
8177 
8178 			/*
8179 			 * We only virtual copy managed pages.
8180 			 */
8181 			if ((ptetemp & PG_MANAGED) == 0)
8182 				continue;
8183 
8184 			if (dstmpte != NULL) {
8185 				KASSERT(dstmpte->pindex ==
8186 				    pmap_pde_pindex(addr),
8187 				    ("dstmpte pindex/addr mismatch"));
8188 				dstmpte->ref_count++;
8189 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8190 			    NULL)) == NULL)
8191 				goto out;
8192 			dst_pte = (pt_entry_t *)
8193 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8194 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8195 			if (*dst_pte == 0 &&
8196 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8197 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8198 				/*
8199 				 * Clear the wired, modified, and accessed
8200 				 * (referenced) bits during the copy.
8201 				 */
8202 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8203 				pmap_resident_count_adj(dst_pmap, 1);
8204 			} else {
8205 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8206 				goto out;
8207 			}
8208 			/* Have we copied all of the valid mappings? */
8209 			if (dstmpte->ref_count >= srcmpte->ref_count)
8210 				break;
8211 		}
8212 	}
8213 out:
8214 	if (lock != NULL)
8215 		rw_wunlock(lock);
8216 	PMAP_UNLOCK(src_pmap);
8217 	PMAP_UNLOCK(dst_pmap);
8218 }
8219 
8220 int
8221 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8222 {
8223 	int error;
8224 
8225 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8226 	    dst_pmap->pm_type != PT_X86 ||
8227 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8228 		return (0);
8229 	for (;;) {
8230 		if (dst_pmap < src_pmap) {
8231 			PMAP_LOCK(dst_pmap);
8232 			PMAP_LOCK(src_pmap);
8233 		} else {
8234 			PMAP_LOCK(src_pmap);
8235 			PMAP_LOCK(dst_pmap);
8236 		}
8237 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8238 		/* Clean up partial copy on failure due to no memory. */
8239 		if (error == ENOMEM)
8240 			pmap_pkru_deassign_all(dst_pmap);
8241 		PMAP_UNLOCK(src_pmap);
8242 		PMAP_UNLOCK(dst_pmap);
8243 		if (error != ENOMEM)
8244 			break;
8245 		vm_wait(NULL);
8246 	}
8247 	return (error);
8248 }
8249 
8250 /*
8251  * Zero the specified hardware page.
8252  */
8253 void
8254 pmap_zero_page(vm_page_t m)
8255 {
8256 	vm_offset_t va;
8257 
8258 #ifdef TSLOG_PAGEZERO
8259 	TSENTER();
8260 #endif
8261 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8262 	pagezero((void *)va);
8263 #ifdef TSLOG_PAGEZERO
8264 	TSEXIT();
8265 #endif
8266 }
8267 
8268 /*
8269  * Zero an area within a single hardware page.  off and size must not
8270  * cover an area beyond a single hardware page.
8271  */
8272 void
8273 pmap_zero_page_area(vm_page_t m, int off, int size)
8274 {
8275 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8276 
8277 	if (off == 0 && size == PAGE_SIZE)
8278 		pagezero((void *)va);
8279 	else
8280 		bzero((char *)va + off, size);
8281 }
8282 
8283 /*
8284  * Copy 1 specified hardware page to another.
8285  */
8286 void
8287 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8288 {
8289 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8290 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8291 
8292 	pagecopy((void *)src, (void *)dst);
8293 }
8294 
8295 int unmapped_buf_allowed = 1;
8296 
8297 void
8298 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8299     vm_offset_t b_offset, int xfersize)
8300 {
8301 	void *a_cp, *b_cp;
8302 	vm_page_t pages[2];
8303 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8304 	int cnt;
8305 	boolean_t mapped;
8306 
8307 	while (xfersize > 0) {
8308 		a_pg_offset = a_offset & PAGE_MASK;
8309 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8310 		b_pg_offset = b_offset & PAGE_MASK;
8311 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8312 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8313 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8314 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
8315 		a_cp = (char *)vaddr[0] + a_pg_offset;
8316 		b_cp = (char *)vaddr[1] + b_pg_offset;
8317 		bcopy(a_cp, b_cp, cnt);
8318 		if (__predict_false(mapped))
8319 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
8320 		a_offset += cnt;
8321 		b_offset += cnt;
8322 		xfersize -= cnt;
8323 	}
8324 }
8325 
8326 /*
8327  * Returns true if the pmap's pv is one of the first
8328  * 16 pvs linked to from this page.  This count may
8329  * be changed upwards or downwards in the future; it
8330  * is only necessary that true be returned for a small
8331  * subset of pmaps for proper page aging.
8332  */
8333 boolean_t
8334 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8335 {
8336 	struct md_page *pvh;
8337 	struct rwlock *lock;
8338 	pv_entry_t pv;
8339 	int loops = 0;
8340 	boolean_t rv;
8341 
8342 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8343 	    ("pmap_page_exists_quick: page %p is not managed", m));
8344 	rv = FALSE;
8345 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8346 	rw_rlock(lock);
8347 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8348 		if (PV_PMAP(pv) == pmap) {
8349 			rv = TRUE;
8350 			break;
8351 		}
8352 		loops++;
8353 		if (loops >= 16)
8354 			break;
8355 	}
8356 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8357 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8358 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8359 			if (PV_PMAP(pv) == pmap) {
8360 				rv = TRUE;
8361 				break;
8362 			}
8363 			loops++;
8364 			if (loops >= 16)
8365 				break;
8366 		}
8367 	}
8368 	rw_runlock(lock);
8369 	return (rv);
8370 }
8371 
8372 /*
8373  *	pmap_page_wired_mappings:
8374  *
8375  *	Return the number of managed mappings to the given physical page
8376  *	that are wired.
8377  */
8378 int
8379 pmap_page_wired_mappings(vm_page_t m)
8380 {
8381 	struct rwlock *lock;
8382 	struct md_page *pvh;
8383 	pmap_t pmap;
8384 	pt_entry_t *pte;
8385 	pv_entry_t pv;
8386 	int count, md_gen, pvh_gen;
8387 
8388 	if ((m->oflags & VPO_UNMANAGED) != 0)
8389 		return (0);
8390 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8391 	rw_rlock(lock);
8392 restart:
8393 	count = 0;
8394 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8395 		pmap = PV_PMAP(pv);
8396 		if (!PMAP_TRYLOCK(pmap)) {
8397 			md_gen = m->md.pv_gen;
8398 			rw_runlock(lock);
8399 			PMAP_LOCK(pmap);
8400 			rw_rlock(lock);
8401 			if (md_gen != m->md.pv_gen) {
8402 				PMAP_UNLOCK(pmap);
8403 				goto restart;
8404 			}
8405 		}
8406 		pte = pmap_pte(pmap, pv->pv_va);
8407 		if ((*pte & PG_W) != 0)
8408 			count++;
8409 		PMAP_UNLOCK(pmap);
8410 	}
8411 	if ((m->flags & PG_FICTITIOUS) == 0) {
8412 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8413 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8414 			pmap = PV_PMAP(pv);
8415 			if (!PMAP_TRYLOCK(pmap)) {
8416 				md_gen = m->md.pv_gen;
8417 				pvh_gen = pvh->pv_gen;
8418 				rw_runlock(lock);
8419 				PMAP_LOCK(pmap);
8420 				rw_rlock(lock);
8421 				if (md_gen != m->md.pv_gen ||
8422 				    pvh_gen != pvh->pv_gen) {
8423 					PMAP_UNLOCK(pmap);
8424 					goto restart;
8425 				}
8426 			}
8427 			pte = pmap_pde(pmap, pv->pv_va);
8428 			if ((*pte & PG_W) != 0)
8429 				count++;
8430 			PMAP_UNLOCK(pmap);
8431 		}
8432 	}
8433 	rw_runlock(lock);
8434 	return (count);
8435 }
8436 
8437 /*
8438  * Returns TRUE if the given page is mapped individually or as part of
8439  * a 2mpage.  Otherwise, returns FALSE.
8440  */
8441 boolean_t
8442 pmap_page_is_mapped(vm_page_t m)
8443 {
8444 	struct rwlock *lock;
8445 	boolean_t rv;
8446 
8447 	if ((m->oflags & VPO_UNMANAGED) != 0)
8448 		return (FALSE);
8449 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8450 	rw_rlock(lock);
8451 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8452 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8453 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8454 	rw_runlock(lock);
8455 	return (rv);
8456 }
8457 
8458 /*
8459  * Destroy all managed, non-wired mappings in the given user-space
8460  * pmap.  This pmap cannot be active on any processor besides the
8461  * caller.
8462  *
8463  * This function cannot be applied to the kernel pmap.  Moreover, it
8464  * is not intended for general use.  It is only to be used during
8465  * process termination.  Consequently, it can be implemented in ways
8466  * that make it faster than pmap_remove().  First, it can more quickly
8467  * destroy mappings by iterating over the pmap's collection of PV
8468  * entries, rather than searching the page table.  Second, it doesn't
8469  * have to test and clear the page table entries atomically, because
8470  * no processor is currently accessing the user address space.  In
8471  * particular, a page table entry's dirty bit won't change state once
8472  * this function starts.
8473  *
8474  * Although this function destroys all of the pmap's managed,
8475  * non-wired mappings, it can delay and batch the invalidation of TLB
8476  * entries without calling pmap_delayed_invl_start() and
8477  * pmap_delayed_invl_finish().  Because the pmap is not active on
8478  * any other processor, none of these TLB entries will ever be used
8479  * before their eventual invalidation.  Consequently, there is no need
8480  * for either pmap_remove_all() or pmap_remove_write() to wait for
8481  * that eventual TLB invalidation.
8482  */
8483 void
8484 pmap_remove_pages(pmap_t pmap)
8485 {
8486 	pd_entry_t ptepde;
8487 	pt_entry_t *pte, tpte;
8488 	pt_entry_t PG_M, PG_RW, PG_V;
8489 	struct spglist free;
8490 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8491 	vm_page_t m, mpte, mt;
8492 	pv_entry_t pv;
8493 	struct md_page *pvh;
8494 	struct pv_chunk *pc, *npc;
8495 	struct rwlock *lock;
8496 	int64_t bit;
8497 	uint64_t inuse, bitmask;
8498 	int allfree, field, i, idx;
8499 #ifdef PV_STATS
8500 	int freed;
8501 #endif
8502 	boolean_t superpage;
8503 	vm_paddr_t pa;
8504 
8505 	/*
8506 	 * Assert that the given pmap is only active on the current
8507 	 * CPU.  Unfortunately, we cannot block another CPU from
8508 	 * activating the pmap while this function is executing.
8509 	 */
8510 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8511 #ifdef INVARIANTS
8512 	{
8513 		cpuset_t other_cpus;
8514 
8515 		other_cpus = all_cpus;
8516 		critical_enter();
8517 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8518 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8519 		critical_exit();
8520 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8521 	}
8522 #endif
8523 
8524 	lock = NULL;
8525 	PG_M = pmap_modified_bit(pmap);
8526 	PG_V = pmap_valid_bit(pmap);
8527 	PG_RW = pmap_rw_bit(pmap);
8528 
8529 	for (i = 0; i < PMAP_MEMDOM; i++)
8530 		TAILQ_INIT(&free_chunks[i]);
8531 	SLIST_INIT(&free);
8532 	PMAP_LOCK(pmap);
8533 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8534 		allfree = 1;
8535 #ifdef PV_STATS
8536 		freed = 0;
8537 #endif
8538 		for (field = 0; field < _NPCM; field++) {
8539 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8540 			while (inuse != 0) {
8541 				bit = bsfq(inuse);
8542 				bitmask = 1UL << bit;
8543 				idx = field * 64 + bit;
8544 				pv = &pc->pc_pventry[idx];
8545 				inuse &= ~bitmask;
8546 
8547 				pte = pmap_pdpe(pmap, pv->pv_va);
8548 				ptepde = *pte;
8549 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8550 				tpte = *pte;
8551 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8552 					superpage = FALSE;
8553 					ptepde = tpte;
8554 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8555 					    PG_FRAME);
8556 					pte = &pte[pmap_pte_index(pv->pv_va)];
8557 					tpte = *pte;
8558 				} else {
8559 					/*
8560 					 * Keep track whether 'tpte' is a
8561 					 * superpage explicitly instead of
8562 					 * relying on PG_PS being set.
8563 					 *
8564 					 * This is because PG_PS is numerically
8565 					 * identical to PG_PTE_PAT and thus a
8566 					 * regular page could be mistaken for
8567 					 * a superpage.
8568 					 */
8569 					superpage = TRUE;
8570 				}
8571 
8572 				if ((tpte & PG_V) == 0) {
8573 					panic("bad pte va %lx pte %lx",
8574 					    pv->pv_va, tpte);
8575 				}
8576 
8577 /*
8578  * We cannot remove wired pages from a process' mapping at this time
8579  */
8580 				if (tpte & PG_W) {
8581 					allfree = 0;
8582 					continue;
8583 				}
8584 
8585 				/* Mark free */
8586 				pc->pc_map[field] |= bitmask;
8587 
8588 				/*
8589 				 * Because this pmap is not active on other
8590 				 * processors, the dirty bit cannot have
8591 				 * changed state since we last loaded pte.
8592 				 */
8593 				pte_clear(pte);
8594 
8595 				if (superpage)
8596 					pa = tpte & PG_PS_FRAME;
8597 				else
8598 					pa = tpte & PG_FRAME;
8599 
8600 				m = PHYS_TO_VM_PAGE(pa);
8601 				KASSERT(m->phys_addr == pa,
8602 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8603 				    m, (uintmax_t)m->phys_addr,
8604 				    (uintmax_t)tpte));
8605 
8606 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8607 				    m < &vm_page_array[vm_page_array_size],
8608 				    ("pmap_remove_pages: bad tpte %#jx",
8609 				    (uintmax_t)tpte));
8610 
8611 				/*
8612 				 * Update the vm_page_t clean/reference bits.
8613 				 */
8614 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8615 					if (superpage) {
8616 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8617 							vm_page_dirty(mt);
8618 					} else
8619 						vm_page_dirty(m);
8620 				}
8621 
8622 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8623 
8624 				if (superpage) {
8625 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8626 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8627 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8628 					pvh->pv_gen++;
8629 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8630 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8631 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8632 							    TAILQ_EMPTY(&mt->md.pv_list))
8633 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8634 					}
8635 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8636 					if (mpte != NULL) {
8637 						KASSERT(vm_page_any_valid(mpte),
8638 						    ("pmap_remove_pages: pte page not promoted"));
8639 						pmap_pt_page_count_adj(pmap, -1);
8640 						KASSERT(mpte->ref_count == NPTEPG,
8641 						    ("pmap_remove_pages: pte page reference count error"));
8642 						mpte->ref_count = 0;
8643 						pmap_add_delayed_free_list(mpte, &free, FALSE);
8644 					}
8645 				} else {
8646 					pmap_resident_count_adj(pmap, -1);
8647 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8648 					m->md.pv_gen++;
8649 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8650 					    TAILQ_EMPTY(&m->md.pv_list) &&
8651 					    (m->flags & PG_FICTITIOUS) == 0) {
8652 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8653 						if (TAILQ_EMPTY(&pvh->pv_list))
8654 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8655 					}
8656 				}
8657 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8658 #ifdef PV_STATS
8659 				freed++;
8660 #endif
8661 			}
8662 		}
8663 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8664 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8665 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8666 		if (allfree) {
8667 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8668 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8669 		}
8670 	}
8671 	if (lock != NULL)
8672 		rw_wunlock(lock);
8673 	pmap_invalidate_all(pmap);
8674 	pmap_pkru_deassign_all(pmap);
8675 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8676 	PMAP_UNLOCK(pmap);
8677 	vm_page_free_pages_toq(&free, true);
8678 }
8679 
8680 static boolean_t
8681 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8682 {
8683 	struct rwlock *lock;
8684 	pv_entry_t pv;
8685 	struct md_page *pvh;
8686 	pt_entry_t *pte, mask;
8687 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8688 	pmap_t pmap;
8689 	int md_gen, pvh_gen;
8690 	boolean_t rv;
8691 
8692 	rv = FALSE;
8693 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8694 	rw_rlock(lock);
8695 restart:
8696 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8697 		pmap = PV_PMAP(pv);
8698 		if (!PMAP_TRYLOCK(pmap)) {
8699 			md_gen = m->md.pv_gen;
8700 			rw_runlock(lock);
8701 			PMAP_LOCK(pmap);
8702 			rw_rlock(lock);
8703 			if (md_gen != m->md.pv_gen) {
8704 				PMAP_UNLOCK(pmap);
8705 				goto restart;
8706 			}
8707 		}
8708 		pte = pmap_pte(pmap, pv->pv_va);
8709 		mask = 0;
8710 		if (modified) {
8711 			PG_M = pmap_modified_bit(pmap);
8712 			PG_RW = pmap_rw_bit(pmap);
8713 			mask |= PG_RW | PG_M;
8714 		}
8715 		if (accessed) {
8716 			PG_A = pmap_accessed_bit(pmap);
8717 			PG_V = pmap_valid_bit(pmap);
8718 			mask |= PG_V | PG_A;
8719 		}
8720 		rv = (*pte & mask) == mask;
8721 		PMAP_UNLOCK(pmap);
8722 		if (rv)
8723 			goto out;
8724 	}
8725 	if ((m->flags & PG_FICTITIOUS) == 0) {
8726 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8727 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8728 			pmap = PV_PMAP(pv);
8729 			if (!PMAP_TRYLOCK(pmap)) {
8730 				md_gen = m->md.pv_gen;
8731 				pvh_gen = pvh->pv_gen;
8732 				rw_runlock(lock);
8733 				PMAP_LOCK(pmap);
8734 				rw_rlock(lock);
8735 				if (md_gen != m->md.pv_gen ||
8736 				    pvh_gen != pvh->pv_gen) {
8737 					PMAP_UNLOCK(pmap);
8738 					goto restart;
8739 				}
8740 			}
8741 			pte = pmap_pde(pmap, pv->pv_va);
8742 			mask = 0;
8743 			if (modified) {
8744 				PG_M = pmap_modified_bit(pmap);
8745 				PG_RW = pmap_rw_bit(pmap);
8746 				mask |= PG_RW | PG_M;
8747 			}
8748 			if (accessed) {
8749 				PG_A = pmap_accessed_bit(pmap);
8750 				PG_V = pmap_valid_bit(pmap);
8751 				mask |= PG_V | PG_A;
8752 			}
8753 			rv = (*pte & mask) == mask;
8754 			PMAP_UNLOCK(pmap);
8755 			if (rv)
8756 				goto out;
8757 		}
8758 	}
8759 out:
8760 	rw_runlock(lock);
8761 	return (rv);
8762 }
8763 
8764 /*
8765  *	pmap_is_modified:
8766  *
8767  *	Return whether or not the specified physical page was modified
8768  *	in any physical maps.
8769  */
8770 boolean_t
8771 pmap_is_modified(vm_page_t m)
8772 {
8773 
8774 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8775 	    ("pmap_is_modified: page %p is not managed", m));
8776 
8777 	/*
8778 	 * If the page is not busied then this check is racy.
8779 	 */
8780 	if (!pmap_page_is_write_mapped(m))
8781 		return (FALSE);
8782 	return (pmap_page_test_mappings(m, FALSE, TRUE));
8783 }
8784 
8785 /*
8786  *	pmap_is_prefaultable:
8787  *
8788  *	Return whether or not the specified virtual address is eligible
8789  *	for prefault.
8790  */
8791 boolean_t
8792 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8793 {
8794 	pd_entry_t *pde;
8795 	pt_entry_t *pte, PG_V;
8796 	boolean_t rv;
8797 
8798 	PG_V = pmap_valid_bit(pmap);
8799 
8800 	/*
8801 	 * Return TRUE if and only if the PTE for the specified virtual
8802 	 * address is allocated but invalid.
8803 	 */
8804 	rv = FALSE;
8805 	PMAP_LOCK(pmap);
8806 	pde = pmap_pde(pmap, addr);
8807 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8808 		pte = pmap_pde_to_pte(pde, addr);
8809 		rv = (*pte & PG_V) == 0;
8810 	}
8811 	PMAP_UNLOCK(pmap);
8812 	return (rv);
8813 }
8814 
8815 /*
8816  *	pmap_is_referenced:
8817  *
8818  *	Return whether or not the specified physical page was referenced
8819  *	in any physical maps.
8820  */
8821 boolean_t
8822 pmap_is_referenced(vm_page_t m)
8823 {
8824 
8825 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8826 	    ("pmap_is_referenced: page %p is not managed", m));
8827 	return (pmap_page_test_mappings(m, TRUE, FALSE));
8828 }
8829 
8830 /*
8831  * Clear the write and modified bits in each of the given page's mappings.
8832  */
8833 void
8834 pmap_remove_write(vm_page_t m)
8835 {
8836 	struct md_page *pvh;
8837 	pmap_t pmap;
8838 	struct rwlock *lock;
8839 	pv_entry_t next_pv, pv;
8840 	pd_entry_t *pde;
8841 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8842 	vm_offset_t va;
8843 	int pvh_gen, md_gen;
8844 
8845 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8846 	    ("pmap_remove_write: page %p is not managed", m));
8847 
8848 	vm_page_assert_busied(m);
8849 	if (!pmap_page_is_write_mapped(m))
8850 		return;
8851 
8852 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8853 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8854 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8855 	rw_wlock(lock);
8856 retry:
8857 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8858 		pmap = PV_PMAP(pv);
8859 		if (!PMAP_TRYLOCK(pmap)) {
8860 			pvh_gen = pvh->pv_gen;
8861 			rw_wunlock(lock);
8862 			PMAP_LOCK(pmap);
8863 			rw_wlock(lock);
8864 			if (pvh_gen != pvh->pv_gen) {
8865 				PMAP_UNLOCK(pmap);
8866 				goto retry;
8867 			}
8868 		}
8869 		PG_RW = pmap_rw_bit(pmap);
8870 		va = pv->pv_va;
8871 		pde = pmap_pde(pmap, va);
8872 		if ((*pde & PG_RW) != 0)
8873 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8874 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8875 		    ("inconsistent pv lock %p %p for page %p",
8876 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8877 		PMAP_UNLOCK(pmap);
8878 	}
8879 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8880 		pmap = PV_PMAP(pv);
8881 		if (!PMAP_TRYLOCK(pmap)) {
8882 			pvh_gen = pvh->pv_gen;
8883 			md_gen = m->md.pv_gen;
8884 			rw_wunlock(lock);
8885 			PMAP_LOCK(pmap);
8886 			rw_wlock(lock);
8887 			if (pvh_gen != pvh->pv_gen ||
8888 			    md_gen != m->md.pv_gen) {
8889 				PMAP_UNLOCK(pmap);
8890 				goto retry;
8891 			}
8892 		}
8893 		PG_M = pmap_modified_bit(pmap);
8894 		PG_RW = pmap_rw_bit(pmap);
8895 		pde = pmap_pde(pmap, pv->pv_va);
8896 		KASSERT((*pde & PG_PS) == 0,
8897 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8898 		    m));
8899 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8900 		oldpte = *pte;
8901 		if (oldpte & PG_RW) {
8902 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8903 			    ~(PG_RW | PG_M)))
8904 				cpu_spinwait();
8905 			if ((oldpte & PG_M) != 0)
8906 				vm_page_dirty(m);
8907 			pmap_invalidate_page(pmap, pv->pv_va);
8908 		}
8909 		PMAP_UNLOCK(pmap);
8910 	}
8911 	rw_wunlock(lock);
8912 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8913 	pmap_delayed_invl_wait(m);
8914 }
8915 
8916 /*
8917  *	pmap_ts_referenced:
8918  *
8919  *	Return a count of reference bits for a page, clearing those bits.
8920  *	It is not necessary for every reference bit to be cleared, but it
8921  *	is necessary that 0 only be returned when there are truly no
8922  *	reference bits set.
8923  *
8924  *	As an optimization, update the page's dirty field if a modified bit is
8925  *	found while counting reference bits.  This opportunistic update can be
8926  *	performed at low cost and can eliminate the need for some future calls
8927  *	to pmap_is_modified().  However, since this function stops after
8928  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8929  *	dirty pages.  Those dirty pages will only be detected by a future call
8930  *	to pmap_is_modified().
8931  *
8932  *	A DI block is not needed within this function, because
8933  *	invalidations are performed before the PV list lock is
8934  *	released.
8935  */
8936 int
8937 pmap_ts_referenced(vm_page_t m)
8938 {
8939 	struct md_page *pvh;
8940 	pv_entry_t pv, pvf;
8941 	pmap_t pmap;
8942 	struct rwlock *lock;
8943 	pd_entry_t oldpde, *pde;
8944 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8945 	vm_offset_t va;
8946 	vm_paddr_t pa;
8947 	int cleared, md_gen, not_cleared, pvh_gen;
8948 	struct spglist free;
8949 	boolean_t demoted;
8950 
8951 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8952 	    ("pmap_ts_referenced: page %p is not managed", m));
8953 	SLIST_INIT(&free);
8954 	cleared = 0;
8955 	pa = VM_PAGE_TO_PHYS(m);
8956 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8957 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8958 	rw_wlock(lock);
8959 retry:
8960 	not_cleared = 0;
8961 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8962 		goto small_mappings;
8963 	pv = pvf;
8964 	do {
8965 		if (pvf == NULL)
8966 			pvf = pv;
8967 		pmap = PV_PMAP(pv);
8968 		if (!PMAP_TRYLOCK(pmap)) {
8969 			pvh_gen = pvh->pv_gen;
8970 			rw_wunlock(lock);
8971 			PMAP_LOCK(pmap);
8972 			rw_wlock(lock);
8973 			if (pvh_gen != pvh->pv_gen) {
8974 				PMAP_UNLOCK(pmap);
8975 				goto retry;
8976 			}
8977 		}
8978 		PG_A = pmap_accessed_bit(pmap);
8979 		PG_M = pmap_modified_bit(pmap);
8980 		PG_RW = pmap_rw_bit(pmap);
8981 		va = pv->pv_va;
8982 		pde = pmap_pde(pmap, pv->pv_va);
8983 		oldpde = *pde;
8984 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8985 			/*
8986 			 * Although "oldpde" is mapping a 2MB page, because
8987 			 * this function is called at a 4KB page granularity,
8988 			 * we only update the 4KB page under test.
8989 			 */
8990 			vm_page_dirty(m);
8991 		}
8992 		if ((oldpde & PG_A) != 0) {
8993 			/*
8994 			 * Since this reference bit is shared by 512 4KB
8995 			 * pages, it should not be cleared every time it is
8996 			 * tested.  Apply a simple "hash" function on the
8997 			 * physical page number, the virtual superpage number,
8998 			 * and the pmap address to select one 4KB page out of
8999 			 * the 512 on which testing the reference bit will
9000 			 * result in clearing that reference bit.  This
9001 			 * function is designed to avoid the selection of the
9002 			 * same 4KB page for every 2MB page mapping.
9003 			 *
9004 			 * On demotion, a mapping that hasn't been referenced
9005 			 * is simply destroyed.  To avoid the possibility of a
9006 			 * subsequent page fault on a demoted wired mapping,
9007 			 * always leave its reference bit set.  Moreover,
9008 			 * since the superpage is wired, the current state of
9009 			 * its reference bit won't affect page replacement.
9010 			 */
9011 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9012 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9013 			    (oldpde & PG_W) == 0) {
9014 				if (safe_to_clear_referenced(pmap, oldpde)) {
9015 					atomic_clear_long(pde, PG_A);
9016 					pmap_invalidate_page(pmap, pv->pv_va);
9017 					demoted = FALSE;
9018 				} else if (pmap_demote_pde_locked(pmap, pde,
9019 				    pv->pv_va, &lock)) {
9020 					/*
9021 					 * Remove the mapping to a single page
9022 					 * so that a subsequent access may
9023 					 * repromote.  Since the underlying
9024 					 * page table page is fully populated,
9025 					 * this removal never frees a page
9026 					 * table page.
9027 					 */
9028 					demoted = TRUE;
9029 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9030 					    PG_PS_FRAME);
9031 					pte = pmap_pde_to_pte(pde, va);
9032 					pmap_remove_pte(pmap, pte, va, *pde,
9033 					    NULL, &lock);
9034 					pmap_invalidate_page(pmap, va);
9035 				} else
9036 					demoted = TRUE;
9037 
9038 				if (demoted) {
9039 					/*
9040 					 * The superpage mapping was removed
9041 					 * entirely and therefore 'pv' is no
9042 					 * longer valid.
9043 					 */
9044 					if (pvf == pv)
9045 						pvf = NULL;
9046 					pv = NULL;
9047 				}
9048 				cleared++;
9049 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9050 				    ("inconsistent pv lock %p %p for page %p",
9051 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9052 			} else
9053 				not_cleared++;
9054 		}
9055 		PMAP_UNLOCK(pmap);
9056 		/* Rotate the PV list if it has more than one entry. */
9057 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9058 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9059 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9060 			pvh->pv_gen++;
9061 		}
9062 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9063 			goto out;
9064 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9065 small_mappings:
9066 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9067 		goto out;
9068 	pv = pvf;
9069 	do {
9070 		if (pvf == NULL)
9071 			pvf = pv;
9072 		pmap = PV_PMAP(pv);
9073 		if (!PMAP_TRYLOCK(pmap)) {
9074 			pvh_gen = pvh->pv_gen;
9075 			md_gen = m->md.pv_gen;
9076 			rw_wunlock(lock);
9077 			PMAP_LOCK(pmap);
9078 			rw_wlock(lock);
9079 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9080 				PMAP_UNLOCK(pmap);
9081 				goto retry;
9082 			}
9083 		}
9084 		PG_A = pmap_accessed_bit(pmap);
9085 		PG_M = pmap_modified_bit(pmap);
9086 		PG_RW = pmap_rw_bit(pmap);
9087 		pde = pmap_pde(pmap, pv->pv_va);
9088 		KASSERT((*pde & PG_PS) == 0,
9089 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9090 		    m));
9091 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9092 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9093 			vm_page_dirty(m);
9094 		if ((*pte & PG_A) != 0) {
9095 			if (safe_to_clear_referenced(pmap, *pte)) {
9096 				atomic_clear_long(pte, PG_A);
9097 				pmap_invalidate_page(pmap, pv->pv_va);
9098 				cleared++;
9099 			} else if ((*pte & PG_W) == 0) {
9100 				/*
9101 				 * Wired pages cannot be paged out so
9102 				 * doing accessed bit emulation for
9103 				 * them is wasted effort. We do the
9104 				 * hard work for unwired pages only.
9105 				 */
9106 				pmap_remove_pte(pmap, pte, pv->pv_va,
9107 				    *pde, &free, &lock);
9108 				pmap_invalidate_page(pmap, pv->pv_va);
9109 				cleared++;
9110 				if (pvf == pv)
9111 					pvf = NULL;
9112 				pv = NULL;
9113 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9114 				    ("inconsistent pv lock %p %p for page %p",
9115 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9116 			} else
9117 				not_cleared++;
9118 		}
9119 		PMAP_UNLOCK(pmap);
9120 		/* Rotate the PV list if it has more than one entry. */
9121 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9122 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9123 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9124 			m->md.pv_gen++;
9125 		}
9126 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9127 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9128 out:
9129 	rw_wunlock(lock);
9130 	vm_page_free_pages_toq(&free, true);
9131 	return (cleared + not_cleared);
9132 }
9133 
9134 /*
9135  *	Apply the given advice to the specified range of addresses within the
9136  *	given pmap.  Depending on the advice, clear the referenced and/or
9137  *	modified flags in each mapping and set the mapped page's dirty field.
9138  */
9139 void
9140 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9141 {
9142 	struct rwlock *lock;
9143 	pml4_entry_t *pml4e;
9144 	pdp_entry_t *pdpe;
9145 	pd_entry_t oldpde, *pde;
9146 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9147 	vm_offset_t va, va_next;
9148 	vm_page_t m;
9149 	bool anychanged;
9150 
9151 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9152 		return;
9153 
9154 	/*
9155 	 * A/D bit emulation requires an alternate code path when clearing
9156 	 * the modified and accessed bits below. Since this function is
9157 	 * advisory in nature we skip it entirely for pmaps that require
9158 	 * A/D bit emulation.
9159 	 */
9160 	if (pmap_emulate_ad_bits(pmap))
9161 		return;
9162 
9163 	PG_A = pmap_accessed_bit(pmap);
9164 	PG_G = pmap_global_bit(pmap);
9165 	PG_M = pmap_modified_bit(pmap);
9166 	PG_V = pmap_valid_bit(pmap);
9167 	PG_RW = pmap_rw_bit(pmap);
9168 	anychanged = false;
9169 	pmap_delayed_invl_start();
9170 	PMAP_LOCK(pmap);
9171 	for (; sva < eva; sva = va_next) {
9172 		pml4e = pmap_pml4e(pmap, sva);
9173 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9174 			va_next = (sva + NBPML4) & ~PML4MASK;
9175 			if (va_next < sva)
9176 				va_next = eva;
9177 			continue;
9178 		}
9179 
9180 		va_next = (sva + NBPDP) & ~PDPMASK;
9181 		if (va_next < sva)
9182 			va_next = eva;
9183 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9184 		if ((*pdpe & PG_V) == 0)
9185 			continue;
9186 		if ((*pdpe & PG_PS) != 0)
9187 			continue;
9188 
9189 		va_next = (sva + NBPDR) & ~PDRMASK;
9190 		if (va_next < sva)
9191 			va_next = eva;
9192 		pde = pmap_pdpe_to_pde(pdpe, sva);
9193 		oldpde = *pde;
9194 		if ((oldpde & PG_V) == 0)
9195 			continue;
9196 		else if ((oldpde & PG_PS) != 0) {
9197 			if ((oldpde & PG_MANAGED) == 0)
9198 				continue;
9199 			lock = NULL;
9200 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9201 				if (lock != NULL)
9202 					rw_wunlock(lock);
9203 
9204 				/*
9205 				 * The large page mapping was destroyed.
9206 				 */
9207 				continue;
9208 			}
9209 
9210 			/*
9211 			 * Unless the page mappings are wired, remove the
9212 			 * mapping to a single page so that a subsequent
9213 			 * access may repromote.  Choosing the last page
9214 			 * within the address range [sva, min(va_next, eva))
9215 			 * generally results in more repromotions.  Since the
9216 			 * underlying page table page is fully populated, this
9217 			 * removal never frees a page table page.
9218 			 */
9219 			if ((oldpde & PG_W) == 0) {
9220 				va = eva;
9221 				if (va > va_next)
9222 					va = va_next;
9223 				va -= PAGE_SIZE;
9224 				KASSERT(va >= sva,
9225 				    ("pmap_advise: no address gap"));
9226 				pte = pmap_pde_to_pte(pde, va);
9227 				KASSERT((*pte & PG_V) != 0,
9228 				    ("pmap_advise: invalid PTE"));
9229 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9230 				    &lock);
9231 				anychanged = true;
9232 			}
9233 			if (lock != NULL)
9234 				rw_wunlock(lock);
9235 		}
9236 		if (va_next > eva)
9237 			va_next = eva;
9238 		va = va_next;
9239 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9240 		    sva += PAGE_SIZE) {
9241 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9242 				goto maybe_invlrng;
9243 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9244 				if (advice == MADV_DONTNEED) {
9245 					/*
9246 					 * Future calls to pmap_is_modified()
9247 					 * can be avoided by making the page
9248 					 * dirty now.
9249 					 */
9250 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9251 					vm_page_dirty(m);
9252 				}
9253 				atomic_clear_long(pte, PG_M | PG_A);
9254 			} else if ((*pte & PG_A) != 0)
9255 				atomic_clear_long(pte, PG_A);
9256 			else
9257 				goto maybe_invlrng;
9258 
9259 			if ((*pte & PG_G) != 0) {
9260 				if (va == va_next)
9261 					va = sva;
9262 			} else
9263 				anychanged = true;
9264 			continue;
9265 maybe_invlrng:
9266 			if (va != va_next) {
9267 				pmap_invalidate_range(pmap, va, sva);
9268 				va = va_next;
9269 			}
9270 		}
9271 		if (va != va_next)
9272 			pmap_invalidate_range(pmap, va, sva);
9273 	}
9274 	if (anychanged)
9275 		pmap_invalidate_all(pmap);
9276 	PMAP_UNLOCK(pmap);
9277 	pmap_delayed_invl_finish();
9278 }
9279 
9280 /*
9281  *	Clear the modify bits on the specified physical page.
9282  */
9283 void
9284 pmap_clear_modify(vm_page_t m)
9285 {
9286 	struct md_page *pvh;
9287 	pmap_t pmap;
9288 	pv_entry_t next_pv, pv;
9289 	pd_entry_t oldpde, *pde;
9290 	pt_entry_t *pte, PG_M, PG_RW;
9291 	struct rwlock *lock;
9292 	vm_offset_t va;
9293 	int md_gen, pvh_gen;
9294 
9295 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9296 	    ("pmap_clear_modify: page %p is not managed", m));
9297 	vm_page_assert_busied(m);
9298 
9299 	if (!pmap_page_is_write_mapped(m))
9300 		return;
9301 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9302 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9303 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9304 	rw_wlock(lock);
9305 restart:
9306 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9307 		pmap = PV_PMAP(pv);
9308 		if (!PMAP_TRYLOCK(pmap)) {
9309 			pvh_gen = pvh->pv_gen;
9310 			rw_wunlock(lock);
9311 			PMAP_LOCK(pmap);
9312 			rw_wlock(lock);
9313 			if (pvh_gen != pvh->pv_gen) {
9314 				PMAP_UNLOCK(pmap);
9315 				goto restart;
9316 			}
9317 		}
9318 		PG_M = pmap_modified_bit(pmap);
9319 		PG_RW = pmap_rw_bit(pmap);
9320 		va = pv->pv_va;
9321 		pde = pmap_pde(pmap, va);
9322 		oldpde = *pde;
9323 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9324 		if ((oldpde & PG_RW) != 0 &&
9325 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9326 		    (oldpde & PG_W) == 0) {
9327 			/*
9328 			 * Write protect the mapping to a single page so that
9329 			 * a subsequent write access may repromote.
9330 			 */
9331 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9332 			pte = pmap_pde_to_pte(pde, va);
9333 			atomic_clear_long(pte, PG_M | PG_RW);
9334 			vm_page_dirty(m);
9335 			pmap_invalidate_page(pmap, va);
9336 		}
9337 		PMAP_UNLOCK(pmap);
9338 	}
9339 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9340 		pmap = PV_PMAP(pv);
9341 		if (!PMAP_TRYLOCK(pmap)) {
9342 			md_gen = m->md.pv_gen;
9343 			pvh_gen = pvh->pv_gen;
9344 			rw_wunlock(lock);
9345 			PMAP_LOCK(pmap);
9346 			rw_wlock(lock);
9347 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9348 				PMAP_UNLOCK(pmap);
9349 				goto restart;
9350 			}
9351 		}
9352 		PG_M = pmap_modified_bit(pmap);
9353 		PG_RW = pmap_rw_bit(pmap);
9354 		pde = pmap_pde(pmap, pv->pv_va);
9355 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9356 		    " a 2mpage in page %p's pv list", m));
9357 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9358 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9359 			atomic_clear_long(pte, PG_M);
9360 			pmap_invalidate_page(pmap, pv->pv_va);
9361 		}
9362 		PMAP_UNLOCK(pmap);
9363 	}
9364 	rw_wunlock(lock);
9365 }
9366 
9367 /*
9368  * Miscellaneous support routines follow
9369  */
9370 
9371 /* Adjust the properties for a leaf page table entry. */
9372 static __inline void
9373 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9374 {
9375 	u_long opte, npte;
9376 
9377 	opte = *(u_long *)pte;
9378 	do {
9379 		npte = opte & ~mask;
9380 		npte |= bits;
9381 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9382 	    npte));
9383 }
9384 
9385 /*
9386  * Map a set of physical memory pages into the kernel virtual
9387  * address space. Return a pointer to where it is mapped. This
9388  * routine is intended to be used for mapping device memory,
9389  * NOT real memory.
9390  */
9391 static void *
9392 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9393 {
9394 	struct pmap_preinit_mapping *ppim;
9395 	vm_offset_t va, offset;
9396 	vm_size_t tmpsize;
9397 	int i;
9398 
9399 	offset = pa & PAGE_MASK;
9400 	size = round_page(offset + size);
9401 	pa = trunc_page(pa);
9402 
9403 	if (!pmap_initialized) {
9404 		va = 0;
9405 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9406 			ppim = pmap_preinit_mapping + i;
9407 			if (ppim->va == 0) {
9408 				ppim->pa = pa;
9409 				ppim->sz = size;
9410 				ppim->mode = mode;
9411 				ppim->va = virtual_avail;
9412 				virtual_avail += size;
9413 				va = ppim->va;
9414 				break;
9415 			}
9416 		}
9417 		if (va == 0)
9418 			panic("%s: too many preinit mappings", __func__);
9419 	} else {
9420 		/*
9421 		 * If we have a preinit mapping, re-use it.
9422 		 */
9423 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9424 			ppim = pmap_preinit_mapping + i;
9425 			if (ppim->pa == pa && ppim->sz == size &&
9426 			    (ppim->mode == mode ||
9427 			    (flags & MAPDEV_SETATTR) == 0))
9428 				return ((void *)(ppim->va + offset));
9429 		}
9430 		/*
9431 		 * If the specified range of physical addresses fits within
9432 		 * the direct map window, use the direct map.
9433 		 */
9434 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9435 			va = PHYS_TO_DMAP(pa);
9436 			if ((flags & MAPDEV_SETATTR) != 0) {
9437 				PMAP_LOCK(kernel_pmap);
9438 				i = pmap_change_props_locked(va, size,
9439 				    PROT_NONE, mode, flags);
9440 				PMAP_UNLOCK(kernel_pmap);
9441 			} else
9442 				i = 0;
9443 			if (!i)
9444 				return ((void *)(va + offset));
9445 		}
9446 		va = kva_alloc(size);
9447 		if (va == 0)
9448 			panic("%s: Couldn't allocate KVA", __func__);
9449 	}
9450 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9451 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9452 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9453 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9454 		pmap_invalidate_cache_range(va, va + tmpsize);
9455 	return ((void *)(va + offset));
9456 }
9457 
9458 void *
9459 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9460 {
9461 
9462 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9463 	    MAPDEV_SETATTR));
9464 }
9465 
9466 void *
9467 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9468 {
9469 
9470 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9471 }
9472 
9473 void *
9474 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9475 {
9476 
9477 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9478 	    MAPDEV_SETATTR));
9479 }
9480 
9481 void *
9482 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9483 {
9484 
9485 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9486 	    MAPDEV_FLUSHCACHE));
9487 }
9488 
9489 void
9490 pmap_unmapdev(void *p, vm_size_t size)
9491 {
9492 	struct pmap_preinit_mapping *ppim;
9493 	vm_offset_t offset, va;
9494 	int i;
9495 
9496 	va = (vm_offset_t)p;
9497 
9498 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9499 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9500 		return;
9501 	offset = va & PAGE_MASK;
9502 	size = round_page(offset + size);
9503 	va = trunc_page(va);
9504 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9505 		ppim = pmap_preinit_mapping + i;
9506 		if (ppim->va == va && ppim->sz == size) {
9507 			if (pmap_initialized)
9508 				return;
9509 			ppim->pa = 0;
9510 			ppim->va = 0;
9511 			ppim->sz = 0;
9512 			ppim->mode = 0;
9513 			if (va + size == virtual_avail)
9514 				virtual_avail = va;
9515 			return;
9516 		}
9517 	}
9518 	if (pmap_initialized) {
9519 		pmap_qremove(va, atop(size));
9520 		kva_free(va, size);
9521 	}
9522 }
9523 
9524 /*
9525  * Tries to demote a 1GB page mapping.
9526  */
9527 static boolean_t
9528 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9529 {
9530 	pdp_entry_t newpdpe, oldpdpe;
9531 	pd_entry_t *firstpde, newpde, *pde;
9532 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9533 	vm_paddr_t pdpgpa;
9534 	vm_page_t pdpg;
9535 
9536 	PG_A = pmap_accessed_bit(pmap);
9537 	PG_M = pmap_modified_bit(pmap);
9538 	PG_V = pmap_valid_bit(pmap);
9539 	PG_RW = pmap_rw_bit(pmap);
9540 
9541 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9542 	oldpdpe = *pdpe;
9543 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9544 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9545 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9546 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9547 	if (pdpg  == NULL) {
9548 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9549 		    " in pmap %p", va, pmap);
9550 		return (FALSE);
9551 	}
9552 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9553 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9554 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9555 	KASSERT((oldpdpe & PG_A) != 0,
9556 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9557 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9558 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9559 	newpde = oldpdpe;
9560 
9561 	/*
9562 	 * Initialize the page directory page.
9563 	 */
9564 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9565 		*pde = newpde;
9566 		newpde += NBPDR;
9567 	}
9568 
9569 	/*
9570 	 * Demote the mapping.
9571 	 */
9572 	*pdpe = newpdpe;
9573 
9574 	/*
9575 	 * Invalidate a stale recursive mapping of the page directory page.
9576 	 */
9577 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9578 
9579 	counter_u64_add(pmap_pdpe_demotions, 1);
9580 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9581 	    " in pmap %p", va, pmap);
9582 	return (TRUE);
9583 }
9584 
9585 /*
9586  * Sets the memory attribute for the specified page.
9587  */
9588 void
9589 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9590 {
9591 
9592 	m->md.pat_mode = ma;
9593 
9594 	/*
9595 	 * If "m" is a normal page, update its direct mapping.  This update
9596 	 * can be relied upon to perform any cache operations that are
9597 	 * required for data coherence.
9598 	 */
9599 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9600 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9601 	    m->md.pat_mode))
9602 		panic("memory attribute change on the direct map failed");
9603 }
9604 
9605 void
9606 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9607 {
9608 	int error;
9609 
9610 	m->md.pat_mode = ma;
9611 
9612 	if ((m->flags & PG_FICTITIOUS) != 0)
9613 		return;
9614 	PMAP_LOCK(kernel_pmap);
9615 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9616 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9617 	PMAP_UNLOCK(kernel_pmap);
9618 	if (error != 0)
9619 		panic("memory attribute change on the direct map failed");
9620 }
9621 
9622 /*
9623  * Changes the specified virtual address range's memory type to that given by
9624  * the parameter "mode".  The specified virtual address range must be
9625  * completely contained within either the direct map or the kernel map.  If
9626  * the virtual address range is contained within the kernel map, then the
9627  * memory type for each of the corresponding ranges of the direct map is also
9628  * changed.  (The corresponding ranges of the direct map are those ranges that
9629  * map the same physical pages as the specified virtual address range.)  These
9630  * changes to the direct map are necessary because Intel describes the
9631  * behavior of their processors as "undefined" if two or more mappings to the
9632  * same physical page have different memory types.
9633  *
9634  * Returns zero if the change completed successfully, and either EINVAL or
9635  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9636  * of the virtual address range was not mapped, and ENOMEM is returned if
9637  * there was insufficient memory available to complete the change.  In the
9638  * latter case, the memory type may have been changed on some part of the
9639  * virtual address range or the direct map.
9640  */
9641 int
9642 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9643 {
9644 	int error;
9645 
9646 	PMAP_LOCK(kernel_pmap);
9647 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9648 	    MAPDEV_FLUSHCACHE);
9649 	PMAP_UNLOCK(kernel_pmap);
9650 	return (error);
9651 }
9652 
9653 /*
9654  * Changes the specified virtual address range's protections to those
9655  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9656  * in the direct map are updated as well.  Protections on aliasing mappings may
9657  * be a subset of the requested protections; for example, mappings in the direct
9658  * map are never executable.
9659  */
9660 int
9661 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9662 {
9663 	int error;
9664 
9665 	/* Only supported within the kernel map. */
9666 	if (va < VM_MIN_KERNEL_ADDRESS)
9667 		return (EINVAL);
9668 
9669 	PMAP_LOCK(kernel_pmap);
9670 	error = pmap_change_props_locked(va, size, prot, -1,
9671 	    MAPDEV_ASSERTVALID);
9672 	PMAP_UNLOCK(kernel_pmap);
9673 	return (error);
9674 }
9675 
9676 static int
9677 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9678     int mode, int flags)
9679 {
9680 	vm_offset_t base, offset, tmpva;
9681 	vm_paddr_t pa_start, pa_end, pa_end1;
9682 	pdp_entry_t *pdpe;
9683 	pd_entry_t *pde, pde_bits, pde_mask;
9684 	pt_entry_t *pte, pte_bits, pte_mask;
9685 	int error;
9686 	bool changed;
9687 
9688 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9689 	base = trunc_page(va);
9690 	offset = va & PAGE_MASK;
9691 	size = round_page(offset + size);
9692 
9693 	/*
9694 	 * Only supported on kernel virtual addresses, including the direct
9695 	 * map but excluding the recursive map.
9696 	 */
9697 	if (base < DMAP_MIN_ADDRESS)
9698 		return (EINVAL);
9699 
9700 	/*
9701 	 * Construct our flag sets and masks.  "bits" is the subset of
9702 	 * "mask" that will be set in each modified PTE.
9703 	 *
9704 	 * Mappings in the direct map are never allowed to be executable.
9705 	 */
9706 	pde_bits = pte_bits = 0;
9707 	pde_mask = pte_mask = 0;
9708 	if (mode != -1) {
9709 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9710 		pde_mask |= X86_PG_PDE_CACHE;
9711 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9712 		pte_mask |= X86_PG_PTE_CACHE;
9713 	}
9714 	if (prot != VM_PROT_NONE) {
9715 		if ((prot & VM_PROT_WRITE) != 0) {
9716 			pde_bits |= X86_PG_RW;
9717 			pte_bits |= X86_PG_RW;
9718 		}
9719 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9720 		    va < VM_MIN_KERNEL_ADDRESS) {
9721 			pde_bits |= pg_nx;
9722 			pte_bits |= pg_nx;
9723 		}
9724 		pde_mask |= X86_PG_RW | pg_nx;
9725 		pte_mask |= X86_PG_RW | pg_nx;
9726 	}
9727 
9728 	/*
9729 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9730 	 * into 4KB pages if required.
9731 	 */
9732 	for (tmpva = base; tmpva < base + size; ) {
9733 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9734 		if (pdpe == NULL || *pdpe == 0) {
9735 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9736 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9737 			return (EINVAL);
9738 		}
9739 		if (*pdpe & PG_PS) {
9740 			/*
9741 			 * If the current 1GB page already has the required
9742 			 * properties, then we need not demote this page.  Just
9743 			 * increment tmpva to the next 1GB page frame.
9744 			 */
9745 			if ((*pdpe & pde_mask) == pde_bits) {
9746 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9747 				continue;
9748 			}
9749 
9750 			/*
9751 			 * If the current offset aligns with a 1GB page frame
9752 			 * and there is at least 1GB left within the range, then
9753 			 * we need not break down this page into 2MB pages.
9754 			 */
9755 			if ((tmpva & PDPMASK) == 0 &&
9756 			    tmpva + PDPMASK < base + size) {
9757 				tmpva += NBPDP;
9758 				continue;
9759 			}
9760 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9761 				return (ENOMEM);
9762 		}
9763 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9764 		if (*pde == 0) {
9765 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9766 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9767 			return (EINVAL);
9768 		}
9769 		if (*pde & PG_PS) {
9770 			/*
9771 			 * If the current 2MB page already has the required
9772 			 * properties, then we need not demote this page.  Just
9773 			 * increment tmpva to the next 2MB page frame.
9774 			 */
9775 			if ((*pde & pde_mask) == pde_bits) {
9776 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9777 				continue;
9778 			}
9779 
9780 			/*
9781 			 * If the current offset aligns with a 2MB page frame
9782 			 * and there is at least 2MB left within the range, then
9783 			 * we need not break down this page into 4KB pages.
9784 			 */
9785 			if ((tmpva & PDRMASK) == 0 &&
9786 			    tmpva + PDRMASK < base + size) {
9787 				tmpva += NBPDR;
9788 				continue;
9789 			}
9790 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9791 				return (ENOMEM);
9792 		}
9793 		pte = pmap_pde_to_pte(pde, tmpva);
9794 		if (*pte == 0) {
9795 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9796 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9797 			return (EINVAL);
9798 		}
9799 		tmpva += PAGE_SIZE;
9800 	}
9801 	error = 0;
9802 
9803 	/*
9804 	 * Ok, all the pages exist, so run through them updating their
9805 	 * properties if required.
9806 	 */
9807 	changed = false;
9808 	pa_start = pa_end = 0;
9809 	for (tmpva = base; tmpva < base + size; ) {
9810 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9811 		if (*pdpe & PG_PS) {
9812 			if ((*pdpe & pde_mask) != pde_bits) {
9813 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9814 				changed = true;
9815 			}
9816 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9817 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9818 				if (pa_start == pa_end) {
9819 					/* Start physical address run. */
9820 					pa_start = *pdpe & PG_PS_FRAME;
9821 					pa_end = pa_start + NBPDP;
9822 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9823 					pa_end += NBPDP;
9824 				else {
9825 					/* Run ended, update direct map. */
9826 					error = pmap_change_props_locked(
9827 					    PHYS_TO_DMAP(pa_start),
9828 					    pa_end - pa_start, prot, mode,
9829 					    flags);
9830 					if (error != 0)
9831 						break;
9832 					/* Start physical address run. */
9833 					pa_start = *pdpe & PG_PS_FRAME;
9834 					pa_end = pa_start + NBPDP;
9835 				}
9836 			}
9837 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9838 			continue;
9839 		}
9840 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9841 		if (*pde & PG_PS) {
9842 			if ((*pde & pde_mask) != pde_bits) {
9843 				pmap_pte_props(pde, pde_bits, pde_mask);
9844 				changed = true;
9845 			}
9846 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9847 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9848 				if (pa_start == pa_end) {
9849 					/* Start physical address run. */
9850 					pa_start = *pde & PG_PS_FRAME;
9851 					pa_end = pa_start + NBPDR;
9852 				} else if (pa_end == (*pde & PG_PS_FRAME))
9853 					pa_end += NBPDR;
9854 				else {
9855 					/* Run ended, update direct map. */
9856 					error = pmap_change_props_locked(
9857 					    PHYS_TO_DMAP(pa_start),
9858 					    pa_end - pa_start, prot, mode,
9859 					    flags);
9860 					if (error != 0)
9861 						break;
9862 					/* Start physical address run. */
9863 					pa_start = *pde & PG_PS_FRAME;
9864 					pa_end = pa_start + NBPDR;
9865 				}
9866 			}
9867 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9868 		} else {
9869 			pte = pmap_pde_to_pte(pde, tmpva);
9870 			if ((*pte & pte_mask) != pte_bits) {
9871 				pmap_pte_props(pte, pte_bits, pte_mask);
9872 				changed = true;
9873 			}
9874 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9875 			    (*pte & PG_FRAME) < dmaplimit) {
9876 				if (pa_start == pa_end) {
9877 					/* Start physical address run. */
9878 					pa_start = *pte & PG_FRAME;
9879 					pa_end = pa_start + PAGE_SIZE;
9880 				} else if (pa_end == (*pte & PG_FRAME))
9881 					pa_end += PAGE_SIZE;
9882 				else {
9883 					/* Run ended, update direct map. */
9884 					error = pmap_change_props_locked(
9885 					    PHYS_TO_DMAP(pa_start),
9886 					    pa_end - pa_start, prot, mode,
9887 					    flags);
9888 					if (error != 0)
9889 						break;
9890 					/* Start physical address run. */
9891 					pa_start = *pte & PG_FRAME;
9892 					pa_end = pa_start + PAGE_SIZE;
9893 				}
9894 			}
9895 			tmpva += PAGE_SIZE;
9896 		}
9897 	}
9898 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9899 		pa_end1 = MIN(pa_end, dmaplimit);
9900 		if (pa_start != pa_end1)
9901 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9902 			    pa_end1 - pa_start, prot, mode, flags);
9903 	}
9904 
9905 	/*
9906 	 * Flush CPU caches if required to make sure any data isn't cached that
9907 	 * shouldn't be, etc.
9908 	 */
9909 	if (changed) {
9910 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9911 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9912 			pmap_invalidate_cache_range(base, tmpva);
9913 	}
9914 	return (error);
9915 }
9916 
9917 /*
9918  * Demotes any mapping within the direct map region that covers more than the
9919  * specified range of physical addresses.  This range's size must be a power
9920  * of two and its starting address must be a multiple of its size.  Since the
9921  * demotion does not change any attributes of the mapping, a TLB invalidation
9922  * is not mandatory.  The caller may, however, request a TLB invalidation.
9923  */
9924 void
9925 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9926 {
9927 	pdp_entry_t *pdpe;
9928 	pd_entry_t *pde;
9929 	vm_offset_t va;
9930 	boolean_t changed;
9931 
9932 	if (len == 0)
9933 		return;
9934 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9935 	KASSERT((base & (len - 1)) == 0,
9936 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9937 	if (len < NBPDP && base < dmaplimit) {
9938 		va = PHYS_TO_DMAP(base);
9939 		changed = FALSE;
9940 		PMAP_LOCK(kernel_pmap);
9941 		pdpe = pmap_pdpe(kernel_pmap, va);
9942 		if ((*pdpe & X86_PG_V) == 0)
9943 			panic("pmap_demote_DMAP: invalid PDPE");
9944 		if ((*pdpe & PG_PS) != 0) {
9945 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9946 				panic("pmap_demote_DMAP: PDPE failed");
9947 			changed = TRUE;
9948 		}
9949 		if (len < NBPDR) {
9950 			pde = pmap_pdpe_to_pde(pdpe, va);
9951 			if ((*pde & X86_PG_V) == 0)
9952 				panic("pmap_demote_DMAP: invalid PDE");
9953 			if ((*pde & PG_PS) != 0) {
9954 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9955 					panic("pmap_demote_DMAP: PDE failed");
9956 				changed = TRUE;
9957 			}
9958 		}
9959 		if (changed && invalidate)
9960 			pmap_invalidate_page(kernel_pmap, va);
9961 		PMAP_UNLOCK(kernel_pmap);
9962 	}
9963 }
9964 
9965 /*
9966  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9967  * modified by this pmap, returns its physical address so that the caller can
9968  * find other mappings.
9969  */
9970 int
9971 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9972 {
9973 	pdp_entry_t *pdpe;
9974 	pd_entry_t *pdep;
9975 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9976 	vm_paddr_t pa;
9977 	int val;
9978 
9979 	PG_A = pmap_accessed_bit(pmap);
9980 	PG_M = pmap_modified_bit(pmap);
9981 	PG_V = pmap_valid_bit(pmap);
9982 	PG_RW = pmap_rw_bit(pmap);
9983 
9984 	PMAP_LOCK(pmap);
9985 	pte = 0;
9986 	pa = 0;
9987 	val = 0;
9988 	pdpe = pmap_pdpe(pmap, addr);
9989 	if (pdpe == NULL)
9990 		goto out;
9991 	if ((*pdpe & PG_V) != 0) {
9992 		if ((*pdpe & PG_PS) != 0) {
9993 			pte = *pdpe;
9994 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9995 			    PG_FRAME;
9996 			val = MINCORE_PSIND(2);
9997 		} else {
9998 			pdep = pmap_pde(pmap, addr);
9999 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10000 				if ((*pdep & PG_PS) != 0) {
10001 					pte = *pdep;
10002 			/* Compute the physical address of the 4KB page. */
10003 					pa = ((pte & PG_PS_FRAME) | (addr &
10004 					    PDRMASK)) & PG_FRAME;
10005 					val = MINCORE_PSIND(1);
10006 				} else {
10007 					pte = *pmap_pde_to_pte(pdep, addr);
10008 					pa = pte & PG_FRAME;
10009 					val = 0;
10010 				}
10011 			}
10012 		}
10013 	}
10014 	if ((pte & PG_V) != 0) {
10015 		val |= MINCORE_INCORE;
10016 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10017 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10018 		if ((pte & PG_A) != 0)
10019 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10020 	}
10021 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10022 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10023 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10024 		*pap = pa;
10025 	}
10026 out:
10027 	PMAP_UNLOCK(pmap);
10028 	return (val);
10029 }
10030 
10031 static uint64_t
10032 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10033 {
10034 	uint32_t gen, new_gen, pcid_next;
10035 
10036 	CRITICAL_ASSERT(curthread);
10037 	gen = PCPU_GET(pcid_gen);
10038 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10039 		return (pti ? 0 : CR3_PCID_SAVE);
10040 	if (pcidp->pm_gen == gen)
10041 		return (CR3_PCID_SAVE);
10042 	pcid_next = PCPU_GET(pcid_next);
10043 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10044 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10045 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10046 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10047 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10048 		new_gen = gen + 1;
10049 		if (new_gen == 0)
10050 			new_gen = 1;
10051 		PCPU_SET(pcid_gen, new_gen);
10052 		pcid_next = PMAP_PCID_KERN + 1;
10053 	} else {
10054 		new_gen = gen;
10055 	}
10056 	pcidp->pm_pcid = pcid_next;
10057 	pcidp->pm_gen = new_gen;
10058 	PCPU_SET(pcid_next, pcid_next + 1);
10059 	return (0);
10060 }
10061 
10062 static uint64_t
10063 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10064 {
10065 	uint64_t cached;
10066 
10067 	cached = pmap_pcid_alloc(pmap, pcidp);
10068 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10069 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10070 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10071 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10072 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10073 	return (cached);
10074 }
10075 
10076 static void
10077 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10078 {
10079 
10080 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10081 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10082 }
10083 
10084 static void
10085 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10086 {
10087 	pmap_t old_pmap;
10088 	struct pmap_pcid *pcidp, *old_pcidp;
10089 	uint64_t cached, cr3, kcr3, ucr3;
10090 
10091 	KASSERT((read_rflags() & PSL_I) == 0,
10092 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10093 
10094 	/* See the comment in pmap_invalidate_page_pcid(). */
10095 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10096 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10097 		old_pmap = PCPU_GET(curpmap);
10098 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10099 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10100 		old_pcidp->pm_gen = 0;
10101 	}
10102 
10103 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10104 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10105 	cr3 = rcr3();
10106 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10107 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10108 	PCPU_SET(curpmap, pmap);
10109 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10110 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10111 
10112 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10113 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10114 
10115 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10116 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10117 	if (cached)
10118 		counter_u64_add(pcid_save_cnt, 1);
10119 
10120 	pmap_activate_sw_pti_post(td, pmap);
10121 }
10122 
10123 static void
10124 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10125     u_int cpuid)
10126 {
10127 	struct pmap_pcid *pcidp;
10128 	uint64_t cached, cr3;
10129 
10130 	KASSERT((read_rflags() & PSL_I) == 0,
10131 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10132 
10133 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10134 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10135 	cr3 = rcr3();
10136 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10137 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10138 	PCPU_SET(curpmap, pmap);
10139 	if (cached)
10140 		counter_u64_add(pcid_save_cnt, 1);
10141 }
10142 
10143 static void
10144 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10145     u_int cpuid __unused)
10146 {
10147 
10148 	load_cr3(pmap->pm_cr3);
10149 	PCPU_SET(curpmap, pmap);
10150 }
10151 
10152 static void
10153 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10154     u_int cpuid __unused)
10155 {
10156 
10157 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10158 	PCPU_SET(kcr3, pmap->pm_cr3);
10159 	PCPU_SET(ucr3, pmap->pm_ucr3);
10160 	pmap_activate_sw_pti_post(td, pmap);
10161 }
10162 
10163 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10164     u_int))
10165 {
10166 
10167 	if (pmap_pcid_enabled && pti)
10168 		return (pmap_activate_sw_pcid_pti);
10169 	else if (pmap_pcid_enabled && !pti)
10170 		return (pmap_activate_sw_pcid_nopti);
10171 	else if (!pmap_pcid_enabled && pti)
10172 		return (pmap_activate_sw_nopcid_pti);
10173 	else /* if (!pmap_pcid_enabled && !pti) */
10174 		return (pmap_activate_sw_nopcid_nopti);
10175 }
10176 
10177 void
10178 pmap_activate_sw(struct thread *td)
10179 {
10180 	pmap_t oldpmap, pmap;
10181 	u_int cpuid;
10182 
10183 	oldpmap = PCPU_GET(curpmap);
10184 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10185 	if (oldpmap == pmap) {
10186 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10187 			mfence();
10188 		return;
10189 	}
10190 	cpuid = PCPU_GET(cpuid);
10191 #ifdef SMP
10192 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10193 #else
10194 	CPU_SET(cpuid, &pmap->pm_active);
10195 #endif
10196 	pmap_activate_sw_mode(td, pmap, cpuid);
10197 #ifdef SMP
10198 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10199 #else
10200 	CPU_CLR(cpuid, &oldpmap->pm_active);
10201 #endif
10202 }
10203 
10204 void
10205 pmap_activate(struct thread *td)
10206 {
10207 	/*
10208 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10209 	 * invalidate_all IPI, which checks for curpmap ==
10210 	 * smp_tlb_pmap.  The below sequence of operations has a
10211 	 * window where %CR3 is loaded with the new pmap's PML4
10212 	 * address, but the curpmap value has not yet been updated.
10213 	 * This causes the invltlb IPI handler, which is called
10214 	 * between the updates, to execute as a NOP, which leaves
10215 	 * stale TLB entries.
10216 	 *
10217 	 * Note that the most common use of pmap_activate_sw(), from
10218 	 * a context switch, is immune to this race, because
10219 	 * interrupts are disabled (while the thread lock is owned),
10220 	 * so the IPI is delayed until after curpmap is updated.  Protect
10221 	 * other callers in a similar way, by disabling interrupts
10222 	 * around the %cr3 register reload and curpmap assignment.
10223 	 */
10224 	spinlock_enter();
10225 	pmap_activate_sw(td);
10226 	spinlock_exit();
10227 }
10228 
10229 void
10230 pmap_activate_boot(pmap_t pmap)
10231 {
10232 	uint64_t kcr3;
10233 	u_int cpuid;
10234 
10235 	/*
10236 	 * kernel_pmap must be never deactivated, and we ensure that
10237 	 * by never activating it at all.
10238 	 */
10239 	MPASS(pmap != kernel_pmap);
10240 
10241 	cpuid = PCPU_GET(cpuid);
10242 #ifdef SMP
10243 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10244 #else
10245 	CPU_SET(cpuid, &pmap->pm_active);
10246 #endif
10247 	PCPU_SET(curpmap, pmap);
10248 	if (pti) {
10249 		kcr3 = pmap->pm_cr3;
10250 		if (pmap_pcid_enabled)
10251 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10252 	} else {
10253 		kcr3 = PMAP_NO_CR3;
10254 	}
10255 	PCPU_SET(kcr3, kcr3);
10256 	PCPU_SET(ucr3, PMAP_NO_CR3);
10257 }
10258 
10259 void
10260 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10261 {
10262 	*res = pmap->pm_active;
10263 }
10264 
10265 void
10266 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10267 {
10268 }
10269 
10270 /*
10271  *	Increase the starting virtual address of the given mapping if a
10272  *	different alignment might result in more superpage mappings.
10273  */
10274 void
10275 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10276     vm_offset_t *addr, vm_size_t size)
10277 {
10278 	vm_offset_t superpage_offset;
10279 
10280 	if (size < NBPDR)
10281 		return;
10282 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10283 		offset += ptoa(object->pg_color);
10284 	superpage_offset = offset & PDRMASK;
10285 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10286 	    (*addr & PDRMASK) == superpage_offset)
10287 		return;
10288 	if ((*addr & PDRMASK) < superpage_offset)
10289 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10290 	else
10291 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10292 }
10293 
10294 #ifdef INVARIANTS
10295 static unsigned long num_dirty_emulations;
10296 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10297 	     &num_dirty_emulations, 0, NULL);
10298 
10299 static unsigned long num_accessed_emulations;
10300 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10301 	     &num_accessed_emulations, 0, NULL);
10302 
10303 static unsigned long num_superpage_accessed_emulations;
10304 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10305 	     &num_superpage_accessed_emulations, 0, NULL);
10306 
10307 static unsigned long ad_emulation_superpage_promotions;
10308 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10309 	     &ad_emulation_superpage_promotions, 0, NULL);
10310 #endif	/* INVARIANTS */
10311 
10312 int
10313 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10314 {
10315 	int rv;
10316 	struct rwlock *lock;
10317 #if VM_NRESERVLEVEL > 0
10318 	vm_page_t m, mpte;
10319 #endif
10320 	pd_entry_t *pde;
10321 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10322 
10323 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10324 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10325 
10326 	if (!pmap_emulate_ad_bits(pmap))
10327 		return (-1);
10328 
10329 	PG_A = pmap_accessed_bit(pmap);
10330 	PG_M = pmap_modified_bit(pmap);
10331 	PG_V = pmap_valid_bit(pmap);
10332 	PG_RW = pmap_rw_bit(pmap);
10333 
10334 	rv = -1;
10335 	lock = NULL;
10336 	PMAP_LOCK(pmap);
10337 
10338 	pde = pmap_pde(pmap, va);
10339 	if (pde == NULL || (*pde & PG_V) == 0)
10340 		goto done;
10341 
10342 	if ((*pde & PG_PS) != 0) {
10343 		if (ftype == VM_PROT_READ) {
10344 #ifdef INVARIANTS
10345 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10346 #endif
10347 			*pde |= PG_A;
10348 			rv = 0;
10349 		}
10350 		goto done;
10351 	}
10352 
10353 	pte = pmap_pde_to_pte(pde, va);
10354 	if ((*pte & PG_V) == 0)
10355 		goto done;
10356 
10357 	if (ftype == VM_PROT_WRITE) {
10358 		if ((*pte & PG_RW) == 0)
10359 			goto done;
10360 		/*
10361 		 * Set the modified and accessed bits simultaneously.
10362 		 *
10363 		 * Intel EPT PTEs that do software emulation of A/D bits map
10364 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10365 		 * An EPT misconfiguration is triggered if the PTE is writable
10366 		 * but not readable (WR=10). This is avoided by setting PG_A
10367 		 * and PG_M simultaneously.
10368 		 */
10369 		*pte |= PG_M | PG_A;
10370 	} else {
10371 		*pte |= PG_A;
10372 	}
10373 
10374 #if VM_NRESERVLEVEL > 0
10375 	/* try to promote the mapping */
10376 	if (va < VM_MAXUSER_ADDRESS)
10377 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10378 	else
10379 		mpte = NULL;
10380 
10381 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10382 
10383 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10384 	    (m->flags & PG_FICTITIOUS) == 0 &&
10385 	    vm_reserv_level_iffullpop(m) == 0 &&
10386 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10387 #ifdef INVARIANTS
10388 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10389 #endif
10390 	}
10391 #endif
10392 
10393 #ifdef INVARIANTS
10394 	if (ftype == VM_PROT_WRITE)
10395 		atomic_add_long(&num_dirty_emulations, 1);
10396 	else
10397 		atomic_add_long(&num_accessed_emulations, 1);
10398 #endif
10399 	rv = 0;		/* success */
10400 done:
10401 	if (lock != NULL)
10402 		rw_wunlock(lock);
10403 	PMAP_UNLOCK(pmap);
10404 	return (rv);
10405 }
10406 
10407 void
10408 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10409 {
10410 	pml4_entry_t *pml4;
10411 	pdp_entry_t *pdp;
10412 	pd_entry_t *pde;
10413 	pt_entry_t *pte, PG_V;
10414 	int idx;
10415 
10416 	idx = 0;
10417 	PG_V = pmap_valid_bit(pmap);
10418 	PMAP_LOCK(pmap);
10419 
10420 	pml4 = pmap_pml4e(pmap, va);
10421 	if (pml4 == NULL)
10422 		goto done;
10423 	ptr[idx++] = *pml4;
10424 	if ((*pml4 & PG_V) == 0)
10425 		goto done;
10426 
10427 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10428 	ptr[idx++] = *pdp;
10429 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10430 		goto done;
10431 
10432 	pde = pmap_pdpe_to_pde(pdp, va);
10433 	ptr[idx++] = *pde;
10434 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10435 		goto done;
10436 
10437 	pte = pmap_pde_to_pte(pde, va);
10438 	ptr[idx++] = *pte;
10439 
10440 done:
10441 	PMAP_UNLOCK(pmap);
10442 	*num = idx;
10443 }
10444 
10445 /**
10446  * Get the kernel virtual address of a set of physical pages. If there are
10447  * physical addresses not covered by the DMAP perform a transient mapping
10448  * that will be removed when calling pmap_unmap_io_transient.
10449  *
10450  * \param page        The pages the caller wishes to obtain the virtual
10451  *                    address on the kernel memory map.
10452  * \param vaddr       On return contains the kernel virtual memory address
10453  *                    of the pages passed in the page parameter.
10454  * \param count       Number of pages passed in.
10455  * \param can_fault   true if the thread using the mapped pages can take
10456  *                    page faults, false otherwise.
10457  *
10458  * \returns true if the caller must call pmap_unmap_io_transient when
10459  *          finished or false otherwise.
10460  *
10461  */
10462 bool
10463 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10464     bool can_fault)
10465 {
10466 	vm_paddr_t paddr;
10467 	bool needs_mapping;
10468 	pt_entry_t *pte;
10469 	int cache_bits, error __unused, i;
10470 
10471 	/*
10472 	 * Allocate any KVA space that we need, this is done in a separate
10473 	 * loop to prevent calling vmem_alloc while pinned.
10474 	 */
10475 	needs_mapping = false;
10476 	for (i = 0; i < count; i++) {
10477 		paddr = VM_PAGE_TO_PHYS(page[i]);
10478 		if (__predict_false(paddr >= dmaplimit)) {
10479 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10480 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10481 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10482 			needs_mapping = true;
10483 		} else {
10484 			vaddr[i] = PHYS_TO_DMAP(paddr);
10485 		}
10486 	}
10487 
10488 	/* Exit early if everything is covered by the DMAP */
10489 	if (!needs_mapping)
10490 		return (false);
10491 
10492 	/*
10493 	 * NB:  The sequence of updating a page table followed by accesses
10494 	 * to the corresponding pages used in the !DMAP case is subject to
10495 	 * the situation described in the "AMD64 Architecture Programmer's
10496 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10497 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10498 	 * after modifying the PTE bits is crucial.
10499 	 */
10500 	if (!can_fault)
10501 		sched_pin();
10502 	for (i = 0; i < count; i++) {
10503 		paddr = VM_PAGE_TO_PHYS(page[i]);
10504 		if (paddr >= dmaplimit) {
10505 			if (can_fault) {
10506 				/*
10507 				 * Slow path, since we can get page faults
10508 				 * while mappings are active don't pin the
10509 				 * thread to the CPU and instead add a global
10510 				 * mapping visible to all CPUs.
10511 				 */
10512 				pmap_qenter(vaddr[i], &page[i], 1);
10513 			} else {
10514 				pte = vtopte(vaddr[i]);
10515 				cache_bits = pmap_cache_bits(kernel_pmap,
10516 				    page[i]->md.pat_mode, false);
10517 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10518 				    cache_bits);
10519 				pmap_invlpg(kernel_pmap, vaddr[i]);
10520 			}
10521 		}
10522 	}
10523 
10524 	return (needs_mapping);
10525 }
10526 
10527 void
10528 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10529     bool can_fault)
10530 {
10531 	vm_paddr_t paddr;
10532 	int i;
10533 
10534 	if (!can_fault)
10535 		sched_unpin();
10536 	for (i = 0; i < count; i++) {
10537 		paddr = VM_PAGE_TO_PHYS(page[i]);
10538 		if (paddr >= dmaplimit) {
10539 			if (can_fault)
10540 				pmap_qremove(vaddr[i], 1);
10541 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10542 		}
10543 	}
10544 }
10545 
10546 vm_offset_t
10547 pmap_quick_enter_page(vm_page_t m)
10548 {
10549 	vm_paddr_t paddr;
10550 
10551 	paddr = VM_PAGE_TO_PHYS(m);
10552 	if (paddr < dmaplimit)
10553 		return (PHYS_TO_DMAP(paddr));
10554 	mtx_lock_spin(&qframe_mtx);
10555 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10556 
10557 	/*
10558 	 * Since qframe is exclusively mapped by us, and we do not set
10559 	 * PG_G, we can use INVLPG here.
10560 	 */
10561 	invlpg(qframe);
10562 
10563 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10564 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10565 	return (qframe);
10566 }
10567 
10568 void
10569 pmap_quick_remove_page(vm_offset_t addr)
10570 {
10571 
10572 	if (addr != qframe)
10573 		return;
10574 	pte_store(vtopte(qframe), 0);
10575 	mtx_unlock_spin(&qframe_mtx);
10576 }
10577 
10578 /*
10579  * Pdp pages from the large map are managed differently from either
10580  * kernel or user page table pages.  They are permanently allocated at
10581  * initialization time, and their reference count is permanently set to
10582  * zero.  The pml4 entries pointing to those pages are copied into
10583  * each allocated pmap.
10584  *
10585  * In contrast, pd and pt pages are managed like user page table
10586  * pages.  They are dynamically allocated, and their reference count
10587  * represents the number of valid entries within the page.
10588  */
10589 static vm_page_t
10590 pmap_large_map_getptp_unlocked(void)
10591 {
10592 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10593 }
10594 
10595 static vm_page_t
10596 pmap_large_map_getptp(void)
10597 {
10598 	vm_page_t m;
10599 
10600 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10601 	m = pmap_large_map_getptp_unlocked();
10602 	if (m == NULL) {
10603 		PMAP_UNLOCK(kernel_pmap);
10604 		vm_wait(NULL);
10605 		PMAP_LOCK(kernel_pmap);
10606 		/* Callers retry. */
10607 	}
10608 	return (m);
10609 }
10610 
10611 static pdp_entry_t *
10612 pmap_large_map_pdpe(vm_offset_t va)
10613 {
10614 	vm_pindex_t pml4_idx;
10615 	vm_paddr_t mphys;
10616 
10617 	pml4_idx = pmap_pml4e_index(va);
10618 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10619 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10620 	    "%#jx lm_ents %d",
10621 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10622 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10623 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10624 	    "LMSPML4I %#jx lm_ents %d",
10625 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10626 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10627 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10628 }
10629 
10630 static pd_entry_t *
10631 pmap_large_map_pde(vm_offset_t va)
10632 {
10633 	pdp_entry_t *pdpe;
10634 	vm_page_t m;
10635 	vm_paddr_t mphys;
10636 
10637 retry:
10638 	pdpe = pmap_large_map_pdpe(va);
10639 	if (*pdpe == 0) {
10640 		m = pmap_large_map_getptp();
10641 		if (m == NULL)
10642 			goto retry;
10643 		mphys = VM_PAGE_TO_PHYS(m);
10644 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10645 	} else {
10646 		MPASS((*pdpe & X86_PG_PS) == 0);
10647 		mphys = *pdpe & PG_FRAME;
10648 	}
10649 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10650 }
10651 
10652 static pt_entry_t *
10653 pmap_large_map_pte(vm_offset_t va)
10654 {
10655 	pd_entry_t *pde;
10656 	vm_page_t m;
10657 	vm_paddr_t mphys;
10658 
10659 retry:
10660 	pde = pmap_large_map_pde(va);
10661 	if (*pde == 0) {
10662 		m = pmap_large_map_getptp();
10663 		if (m == NULL)
10664 			goto retry;
10665 		mphys = VM_PAGE_TO_PHYS(m);
10666 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10667 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10668 	} else {
10669 		MPASS((*pde & X86_PG_PS) == 0);
10670 		mphys = *pde & PG_FRAME;
10671 	}
10672 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10673 }
10674 
10675 static vm_paddr_t
10676 pmap_large_map_kextract(vm_offset_t va)
10677 {
10678 	pdp_entry_t *pdpe, pdp;
10679 	pd_entry_t *pde, pd;
10680 	pt_entry_t *pte, pt;
10681 
10682 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10683 	    ("not largemap range %#lx", (u_long)va));
10684 	pdpe = pmap_large_map_pdpe(va);
10685 	pdp = *pdpe;
10686 	KASSERT((pdp & X86_PG_V) != 0,
10687 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10688 	    (u_long)pdpe, pdp));
10689 	if ((pdp & X86_PG_PS) != 0) {
10690 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10691 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10692 		    (u_long)pdpe, pdp));
10693 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10694 	}
10695 	pde = pmap_pdpe_to_pde(pdpe, va);
10696 	pd = *pde;
10697 	KASSERT((pd & X86_PG_V) != 0,
10698 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10699 	if ((pd & X86_PG_PS) != 0)
10700 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10701 	pte = pmap_pde_to_pte(pde, va);
10702 	pt = *pte;
10703 	KASSERT((pt & X86_PG_V) != 0,
10704 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10705 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10706 }
10707 
10708 static int
10709 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10710     vmem_addr_t *vmem_res)
10711 {
10712 
10713 	/*
10714 	 * Large mappings are all but static.  Consequently, there
10715 	 * is no point in waiting for an earlier allocation to be
10716 	 * freed.
10717 	 */
10718 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10719 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10720 }
10721 
10722 int
10723 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10724     vm_memattr_t mattr)
10725 {
10726 	pdp_entry_t *pdpe;
10727 	pd_entry_t *pde;
10728 	pt_entry_t *pte;
10729 	vm_offset_t va, inc;
10730 	vmem_addr_t vmem_res;
10731 	vm_paddr_t pa;
10732 	int error;
10733 
10734 	if (len == 0 || spa + len < spa)
10735 		return (EINVAL);
10736 
10737 	/* See if DMAP can serve. */
10738 	if (spa + len <= dmaplimit) {
10739 		va = PHYS_TO_DMAP(spa);
10740 		*addr = (void *)va;
10741 		return (pmap_change_attr(va, len, mattr));
10742 	}
10743 
10744 	/*
10745 	 * No, allocate KVA.  Fit the address with best possible
10746 	 * alignment for superpages.  Fall back to worse align if
10747 	 * failed.
10748 	 */
10749 	error = ENOMEM;
10750 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10751 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10752 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10753 		    &vmem_res);
10754 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10755 	    NBPDR) + NBPDR)
10756 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10757 		    &vmem_res);
10758 	if (error != 0)
10759 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10760 	if (error != 0)
10761 		return (error);
10762 
10763 	/*
10764 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10765 	 * in the pagetable to minimize flushing.  No need to
10766 	 * invalidate TLB, since we only update invalid entries.
10767 	 */
10768 	PMAP_LOCK(kernel_pmap);
10769 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10770 	    len -= inc) {
10771 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10772 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10773 			pdpe = pmap_large_map_pdpe(va);
10774 			MPASS(*pdpe == 0);
10775 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10776 			    X86_PG_V | X86_PG_A | pg_nx |
10777 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10778 			inc = NBPDP;
10779 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10780 		    (va & PDRMASK) == 0) {
10781 			pde = pmap_large_map_pde(va);
10782 			MPASS(*pde == 0);
10783 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10784 			    X86_PG_V | X86_PG_A | pg_nx |
10785 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10786 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10787 			    ref_count++;
10788 			inc = NBPDR;
10789 		} else {
10790 			pte = pmap_large_map_pte(va);
10791 			MPASS(*pte == 0);
10792 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10793 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10794 			    mattr, FALSE);
10795 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10796 			    ref_count++;
10797 			inc = PAGE_SIZE;
10798 		}
10799 	}
10800 	PMAP_UNLOCK(kernel_pmap);
10801 	MPASS(len == 0);
10802 
10803 	*addr = (void *)vmem_res;
10804 	return (0);
10805 }
10806 
10807 void
10808 pmap_large_unmap(void *svaa, vm_size_t len)
10809 {
10810 	vm_offset_t sva, va;
10811 	vm_size_t inc;
10812 	pdp_entry_t *pdpe, pdp;
10813 	pd_entry_t *pde, pd;
10814 	pt_entry_t *pte;
10815 	vm_page_t m;
10816 	struct spglist spgf;
10817 
10818 	sva = (vm_offset_t)svaa;
10819 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10820 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10821 		return;
10822 
10823 	SLIST_INIT(&spgf);
10824 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10825 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10826 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10827 	PMAP_LOCK(kernel_pmap);
10828 	for (va = sva; va < sva + len; va += inc) {
10829 		pdpe = pmap_large_map_pdpe(va);
10830 		pdp = *pdpe;
10831 		KASSERT((pdp & X86_PG_V) != 0,
10832 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10833 		    (u_long)pdpe, pdp));
10834 		if ((pdp & X86_PG_PS) != 0) {
10835 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10836 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10837 			    (u_long)pdpe, pdp));
10838 			KASSERT((va & PDPMASK) == 0,
10839 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10840 			    (u_long)pdpe, pdp));
10841 			KASSERT(va + NBPDP <= sva + len,
10842 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10843 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10844 			    (u_long)pdpe, pdp, len));
10845 			*pdpe = 0;
10846 			inc = NBPDP;
10847 			continue;
10848 		}
10849 		pde = pmap_pdpe_to_pde(pdpe, va);
10850 		pd = *pde;
10851 		KASSERT((pd & X86_PG_V) != 0,
10852 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10853 		    (u_long)pde, pd));
10854 		if ((pd & X86_PG_PS) != 0) {
10855 			KASSERT((va & PDRMASK) == 0,
10856 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10857 			    (u_long)pde, pd));
10858 			KASSERT(va + NBPDR <= sva + len,
10859 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10860 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10861 			    pd, len));
10862 			pde_store(pde, 0);
10863 			inc = NBPDR;
10864 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10865 			m->ref_count--;
10866 			if (m->ref_count == 0) {
10867 				*pdpe = 0;
10868 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10869 			}
10870 			continue;
10871 		}
10872 		pte = pmap_pde_to_pte(pde, va);
10873 		KASSERT((*pte & X86_PG_V) != 0,
10874 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10875 		    (u_long)pte, *pte));
10876 		pte_clear(pte);
10877 		inc = PAGE_SIZE;
10878 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10879 		m->ref_count--;
10880 		if (m->ref_count == 0) {
10881 			*pde = 0;
10882 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10883 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10884 			m->ref_count--;
10885 			if (m->ref_count == 0) {
10886 				*pdpe = 0;
10887 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10888 			}
10889 		}
10890 	}
10891 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10892 	PMAP_UNLOCK(kernel_pmap);
10893 	vm_page_free_pages_toq(&spgf, false);
10894 	vmem_free(large_vmem, sva, len);
10895 }
10896 
10897 static void
10898 pmap_large_map_wb_fence_mfence(void)
10899 {
10900 
10901 	mfence();
10902 }
10903 
10904 static void
10905 pmap_large_map_wb_fence_atomic(void)
10906 {
10907 
10908 	atomic_thread_fence_seq_cst();
10909 }
10910 
10911 static void
10912 pmap_large_map_wb_fence_nop(void)
10913 {
10914 }
10915 
10916 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10917 {
10918 
10919 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10920 		return (pmap_large_map_wb_fence_mfence);
10921 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10922 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10923 		return (pmap_large_map_wb_fence_atomic);
10924 	else
10925 		/* clflush is strongly enough ordered */
10926 		return (pmap_large_map_wb_fence_nop);
10927 }
10928 
10929 static void
10930 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10931 {
10932 
10933 	for (; len > 0; len -= cpu_clflush_line_size,
10934 	    va += cpu_clflush_line_size)
10935 		clwb(va);
10936 }
10937 
10938 static void
10939 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10940 {
10941 
10942 	for (; len > 0; len -= cpu_clflush_line_size,
10943 	    va += cpu_clflush_line_size)
10944 		clflushopt(va);
10945 }
10946 
10947 static void
10948 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10949 {
10950 
10951 	for (; len > 0; len -= cpu_clflush_line_size,
10952 	    va += cpu_clflush_line_size)
10953 		clflush(va);
10954 }
10955 
10956 static void
10957 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10958 {
10959 }
10960 
10961 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10962 {
10963 
10964 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10965 		return (pmap_large_map_flush_range_clwb);
10966 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10967 		return (pmap_large_map_flush_range_clflushopt);
10968 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10969 		return (pmap_large_map_flush_range_clflush);
10970 	else
10971 		return (pmap_large_map_flush_range_nop);
10972 }
10973 
10974 static void
10975 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10976 {
10977 	volatile u_long *pe;
10978 	u_long p;
10979 	vm_offset_t va;
10980 	vm_size_t inc;
10981 	bool seen_other;
10982 
10983 	for (va = sva; va < eva; va += inc) {
10984 		inc = 0;
10985 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
10986 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
10987 			p = *pe;
10988 			if ((p & X86_PG_PS) != 0)
10989 				inc = NBPDP;
10990 		}
10991 		if (inc == 0) {
10992 			pe = (volatile u_long *)pmap_large_map_pde(va);
10993 			p = *pe;
10994 			if ((p & X86_PG_PS) != 0)
10995 				inc = NBPDR;
10996 		}
10997 		if (inc == 0) {
10998 			pe = (volatile u_long *)pmap_large_map_pte(va);
10999 			p = *pe;
11000 			inc = PAGE_SIZE;
11001 		}
11002 		seen_other = false;
11003 		for (;;) {
11004 			if ((p & X86_PG_AVAIL1) != 0) {
11005 				/*
11006 				 * Spin-wait for the end of a parallel
11007 				 * write-back.
11008 				 */
11009 				cpu_spinwait();
11010 				p = *pe;
11011 
11012 				/*
11013 				 * If we saw other write-back
11014 				 * occuring, we cannot rely on PG_M to
11015 				 * indicate state of the cache.  The
11016 				 * PG_M bit is cleared before the
11017 				 * flush to avoid ignoring new writes,
11018 				 * and writes which are relevant for
11019 				 * us might happen after.
11020 				 */
11021 				seen_other = true;
11022 				continue;
11023 			}
11024 
11025 			if ((p & X86_PG_M) != 0 || seen_other) {
11026 				if (!atomic_fcmpset_long(pe, &p,
11027 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11028 					/*
11029 					 * If we saw PG_M without
11030 					 * PG_AVAIL1, and then on the
11031 					 * next attempt we do not
11032 					 * observe either PG_M or
11033 					 * PG_AVAIL1, the other
11034 					 * write-back started after us
11035 					 * and finished before us.  We
11036 					 * can rely on it doing our
11037 					 * work.
11038 					 */
11039 					continue;
11040 				pmap_large_map_flush_range(va, inc);
11041 				atomic_clear_long(pe, X86_PG_AVAIL1);
11042 			}
11043 			break;
11044 		}
11045 		maybe_yield();
11046 	}
11047 }
11048 
11049 /*
11050  * Write-back cache lines for the given address range.
11051  *
11052  * Must be called only on the range or sub-range returned from
11053  * pmap_large_map().  Must not be called on the coalesced ranges.
11054  *
11055  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11056  * instructions support.
11057  */
11058 void
11059 pmap_large_map_wb(void *svap, vm_size_t len)
11060 {
11061 	vm_offset_t eva, sva;
11062 
11063 	sva = (vm_offset_t)svap;
11064 	eva = sva + len;
11065 	pmap_large_map_wb_fence();
11066 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11067 		pmap_large_map_flush_range(sva, len);
11068 	} else {
11069 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11070 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11071 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11072 		pmap_large_map_wb_large(sva, eva);
11073 	}
11074 	pmap_large_map_wb_fence();
11075 }
11076 
11077 static vm_page_t
11078 pmap_pti_alloc_page(void)
11079 {
11080 	vm_page_t m;
11081 
11082 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11083 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11084 	return (m);
11085 }
11086 
11087 static bool
11088 pmap_pti_free_page(vm_page_t m)
11089 {
11090 	if (!vm_page_unwire_noq(m))
11091 		return (false);
11092 	vm_page_xbusy_claim(m);
11093 	vm_page_free_zero(m);
11094 	return (true);
11095 }
11096 
11097 static void
11098 pmap_pti_init(void)
11099 {
11100 	vm_page_t pml4_pg;
11101 	pdp_entry_t *pdpe;
11102 	vm_offset_t va;
11103 	int i;
11104 
11105 	if (!pti)
11106 		return;
11107 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11108 	VM_OBJECT_WLOCK(pti_obj);
11109 	pml4_pg = pmap_pti_alloc_page();
11110 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11111 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11112 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11113 		pdpe = pmap_pti_pdpe(va);
11114 		pmap_pti_wire_pte(pdpe);
11115 	}
11116 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11117 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11118 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11119 	    sizeof(struct gate_descriptor) * NIDT, false);
11120 	CPU_FOREACH(i) {
11121 		/* Doublefault stack IST 1 */
11122 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11123 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11124 		/* NMI stack IST 2 */
11125 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11126 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11127 		/* MC# stack IST 3 */
11128 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11129 		    sizeof(struct nmi_pcpu);
11130 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11131 		/* DB# stack IST 4 */
11132 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11133 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11134 	}
11135 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11136 	    true);
11137 	pti_finalized = true;
11138 	VM_OBJECT_WUNLOCK(pti_obj);
11139 }
11140 
11141 static void
11142 pmap_cpu_init(void *arg __unused)
11143 {
11144 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11145 	pmap_pti_init();
11146 }
11147 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11148 
11149 static pdp_entry_t *
11150 pmap_pti_pdpe(vm_offset_t va)
11151 {
11152 	pml4_entry_t *pml4e;
11153 	pdp_entry_t *pdpe;
11154 	vm_page_t m;
11155 	vm_pindex_t pml4_idx;
11156 	vm_paddr_t mphys;
11157 
11158 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11159 
11160 	pml4_idx = pmap_pml4e_index(va);
11161 	pml4e = &pti_pml4[pml4_idx];
11162 	m = NULL;
11163 	if (*pml4e == 0) {
11164 		if (pti_finalized)
11165 			panic("pml4 alloc after finalization\n");
11166 		m = pmap_pti_alloc_page();
11167 		if (*pml4e != 0) {
11168 			pmap_pti_free_page(m);
11169 			mphys = *pml4e & ~PAGE_MASK;
11170 		} else {
11171 			mphys = VM_PAGE_TO_PHYS(m);
11172 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11173 		}
11174 	} else {
11175 		mphys = *pml4e & ~PAGE_MASK;
11176 	}
11177 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11178 	return (pdpe);
11179 }
11180 
11181 static void
11182 pmap_pti_wire_pte(void *pte)
11183 {
11184 	vm_page_t m;
11185 
11186 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11187 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11188 	m->ref_count++;
11189 }
11190 
11191 static void
11192 pmap_pti_unwire_pde(void *pde, bool only_ref)
11193 {
11194 	vm_page_t m;
11195 
11196 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11197 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11198 	MPASS(only_ref || m->ref_count > 1);
11199 	pmap_pti_free_page(m);
11200 }
11201 
11202 static void
11203 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11204 {
11205 	vm_page_t m;
11206 	pd_entry_t *pde;
11207 
11208 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11209 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11210 	if (pmap_pti_free_page(m)) {
11211 		pde = pmap_pti_pde(va);
11212 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11213 		*pde = 0;
11214 		pmap_pti_unwire_pde(pde, false);
11215 	}
11216 }
11217 
11218 static pd_entry_t *
11219 pmap_pti_pde(vm_offset_t va)
11220 {
11221 	pdp_entry_t *pdpe;
11222 	pd_entry_t *pde;
11223 	vm_page_t m;
11224 	vm_pindex_t pd_idx;
11225 	vm_paddr_t mphys;
11226 
11227 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11228 
11229 	pdpe = pmap_pti_pdpe(va);
11230 	if (*pdpe == 0) {
11231 		m = pmap_pti_alloc_page();
11232 		if (*pdpe != 0) {
11233 			pmap_pti_free_page(m);
11234 			MPASS((*pdpe & X86_PG_PS) == 0);
11235 			mphys = *pdpe & ~PAGE_MASK;
11236 		} else {
11237 			mphys =  VM_PAGE_TO_PHYS(m);
11238 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11239 		}
11240 	} else {
11241 		MPASS((*pdpe & X86_PG_PS) == 0);
11242 		mphys = *pdpe & ~PAGE_MASK;
11243 	}
11244 
11245 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11246 	pd_idx = pmap_pde_index(va);
11247 	pde += pd_idx;
11248 	return (pde);
11249 }
11250 
11251 static pt_entry_t *
11252 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11253 {
11254 	pd_entry_t *pde;
11255 	pt_entry_t *pte;
11256 	vm_page_t m;
11257 	vm_paddr_t mphys;
11258 
11259 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11260 
11261 	pde = pmap_pti_pde(va);
11262 	if (unwire_pde != NULL) {
11263 		*unwire_pde = true;
11264 		pmap_pti_wire_pte(pde);
11265 	}
11266 	if (*pde == 0) {
11267 		m = pmap_pti_alloc_page();
11268 		if (*pde != 0) {
11269 			pmap_pti_free_page(m);
11270 			MPASS((*pde & X86_PG_PS) == 0);
11271 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11272 		} else {
11273 			mphys = VM_PAGE_TO_PHYS(m);
11274 			*pde = mphys | X86_PG_RW | X86_PG_V;
11275 			if (unwire_pde != NULL)
11276 				*unwire_pde = false;
11277 		}
11278 	} else {
11279 		MPASS((*pde & X86_PG_PS) == 0);
11280 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11281 	}
11282 
11283 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11284 	pte += pmap_pte_index(va);
11285 
11286 	return (pte);
11287 }
11288 
11289 static void
11290 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11291 {
11292 	vm_paddr_t pa;
11293 	pd_entry_t *pde;
11294 	pt_entry_t *pte, ptev;
11295 	bool unwire_pde;
11296 
11297 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11298 
11299 	sva = trunc_page(sva);
11300 	MPASS(sva > VM_MAXUSER_ADDRESS);
11301 	eva = round_page(eva);
11302 	MPASS(sva < eva);
11303 	for (; sva < eva; sva += PAGE_SIZE) {
11304 		pte = pmap_pti_pte(sva, &unwire_pde);
11305 		pa = pmap_kextract(sva);
11306 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11307 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11308 		    VM_MEMATTR_DEFAULT, FALSE);
11309 		if (*pte == 0) {
11310 			pte_store(pte, ptev);
11311 			pmap_pti_wire_pte(pte);
11312 		} else {
11313 			KASSERT(!pti_finalized,
11314 			    ("pti overlap after fin %#lx %#lx %#lx",
11315 			    sva, *pte, ptev));
11316 			KASSERT(*pte == ptev,
11317 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11318 			    sva, *pte, ptev));
11319 		}
11320 		if (unwire_pde) {
11321 			pde = pmap_pti_pde(sva);
11322 			pmap_pti_unwire_pde(pde, true);
11323 		}
11324 	}
11325 }
11326 
11327 void
11328 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11329 {
11330 
11331 	if (!pti)
11332 		return;
11333 	VM_OBJECT_WLOCK(pti_obj);
11334 	pmap_pti_add_kva_locked(sva, eva, exec);
11335 	VM_OBJECT_WUNLOCK(pti_obj);
11336 }
11337 
11338 void
11339 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11340 {
11341 	pt_entry_t *pte;
11342 	vm_offset_t va;
11343 
11344 	if (!pti)
11345 		return;
11346 	sva = rounddown2(sva, PAGE_SIZE);
11347 	MPASS(sva > VM_MAXUSER_ADDRESS);
11348 	eva = roundup2(eva, PAGE_SIZE);
11349 	MPASS(sva < eva);
11350 	VM_OBJECT_WLOCK(pti_obj);
11351 	for (va = sva; va < eva; va += PAGE_SIZE) {
11352 		pte = pmap_pti_pte(va, NULL);
11353 		KASSERT((*pte & X86_PG_V) != 0,
11354 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11355 		    (u_long)pte, *pte));
11356 		pte_clear(pte);
11357 		pmap_pti_unwire_pte(pte, va);
11358 	}
11359 	pmap_invalidate_range(kernel_pmap, sva, eva);
11360 	VM_OBJECT_WUNLOCK(pti_obj);
11361 }
11362 
11363 static void *
11364 pkru_dup_range(void *ctx __unused, void *data)
11365 {
11366 	struct pmap_pkru_range *node, *new_node;
11367 
11368 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11369 	if (new_node == NULL)
11370 		return (NULL);
11371 	node = data;
11372 	memcpy(new_node, node, sizeof(*node));
11373 	return (new_node);
11374 }
11375 
11376 static void
11377 pkru_free_range(void *ctx __unused, void *node)
11378 {
11379 
11380 	uma_zfree(pmap_pkru_ranges_zone, node);
11381 }
11382 
11383 static int
11384 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11385     int flags)
11386 {
11387 	struct pmap_pkru_range *ppr;
11388 	int error;
11389 
11390 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11391 	MPASS(pmap->pm_type == PT_X86);
11392 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11393 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11394 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11395 		return (EBUSY);
11396 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11397 	if (ppr == NULL)
11398 		return (ENOMEM);
11399 	ppr->pkru_keyidx = keyidx;
11400 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11401 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11402 	if (error != 0)
11403 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11404 	return (error);
11405 }
11406 
11407 static int
11408 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11409 {
11410 
11411 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11412 	MPASS(pmap->pm_type == PT_X86);
11413 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11414 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11415 }
11416 
11417 static void
11418 pmap_pkru_deassign_all(pmap_t pmap)
11419 {
11420 
11421 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11422 	if (pmap->pm_type == PT_X86 &&
11423 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11424 		rangeset_remove_all(&pmap->pm_pkru);
11425 }
11426 
11427 static bool
11428 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11429 {
11430 	struct pmap_pkru_range *ppr, *prev_ppr;
11431 	vm_offset_t va;
11432 
11433 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11434 	if (pmap->pm_type != PT_X86 ||
11435 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11436 	    sva >= VM_MAXUSER_ADDRESS)
11437 		return (true);
11438 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11439 	for (va = sva; va < eva; prev_ppr = ppr) {
11440 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
11441 		if (va == sva)
11442 			prev_ppr = ppr;
11443 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
11444 			return (false);
11445 		if (ppr == NULL) {
11446 			va += PAGE_SIZE;
11447 			continue;
11448 		}
11449 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
11450 			return (false);
11451 		va = ppr->pkru_rs_el.re_end;
11452 	}
11453 	return (true);
11454 }
11455 
11456 static pt_entry_t
11457 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11458 {
11459 	struct pmap_pkru_range *ppr;
11460 
11461 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11462 	if (pmap->pm_type != PT_X86 ||
11463 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11464 	    va >= VM_MAXUSER_ADDRESS)
11465 		return (0);
11466 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11467 	if (ppr != NULL)
11468 		return (X86_PG_PKU(ppr->pkru_keyidx));
11469 	return (0);
11470 }
11471 
11472 static bool
11473 pred_pkru_on_remove(void *ctx __unused, void *r)
11474 {
11475 	struct pmap_pkru_range *ppr;
11476 
11477 	ppr = r;
11478 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11479 }
11480 
11481 static void
11482 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11483 {
11484 
11485 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11486 	if (pmap->pm_type == PT_X86 &&
11487 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11488 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11489 		    pred_pkru_on_remove);
11490 	}
11491 }
11492 
11493 static int
11494 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11495 {
11496 
11497 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11498 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11499 	MPASS(dst_pmap->pm_type == PT_X86);
11500 	MPASS(src_pmap->pm_type == PT_X86);
11501 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11502 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11503 		return (0);
11504 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11505 }
11506 
11507 static void
11508 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11509     u_int keyidx)
11510 {
11511 	pml4_entry_t *pml4e;
11512 	pdp_entry_t *pdpe;
11513 	pd_entry_t newpde, ptpaddr, *pde;
11514 	pt_entry_t newpte, *ptep, pte;
11515 	vm_offset_t va, va_next;
11516 	bool changed;
11517 
11518 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11519 	MPASS(pmap->pm_type == PT_X86);
11520 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11521 
11522 	for (changed = false, va = sva; va < eva; va = va_next) {
11523 		pml4e = pmap_pml4e(pmap, va);
11524 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11525 			va_next = (va + NBPML4) & ~PML4MASK;
11526 			if (va_next < va)
11527 				va_next = eva;
11528 			continue;
11529 		}
11530 
11531 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11532 		if ((*pdpe & X86_PG_V) == 0) {
11533 			va_next = (va + NBPDP) & ~PDPMASK;
11534 			if (va_next < va)
11535 				va_next = eva;
11536 			continue;
11537 		}
11538 
11539 		va_next = (va + NBPDR) & ~PDRMASK;
11540 		if (va_next < va)
11541 			va_next = eva;
11542 
11543 		pde = pmap_pdpe_to_pde(pdpe, va);
11544 		ptpaddr = *pde;
11545 		if (ptpaddr == 0)
11546 			continue;
11547 
11548 		MPASS((ptpaddr & X86_PG_V) != 0);
11549 		if ((ptpaddr & PG_PS) != 0) {
11550 			if (va + NBPDR == va_next && eva >= va_next) {
11551 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11552 				    X86_PG_PKU(keyidx);
11553 				if (newpde != ptpaddr) {
11554 					*pde = newpde;
11555 					changed = true;
11556 				}
11557 				continue;
11558 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11559 				continue;
11560 			}
11561 		}
11562 
11563 		if (va_next > eva)
11564 			va_next = eva;
11565 
11566 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11567 		    ptep++, va += PAGE_SIZE) {
11568 			pte = *ptep;
11569 			if ((pte & X86_PG_V) == 0)
11570 				continue;
11571 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11572 			if (newpte != pte) {
11573 				*ptep = newpte;
11574 				changed = true;
11575 			}
11576 		}
11577 	}
11578 	if (changed)
11579 		pmap_invalidate_range(pmap, sva, eva);
11580 }
11581 
11582 static int
11583 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11584     u_int keyidx, int flags)
11585 {
11586 
11587 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11588 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11589 		return (EINVAL);
11590 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11591 		return (EFAULT);
11592 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11593 		return (ENOTSUP);
11594 	return (0);
11595 }
11596 
11597 int
11598 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11599     int flags)
11600 {
11601 	int error;
11602 
11603 	sva = trunc_page(sva);
11604 	eva = round_page(eva);
11605 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11606 	if (error != 0)
11607 		return (error);
11608 	for (;;) {
11609 		PMAP_LOCK(pmap);
11610 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11611 		if (error == 0)
11612 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11613 		PMAP_UNLOCK(pmap);
11614 		if (error != ENOMEM)
11615 			break;
11616 		vm_wait(NULL);
11617 	}
11618 	return (error);
11619 }
11620 
11621 int
11622 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11623 {
11624 	int error;
11625 
11626 	sva = trunc_page(sva);
11627 	eva = round_page(eva);
11628 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11629 	if (error != 0)
11630 		return (error);
11631 	for (;;) {
11632 		PMAP_LOCK(pmap);
11633 		error = pmap_pkru_deassign(pmap, sva, eva);
11634 		if (error == 0)
11635 			pmap_pkru_update_range(pmap, sva, eva, 0);
11636 		PMAP_UNLOCK(pmap);
11637 		if (error != ENOMEM)
11638 			break;
11639 		vm_wait(NULL);
11640 	}
11641 	return (error);
11642 }
11643 
11644 #if defined(KASAN) || defined(KMSAN)
11645 
11646 /*
11647  * Reserve enough memory to:
11648  * 1) allocate PDP pages for the shadow map(s),
11649  * 2) shadow the boot stack of KSTACK_PAGES pages,
11650  * so we need one PD page, one or two PT pages, and KSTACK_PAGES shadow pages
11651  * per shadow map.
11652  */
11653 #ifdef KASAN
11654 #define	SAN_EARLY_PAGES	\
11655 	(NKASANPML4E + 1 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11656 #else
11657 #define	SAN_EARLY_PAGES	\
11658 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (1 + 2 + KSTACK_PAGES))
11659 #endif
11660 
11661 static uint64_t __nosanitizeaddress __nosanitizememory
11662 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11663 {
11664 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11665 	static size_t offset = 0;
11666 	uint64_t pa;
11667 
11668 	if (offset == sizeof(data)) {
11669 		panic("%s: ran out of memory for the bootstrap shadow map",
11670 		    __func__);
11671 	}
11672 
11673 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11674 	offset += PAGE_SIZE;
11675 	return (pa);
11676 }
11677 
11678 /*
11679  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11680  * is currently only used to shadow the temporary boot stack set up by locore.
11681  */
11682 static void __nosanitizeaddress __nosanitizememory
11683 pmap_san_enter_early(vm_offset_t va)
11684 {
11685 	static bool first = true;
11686 	pml4_entry_t *pml4e;
11687 	pdp_entry_t *pdpe;
11688 	pd_entry_t *pde;
11689 	pt_entry_t *pte;
11690 	uint64_t cr3, pa, base;
11691 	int i;
11692 
11693 	base = amd64_loadaddr();
11694 	cr3 = rcr3();
11695 
11696 	if (first) {
11697 		/*
11698 		 * If this the first call, we need to allocate new PML4Es for
11699 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11700 		 * was initialized by the boot loader, so we can't simply test
11701 		 * whether the shadow map's PML4Es are zero.
11702 		 */
11703 		first = false;
11704 #ifdef KASAN
11705 		for (i = 0; i < NKASANPML4E; i++) {
11706 			pa = pmap_san_enter_early_alloc_4k(base);
11707 
11708 			pml4e = (pml4_entry_t *)cr3 +
11709 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11710 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11711 		}
11712 #else
11713 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11714 			pa = pmap_san_enter_early_alloc_4k(base);
11715 
11716 			pml4e = (pml4_entry_t *)cr3 +
11717 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11718 			    i * NBPML4);
11719 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11720 		}
11721 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11722 			pa = pmap_san_enter_early_alloc_4k(base);
11723 
11724 			pml4e = (pml4_entry_t *)cr3 +
11725 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11726 			    i * NBPML4);
11727 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11728 		}
11729 #endif
11730 	}
11731 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11732 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11733 	if (*pdpe == 0) {
11734 		pa = pmap_san_enter_early_alloc_4k(base);
11735 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11736 	}
11737 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11738 	if (*pde == 0) {
11739 		pa = pmap_san_enter_early_alloc_4k(base);
11740 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11741 	}
11742 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11743 	if (*pte != 0)
11744 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11745 	pa = pmap_san_enter_early_alloc_4k(base);
11746 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11747 }
11748 
11749 static vm_page_t
11750 pmap_san_enter_alloc_4k(void)
11751 {
11752 	vm_page_t m;
11753 
11754 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11755 	    VM_ALLOC_ZERO);
11756 	if (m == NULL)
11757 		panic("%s: no memory to grow shadow map", __func__);
11758 	return (m);
11759 }
11760 
11761 static vm_page_t
11762 pmap_san_enter_alloc_2m(void)
11763 {
11764 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11765 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11766 }
11767 
11768 /*
11769  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11770  * pages when possible.
11771  */
11772 void __nosanitizeaddress __nosanitizememory
11773 pmap_san_enter(vm_offset_t va)
11774 {
11775 	pdp_entry_t *pdpe;
11776 	pd_entry_t *pde;
11777 	pt_entry_t *pte;
11778 	vm_page_t m;
11779 
11780 	if (kernphys == 0) {
11781 		/*
11782 		 * We're creating a temporary shadow map for the boot stack.
11783 		 */
11784 		pmap_san_enter_early(va);
11785 		return;
11786 	}
11787 
11788 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11789 
11790 	pdpe = pmap_pdpe(kernel_pmap, va);
11791 	if ((*pdpe & X86_PG_V) == 0) {
11792 		m = pmap_san_enter_alloc_4k();
11793 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11794 		    X86_PG_V | pg_nx);
11795 	}
11796 	pde = pmap_pdpe_to_pde(pdpe, va);
11797 	if ((*pde & X86_PG_V) == 0) {
11798 		m = pmap_san_enter_alloc_2m();
11799 		if (m != NULL) {
11800 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11801 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11802 		} else {
11803 			m = pmap_san_enter_alloc_4k();
11804 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11805 			    X86_PG_V | pg_nx);
11806 		}
11807 	}
11808 	if ((*pde & X86_PG_PS) != 0)
11809 		return;
11810 	pte = pmap_pde_to_pte(pde, va);
11811 	if ((*pte & X86_PG_V) != 0)
11812 		return;
11813 	m = pmap_san_enter_alloc_4k();
11814 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11815 	    X86_PG_M | X86_PG_A | pg_nx);
11816 }
11817 #endif
11818 
11819 /*
11820  * Track a range of the kernel's virtual address space that is contiguous
11821  * in various mapping attributes.
11822  */
11823 struct pmap_kernel_map_range {
11824 	vm_offset_t sva;
11825 	pt_entry_t attrs;
11826 	int ptes;
11827 	int pdes;
11828 	int pdpes;
11829 };
11830 
11831 static void
11832 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11833     vm_offset_t eva)
11834 {
11835 	const char *mode;
11836 	int i, pat_idx;
11837 
11838 	if (eva <= range->sva)
11839 		return;
11840 
11841 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11842 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11843 		if (pat_index[i] == pat_idx)
11844 			break;
11845 
11846 	switch (i) {
11847 	case PAT_WRITE_BACK:
11848 		mode = "WB";
11849 		break;
11850 	case PAT_WRITE_THROUGH:
11851 		mode = "WT";
11852 		break;
11853 	case PAT_UNCACHEABLE:
11854 		mode = "UC";
11855 		break;
11856 	case PAT_UNCACHED:
11857 		mode = "U-";
11858 		break;
11859 	case PAT_WRITE_PROTECTED:
11860 		mode = "WP";
11861 		break;
11862 	case PAT_WRITE_COMBINING:
11863 		mode = "WC";
11864 		break;
11865 	default:
11866 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11867 		    __func__, pat_idx, range->sva, eva);
11868 		mode = "??";
11869 		break;
11870 	}
11871 
11872 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11873 	    range->sva, eva,
11874 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11875 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11876 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11877 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11878 	    mode, range->pdpes, range->pdes, range->ptes);
11879 
11880 	/* Reset to sentinel value. */
11881 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11882 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11883 	    NPDEPG - 1, NPTEPG - 1);
11884 }
11885 
11886 /*
11887  * Determine whether the attributes specified by a page table entry match those
11888  * being tracked by the current range.  This is not quite as simple as a direct
11889  * flag comparison since some PAT modes have multiple representations.
11890  */
11891 static bool
11892 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11893 {
11894 	pt_entry_t diff, mask;
11895 
11896 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11897 	diff = (range->attrs ^ attrs) & mask;
11898 	if (diff == 0)
11899 		return (true);
11900 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11901 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11902 	    pmap_pat_index(kernel_pmap, attrs, true))
11903 		return (true);
11904 	return (false);
11905 }
11906 
11907 static void
11908 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11909     pt_entry_t attrs)
11910 {
11911 
11912 	memset(range, 0, sizeof(*range));
11913 	range->sva = va;
11914 	range->attrs = attrs;
11915 }
11916 
11917 /*
11918  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11919  * those of the current run, dump the address range and its attributes, and
11920  * begin a new run.
11921  */
11922 static void
11923 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11924     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11925     pt_entry_t pte)
11926 {
11927 	pt_entry_t attrs;
11928 
11929 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11930 
11931 	attrs |= pdpe & pg_nx;
11932 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11933 	if ((pdpe & PG_PS) != 0) {
11934 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11935 	} else if (pde != 0) {
11936 		attrs |= pde & pg_nx;
11937 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11938 	}
11939 	if ((pde & PG_PS) != 0) {
11940 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11941 	} else if (pte != 0) {
11942 		attrs |= pte & pg_nx;
11943 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11944 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11945 
11946 		/* Canonicalize by always using the PDE PAT bit. */
11947 		if ((attrs & X86_PG_PTE_PAT) != 0)
11948 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11949 	}
11950 
11951 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11952 		sysctl_kmaps_dump(sb, range, va);
11953 		sysctl_kmaps_reinit(range, va, attrs);
11954 	}
11955 }
11956 
11957 static int
11958 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11959 {
11960 	struct pmap_kernel_map_range range;
11961 	struct sbuf sbuf, *sb;
11962 	pml4_entry_t pml4e;
11963 	pdp_entry_t *pdp, pdpe;
11964 	pd_entry_t *pd, pde;
11965 	pt_entry_t *pt, pte;
11966 	vm_offset_t sva;
11967 	vm_paddr_t pa;
11968 	int error, i, j, k, l;
11969 
11970 	error = sysctl_wire_old_buffer(req, 0);
11971 	if (error != 0)
11972 		return (error);
11973 	sb = &sbuf;
11974 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11975 
11976 	/* Sentinel value. */
11977 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11978 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11979 	    NPDEPG - 1, NPTEPG - 1);
11980 
11981 	/*
11982 	 * Iterate over the kernel page tables without holding the kernel pmap
11983 	 * lock.  Outside of the large map, kernel page table pages are never
11984 	 * freed, so at worst we will observe inconsistencies in the output.
11985 	 * Within the large map, ensure that PDP and PD page addresses are
11986 	 * valid before descending.
11987 	 */
11988 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11989 		switch (i) {
11990 		case PML4PML4I:
11991 			sbuf_printf(sb, "\nRecursive map:\n");
11992 			break;
11993 		case DMPML4I:
11994 			sbuf_printf(sb, "\nDirect map:\n");
11995 			break;
11996 #ifdef KASAN
11997 		case KASANPML4I:
11998 			sbuf_printf(sb, "\nKASAN shadow map:\n");
11999 			break;
12000 #endif
12001 #ifdef KMSAN
12002 		case KMSANSHADPML4I:
12003 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12004 			break;
12005 		case KMSANORIGPML4I:
12006 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12007 			break;
12008 #endif
12009 		case KPML4BASE:
12010 			sbuf_printf(sb, "\nKernel map:\n");
12011 			break;
12012 		case LMSPML4I:
12013 			sbuf_printf(sb, "\nLarge map:\n");
12014 			break;
12015 		}
12016 
12017 		/* Convert to canonical form. */
12018 		if (sva == 1ul << 47)
12019 			sva |= -1ul << 48;
12020 
12021 restart:
12022 		pml4e = kernel_pml4[i];
12023 		if ((pml4e & X86_PG_V) == 0) {
12024 			sva = rounddown2(sva, NBPML4);
12025 			sysctl_kmaps_dump(sb, &range, sva);
12026 			sva += NBPML4;
12027 			continue;
12028 		}
12029 		pa = pml4e & PG_FRAME;
12030 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12031 
12032 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12033 			pdpe = pdp[j];
12034 			if ((pdpe & X86_PG_V) == 0) {
12035 				sva = rounddown2(sva, NBPDP);
12036 				sysctl_kmaps_dump(sb, &range, sva);
12037 				sva += NBPDP;
12038 				continue;
12039 			}
12040 			pa = pdpe & PG_FRAME;
12041 			if ((pdpe & PG_PS) != 0) {
12042 				sva = rounddown2(sva, NBPDP);
12043 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12044 				    0, 0);
12045 				range.pdpes++;
12046 				sva += NBPDP;
12047 				continue;
12048 			}
12049 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12050 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12051 				/*
12052 				 * Page table pages for the large map may be
12053 				 * freed.  Validate the next-level address
12054 				 * before descending.
12055 				 */
12056 				goto restart;
12057 			}
12058 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12059 
12060 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12061 				pde = pd[k];
12062 				if ((pde & X86_PG_V) == 0) {
12063 					sva = rounddown2(sva, NBPDR);
12064 					sysctl_kmaps_dump(sb, &range, sva);
12065 					sva += NBPDR;
12066 					continue;
12067 				}
12068 				pa = pde & PG_FRAME;
12069 				if ((pde & PG_PS) != 0) {
12070 					sva = rounddown2(sva, NBPDR);
12071 					sysctl_kmaps_check(sb, &range, sva,
12072 					    pml4e, pdpe, pde, 0);
12073 					range.pdes++;
12074 					sva += NBPDR;
12075 					continue;
12076 				}
12077 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12078 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12079 					/*
12080 					 * Page table pages for the large map
12081 					 * may be freed.  Validate the
12082 					 * next-level address before descending.
12083 					 */
12084 					goto restart;
12085 				}
12086 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12087 
12088 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12089 				    sva += PAGE_SIZE) {
12090 					pte = pt[l];
12091 					if ((pte & X86_PG_V) == 0) {
12092 						sysctl_kmaps_dump(sb, &range,
12093 						    sva);
12094 						continue;
12095 					}
12096 					sysctl_kmaps_check(sb, &range, sva,
12097 					    pml4e, pdpe, pde, pte);
12098 					range.ptes++;
12099 				}
12100 			}
12101 		}
12102 	}
12103 
12104 	error = sbuf_finish(sb);
12105 	sbuf_delete(sb);
12106 	return (error);
12107 }
12108 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12109     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12110     NULL, 0, sysctl_kmaps, "A",
12111     "Dump kernel address layout");
12112 
12113 #ifdef DDB
12114 DB_SHOW_COMMAND(pte, pmap_print_pte)
12115 {
12116 	pmap_t pmap;
12117 	pml5_entry_t *pml5;
12118 	pml4_entry_t *pml4;
12119 	pdp_entry_t *pdp;
12120 	pd_entry_t *pde;
12121 	pt_entry_t *pte, PG_V;
12122 	vm_offset_t va;
12123 
12124 	if (!have_addr) {
12125 		db_printf("show pte addr\n");
12126 		return;
12127 	}
12128 	va = (vm_offset_t)addr;
12129 
12130 	if (kdb_thread != NULL)
12131 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12132 	else
12133 		pmap = PCPU_GET(curpmap);
12134 
12135 	PG_V = pmap_valid_bit(pmap);
12136 	db_printf("VA 0x%016lx", va);
12137 
12138 	if (pmap_is_la57(pmap)) {
12139 		pml5 = pmap_pml5e(pmap, va);
12140 		db_printf(" pml5e 0x%016lx", *pml5);
12141 		if ((*pml5 & PG_V) == 0) {
12142 			db_printf("\n");
12143 			return;
12144 		}
12145 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12146 	} else {
12147 		pml4 = pmap_pml4e(pmap, va);
12148 	}
12149 	db_printf(" pml4e 0x%016lx", *pml4);
12150 	if ((*pml4 & PG_V) == 0) {
12151 		db_printf("\n");
12152 		return;
12153 	}
12154 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12155 	db_printf(" pdpe 0x%016lx", *pdp);
12156 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12157 		db_printf("\n");
12158 		return;
12159 	}
12160 	pde = pmap_pdpe_to_pde(pdp, va);
12161 	db_printf(" pde 0x%016lx", *pde);
12162 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12163 		db_printf("\n");
12164 		return;
12165 	}
12166 	pte = pmap_pde_to_pte(pde, va);
12167 	db_printf(" pte 0x%016lx\n", *pte);
12168 }
12169 
12170 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12171 {
12172 	vm_paddr_t a;
12173 
12174 	if (have_addr) {
12175 		a = (vm_paddr_t)addr;
12176 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12177 	} else {
12178 		db_printf("show phys2dmap addr\n");
12179 	}
12180 }
12181 
12182 static void
12183 ptpages_show_page(int level, int idx, vm_page_t pg)
12184 {
12185 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12186 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12187 }
12188 
12189 static void
12190 ptpages_show_complain(int level, int idx, uint64_t pte)
12191 {
12192 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12193 }
12194 
12195 static void
12196 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12197 {
12198 	vm_page_t pg3, pg2, pg1;
12199 	pml4_entry_t *pml4;
12200 	pdp_entry_t *pdp;
12201 	pd_entry_t *pd;
12202 	int i4, i3, i2;
12203 
12204 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12205 	for (i4 = 0; i4 < num_entries; i4++) {
12206 		if ((pml4[i4] & PG_V) == 0)
12207 			continue;
12208 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12209 		if (pg3 == NULL) {
12210 			ptpages_show_complain(3, i4, pml4[i4]);
12211 			continue;
12212 		}
12213 		ptpages_show_page(3, i4, pg3);
12214 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12215 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12216 			if ((pdp[i3] & PG_V) == 0)
12217 				continue;
12218 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12219 			if (pg3 == NULL) {
12220 				ptpages_show_complain(2, i3, pdp[i3]);
12221 				continue;
12222 			}
12223 			ptpages_show_page(2, i3, pg2);
12224 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12225 			for (i2 = 0; i2 < NPDEPG; i2++) {
12226 				if ((pd[i2] & PG_V) == 0)
12227 					continue;
12228 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12229 				if (pg1 == NULL) {
12230 					ptpages_show_complain(1, i2, pd[i2]);
12231 					continue;
12232 				}
12233 				ptpages_show_page(1, i2, pg1);
12234 			}
12235 		}
12236 	}
12237 }
12238 
12239 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12240 {
12241 	pmap_t pmap;
12242 	vm_page_t pg;
12243 	pml5_entry_t *pml5;
12244 	uint64_t PG_V;
12245 	int i5;
12246 
12247 	if (have_addr)
12248 		pmap = (pmap_t)addr;
12249 	else
12250 		pmap = PCPU_GET(curpmap);
12251 
12252 	PG_V = pmap_valid_bit(pmap);
12253 
12254 	if (pmap_is_la57(pmap)) {
12255 		pml5 = pmap->pm_pmltop;
12256 		for (i5 = 0; i5 < NUPML5E; i5++) {
12257 			if ((pml5[i5] & PG_V) == 0)
12258 				continue;
12259 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12260 			if (pg == NULL) {
12261 				ptpages_show_complain(4, i5, pml5[i5]);
12262 				continue;
12263 			}
12264 			ptpages_show_page(4, i5, pg);
12265 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12266 		}
12267 	} else {
12268 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12269 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12270 	}
12271 }
12272 #endif
12273