xref: /freebsd/sys/amd64/amd64/pmap.c (revision 81b22a98)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
48  */
49 /*-
50  * Copyright (c) 2003 Networks Associates Technology, Inc.
51  * Copyright (c) 2014-2020 The FreeBSD Foundation
52  * All rights reserved.
53  *
54  * This software was developed for the FreeBSD Project by Jake Burkholder,
55  * Safeport Network Services, and Network Associates Laboratories, the
56  * Security Research Division of Network Associates, Inc. under
57  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58  * CHATS research program.
59  *
60  * Portions of this software were developed by
61  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
62  * the FreeBSD Foundation.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #define	AMD64_NPT_AWARE
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  *	Manages physical address maps.
93  *
94  *	Since the information managed by this module is
95  *	also stored by the logical address mapping module,
96  *	this module may throw away valid virtual-to-physical
97  *	mappings at almost any time.  However, invalidations
98  *	of virtual-to-physical mappings must be done as
99  *	requested.
100  *
101  *	In order to cope with hardware architectures which
102  *	make virtual-to-physical map invalidates expensive,
103  *	this module may delay invalidate or reduced protection
104  *	operations until such time as they are actually
105  *	necessary.  This module is given full information as
106  *	to which processors are currently using which maps,
107  *	and to when physical maps must be made correct.
108  */
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap.h"
112 #include "opt_vm.h"
113 
114 #include <sys/param.h>
115 #include <sys/asan.h>
116 #include <sys/bitstring.h>
117 #include <sys/bus.h>
118 #include <sys/systm.h>
119 #include <sys/counter.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/malloc.h>
124 #include <sys/mman.h>
125 #include <sys/msan.h>
126 #include <sys/mutex.h>
127 #include <sys/proc.h>
128 #include <sys/rangeset.h>
129 #include <sys/rwlock.h>
130 #include <sys/sbuf.h>
131 #include <sys/smr.h>
132 #include <sys/sx.h>
133 #include <sys/turnstile.h>
134 #include <sys/vmem.h>
135 #include <sys/vmmeter.h>
136 #include <sys/sched.h>
137 #include <sys/sysctl.h>
138 #include <sys/smp.h>
139 #ifdef DDB
140 #include <sys/kdb.h>
141 #include <ddb/ddb.h>
142 #endif
143 
144 #include <vm/vm.h>
145 #include <vm/vm_param.h>
146 #include <vm/vm_kern.h>
147 #include <vm/vm_page.h>
148 #include <vm/vm_map.h>
149 #include <vm/vm_object.h>
150 #include <vm/vm_extern.h>
151 #include <vm/vm_pageout.h>
152 #include <vm/vm_pager.h>
153 #include <vm/vm_phys.h>
154 #include <vm/vm_radix.h>
155 #include <vm/vm_reserv.h>
156 #include <vm/vm_dumpset.h>
157 #include <vm/uma.h>
158 
159 #include <machine/asan.h>
160 #include <machine/intr_machdep.h>
161 #include <x86/apicvar.h>
162 #include <x86/ifunc.h>
163 #include <machine/cpu.h>
164 #include <machine/cputypes.h>
165 #include <machine/md_var.h>
166 #include <machine/msan.h>
167 #include <machine/pcb.h>
168 #include <machine/specialreg.h>
169 #ifdef SMP
170 #include <machine/smp.h>
171 #endif
172 #include <machine/sysarch.h>
173 #include <machine/tss.h>
174 
175 #ifdef NUMA
176 #define	PMAP_MEMDOM	MAXMEMDOM
177 #else
178 #define	PMAP_MEMDOM	1
179 #endif
180 
181 static __inline boolean_t
182 pmap_type_guest(pmap_t pmap)
183 {
184 
185 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
186 }
187 
188 static __inline boolean_t
189 pmap_emulate_ad_bits(pmap_t pmap)
190 {
191 
192 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
193 }
194 
195 static __inline pt_entry_t
196 pmap_valid_bit(pmap_t pmap)
197 {
198 	pt_entry_t mask;
199 
200 	switch (pmap->pm_type) {
201 	case PT_X86:
202 	case PT_RVI:
203 		mask = X86_PG_V;
204 		break;
205 	case PT_EPT:
206 		if (pmap_emulate_ad_bits(pmap))
207 			mask = EPT_PG_EMUL_V;
208 		else
209 			mask = EPT_PG_READ;
210 		break;
211 	default:
212 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
213 	}
214 
215 	return (mask);
216 }
217 
218 static __inline pt_entry_t
219 pmap_rw_bit(pmap_t pmap)
220 {
221 	pt_entry_t mask;
222 
223 	switch (pmap->pm_type) {
224 	case PT_X86:
225 	case PT_RVI:
226 		mask = X86_PG_RW;
227 		break;
228 	case PT_EPT:
229 		if (pmap_emulate_ad_bits(pmap))
230 			mask = EPT_PG_EMUL_RW;
231 		else
232 			mask = EPT_PG_WRITE;
233 		break;
234 	default:
235 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
236 	}
237 
238 	return (mask);
239 }
240 
241 static pt_entry_t pg_g;
242 
243 static __inline pt_entry_t
244 pmap_global_bit(pmap_t pmap)
245 {
246 	pt_entry_t mask;
247 
248 	switch (pmap->pm_type) {
249 	case PT_X86:
250 		mask = pg_g;
251 		break;
252 	case PT_RVI:
253 	case PT_EPT:
254 		mask = 0;
255 		break;
256 	default:
257 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
258 	}
259 
260 	return (mask);
261 }
262 
263 static __inline pt_entry_t
264 pmap_accessed_bit(pmap_t pmap)
265 {
266 	pt_entry_t mask;
267 
268 	switch (pmap->pm_type) {
269 	case PT_X86:
270 	case PT_RVI:
271 		mask = X86_PG_A;
272 		break;
273 	case PT_EPT:
274 		if (pmap_emulate_ad_bits(pmap))
275 			mask = EPT_PG_READ;
276 		else
277 			mask = EPT_PG_A;
278 		break;
279 	default:
280 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
281 	}
282 
283 	return (mask);
284 }
285 
286 static __inline pt_entry_t
287 pmap_modified_bit(pmap_t pmap)
288 {
289 	pt_entry_t mask;
290 
291 	switch (pmap->pm_type) {
292 	case PT_X86:
293 	case PT_RVI:
294 		mask = X86_PG_M;
295 		break;
296 	case PT_EPT:
297 		if (pmap_emulate_ad_bits(pmap))
298 			mask = EPT_PG_WRITE;
299 		else
300 			mask = EPT_PG_M;
301 		break;
302 	default:
303 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
304 	}
305 
306 	return (mask);
307 }
308 
309 static __inline pt_entry_t
310 pmap_pku_mask_bit(pmap_t pmap)
311 {
312 
313 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
314 }
315 
316 #if !defined(DIAGNOSTIC)
317 #ifdef __GNUC_GNU_INLINE__
318 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
319 #else
320 #define PMAP_INLINE	extern inline
321 #endif
322 #else
323 #define PMAP_INLINE
324 #endif
325 
326 #ifdef PV_STATS
327 #define PV_STAT(x)	do { x ; } while (0)
328 #else
329 #define PV_STAT(x)	do { } while (0)
330 #endif
331 
332 #undef pa_index
333 #ifdef NUMA
334 #define	pa_index(pa)	({					\
335 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
336 	    ("address %lx beyond the last segment", (pa)));	\
337 	(pa) >> PDRSHIFT;					\
338 })
339 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
340 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
341 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
342 	struct rwlock *_lock;					\
343 	if (__predict_false((pa) > pmap_last_pa))		\
344 		_lock = &pv_dummy_large.pv_lock;		\
345 	else							\
346 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
347 	_lock;							\
348 })
349 #else
350 #define	pa_index(pa)	((pa) >> PDRSHIFT)
351 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
352 
353 #define	NPV_LIST_LOCKS	MAXCPU
354 
355 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
356 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
357 #endif
358 
359 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
360 	struct rwlock **_lockp = (lockp);		\
361 	struct rwlock *_new_lock;			\
362 							\
363 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
364 	if (_new_lock != *_lockp) {			\
365 		if (*_lockp != NULL)			\
366 			rw_wunlock(*_lockp);		\
367 		*_lockp = _new_lock;			\
368 		rw_wlock(*_lockp);			\
369 	}						\
370 } while (0)
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
373 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
374 
375 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
376 	struct rwlock **_lockp = (lockp);		\
377 							\
378 	if (*_lockp != NULL) {				\
379 		rw_wunlock(*_lockp);			\
380 		*_lockp = NULL;				\
381 	}						\
382 } while (0)
383 
384 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
385 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
386 
387 struct pmap kernel_pmap_store;
388 
389 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
390 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
391 
392 int nkpt;
393 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
394     "Number of kernel page table pages allocated on bootup");
395 
396 static int ndmpdp;
397 vm_paddr_t dmaplimit;
398 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
399 pt_entry_t pg_nx;
400 
401 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
402     "VM/pmap parameters");
403 
404 static int pg_ps_enabled = 1;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
406     &pg_ps_enabled, 0, "Are large page mappings enabled?");
407 
408 int __read_frequently la57 = 0;
409 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
410     &la57, 0,
411     "5-level paging for host is enabled");
412 
413 static bool
414 pmap_is_la57(pmap_t pmap)
415 {
416 	if (pmap->pm_type == PT_X86)
417 		return (la57);
418 	return (false);		/* XXXKIB handle EPT */
419 }
420 
421 #define	PAT_INDEX_SIZE	8
422 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
423 
424 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
425 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
426 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
427 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
428 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
429 					   if supported */
430 
431 #ifdef KASAN
432 static uint64_t		KASANPDPphys;
433 #endif
434 #ifdef KMSAN
435 static uint64_t		KMSANSHADPDPphys;
436 static uint64_t		KMSANORIGPDPphys;
437 
438 /*
439  * To support systems with large amounts of memory, it is necessary to extend
440  * the maximum size of the direct map.  This could eat into the space reserved
441  * for the shadow map.
442  */
443 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
444 #endif
445 
446 static pml4_entry_t	*kernel_pml4;
447 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
448 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
449 static int		ndmpdpphys;	/* number of DMPDPphys pages */
450 
451 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
452 vm_paddr_t		KERNend;	/* and the end */
453 
454 /*
455  * pmap_mapdev support pre initialization (i.e. console)
456  */
457 #define	PMAP_PREINIT_MAPPING_COUNT	8
458 static struct pmap_preinit_mapping {
459 	vm_paddr_t	pa;
460 	vm_offset_t	va;
461 	vm_size_t	sz;
462 	int		mode;
463 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
464 static int pmap_initialized;
465 
466 /*
467  * Data for the pv entry allocation mechanism.
468  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
469  */
470 #ifdef NUMA
471 static __inline int
472 pc_to_domain(struct pv_chunk *pc)
473 {
474 
475 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
476 }
477 #else
478 static __inline int
479 pc_to_domain(struct pv_chunk *pc __unused)
480 {
481 
482 	return (0);
483 }
484 #endif
485 
486 struct pv_chunks_list {
487 	struct mtx pvc_lock;
488 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
489 	int active_reclaims;
490 } __aligned(CACHE_LINE_SIZE);
491 
492 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
493 
494 #ifdef	NUMA
495 struct pmap_large_md_page {
496 	struct rwlock   pv_lock;
497 	struct md_page  pv_page;
498 	u_long pv_invl_gen;
499 };
500 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
501 #define pv_dummy pv_dummy_large.pv_page
502 __read_mostly static struct pmap_large_md_page *pv_table;
503 __read_mostly vm_paddr_t pmap_last_pa;
504 #else
505 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
506 static u_long pv_invl_gen[NPV_LIST_LOCKS];
507 static struct md_page *pv_table;
508 static struct md_page pv_dummy;
509 #endif
510 
511 /*
512  * All those kernel PT submaps that BSD is so fond of
513  */
514 pt_entry_t *CMAP1 = NULL;
515 caddr_t CADDR1 = 0;
516 static vm_offset_t qframe = 0;
517 static struct mtx qframe_mtx;
518 
519 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
520 
521 static vmem_t *large_vmem;
522 static u_int lm_ents;
523 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
524 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
525 
526 int pmap_pcid_enabled = 1;
527 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
528     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
529 int invpcid_works = 0;
530 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
531     "Is the invpcid instruction available ?");
532 
533 int __read_frequently pti = 0;
534 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
535     &pti, 0,
536     "Page Table Isolation enabled");
537 static vm_object_t pti_obj;
538 static pml4_entry_t *pti_pml4;
539 static vm_pindex_t pti_pg_idx;
540 static bool pti_finalized;
541 
542 struct pmap_pkru_range {
543 	struct rs_el	pkru_rs_el;
544 	u_int		pkru_keyidx;
545 	int		pkru_flags;
546 };
547 
548 static uma_zone_t pmap_pkru_ranges_zone;
549 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
550 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
551 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
552 static void *pkru_dup_range(void *ctx, void *data);
553 static void pkru_free_range(void *ctx, void *node);
554 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
555 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
556 static void pmap_pkru_deassign_all(pmap_t pmap);
557 
558 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
559 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
560     &pcid_save_cnt, "Count of saved TLB context on switch");
561 
562 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
563     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
564 static struct mtx invl_gen_mtx;
565 /* Fake lock object to satisfy turnstiles interface. */
566 static struct lock_object invl_gen_ts = {
567 	.lo_name = "invlts",
568 };
569 static struct pmap_invl_gen pmap_invl_gen_head = {
570 	.gen = 1,
571 	.next = NULL,
572 };
573 static u_long pmap_invl_gen = 1;
574 static int pmap_invl_waiters;
575 static struct callout pmap_invl_callout;
576 static bool pmap_invl_callout_inited;
577 
578 #define	PMAP_ASSERT_NOT_IN_DI() \
579     KASSERT(pmap_not_in_di(), ("DI already started"))
580 
581 static bool
582 pmap_di_locked(void)
583 {
584 	int tun;
585 
586 	if ((cpu_feature2 & CPUID2_CX16) == 0)
587 		return (true);
588 	tun = 0;
589 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
590 	return (tun != 0);
591 }
592 
593 static int
594 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
595 {
596 	int locked;
597 
598 	locked = pmap_di_locked();
599 	return (sysctl_handle_int(oidp, &locked, 0, req));
600 }
601 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
602     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
603     "Locked delayed invalidation");
604 
605 static bool pmap_not_in_di_l(void);
606 static bool pmap_not_in_di_u(void);
607 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
608 {
609 
610 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
611 }
612 
613 static bool
614 pmap_not_in_di_l(void)
615 {
616 	struct pmap_invl_gen *invl_gen;
617 
618 	invl_gen = &curthread->td_md.md_invl_gen;
619 	return (invl_gen->gen == 0);
620 }
621 
622 static void
623 pmap_thread_init_invl_gen_l(struct thread *td)
624 {
625 	struct pmap_invl_gen *invl_gen;
626 
627 	invl_gen = &td->td_md.md_invl_gen;
628 	invl_gen->gen = 0;
629 }
630 
631 static void
632 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
633 {
634 	struct turnstile *ts;
635 
636 	ts = turnstile_trywait(&invl_gen_ts);
637 	if (*m_gen > atomic_load_long(invl_gen))
638 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
639 	else
640 		turnstile_cancel(ts);
641 }
642 
643 static void
644 pmap_delayed_invl_finish_unblock(u_long new_gen)
645 {
646 	struct turnstile *ts;
647 
648 	turnstile_chain_lock(&invl_gen_ts);
649 	ts = turnstile_lookup(&invl_gen_ts);
650 	if (new_gen != 0)
651 		pmap_invl_gen = new_gen;
652 	if (ts != NULL) {
653 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
654 		turnstile_unpend(ts);
655 	}
656 	turnstile_chain_unlock(&invl_gen_ts);
657 }
658 
659 /*
660  * Start a new Delayed Invalidation (DI) block of code, executed by
661  * the current thread.  Within a DI block, the current thread may
662  * destroy both the page table and PV list entries for a mapping and
663  * then release the corresponding PV list lock before ensuring that
664  * the mapping is flushed from the TLBs of any processors with the
665  * pmap active.
666  */
667 static void
668 pmap_delayed_invl_start_l(void)
669 {
670 	struct pmap_invl_gen *invl_gen;
671 	u_long currgen;
672 
673 	invl_gen = &curthread->td_md.md_invl_gen;
674 	PMAP_ASSERT_NOT_IN_DI();
675 	mtx_lock(&invl_gen_mtx);
676 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
677 		currgen = pmap_invl_gen;
678 	else
679 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
680 	invl_gen->gen = currgen + 1;
681 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
682 	mtx_unlock(&invl_gen_mtx);
683 }
684 
685 /*
686  * Finish the DI block, previously started by the current thread.  All
687  * required TLB flushes for the pages marked by
688  * pmap_delayed_invl_page() must be finished before this function is
689  * called.
690  *
691  * This function works by bumping the global DI generation number to
692  * the generation number of the current thread's DI, unless there is a
693  * pending DI that started earlier.  In the latter case, bumping the
694  * global DI generation number would incorrectly signal that the
695  * earlier DI had finished.  Instead, this function bumps the earlier
696  * DI's generation number to match the generation number of the
697  * current thread's DI.
698  */
699 static void
700 pmap_delayed_invl_finish_l(void)
701 {
702 	struct pmap_invl_gen *invl_gen, *next;
703 
704 	invl_gen = &curthread->td_md.md_invl_gen;
705 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
706 	mtx_lock(&invl_gen_mtx);
707 	next = LIST_NEXT(invl_gen, link);
708 	if (next == NULL)
709 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
710 	else
711 		next->gen = invl_gen->gen;
712 	LIST_REMOVE(invl_gen, link);
713 	mtx_unlock(&invl_gen_mtx);
714 	invl_gen->gen = 0;
715 }
716 
717 static bool
718 pmap_not_in_di_u(void)
719 {
720 	struct pmap_invl_gen *invl_gen;
721 
722 	invl_gen = &curthread->td_md.md_invl_gen;
723 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
724 }
725 
726 static void
727 pmap_thread_init_invl_gen_u(struct thread *td)
728 {
729 	struct pmap_invl_gen *invl_gen;
730 
731 	invl_gen = &td->td_md.md_invl_gen;
732 	invl_gen->gen = 0;
733 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
734 }
735 
736 static bool
737 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
738 {
739 	uint64_t new_high, new_low, old_high, old_low;
740 	char res;
741 
742 	old_low = new_low = 0;
743 	old_high = new_high = (uintptr_t)0;
744 
745 	__asm volatile("lock;cmpxchg16b\t%1"
746 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
747 	    : "b"(new_low), "c" (new_high)
748 	    : "memory", "cc");
749 	if (res == 0) {
750 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
751 			return (false);
752 		out->gen = old_low;
753 		out->next = (void *)old_high;
754 	} else {
755 		out->gen = new_low;
756 		out->next = (void *)new_high;
757 	}
758 	return (true);
759 }
760 
761 static bool
762 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
763     struct pmap_invl_gen *new_val)
764 {
765 	uint64_t new_high, new_low, old_high, old_low;
766 	char res;
767 
768 	new_low = new_val->gen;
769 	new_high = (uintptr_t)new_val->next;
770 	old_low = old_val->gen;
771 	old_high = (uintptr_t)old_val->next;
772 
773 	__asm volatile("lock;cmpxchg16b\t%1"
774 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
775 	    : "b"(new_low), "c" (new_high)
776 	    : "memory", "cc");
777 	return (res);
778 }
779 
780 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
781 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
782     &pv_page_count, "Current number of allocated pv pages");
783 
784 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
785 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
786     &user_pt_page_count,
787     "Current number of allocated page table pages for userspace");
788 
789 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
790 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
791     &kernel_pt_page_count,
792     "Current number of allocated page table pages for the kernel");
793 
794 #ifdef PV_STATS
795 
796 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
797 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
798     CTLFLAG_RD, &invl_start_restart,
799     "Number of delayed TLB invalidation request restarts");
800 
801 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
802 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
803     &invl_finish_restart,
804     "Number of delayed TLB invalidation completion restarts");
805 
806 static int invl_max_qlen;
807 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
808     &invl_max_qlen, 0,
809     "Maximum delayed TLB invalidation request queue length");
810 #endif
811 
812 #define di_delay	locks_delay
813 
814 static void
815 pmap_delayed_invl_start_u(void)
816 {
817 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
818 	struct thread *td;
819 	struct lock_delay_arg lda;
820 	uintptr_t prevl;
821 	u_char pri;
822 #ifdef PV_STATS
823 	int i, ii;
824 #endif
825 
826 	td = curthread;
827 	invl_gen = &td->td_md.md_invl_gen;
828 	PMAP_ASSERT_NOT_IN_DI();
829 	lock_delay_arg_init(&lda, &di_delay);
830 	invl_gen->saved_pri = 0;
831 	pri = td->td_base_pri;
832 	if (pri > PVM) {
833 		thread_lock(td);
834 		pri = td->td_base_pri;
835 		if (pri > PVM) {
836 			invl_gen->saved_pri = pri;
837 			sched_prio(td, PVM);
838 		}
839 		thread_unlock(td);
840 	}
841 again:
842 	PV_STAT(i = 0);
843 	for (p = &pmap_invl_gen_head;; p = prev.next) {
844 		PV_STAT(i++);
845 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
846 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
847 			PV_STAT(counter_u64_add(invl_start_restart, 1));
848 			lock_delay(&lda);
849 			goto again;
850 		}
851 		if (prevl == 0)
852 			break;
853 		prev.next = (void *)prevl;
854 	}
855 #ifdef PV_STATS
856 	if ((ii = invl_max_qlen) < i)
857 		atomic_cmpset_int(&invl_max_qlen, ii, i);
858 #endif
859 
860 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
861 		PV_STAT(counter_u64_add(invl_start_restart, 1));
862 		lock_delay(&lda);
863 		goto again;
864 	}
865 
866 	new_prev.gen = prev.gen;
867 	new_prev.next = invl_gen;
868 	invl_gen->gen = prev.gen + 1;
869 
870 	/* Formal fence between store to invl->gen and updating *p. */
871 	atomic_thread_fence_rel();
872 
873 	/*
874 	 * After inserting an invl_gen element with invalid bit set,
875 	 * this thread blocks any other thread trying to enter the
876 	 * delayed invalidation block.  Do not allow to remove us from
877 	 * the CPU, because it causes starvation for other threads.
878 	 */
879 	critical_enter();
880 
881 	/*
882 	 * ABA for *p is not possible there, since p->gen can only
883 	 * increase.  So if the *p thread finished its di, then
884 	 * started a new one and got inserted into the list at the
885 	 * same place, its gen will appear greater than the previously
886 	 * read gen.
887 	 */
888 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
889 		critical_exit();
890 		PV_STAT(counter_u64_add(invl_start_restart, 1));
891 		lock_delay(&lda);
892 		goto again;
893 	}
894 
895 	/*
896 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
897 	 * invl_gen->next, allowing other threads to iterate past us.
898 	 * pmap_di_store_invl() provides fence between the generation
899 	 * write and the update of next.
900 	 */
901 	invl_gen->next = NULL;
902 	critical_exit();
903 }
904 
905 static bool
906 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
907     struct pmap_invl_gen *p)
908 {
909 	struct pmap_invl_gen prev, new_prev;
910 	u_long mygen;
911 
912 	/*
913 	 * Load invl_gen->gen after setting invl_gen->next
914 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
915 	 * generations to propagate to our invl_gen->gen.  Lock prefix
916 	 * in atomic_set_ptr() worked as seq_cst fence.
917 	 */
918 	mygen = atomic_load_long(&invl_gen->gen);
919 
920 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
921 		return (false);
922 
923 	KASSERT(prev.gen < mygen,
924 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
925 	new_prev.gen = mygen;
926 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
927 	    ~PMAP_INVL_GEN_NEXT_INVALID);
928 
929 	/* Formal fence between load of prev and storing update to it. */
930 	atomic_thread_fence_rel();
931 
932 	return (pmap_di_store_invl(p, &prev, &new_prev));
933 }
934 
935 static void
936 pmap_delayed_invl_finish_u(void)
937 {
938 	struct pmap_invl_gen *invl_gen, *p;
939 	struct thread *td;
940 	struct lock_delay_arg lda;
941 	uintptr_t prevl;
942 
943 	td = curthread;
944 	invl_gen = &td->td_md.md_invl_gen;
945 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
946 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
947 	    ("missed invl_start: INVALID"));
948 	lock_delay_arg_init(&lda, &di_delay);
949 
950 again:
951 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
952 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
953 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
954 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
955 			lock_delay(&lda);
956 			goto again;
957 		}
958 		if ((void *)prevl == invl_gen)
959 			break;
960 	}
961 
962 	/*
963 	 * It is legitimate to not find ourself on the list if a
964 	 * thread before us finished its DI and started it again.
965 	 */
966 	if (__predict_false(p == NULL)) {
967 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
968 		lock_delay(&lda);
969 		goto again;
970 	}
971 
972 	critical_enter();
973 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
974 	    PMAP_INVL_GEN_NEXT_INVALID);
975 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
976 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
977 		    PMAP_INVL_GEN_NEXT_INVALID);
978 		critical_exit();
979 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
980 		lock_delay(&lda);
981 		goto again;
982 	}
983 	critical_exit();
984 	if (atomic_load_int(&pmap_invl_waiters) > 0)
985 		pmap_delayed_invl_finish_unblock(0);
986 	if (invl_gen->saved_pri != 0) {
987 		thread_lock(td);
988 		sched_prio(td, invl_gen->saved_pri);
989 		thread_unlock(td);
990 	}
991 }
992 
993 #ifdef DDB
994 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
995 {
996 	struct pmap_invl_gen *p, *pn;
997 	struct thread *td;
998 	uintptr_t nextl;
999 	bool first;
1000 
1001 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1002 	    first = false) {
1003 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1004 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1005 		td = first ? NULL : __containerof(p, struct thread,
1006 		    td_md.md_invl_gen);
1007 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1008 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1009 		    td != NULL ? td->td_tid : -1);
1010 	}
1011 }
1012 #endif
1013 
1014 #ifdef PV_STATS
1015 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1016 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1017     CTLFLAG_RD, &invl_wait,
1018     "Number of times DI invalidation blocked pmap_remove_all/write");
1019 
1020 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1021 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1022      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1023 
1024 #endif
1025 
1026 #ifdef NUMA
1027 static u_long *
1028 pmap_delayed_invl_genp(vm_page_t m)
1029 {
1030 	vm_paddr_t pa;
1031 	u_long *gen;
1032 
1033 	pa = VM_PAGE_TO_PHYS(m);
1034 	if (__predict_false((pa) > pmap_last_pa))
1035 		gen = &pv_dummy_large.pv_invl_gen;
1036 	else
1037 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1038 
1039 	return (gen);
1040 }
1041 #else
1042 static u_long *
1043 pmap_delayed_invl_genp(vm_page_t m)
1044 {
1045 
1046 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1047 }
1048 #endif
1049 
1050 static void
1051 pmap_delayed_invl_callout_func(void *arg __unused)
1052 {
1053 
1054 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1055 		return;
1056 	pmap_delayed_invl_finish_unblock(0);
1057 }
1058 
1059 static void
1060 pmap_delayed_invl_callout_init(void *arg __unused)
1061 {
1062 
1063 	if (pmap_di_locked())
1064 		return;
1065 	callout_init(&pmap_invl_callout, 1);
1066 	pmap_invl_callout_inited = true;
1067 }
1068 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1069     pmap_delayed_invl_callout_init, NULL);
1070 
1071 /*
1072  * Ensure that all currently executing DI blocks, that need to flush
1073  * TLB for the given page m, actually flushed the TLB at the time the
1074  * function returned.  If the page m has an empty PV list and we call
1075  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1076  * valid mapping for the page m in either its page table or TLB.
1077  *
1078  * This function works by blocking until the global DI generation
1079  * number catches up with the generation number associated with the
1080  * given page m and its PV list.  Since this function's callers
1081  * typically own an object lock and sometimes own a page lock, it
1082  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1083  * processor.
1084  */
1085 static void
1086 pmap_delayed_invl_wait_l(vm_page_t m)
1087 {
1088 	u_long *m_gen;
1089 #ifdef PV_STATS
1090 	bool accounted = false;
1091 #endif
1092 
1093 	m_gen = pmap_delayed_invl_genp(m);
1094 	while (*m_gen > pmap_invl_gen) {
1095 #ifdef PV_STATS
1096 		if (!accounted) {
1097 			counter_u64_add(invl_wait, 1);
1098 			accounted = true;
1099 		}
1100 #endif
1101 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1102 	}
1103 }
1104 
1105 static void
1106 pmap_delayed_invl_wait_u(vm_page_t m)
1107 {
1108 	u_long *m_gen;
1109 	struct lock_delay_arg lda;
1110 	bool fast;
1111 
1112 	fast = true;
1113 	m_gen = pmap_delayed_invl_genp(m);
1114 	lock_delay_arg_init(&lda, &di_delay);
1115 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1116 		if (fast || !pmap_invl_callout_inited) {
1117 			PV_STAT(counter_u64_add(invl_wait, 1));
1118 			lock_delay(&lda);
1119 			fast = false;
1120 		} else {
1121 			/*
1122 			 * The page's invalidation generation number
1123 			 * is still below the current thread's number.
1124 			 * Prepare to block so that we do not waste
1125 			 * CPU cycles or worse, suffer livelock.
1126 			 *
1127 			 * Since it is impossible to block without
1128 			 * racing with pmap_delayed_invl_finish_u(),
1129 			 * prepare for the race by incrementing
1130 			 * pmap_invl_waiters and arming a 1-tick
1131 			 * callout which will unblock us if we lose
1132 			 * the race.
1133 			 */
1134 			atomic_add_int(&pmap_invl_waiters, 1);
1135 
1136 			/*
1137 			 * Re-check the current thread's invalidation
1138 			 * generation after incrementing
1139 			 * pmap_invl_waiters, so that there is no race
1140 			 * with pmap_delayed_invl_finish_u() setting
1141 			 * the page generation and checking
1142 			 * pmap_invl_waiters.  The only race allowed
1143 			 * is for a missed unblock, which is handled
1144 			 * by the callout.
1145 			 */
1146 			if (*m_gen >
1147 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1148 				callout_reset(&pmap_invl_callout, 1,
1149 				    pmap_delayed_invl_callout_func, NULL);
1150 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1151 				pmap_delayed_invl_wait_block(m_gen,
1152 				    &pmap_invl_gen_head.gen);
1153 			}
1154 			atomic_add_int(&pmap_invl_waiters, -1);
1155 		}
1156 	}
1157 }
1158 
1159 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1160 {
1161 
1162 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1163 	    pmap_thread_init_invl_gen_u);
1164 }
1165 
1166 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1167 {
1168 
1169 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1170 	    pmap_delayed_invl_start_u);
1171 }
1172 
1173 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1174 {
1175 
1176 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1177 	    pmap_delayed_invl_finish_u);
1178 }
1179 
1180 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1181 {
1182 
1183 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1184 	    pmap_delayed_invl_wait_u);
1185 }
1186 
1187 /*
1188  * Mark the page m's PV list as participating in the current thread's
1189  * DI block.  Any threads concurrently using m's PV list to remove or
1190  * restrict all mappings to m will wait for the current thread's DI
1191  * block to complete before proceeding.
1192  *
1193  * The function works by setting the DI generation number for m's PV
1194  * list to at least the DI generation number of the current thread.
1195  * This forces a caller of pmap_delayed_invl_wait() to block until
1196  * current thread calls pmap_delayed_invl_finish().
1197  */
1198 static void
1199 pmap_delayed_invl_page(vm_page_t m)
1200 {
1201 	u_long gen, *m_gen;
1202 
1203 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1204 	gen = curthread->td_md.md_invl_gen.gen;
1205 	if (gen == 0)
1206 		return;
1207 	m_gen = pmap_delayed_invl_genp(m);
1208 	if (*m_gen < gen)
1209 		*m_gen = gen;
1210 }
1211 
1212 /*
1213  * Crashdump maps.
1214  */
1215 static caddr_t crashdumpmap;
1216 
1217 /*
1218  * Internal flags for pmap_enter()'s helper functions.
1219  */
1220 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1221 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1222 
1223 /*
1224  * Internal flags for pmap_mapdev_internal() and
1225  * pmap_change_props_locked().
1226  */
1227 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1228 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1229 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1230 
1231 TAILQ_HEAD(pv_chunklist, pv_chunk);
1232 
1233 static void	free_pv_chunk(struct pv_chunk *pc);
1234 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1235 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1236 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1237 static int	popcnt_pc_map_pq(uint64_t *map);
1238 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1239 static void	reserve_pv_entries(pmap_t pmap, int needed,
1240 		    struct rwlock **lockp);
1241 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1242 		    struct rwlock **lockp);
1243 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1244 		    u_int flags, struct rwlock **lockp);
1245 #if VM_NRESERVLEVEL > 0
1246 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1247 		    struct rwlock **lockp);
1248 #endif
1249 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1250 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1251 		    vm_offset_t va);
1252 
1253 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1254 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1255     vm_prot_t prot, int mode, int flags);
1256 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1257 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1258     vm_offset_t va, struct rwlock **lockp);
1259 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1260     vm_offset_t va);
1261 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1262 		    vm_prot_t prot, struct rwlock **lockp);
1263 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1264 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1265 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1266     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1267 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1268 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
1269 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1270     vm_offset_t eva);
1271 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1272     vm_offset_t eva);
1273 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1274 		    pd_entry_t pde);
1275 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1276 static vm_page_t pmap_large_map_getptp_unlocked(void);
1277 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1278 #if VM_NRESERVLEVEL > 0
1279 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1280     struct rwlock **lockp);
1281 #endif
1282 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1283     vm_prot_t prot);
1284 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1285 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1286     bool exec);
1287 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1288 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1289 static void pmap_pti_wire_pte(void *pte);
1290 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1291     struct spglist *free, struct rwlock **lockp);
1292 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1293     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1294 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1295 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1296     struct spglist *free);
1297 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1298 		    pd_entry_t *pde, struct spglist *free,
1299 		    struct rwlock **lockp);
1300 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1301     vm_page_t m, struct rwlock **lockp);
1302 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1303     pd_entry_t newpde);
1304 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1305 
1306 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1307 		struct rwlock **lockp);
1308 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1309 		struct rwlock **lockp, vm_offset_t va);
1310 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1311 		struct rwlock **lockp, vm_offset_t va);
1312 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1313 		struct rwlock **lockp);
1314 
1315 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1316     struct spglist *free);
1317 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1318 
1319 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1320 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1321 
1322 /********************/
1323 /* Inline functions */
1324 /********************/
1325 
1326 /*
1327  * Return a non-clipped indexes for a given VA, which are page table
1328  * pages indexes at the corresponding level.
1329  */
1330 static __inline vm_pindex_t
1331 pmap_pde_pindex(vm_offset_t va)
1332 {
1333 	return (va >> PDRSHIFT);
1334 }
1335 
1336 static __inline vm_pindex_t
1337 pmap_pdpe_pindex(vm_offset_t va)
1338 {
1339 	return (NUPDE + (va >> PDPSHIFT));
1340 }
1341 
1342 static __inline vm_pindex_t
1343 pmap_pml4e_pindex(vm_offset_t va)
1344 {
1345 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1346 }
1347 
1348 static __inline vm_pindex_t
1349 pmap_pml5e_pindex(vm_offset_t va)
1350 {
1351 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1352 }
1353 
1354 static __inline pml4_entry_t *
1355 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1356 {
1357 
1358 	MPASS(pmap_is_la57(pmap));
1359 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1360 }
1361 
1362 static __inline pml4_entry_t *
1363 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1364 {
1365 
1366 	MPASS(pmap_is_la57(pmap));
1367 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1368 }
1369 
1370 static __inline pml4_entry_t *
1371 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1372 {
1373 	pml4_entry_t *pml4e;
1374 
1375 	/* XXX MPASS(pmap_is_la57(pmap); */
1376 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1377 	return (&pml4e[pmap_pml4e_index(va)]);
1378 }
1379 
1380 /* Return a pointer to the PML4 slot that corresponds to a VA */
1381 static __inline pml4_entry_t *
1382 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1383 {
1384 	pml5_entry_t *pml5e;
1385 	pml4_entry_t *pml4e;
1386 	pt_entry_t PG_V;
1387 
1388 	if (pmap_is_la57(pmap)) {
1389 		pml5e = pmap_pml5e(pmap, va);
1390 		PG_V = pmap_valid_bit(pmap);
1391 		if ((*pml5e & PG_V) == 0)
1392 			return (NULL);
1393 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1394 	} else {
1395 		pml4e = pmap->pm_pmltop;
1396 	}
1397 	return (&pml4e[pmap_pml4e_index(va)]);
1398 }
1399 
1400 static __inline pml4_entry_t *
1401 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1402 {
1403 	MPASS(!pmap_is_la57(pmap));
1404 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1405 }
1406 
1407 /* Return a pointer to the PDP slot that corresponds to a VA */
1408 static __inline pdp_entry_t *
1409 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1410 {
1411 	pdp_entry_t *pdpe;
1412 
1413 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1414 	return (&pdpe[pmap_pdpe_index(va)]);
1415 }
1416 
1417 /* Return a pointer to the PDP slot that corresponds to a VA */
1418 static __inline pdp_entry_t *
1419 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1420 {
1421 	pml4_entry_t *pml4e;
1422 	pt_entry_t PG_V;
1423 
1424 	PG_V = pmap_valid_bit(pmap);
1425 	pml4e = pmap_pml4e(pmap, va);
1426 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1427 		return (NULL);
1428 	return (pmap_pml4e_to_pdpe(pml4e, va));
1429 }
1430 
1431 /* Return a pointer to the PD slot that corresponds to a VA */
1432 static __inline pd_entry_t *
1433 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1434 {
1435 	pd_entry_t *pde;
1436 
1437 	KASSERT((*pdpe & PG_PS) == 0,
1438 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1439 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1440 	return (&pde[pmap_pde_index(va)]);
1441 }
1442 
1443 /* Return a pointer to the PD slot that corresponds to a VA */
1444 static __inline pd_entry_t *
1445 pmap_pde(pmap_t pmap, vm_offset_t va)
1446 {
1447 	pdp_entry_t *pdpe;
1448 	pt_entry_t PG_V;
1449 
1450 	PG_V = pmap_valid_bit(pmap);
1451 	pdpe = pmap_pdpe(pmap, va);
1452 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1453 		return (NULL);
1454 	KASSERT((*pdpe & PG_PS) == 0,
1455 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1456 	return (pmap_pdpe_to_pde(pdpe, va));
1457 }
1458 
1459 /* Return a pointer to the PT slot that corresponds to a VA */
1460 static __inline pt_entry_t *
1461 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1462 {
1463 	pt_entry_t *pte;
1464 
1465 	KASSERT((*pde & PG_PS) == 0,
1466 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1467 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1468 	return (&pte[pmap_pte_index(va)]);
1469 }
1470 
1471 /* Return a pointer to the PT slot that corresponds to a VA */
1472 static __inline pt_entry_t *
1473 pmap_pte(pmap_t pmap, vm_offset_t va)
1474 {
1475 	pd_entry_t *pde;
1476 	pt_entry_t PG_V;
1477 
1478 	PG_V = pmap_valid_bit(pmap);
1479 	pde = pmap_pde(pmap, va);
1480 	if (pde == NULL || (*pde & PG_V) == 0)
1481 		return (NULL);
1482 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1483 		return ((pt_entry_t *)pde);
1484 	return (pmap_pde_to_pte(pde, va));
1485 }
1486 
1487 static __inline void
1488 pmap_resident_count_adj(pmap_t pmap, int count)
1489 {
1490 
1491 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1492 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1493 	    ("pmap %p resident count underflow %ld %d", pmap,
1494 	    pmap->pm_stats.resident_count, count));
1495 	pmap->pm_stats.resident_count += count;
1496 }
1497 
1498 static __inline void
1499 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1500 {
1501 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1502 	    ("pmap %p resident count underflow %ld %d", pmap,
1503 	    pmap->pm_stats.resident_count, count));
1504 	pmap->pm_stats.resident_count += count;
1505 }
1506 
1507 static __inline void
1508 pmap_pt_page_count_adj(pmap_t pmap, int count)
1509 {
1510 	if (pmap == kernel_pmap)
1511 		counter_u64_add(kernel_pt_page_count, count);
1512 	else {
1513 		if (pmap != NULL)
1514 			pmap_resident_count_adj(pmap, count);
1515 		counter_u64_add(user_pt_page_count, count);
1516 	}
1517 }
1518 
1519 PMAP_INLINE pt_entry_t *
1520 vtopte(vm_offset_t va)
1521 {
1522 	u_int64_t mask;
1523 
1524 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1525 
1526 	if (la57) {
1527 		mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1528 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1529 		return (P5Tmap + ((va >> PAGE_SHIFT) & mask));
1530 	} else {
1531 		mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1532 		    NPML4EPGSHIFT)) - 1);
1533 		return (P4Tmap + ((va >> PAGE_SHIFT) & mask));
1534 	}
1535 }
1536 
1537 static __inline pd_entry_t *
1538 vtopde(vm_offset_t va)
1539 {
1540 	u_int64_t mask;
1541 
1542 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1543 
1544 	if (la57) {
1545 		mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1546 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1547 		return (P5Dmap + ((va >> PDRSHIFT) & mask));
1548 	} else {
1549 		mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1550 		    NPML4EPGSHIFT)) - 1);
1551 		return (P4Dmap + ((va >> PDRSHIFT) & mask));
1552 	}
1553 }
1554 
1555 static u_int64_t
1556 allocpages(vm_paddr_t *firstaddr, int n)
1557 {
1558 	u_int64_t ret;
1559 
1560 	ret = *firstaddr;
1561 	bzero((void *)ret, n * PAGE_SIZE);
1562 	*firstaddr += n * PAGE_SIZE;
1563 	return (ret);
1564 }
1565 
1566 CTASSERT(powerof2(NDMPML4E));
1567 
1568 /* number of kernel PDP slots */
1569 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1570 
1571 static void
1572 nkpt_init(vm_paddr_t addr)
1573 {
1574 	int pt_pages;
1575 
1576 #ifdef NKPT
1577 	pt_pages = NKPT;
1578 #else
1579 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1580 	pt_pages += NKPDPE(pt_pages);
1581 
1582 	/*
1583 	 * Add some slop beyond the bare minimum required for bootstrapping
1584 	 * the kernel.
1585 	 *
1586 	 * This is quite important when allocating KVA for kernel modules.
1587 	 * The modules are required to be linked in the negative 2GB of
1588 	 * the address space.  If we run out of KVA in this region then
1589 	 * pmap_growkernel() will need to allocate page table pages to map
1590 	 * the entire 512GB of KVA space which is an unnecessary tax on
1591 	 * physical memory.
1592 	 *
1593 	 * Secondly, device memory mapped as part of setting up the low-
1594 	 * level console(s) is taken from KVA, starting at virtual_avail.
1595 	 * This is because cninit() is called after pmap_bootstrap() but
1596 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1597 	 * not uncommon.
1598 	 */
1599 	pt_pages += 32;		/* 64MB additional slop. */
1600 #endif
1601 	nkpt = pt_pages;
1602 }
1603 
1604 /*
1605  * Returns the proper write/execute permission for a physical page that is
1606  * part of the initial boot allocations.
1607  *
1608  * If the page has kernel text, it is marked as read-only. If the page has
1609  * kernel read-only data, it is marked as read-only/not-executable. If the
1610  * page has only read-write data, it is marked as read-write/not-executable.
1611  * If the page is below/above the kernel range, it is marked as read-write.
1612  *
1613  * This function operates on 2M pages, since we map the kernel space that
1614  * way.
1615  */
1616 static inline pt_entry_t
1617 bootaddr_rwx(vm_paddr_t pa)
1618 {
1619 	/*
1620 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1621 	 * need not be executable.  The .bss section is padded to a 2MB
1622 	 * boundary, so memory following the kernel need not be executable
1623 	 * either.  Preloaded kernel modules have their mapping permissions
1624 	 * fixed up by the linker.
1625 	 */
1626 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1627 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1628 		return (X86_PG_RW | pg_nx);
1629 
1630 	/*
1631 	 * The linker should ensure that the read-only and read-write
1632 	 * portions don't share the same 2M page, so this shouldn't
1633 	 * impact read-only data. However, in any case, any page with
1634 	 * read-write data needs to be read-write.
1635 	 */
1636 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1637 		return (X86_PG_RW | pg_nx);
1638 
1639 	/*
1640 	 * Mark any 2M page containing kernel text as read-only. Mark
1641 	 * other pages with read-only data as read-only and not executable.
1642 	 * (It is likely a small portion of the read-only data section will
1643 	 * be marked as read-only, but executable. This should be acceptable
1644 	 * since the read-only protection will keep the data from changing.)
1645 	 * Note that fixups to the .text section will still work until we
1646 	 * set CR0.WP.
1647 	 */
1648 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1649 		return (0);
1650 	return (pg_nx);
1651 }
1652 
1653 static void
1654 create_pagetables(vm_paddr_t *firstaddr)
1655 {
1656 	pd_entry_t *pd_p;
1657 	pdp_entry_t *pdp_p;
1658 	pml4_entry_t *p4_p;
1659 	uint64_t DMPDkernphys;
1660 	vm_paddr_t pax;
1661 #ifdef KASAN
1662 	pt_entry_t *pt_p;
1663 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1664 	vm_offset_t kasankernbase;
1665 	int kasankpdpi, kasankpdi, nkasanpte;
1666 #endif
1667 	int i, j, ndm1g, nkpdpe, nkdmpde;
1668 
1669 	/* Allocate page table pages for the direct map */
1670 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1671 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1672 		ndmpdp = 4;
1673 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1674 	if (ndmpdpphys > NDMPML4E) {
1675 		/*
1676 		 * Each NDMPML4E allows 512 GB, so limit to that,
1677 		 * and then readjust ndmpdp and ndmpdpphys.
1678 		 */
1679 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1680 		Maxmem = atop(NDMPML4E * NBPML4);
1681 		ndmpdpphys = NDMPML4E;
1682 		ndmpdp = NDMPML4E * NPDEPG;
1683 	}
1684 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1685 	ndm1g = 0;
1686 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1687 		/*
1688 		 * Calculate the number of 1G pages that will fully fit in
1689 		 * Maxmem.
1690 		 */
1691 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1692 
1693 		/*
1694 		 * Allocate 2M pages for the kernel. These will be used in
1695 		 * place of the one or more 1G pages from ndm1g that maps
1696 		 * kernel memory into DMAP.
1697 		 */
1698 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1699 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1700 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1701 	}
1702 	if (ndm1g < ndmpdp)
1703 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1704 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1705 
1706 	/* Allocate pages. */
1707 	KPML4phys = allocpages(firstaddr, 1);
1708 	KPDPphys = allocpages(firstaddr, NKPML4E);
1709 #ifdef KASAN
1710 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1711 	KASANPDphys = allocpages(firstaddr, 1);
1712 #endif
1713 #ifdef KMSAN
1714 	/*
1715 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1716 	 * no need to shadow memory above KERNBASE.
1717 	 */
1718 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1719 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1720 #endif
1721 
1722 	/*
1723 	 * Allocate the initial number of kernel page table pages required to
1724 	 * bootstrap.  We defer this until after all memory-size dependent
1725 	 * allocations are done (e.g. direct map), so that we don't have to
1726 	 * build in too much slop in our estimate.
1727 	 *
1728 	 * Note that when NKPML4E > 1, we have an empty page underneath
1729 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1730 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1731 	 */
1732 	nkpt_init(*firstaddr);
1733 	nkpdpe = NKPDPE(nkpt);
1734 
1735 	KPTphys = allocpages(firstaddr, nkpt);
1736 	KPDphys = allocpages(firstaddr, nkpdpe);
1737 
1738 #ifdef KASAN
1739 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1740 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1741 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1742 #endif
1743 
1744 	/*
1745 	 * Connect the zero-filled PT pages to their PD entries.  This
1746 	 * implicitly maps the PT pages at their correct locations within
1747 	 * the PTmap.
1748 	 */
1749 	pd_p = (pd_entry_t *)KPDphys;
1750 	for (i = 0; i < nkpt; i++)
1751 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1752 
1753 	/*
1754 	 * Map from start of the kernel in physical memory (staging
1755 	 * area) to the end of loader preallocated memory using 2MB
1756 	 * pages.  This replaces some of the PD entries created above.
1757 	 * For compatibility, identity map 2M at the start.
1758 	 */
1759 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1760 	    X86_PG_RW | pg_nx;
1761 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1762 		/* Preset PG_M and PG_A because demotion expects it. */
1763 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1764 		    X86_PG_A | bootaddr_rwx(pax);
1765 	}
1766 
1767 	/*
1768 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1769 	 * to record the physical blocks we've actually mapped into kernel
1770 	 * virtual address space.
1771 	 */
1772 	if (*firstaddr < round_2mpage(KERNend))
1773 		*firstaddr = round_2mpage(KERNend);
1774 
1775 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1776 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1777 	for (i = 0; i < nkpdpe; i++)
1778 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1779 
1780 #ifdef KASAN
1781 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1782 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1783 	kasankpdi = pmap_pde_index(kasankernbase);
1784 
1785 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1786 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1787 
1788 	pd_p = (pd_entry_t *)KASANPDphys;
1789 	for (i = 0; i < nkasanpte; i++)
1790 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1791 		    X86_PG_V | pg_nx;
1792 
1793 	pt_p = (pt_entry_t *)KASANPTphys;
1794 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1795 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1796 		    X86_PG_M | X86_PG_A | pg_nx;
1797 #endif
1798 
1799 	/*
1800 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1801 	 * the end of physical memory is not aligned to a 1GB page boundary,
1802 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1803 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1804 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1805 	 * that are partially used.
1806 	 */
1807 	pd_p = (pd_entry_t *)DMPDphys;
1808 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1809 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1810 		/* Preset PG_M and PG_A because demotion expects it. */
1811 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1812 		    X86_PG_M | X86_PG_A | pg_nx;
1813 	}
1814 	pdp_p = (pdp_entry_t *)DMPDPphys;
1815 	for (i = 0; i < ndm1g; i++) {
1816 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1817 		/* Preset PG_M and PG_A because demotion expects it. */
1818 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1819 		    X86_PG_M | X86_PG_A | pg_nx;
1820 	}
1821 	for (j = 0; i < ndmpdp; i++, j++) {
1822 		pdp_p[i] = DMPDphys + ptoa(j);
1823 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1824 	}
1825 
1826 	/*
1827 	 * Instead of using a 1G page for the memory containing the kernel,
1828 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1829 	 * pages, this will partially overwrite the PDPEs above.)
1830 	 */
1831 	if (ndm1g > 0) {
1832 		pd_p = (pd_entry_t *)DMPDkernphys;
1833 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1834 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1835 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1836 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1837 		}
1838 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1839 		for (i = 0; i < nkdmpde; i++) {
1840 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1841 			    X86_PG_RW | X86_PG_V | pg_nx;
1842 		}
1843 	}
1844 
1845 	/* And recursively map PML4 to itself in order to get PTmap */
1846 	p4_p = (pml4_entry_t *)KPML4phys;
1847 	p4_p[PML4PML4I] = KPML4phys;
1848 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1849 
1850 #ifdef KASAN
1851 	/* Connect the KASAN shadow map slots up to the PML4. */
1852 	for (i = 0; i < NKASANPML4E; i++) {
1853 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1854 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1855 	}
1856 #endif
1857 
1858 #ifdef KMSAN
1859 	/* Connect the KMSAN shadow map slots up to the PML4. */
1860 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1861 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1862 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1863 	}
1864 
1865 	/* Connect the KMSAN origin map slots up to the PML4. */
1866 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1867 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1868 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1869 	}
1870 #endif
1871 
1872 	/* Connect the Direct Map slots up to the PML4. */
1873 	for (i = 0; i < ndmpdpphys; i++) {
1874 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1875 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1876 	}
1877 
1878 	/* Connect the KVA slots up to the PML4 */
1879 	for (i = 0; i < NKPML4E; i++) {
1880 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1881 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1882 	}
1883 
1884 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1885 }
1886 
1887 /*
1888  *	Bootstrap the system enough to run with virtual memory.
1889  *
1890  *	On amd64 this is called after mapping has already been enabled
1891  *	and just syncs the pmap module with what has already been done.
1892  *	[We can't call it easily with mapping off since the kernel is not
1893  *	mapped with PA == VA, hence we would have to relocate every address
1894  *	from the linked base (virtual) address "KERNBASE" to the actual
1895  *	(physical) address starting relative to 0]
1896  */
1897 void
1898 pmap_bootstrap(vm_paddr_t *firstaddr)
1899 {
1900 	vm_offset_t va;
1901 	pt_entry_t *pte, *pcpu_pte;
1902 	struct region_descriptor r_gdt;
1903 	uint64_t cr4, pcpu_phys;
1904 	u_long res;
1905 	int i;
1906 
1907 	KERNend = *firstaddr;
1908 	res = atop(KERNend - (vm_paddr_t)kernphys);
1909 
1910 	if (!pti)
1911 		pg_g = X86_PG_G;
1912 
1913 	/*
1914 	 * Create an initial set of page tables to run the kernel in.
1915 	 */
1916 	create_pagetables(firstaddr);
1917 
1918 	pcpu_phys = allocpages(firstaddr, MAXCPU);
1919 
1920 	/*
1921 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1922 	 * preallocated kernel page table pages so that vm_page structures
1923 	 * representing these pages will be created.  The vm_page structures
1924 	 * are required for promotion of the corresponding kernel virtual
1925 	 * addresses to superpage mappings.
1926 	 */
1927 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1928 
1929 	/*
1930 	 * Account for the virtual addresses mapped by create_pagetables().
1931 	 */
1932 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1933 	    (vm_paddr_t)kernphys);
1934 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1935 
1936 	/*
1937 	 * Enable PG_G global pages, then switch to the kernel page
1938 	 * table from the bootstrap page table.  After the switch, it
1939 	 * is possible to enable SMEP and SMAP since PG_U bits are
1940 	 * correct now.
1941 	 */
1942 	cr4 = rcr4();
1943 	cr4 |= CR4_PGE;
1944 	load_cr4(cr4);
1945 	load_cr3(KPML4phys);
1946 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1947 		cr4 |= CR4_SMEP;
1948 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1949 		cr4 |= CR4_SMAP;
1950 	load_cr4(cr4);
1951 
1952 	/*
1953 	 * Initialize the kernel pmap (which is statically allocated).
1954 	 * Count bootstrap data as being resident in case any of this data is
1955 	 * later unmapped (using pmap_remove()) and freed.
1956 	 */
1957 	PMAP_LOCK_INIT(kernel_pmap);
1958 	kernel_pmap->pm_pmltop = kernel_pml4;
1959 	kernel_pmap->pm_cr3 = KPML4phys;
1960 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1961 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
1962 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1963 	kernel_pmap->pm_stats.resident_count = res;
1964 	kernel_pmap->pm_flags = pmap_flags;
1965 
1966  	/*
1967 	 * Initialize the TLB invalidations generation number lock.
1968 	 */
1969 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1970 
1971 	/*
1972 	 * Reserve some special page table entries/VA space for temporary
1973 	 * mapping of pages.
1974 	 */
1975 #define	SYSMAP(c, p, v, n)	\
1976 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1977 
1978 	va = virtual_avail;
1979 	pte = vtopte(va);
1980 
1981 	/*
1982 	 * Crashdump maps.  The first page is reused as CMAP1 for the
1983 	 * memory test.
1984 	 */
1985 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1986 	CADDR1 = crashdumpmap;
1987 
1988 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
1989 	virtual_avail = va;
1990 
1991 	for (i = 0; i < MAXCPU; i++) {
1992 		pcpu_pte[i] = (pcpu_phys + ptoa(i)) | X86_PG_V | X86_PG_RW |
1993 		    pg_g | pg_nx | X86_PG_M | X86_PG_A;
1994 	}
1995 
1996 	/*
1997 	 * Re-initialize PCPU area for BSP after switching.
1998 	 * Make hardware use gdt and common_tss from the new PCPU.
1999 	 */
2000 	STAILQ_INIT(&cpuhead);
2001 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2002 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2003 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2004 	amd64_bsp_ist_init(&__pcpu[0]);
2005 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2006 	    IOPERM_BITMAP_SIZE;
2007 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2008 	    sizeof(struct user_segment_descriptor));
2009 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2010 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2011 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2012 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2013 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2014 	lgdt(&r_gdt);
2015 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2016 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2017 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2018 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2019 
2020 	/*
2021 	 * Initialize the PAT MSR.
2022 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2023 	 * side-effect, invalidates stale PG_G TLB entries that might
2024 	 * have been created in our pre-boot environment.
2025 	 */
2026 	pmap_init_pat();
2027 
2028 	/* Initialize TLB Context Id. */
2029 	if (pmap_pcid_enabled) {
2030 		for (i = 0; i < MAXCPU; i++) {
2031 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
2032 			kernel_pmap->pm_pcids[i].pm_gen = 1;
2033 		}
2034 
2035 		/*
2036 		 * PMAP_PCID_KERN + 1 is used for initialization of
2037 		 * proc0 pmap.  The pmap' pcid state might be used by
2038 		 * EFIRT entry before first context switch, so it
2039 		 * needs to be valid.
2040 		 */
2041 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2042 		PCPU_SET(pcid_gen, 1);
2043 
2044 		/*
2045 		 * pcpu area for APs is zeroed during AP startup.
2046 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2047 		 * during pcpu setup.
2048 		 */
2049 		load_cr4(rcr4() | CR4_PCIDE);
2050 	}
2051 }
2052 
2053 /*
2054  * Setup the PAT MSR.
2055  */
2056 void
2057 pmap_init_pat(void)
2058 {
2059 	uint64_t pat_msr;
2060 	u_long cr0, cr4;
2061 	int i;
2062 
2063 	/* Bail if this CPU doesn't implement PAT. */
2064 	if ((cpu_feature & CPUID_PAT) == 0)
2065 		panic("no PAT??");
2066 
2067 	/* Set default PAT index table. */
2068 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2069 		pat_index[i] = -1;
2070 	pat_index[PAT_WRITE_BACK] = 0;
2071 	pat_index[PAT_WRITE_THROUGH] = 1;
2072 	pat_index[PAT_UNCACHEABLE] = 3;
2073 	pat_index[PAT_WRITE_COMBINING] = 6;
2074 	pat_index[PAT_WRITE_PROTECTED] = 5;
2075 	pat_index[PAT_UNCACHED] = 2;
2076 
2077 	/*
2078 	 * Initialize default PAT entries.
2079 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2080 	 * Program 5 and 6 as WP and WC.
2081 	 *
2082 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2083 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2084 	 * to its overload with PG_PS.
2085 	 */
2086 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2087 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2088 	    PAT_VALUE(2, PAT_UNCACHED) |
2089 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2090 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2091 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2092 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2093 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2094 
2095 	/* Disable PGE. */
2096 	cr4 = rcr4();
2097 	load_cr4(cr4 & ~CR4_PGE);
2098 
2099 	/* Disable caches (CD = 1, NW = 0). */
2100 	cr0 = rcr0();
2101 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2102 
2103 	/* Flushes caches and TLBs. */
2104 	wbinvd();
2105 	invltlb();
2106 
2107 	/* Update PAT and index table. */
2108 	wrmsr(MSR_PAT, pat_msr);
2109 
2110 	/* Flush caches and TLBs again. */
2111 	wbinvd();
2112 	invltlb();
2113 
2114 	/* Restore caches and PGE. */
2115 	load_cr0(cr0);
2116 	load_cr4(cr4);
2117 }
2118 
2119 vm_page_t
2120 pmap_page_alloc_below_4g(bool zeroed)
2121 {
2122 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2123 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2124 }
2125 
2126 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2127     la57_trampoline_gdt[], la57_trampoline_end[];
2128 
2129 static void
2130 pmap_bootstrap_la57(void *arg __unused)
2131 {
2132 	char *v_code;
2133 	pml5_entry_t *v_pml5;
2134 	pml4_entry_t *v_pml4;
2135 	pdp_entry_t *v_pdp;
2136 	pd_entry_t *v_pd;
2137 	pt_entry_t *v_pt;
2138 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2139 	void (*la57_tramp)(uint64_t pml5);
2140 	struct region_descriptor r_gdt;
2141 
2142 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2143 		return;
2144 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2145 	if (!la57)
2146 		return;
2147 
2148 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2149 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2150 
2151 	m_code = pmap_page_alloc_below_4g(true);
2152 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2153 	m_pml5 = pmap_page_alloc_below_4g(true);
2154 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2155 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2156 	m_pml4 = pmap_page_alloc_below_4g(true);
2157 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2158 	m_pdp = pmap_page_alloc_below_4g(true);
2159 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2160 	m_pd = pmap_page_alloc_below_4g(true);
2161 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2162 	m_pt = pmap_page_alloc_below_4g(true);
2163 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2164 
2165 	/*
2166 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2167 	 * address being below 4G.  Since kernel KVA is in upper half,
2168 	 * the pml4e should be zero and free for temporary use.
2169 	 */
2170 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2171 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2172 	    X86_PG_M;
2173 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2174 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2175 	    X86_PG_M;
2176 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2177 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2178 	    X86_PG_M;
2179 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2180 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2181 	    X86_PG_M;
2182 
2183 	/*
2184 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2185 	 * entering all existing kernel mappings into level 5 table.
2186 	 */
2187 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2188 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2189 
2190 	/*
2191 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2192 	 */
2193 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2194 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2195 	    X86_PG_M;
2196 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2197 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2198 	    X86_PG_M;
2199 
2200 	/*
2201 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2202 	 */
2203 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2204 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2205 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2206 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2207 	invlpg((vm_offset_t)la57_tramp);
2208 	la57_tramp(KPML5phys);
2209 
2210 	/*
2211 	 * gdt was necessary reset, switch back to our gdt.
2212 	 */
2213 	lgdt(&r_gdt);
2214 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2215 	load_ds(_udatasel);
2216 	load_es(_udatasel);
2217 	load_fs(_ufssel);
2218 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2219 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2220 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2221 
2222 	/*
2223 	 * Now unmap the trampoline, and free the pages.
2224 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2225 	 */
2226 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2227 	invlpg((vm_offset_t)v_code);
2228 	vm_page_free(m_code);
2229 	vm_page_free(m_pdp);
2230 	vm_page_free(m_pd);
2231 	vm_page_free(m_pt);
2232 
2233 	/*
2234 	 * Recursively map PML5 to itself in order to get PTmap and
2235 	 * PDmap.
2236 	 */
2237 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2238 
2239 	kernel_pmap->pm_cr3 = KPML5phys;
2240 	kernel_pmap->pm_pmltop = v_pml5;
2241 	pmap_pt_page_count_adj(kernel_pmap, 1);
2242 }
2243 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2244 
2245 /*
2246  *	Initialize a vm_page's machine-dependent fields.
2247  */
2248 void
2249 pmap_page_init(vm_page_t m)
2250 {
2251 
2252 	TAILQ_INIT(&m->md.pv_list);
2253 	m->md.pat_mode = PAT_WRITE_BACK;
2254 }
2255 
2256 static int pmap_allow_2m_x_ept;
2257 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2258     &pmap_allow_2m_x_ept, 0,
2259     "Allow executable superpage mappings in EPT");
2260 
2261 void
2262 pmap_allow_2m_x_ept_recalculate(void)
2263 {
2264 	/*
2265 	 * SKL002, SKL012S.  Since the EPT format is only used by
2266 	 * Intel CPUs, the vendor check is merely a formality.
2267 	 */
2268 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2269 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2270 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2271 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2272 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2273 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2274 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2275 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2276 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2277 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2278 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2279 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2280 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2281 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2282 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2283 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2284 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2285 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2286 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2287 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2288 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2289 		pmap_allow_2m_x_ept = 1;
2290 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2291 }
2292 
2293 static bool
2294 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2295 {
2296 
2297 	return (pmap->pm_type != PT_EPT || !executable ||
2298 	    !pmap_allow_2m_x_ept);
2299 }
2300 
2301 #ifdef NUMA
2302 static void
2303 pmap_init_pv_table(void)
2304 {
2305 	struct pmap_large_md_page *pvd;
2306 	vm_size_t s;
2307 	long start, end, highest, pv_npg;
2308 	int domain, i, j, pages;
2309 
2310 	/*
2311 	 * We strongly depend on the size being a power of two, so the assert
2312 	 * is overzealous. However, should the struct be resized to a
2313 	 * different power of two, the code below needs to be revisited.
2314 	 */
2315 	CTASSERT((sizeof(*pvd) == 64));
2316 
2317 	/*
2318 	 * Calculate the size of the array.
2319 	 */
2320 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2321 	pv_npg = howmany(pmap_last_pa, NBPDR);
2322 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2323 	s = round_page(s);
2324 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2325 	if (pv_table == NULL)
2326 		panic("%s: kva_alloc failed\n", __func__);
2327 
2328 	/*
2329 	 * Iterate physical segments to allocate space for respective pages.
2330 	 */
2331 	highest = -1;
2332 	s = 0;
2333 	for (i = 0; i < vm_phys_nsegs; i++) {
2334 		end = vm_phys_segs[i].end / NBPDR;
2335 		domain = vm_phys_segs[i].domain;
2336 
2337 		if (highest >= end)
2338 			continue;
2339 
2340 		start = highest + 1;
2341 		pvd = &pv_table[start];
2342 
2343 		pages = end - start + 1;
2344 		s = round_page(pages * sizeof(*pvd));
2345 		highest = start + (s / sizeof(*pvd)) - 1;
2346 
2347 		for (j = 0; j < s; j += PAGE_SIZE) {
2348 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2349 			if (m == NULL)
2350 				panic("failed to allocate PV table page");
2351 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2352 		}
2353 
2354 		for (j = 0; j < s / sizeof(*pvd); j++) {
2355 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2356 			TAILQ_INIT(&pvd->pv_page.pv_list);
2357 			pvd->pv_page.pv_gen = 0;
2358 			pvd->pv_page.pat_mode = 0;
2359 			pvd->pv_invl_gen = 0;
2360 			pvd++;
2361 		}
2362 	}
2363 	pvd = &pv_dummy_large;
2364 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2365 	TAILQ_INIT(&pvd->pv_page.pv_list);
2366 	pvd->pv_page.pv_gen = 0;
2367 	pvd->pv_page.pat_mode = 0;
2368 	pvd->pv_invl_gen = 0;
2369 }
2370 #else
2371 static void
2372 pmap_init_pv_table(void)
2373 {
2374 	vm_size_t s;
2375 	long i, pv_npg;
2376 
2377 	/*
2378 	 * Initialize the pool of pv list locks.
2379 	 */
2380 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2381 		rw_init(&pv_list_locks[i], "pmap pv list");
2382 
2383 	/*
2384 	 * Calculate the size of the pv head table for superpages.
2385 	 */
2386 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2387 
2388 	/*
2389 	 * Allocate memory for the pv head table for superpages.
2390 	 */
2391 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2392 	s = round_page(s);
2393 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
2394 	for (i = 0; i < pv_npg; i++)
2395 		TAILQ_INIT(&pv_table[i].pv_list);
2396 	TAILQ_INIT(&pv_dummy.pv_list);
2397 }
2398 #endif
2399 
2400 /*
2401  *	Initialize the pmap module.
2402  *	Called by vm_init, to initialize any structures that the pmap
2403  *	system needs to map virtual memory.
2404  */
2405 void
2406 pmap_init(void)
2407 {
2408 	struct pmap_preinit_mapping *ppim;
2409 	vm_page_t m, mpte;
2410 	int error, i, ret, skz63;
2411 
2412 	/* L1TF, reserve page @0 unconditionally */
2413 	vm_page_blacklist_add(0, bootverbose);
2414 
2415 	/* Detect bare-metal Skylake Server and Skylake-X. */
2416 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2417 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2418 		/*
2419 		 * Skylake-X errata SKZ63. Processor May Hang When
2420 		 * Executing Code In an HLE Transaction Region between
2421 		 * 40000000H and 403FFFFFH.
2422 		 *
2423 		 * Mark the pages in the range as preallocated.  It
2424 		 * seems to be impossible to distinguish between
2425 		 * Skylake Server and Skylake X.
2426 		 */
2427 		skz63 = 1;
2428 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2429 		if (skz63 != 0) {
2430 			if (bootverbose)
2431 				printf("SKZ63: skipping 4M RAM starting "
2432 				    "at physical 1G\n");
2433 			for (i = 0; i < atop(0x400000); i++) {
2434 				ret = vm_page_blacklist_add(0x40000000 +
2435 				    ptoa(i), FALSE);
2436 				if (!ret && bootverbose)
2437 					printf("page at %#lx already used\n",
2438 					    0x40000000 + ptoa(i));
2439 			}
2440 		}
2441 	}
2442 
2443 	/* IFU */
2444 	pmap_allow_2m_x_ept_recalculate();
2445 
2446 	/*
2447 	 * Initialize the vm page array entries for the kernel pmap's
2448 	 * page table pages.
2449 	 */
2450 	PMAP_LOCK(kernel_pmap);
2451 	for (i = 0; i < nkpt; i++) {
2452 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2453 		KASSERT(mpte >= vm_page_array &&
2454 		    mpte < &vm_page_array[vm_page_array_size],
2455 		    ("pmap_init: page table page is out of range"));
2456 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2457 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2458 		mpte->ref_count = 1;
2459 
2460 		/*
2461 		 * Collect the page table pages that were replaced by a 2MB
2462 		 * page in create_pagetables().  They are zero filled.
2463 		 */
2464 		if ((i == 0 ||
2465 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2466 		    pmap_insert_pt_page(kernel_pmap, mpte, false))
2467 			panic("pmap_init: pmap_insert_pt_page failed");
2468 	}
2469 	PMAP_UNLOCK(kernel_pmap);
2470 	vm_wire_add(nkpt);
2471 
2472 	/*
2473 	 * If the kernel is running on a virtual machine, then it must assume
2474 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2475 	 * be prepared for the hypervisor changing the vendor and family that
2476 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2477 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2478 	 * include at least one feature that is only supported by older Intel
2479 	 * or newer AMD processors.
2480 	 */
2481 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2482 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2483 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2484 	    AMDID2_FMA4)) == 0)
2485 		workaround_erratum383 = 1;
2486 
2487 	/*
2488 	 * Are large page mappings enabled?
2489 	 */
2490 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2491 	if (pg_ps_enabled) {
2492 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2493 		    ("pmap_init: can't assign to pagesizes[1]"));
2494 		pagesizes[1] = NBPDR;
2495 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2496 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2497 			    ("pmap_init: can't assign to pagesizes[2]"));
2498 			pagesizes[2] = NBPDP;
2499 		}
2500 	}
2501 
2502 	/*
2503 	 * Initialize pv chunk lists.
2504 	 */
2505 	for (i = 0; i < PMAP_MEMDOM; i++) {
2506 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2507 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2508 	}
2509 	pmap_init_pv_table();
2510 
2511 	pmap_initialized = 1;
2512 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2513 		ppim = pmap_preinit_mapping + i;
2514 		if (ppim->va == 0)
2515 			continue;
2516 		/* Make the direct map consistent */
2517 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2518 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2519 			    ppim->sz, ppim->mode);
2520 		}
2521 		if (!bootverbose)
2522 			continue;
2523 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2524 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2525 	}
2526 
2527 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2528 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2529 	    (vmem_addr_t *)&qframe);
2530 	if (error != 0)
2531 		panic("qframe allocation failed");
2532 
2533 	lm_ents = 8;
2534 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2535 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2536 		lm_ents = LMEPML4I - LMSPML4I + 1;
2537 #ifdef KMSAN
2538 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2539 		printf(
2540 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2541 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2542 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2543 	}
2544 #endif
2545 	if (bootverbose)
2546 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2547 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2548 	if (lm_ents != 0) {
2549 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2550 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2551 		if (large_vmem == NULL) {
2552 			printf("pmap: cannot create large map\n");
2553 			lm_ents = 0;
2554 		}
2555 		for (i = 0; i < lm_ents; i++) {
2556 			m = pmap_large_map_getptp_unlocked();
2557 			/* XXXKIB la57 */
2558 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2559 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2560 			    VM_PAGE_TO_PHYS(m);
2561 		}
2562 	}
2563 }
2564 
2565 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2566     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2567     "Maximum number of PML4 entries for use by large map (tunable).  "
2568     "Each entry corresponds to 512GB of address space.");
2569 
2570 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2571     "2MB page mapping counters");
2572 
2573 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2574 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2575     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2576 
2577 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2578 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2579     &pmap_pde_mappings, "2MB page mappings");
2580 
2581 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2582 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2583     &pmap_pde_p_failures, "2MB page promotion failures");
2584 
2585 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2586 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2587     &pmap_pde_promotions, "2MB page promotions");
2588 
2589 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2590     "1GB page mapping counters");
2591 
2592 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2593 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2594     &pmap_pdpe_demotions, "1GB page demotions");
2595 
2596 /***************************************************
2597  * Low level helper routines.....
2598  ***************************************************/
2599 
2600 static pt_entry_t
2601 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2602 {
2603 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2604 
2605 	switch (pmap->pm_type) {
2606 	case PT_X86:
2607 	case PT_RVI:
2608 		/* Verify that both PAT bits are not set at the same time */
2609 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2610 		    ("Invalid PAT bits in entry %#lx", entry));
2611 
2612 		/* Swap the PAT bits if one of them is set */
2613 		if ((entry & x86_pat_bits) != 0)
2614 			entry ^= x86_pat_bits;
2615 		break;
2616 	case PT_EPT:
2617 		/*
2618 		 * Nothing to do - the memory attributes are represented
2619 		 * the same way for regular pages and superpages.
2620 		 */
2621 		break;
2622 	default:
2623 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2624 	}
2625 
2626 	return (entry);
2627 }
2628 
2629 boolean_t
2630 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2631 {
2632 
2633 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2634 	    pat_index[(int)mode] >= 0);
2635 }
2636 
2637 /*
2638  * Determine the appropriate bits to set in a PTE or PDE for a specified
2639  * caching mode.
2640  */
2641 int
2642 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2643 {
2644 	int cache_bits, pat_flag, pat_idx;
2645 
2646 	if (!pmap_is_valid_memattr(pmap, mode))
2647 		panic("Unknown caching mode %d\n", mode);
2648 
2649 	switch (pmap->pm_type) {
2650 	case PT_X86:
2651 	case PT_RVI:
2652 		/* The PAT bit is different for PTE's and PDE's. */
2653 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2654 
2655 		/* Map the caching mode to a PAT index. */
2656 		pat_idx = pat_index[mode];
2657 
2658 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2659 		cache_bits = 0;
2660 		if (pat_idx & 0x4)
2661 			cache_bits |= pat_flag;
2662 		if (pat_idx & 0x2)
2663 			cache_bits |= PG_NC_PCD;
2664 		if (pat_idx & 0x1)
2665 			cache_bits |= PG_NC_PWT;
2666 		break;
2667 
2668 	case PT_EPT:
2669 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2670 		break;
2671 
2672 	default:
2673 		panic("unsupported pmap type %d", pmap->pm_type);
2674 	}
2675 
2676 	return (cache_bits);
2677 }
2678 
2679 static int
2680 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2681 {
2682 	int mask;
2683 
2684 	switch (pmap->pm_type) {
2685 	case PT_X86:
2686 	case PT_RVI:
2687 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2688 		break;
2689 	case PT_EPT:
2690 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2691 		break;
2692 	default:
2693 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2694 	}
2695 
2696 	return (mask);
2697 }
2698 
2699 static int
2700 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2701 {
2702 	int pat_flag, pat_idx;
2703 
2704 	pat_idx = 0;
2705 	switch (pmap->pm_type) {
2706 	case PT_X86:
2707 	case PT_RVI:
2708 		/* The PAT bit is different for PTE's and PDE's. */
2709 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2710 
2711 		if ((pte & pat_flag) != 0)
2712 			pat_idx |= 0x4;
2713 		if ((pte & PG_NC_PCD) != 0)
2714 			pat_idx |= 0x2;
2715 		if ((pte & PG_NC_PWT) != 0)
2716 			pat_idx |= 0x1;
2717 		break;
2718 	case PT_EPT:
2719 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2720 			panic("EPT PTE %#lx has no PAT memory type", pte);
2721 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2722 		break;
2723 	}
2724 
2725 	/* See pmap_init_pat(). */
2726 	if (pat_idx == 4)
2727 		pat_idx = 0;
2728 	if (pat_idx == 7)
2729 		pat_idx = 3;
2730 
2731 	return (pat_idx);
2732 }
2733 
2734 bool
2735 pmap_ps_enabled(pmap_t pmap)
2736 {
2737 
2738 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2739 }
2740 
2741 static void
2742 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2743 {
2744 
2745 	switch (pmap->pm_type) {
2746 	case PT_X86:
2747 		break;
2748 	case PT_RVI:
2749 	case PT_EPT:
2750 		/*
2751 		 * XXX
2752 		 * This is a little bogus since the generation number is
2753 		 * supposed to be bumped up when a region of the address
2754 		 * space is invalidated in the page tables.
2755 		 *
2756 		 * In this case the old PDE entry is valid but yet we want
2757 		 * to make sure that any mappings using the old entry are
2758 		 * invalidated in the TLB.
2759 		 *
2760 		 * The reason this works as expected is because we rendezvous
2761 		 * "all" host cpus and force any vcpu context to exit as a
2762 		 * side-effect.
2763 		 */
2764 		atomic_add_long(&pmap->pm_eptgen, 1);
2765 		break;
2766 	default:
2767 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2768 	}
2769 	pde_store(pde, newpde);
2770 }
2771 
2772 /*
2773  * After changing the page size for the specified virtual address in the page
2774  * table, flush the corresponding entries from the processor's TLB.  Only the
2775  * calling processor's TLB is affected.
2776  *
2777  * The calling thread must be pinned to a processor.
2778  */
2779 static void
2780 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2781 {
2782 	pt_entry_t PG_G;
2783 
2784 	if (pmap_type_guest(pmap))
2785 		return;
2786 
2787 	KASSERT(pmap->pm_type == PT_X86,
2788 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2789 
2790 	PG_G = pmap_global_bit(pmap);
2791 
2792 	if ((newpde & PG_PS) == 0)
2793 		/* Demotion: flush a specific 2MB page mapping. */
2794 		invlpg(va);
2795 	else if ((newpde & PG_G) == 0)
2796 		/*
2797 		 * Promotion: flush every 4KB page mapping from the TLB
2798 		 * because there are too many to flush individually.
2799 		 */
2800 		invltlb();
2801 	else {
2802 		/*
2803 		 * Promotion: flush every 4KB page mapping from the TLB,
2804 		 * including any global (PG_G) mappings.
2805 		 */
2806 		invltlb_glob();
2807 	}
2808 }
2809 
2810 /*
2811  * The amd64 pmap uses different approaches to TLB invalidation
2812  * depending on the kernel configuration, available hardware features,
2813  * and known hardware errata.  The kernel configuration option that
2814  * has the greatest operational impact on TLB invalidation is PTI,
2815  * which is enabled automatically on affected Intel CPUs.  The most
2816  * impactful hardware features are first PCID, and then INVPCID
2817  * instruction presence.  PCID usage is quite different for PTI
2818  * vs. non-PTI.
2819  *
2820  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2821  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2822  *   space is served by two page tables, user and kernel.  The user
2823  *   page table only maps user space and a kernel trampoline.  The
2824  *   kernel trampoline includes the entirety of the kernel text but
2825  *   only the kernel data that is needed to switch from user to kernel
2826  *   mode.  The kernel page table maps the user and kernel address
2827  *   spaces in their entirety.  It is identical to the per-process
2828  *   page table used in non-PTI mode.
2829  *
2830  *   User page tables are only used when the CPU is in user mode.
2831  *   Consequently, some TLB invalidations can be postponed until the
2832  *   switch from kernel to user mode.  In contrast, the user
2833  *   space part of the kernel page table is used for copyout(9), so
2834  *   TLB invalidations on this page table cannot be similarly postponed.
2835  *
2836  *   The existence of a user mode page table for the given pmap is
2837  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2838  *   which case pm_ucr3 contains the %cr3 register value for the user
2839  *   mode page table's root.
2840  *
2841  * * The pm_active bitmask indicates which CPUs currently have the
2842  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2843  *   cleared on switching off this CPU.  For the kernel page table,
2844  *   the pm_active field is immutable and contains all CPUs.  The
2845  *   kernel page table is always logically active on every processor,
2846  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2847  *
2848  *   When requesting invalidation of virtual addresses with
2849  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2850  *   all CPUs recorded as active in pm_active.  Updates to and reads
2851  *   from pm_active are not synchronized, and so they may race with
2852  *   each other.  Shootdown handlers are prepared to handle the race.
2853  *
2854  * * PCID is an optional feature of the long mode x86 MMU where TLB
2855  *   entries are tagged with the 'Process ID' of the address space
2856  *   they belong to.  This feature provides a limited namespace for
2857  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2858  *   total.
2859  *
2860  *   Allocation of a PCID to a pmap is done by an algorithm described
2861  *   in section 15.12, "Other TLB Consistency Algorithms", of
2862  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2863  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2864  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2865  *   the CPU is about to start caching TLB entries from a pmap,
2866  *   i.e., on the context switch that activates the pmap on the CPU.
2867  *
2868  *   The PCID allocator maintains a per-CPU, per-pmap generation
2869  *   count, pm_gen, which is incremented each time a new PCID is
2870  *   allocated.  On TLB invalidation, the generation counters for the
2871  *   pmap are zeroed, which signals the context switch code that the
2872  *   previously allocated PCID is no longer valid.  Effectively,
2873  *   zeroing any of these counters triggers a TLB shootdown for the
2874  *   given CPU/address space, due to the allocation of a new PCID.
2875  *
2876  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2877  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2878  *   be initiated by an ordinary memory access to reset the target
2879  *   CPU's generation count within the pmap.  The CPU initiating the
2880  *   TLB shootdown does not need to send an IPI to the target CPU.
2881  *
2882  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2883  *   for complete (kernel) page tables, and PCIDs for user mode page
2884  *   tables.  A user PCID value is obtained from the kernel PCID value
2885  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2886  *
2887  *   User space page tables are activated on return to user mode, by
2888  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2889  *   clearing bit 63 of the loaded ucr3, this effectively causes
2890  *   complete invalidation of the user mode TLB entries for the
2891  *   current pmap.  In which case, local invalidations of individual
2892  *   pages in the user page table are skipped.
2893  *
2894  * * Local invalidation, all modes.  If the requested invalidation is
2895  *   for a specific address or the total invalidation of a currently
2896  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2897  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2898  *   user space page table(s).
2899  *
2900  *   If the INVPCID instruction is available, it is used to flush entries
2901  *   from the kernel page table.
2902  *
2903  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2904  *   address space, all other 4095 PCIDs are used for user mode spaces
2905  *   as described above.  A context switch allocates a new PCID if
2906  *   the recorded PCID is zero or the recorded generation does not match
2907  *   the CPU's generation, effectively flushing the TLB for this address space.
2908  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2909  *	local user page: INVLPG
2910  *	local kernel page: INVLPG
2911  *	local user total: INVPCID(CTX)
2912  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2913  *	remote user page, inactive pmap: zero pm_gen
2914  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2915  *	(Both actions are required to handle the aforementioned pm_active races.)
2916  *	remote kernel page: IPI:INVLPG
2917  *	remote user total, inactive pmap: zero pm_gen
2918  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2919  *          reload %cr3)
2920  *	(See note above about pm_active races.)
2921  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2922  *
2923  * PTI enabled, PCID present.
2924  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2925  *          for upt
2926  *	local kernel page: INVLPG
2927  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2928  *          on loading UCR3 into %cr3 for upt
2929  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2930  *	remote user page, inactive pmap: zero pm_gen
2931  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2932  *          INVPCID(ADDR) for upt)
2933  *	remote kernel page: IPI:INVLPG
2934  *	remote user total, inactive pmap: zero pm_gen
2935  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2936  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2937  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2938  *
2939  *  No PCID.
2940  *	local user page: INVLPG
2941  *	local kernel page: INVLPG
2942  *	local user total: reload %cr3
2943  *	local kernel total: invltlb_glob()
2944  *	remote user page, inactive pmap: -
2945  *	remote user page, active pmap: IPI:INVLPG
2946  *	remote kernel page: IPI:INVLPG
2947  *	remote user total, inactive pmap: -
2948  *	remote user total, active pmap: IPI:(reload %cr3)
2949  *	remote kernel total: IPI:invltlb_glob()
2950  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
2951  *  TLB invalidation, no specific action is required for user page table.
2952  *
2953  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
2954  * XXX TODO
2955  */
2956 
2957 #ifdef SMP
2958 /*
2959  * Interrupt the cpus that are executing in the guest context.
2960  * This will force the vcpu to exit and the cached EPT mappings
2961  * will be invalidated by the host before the next vmresume.
2962  */
2963 static __inline void
2964 pmap_invalidate_ept(pmap_t pmap)
2965 {
2966 	smr_seq_t goal;
2967 	int ipinum;
2968 
2969 	sched_pin();
2970 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2971 	    ("pmap_invalidate_ept: absurd pm_active"));
2972 
2973 	/*
2974 	 * The TLB mappings associated with a vcpu context are not
2975 	 * flushed each time a different vcpu is chosen to execute.
2976 	 *
2977 	 * This is in contrast with a process's vtop mappings that
2978 	 * are flushed from the TLB on each context switch.
2979 	 *
2980 	 * Therefore we need to do more than just a TLB shootdown on
2981 	 * the active cpus in 'pmap->pm_active'. To do this we keep
2982 	 * track of the number of invalidations performed on this pmap.
2983 	 *
2984 	 * Each vcpu keeps a cache of this counter and compares it
2985 	 * just before a vmresume. If the counter is out-of-date an
2986 	 * invept will be done to flush stale mappings from the TLB.
2987 	 *
2988 	 * To ensure that all vCPU threads have observed the new counter
2989 	 * value before returning, we use SMR.  Ordering is important here:
2990 	 * the VMM enters an SMR read section before loading the counter
2991 	 * and after updating the pm_active bit set.  Thus, pm_active is
2992 	 * a superset of active readers, and any reader that has observed
2993 	 * the goal has observed the new counter value.
2994 	 */
2995 	atomic_add_long(&pmap->pm_eptgen, 1);
2996 
2997 	goal = smr_advance(pmap->pm_eptsmr);
2998 
2999 	/*
3000 	 * Force the vcpu to exit and trap back into the hypervisor.
3001 	 */
3002 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3003 	ipi_selected(pmap->pm_active, ipinum);
3004 	sched_unpin();
3005 
3006 	/*
3007 	 * Ensure that all active vCPUs will observe the new generation counter
3008 	 * value before executing any more guest instructions.
3009 	 */
3010 	smr_wait(pmap->pm_eptsmr, goal);
3011 }
3012 
3013 static cpuset_t
3014 pmap_invalidate_cpu_mask(pmap_t pmap)
3015 {
3016 	return (pmap == kernel_pmap ? all_cpus : pmap->pm_active);
3017 }
3018 
3019 static inline void
3020 pmap_invalidate_preipi_pcid(pmap_t pmap)
3021 {
3022 	u_int cpuid, i;
3023 
3024 	sched_pin();
3025 
3026 	cpuid = PCPU_GET(cpuid);
3027 	if (pmap != PCPU_GET(curpmap))
3028 		cpuid = 0xffffffff;	/* An impossible value */
3029 
3030 	CPU_FOREACH(i) {
3031 		if (cpuid != i)
3032 			pmap->pm_pcids[i].pm_gen = 0;
3033 	}
3034 
3035 	/*
3036 	 * The fence is between stores to pm_gen and the read of the
3037 	 * pm_active mask.  We need to ensure that it is impossible
3038 	 * for us to miss the bit update in pm_active and
3039 	 * simultaneously observe a non-zero pm_gen in
3040 	 * pmap_activate_sw(), otherwise TLB update is missed.
3041 	 * Without the fence, IA32 allows such an outcome.  Note that
3042 	 * pm_active is updated by a locked operation, which provides
3043 	 * the reciprocal fence.
3044 	 */
3045 	atomic_thread_fence_seq_cst();
3046 }
3047 
3048 static void
3049 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3050 {
3051 	sched_pin();
3052 }
3053 
3054 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3055 {
3056 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3057 	    pmap_invalidate_preipi_nopcid);
3058 }
3059 
3060 static inline void
3061 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3062     const bool invpcid_works1)
3063 {
3064 	struct invpcid_descr d;
3065 	uint64_t kcr3, ucr3;
3066 	uint32_t pcid;
3067 	u_int cpuid;
3068 
3069 	/*
3070 	 * Because pm_pcid is recalculated on a context switch, we
3071 	 * must ensure there is no preemption, not just pinning.
3072 	 * Otherwise, we might use a stale value below.
3073 	 */
3074 	CRITICAL_ASSERT(curthread);
3075 
3076 	/*
3077 	 * No need to do anything with user page tables invalidation
3078 	 * if there is no user page table, or invalidation is deferred
3079 	 * until the return to userspace.  ucr3_load_mask is stable
3080 	 * because we have preemption disabled.
3081 	 */
3082 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3083 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3084 		return;
3085 
3086 	cpuid = PCPU_GET(cpuid);
3087 
3088 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3089 	if (invpcid_works1) {
3090 		d.pcid = pcid | PMAP_PCID_USER_PT;
3091 		d.pad = 0;
3092 		d.addr = va;
3093 		invpcid(&d, INVPCID_ADDR);
3094 	} else {
3095 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3096 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3097 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3098 	}
3099 }
3100 
3101 static void
3102 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3103 {
3104 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3105 }
3106 
3107 static void
3108 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3109 {
3110 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3111 }
3112 
3113 static void
3114 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3115 {
3116 }
3117 
3118 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3119 {
3120 	if (pmap_pcid_enabled)
3121 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3122 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3123 	return (pmap_invalidate_page_nopcid_cb);
3124 }
3125 
3126 static void
3127 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3128     vm_offset_t addr2 __unused)
3129 {
3130 	if (pmap == kernel_pmap) {
3131 		invlpg(va);
3132 	} else if (pmap == PCPU_GET(curpmap)) {
3133 		invlpg(va);
3134 		pmap_invalidate_page_cb(pmap, va);
3135 	}
3136 }
3137 
3138 void
3139 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3140 {
3141 	if (pmap_type_guest(pmap)) {
3142 		pmap_invalidate_ept(pmap);
3143 		return;
3144 	}
3145 
3146 	KASSERT(pmap->pm_type == PT_X86,
3147 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3148 
3149 	pmap_invalidate_preipi(pmap);
3150 	smp_masked_invlpg(pmap_invalidate_cpu_mask(pmap), va, pmap,
3151 	    pmap_invalidate_page_curcpu_cb);
3152 }
3153 
3154 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3155 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3156 
3157 static void
3158 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3159     const bool invpcid_works1)
3160 {
3161 	struct invpcid_descr d;
3162 	uint64_t kcr3, ucr3;
3163 	uint32_t pcid;
3164 	u_int cpuid;
3165 
3166 	CRITICAL_ASSERT(curthread);
3167 
3168 	if (pmap != PCPU_GET(curpmap) ||
3169 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3170 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3171 		return;
3172 
3173 	cpuid = PCPU_GET(cpuid);
3174 
3175 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3176 	if (invpcid_works1) {
3177 		d.pcid = pcid | PMAP_PCID_USER_PT;
3178 		d.pad = 0;
3179 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3180 			invpcid(&d, INVPCID_ADDR);
3181 	} else {
3182 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3183 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3184 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3185 	}
3186 }
3187 
3188 static void
3189 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3190     vm_offset_t eva)
3191 {
3192 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3193 }
3194 
3195 static void
3196 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3197     vm_offset_t eva)
3198 {
3199 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3200 }
3201 
3202 static void
3203 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3204     vm_offset_t eva __unused)
3205 {
3206 }
3207 
3208 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3209     vm_offset_t))
3210 {
3211 	if (pmap_pcid_enabled)
3212 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3213 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3214 	return (pmap_invalidate_range_nopcid_cb);
3215 }
3216 
3217 static void
3218 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3219 {
3220 	vm_offset_t addr;
3221 
3222 	if (pmap == kernel_pmap) {
3223 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3224 			invlpg(addr);
3225 	} else if (pmap == PCPU_GET(curpmap)) {
3226 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3227 			invlpg(addr);
3228 		pmap_invalidate_range_cb(pmap, sva, eva);
3229 	}
3230 }
3231 
3232 void
3233 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3234 {
3235 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3236 		pmap_invalidate_all(pmap);
3237 		return;
3238 	}
3239 
3240 	if (pmap_type_guest(pmap)) {
3241 		pmap_invalidate_ept(pmap);
3242 		return;
3243 	}
3244 
3245 	KASSERT(pmap->pm_type == PT_X86,
3246 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3247 
3248 	pmap_invalidate_preipi(pmap);
3249 	smp_masked_invlpg_range(pmap_invalidate_cpu_mask(pmap), sva, eva, pmap,
3250 	    pmap_invalidate_range_curcpu_cb);
3251 }
3252 
3253 static inline void
3254 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3255 {
3256 	struct invpcid_descr d;
3257 	uint64_t kcr3;
3258 	uint32_t pcid;
3259 	u_int cpuid;
3260 
3261 	if (pmap == kernel_pmap) {
3262 		if (invpcid_works1) {
3263 			bzero(&d, sizeof(d));
3264 			invpcid(&d, INVPCID_CTXGLOB);
3265 		} else {
3266 			invltlb_glob();
3267 		}
3268 	} else if (pmap == PCPU_GET(curpmap)) {
3269 		CRITICAL_ASSERT(curthread);
3270 		cpuid = PCPU_GET(cpuid);
3271 
3272 		pcid = pmap->pm_pcids[cpuid].pm_pcid;
3273 		if (invpcid_works1) {
3274 			d.pcid = pcid;
3275 			d.pad = 0;
3276 			d.addr = 0;
3277 			invpcid(&d, INVPCID_CTX);
3278 		} else {
3279 			kcr3 = pmap->pm_cr3 | pcid;
3280 			load_cr3(kcr3);
3281 		}
3282 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3283 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3284 	}
3285 }
3286 
3287 static void
3288 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3289 {
3290 	pmap_invalidate_all_pcid_cb(pmap, true);
3291 }
3292 
3293 static void
3294 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3295 {
3296 	pmap_invalidate_all_pcid_cb(pmap, false);
3297 }
3298 
3299 static void
3300 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3301 {
3302 	if (pmap == kernel_pmap)
3303 		invltlb_glob();
3304 	else if (pmap == PCPU_GET(curpmap))
3305 		invltlb();
3306 }
3307 
3308 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3309 {
3310 	if (pmap_pcid_enabled)
3311 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3312 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3313 	return (pmap_invalidate_all_nopcid_cb);
3314 }
3315 
3316 static void
3317 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3318     vm_offset_t addr2 __unused)
3319 {
3320 	pmap_invalidate_all_cb(pmap);
3321 }
3322 
3323 void
3324 pmap_invalidate_all(pmap_t pmap)
3325 {
3326 	if (pmap_type_guest(pmap)) {
3327 		pmap_invalidate_ept(pmap);
3328 		return;
3329 	}
3330 
3331 	KASSERT(pmap->pm_type == PT_X86,
3332 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3333 
3334 	pmap_invalidate_preipi(pmap);
3335 	smp_masked_invltlb(pmap_invalidate_cpu_mask(pmap), pmap,
3336 	    pmap_invalidate_all_curcpu_cb);
3337 }
3338 
3339 static void
3340 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3341     vm_offset_t addr2 __unused)
3342 {
3343 	wbinvd();
3344 }
3345 
3346 void
3347 pmap_invalidate_cache(void)
3348 {
3349 	sched_pin();
3350 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3351 }
3352 
3353 struct pde_action {
3354 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3355 	pmap_t pmap;
3356 	vm_offset_t va;
3357 	pd_entry_t *pde;
3358 	pd_entry_t newpde;
3359 	u_int store;		/* processor that updates the PDE */
3360 };
3361 
3362 static void
3363 pmap_update_pde_action(void *arg)
3364 {
3365 	struct pde_action *act = arg;
3366 
3367 	if (act->store == PCPU_GET(cpuid))
3368 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3369 }
3370 
3371 static void
3372 pmap_update_pde_teardown(void *arg)
3373 {
3374 	struct pde_action *act = arg;
3375 
3376 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3377 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3378 }
3379 
3380 /*
3381  * Change the page size for the specified virtual address in a way that
3382  * prevents any possibility of the TLB ever having two entries that map the
3383  * same virtual address using different page sizes.  This is the recommended
3384  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3385  * machine check exception for a TLB state that is improperly diagnosed as a
3386  * hardware error.
3387  */
3388 static void
3389 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3390 {
3391 	struct pde_action act;
3392 	cpuset_t active, other_cpus;
3393 	u_int cpuid;
3394 
3395 	sched_pin();
3396 	cpuid = PCPU_GET(cpuid);
3397 	other_cpus = all_cpus;
3398 	CPU_CLR(cpuid, &other_cpus);
3399 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3400 		active = all_cpus;
3401 	else {
3402 		active = pmap->pm_active;
3403 	}
3404 	if (CPU_OVERLAP(&active, &other_cpus)) {
3405 		act.store = cpuid;
3406 		act.invalidate = active;
3407 		act.va = va;
3408 		act.pmap = pmap;
3409 		act.pde = pde;
3410 		act.newpde = newpde;
3411 		CPU_SET(cpuid, &active);
3412 		smp_rendezvous_cpus(active,
3413 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3414 		    pmap_update_pde_teardown, &act);
3415 	} else {
3416 		pmap_update_pde_store(pmap, pde, newpde);
3417 		if (CPU_ISSET(cpuid, &active))
3418 			pmap_update_pde_invalidate(pmap, va, newpde);
3419 	}
3420 	sched_unpin();
3421 }
3422 #else /* !SMP */
3423 /*
3424  * Normal, non-SMP, invalidation functions.
3425  */
3426 void
3427 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3428 {
3429 	struct invpcid_descr d;
3430 	uint64_t kcr3, ucr3;
3431 	uint32_t pcid;
3432 
3433 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3434 		pmap->pm_eptgen++;
3435 		return;
3436 	}
3437 	KASSERT(pmap->pm_type == PT_X86,
3438 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3439 
3440 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3441 		invlpg(va);
3442 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3443 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3444 			critical_enter();
3445 			pcid = pmap->pm_pcids[0].pm_pcid;
3446 			if (invpcid_works) {
3447 				d.pcid = pcid | PMAP_PCID_USER_PT;
3448 				d.pad = 0;
3449 				d.addr = va;
3450 				invpcid(&d, INVPCID_ADDR);
3451 			} else {
3452 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3453 				ucr3 = pmap->pm_ucr3 | pcid |
3454 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3455 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3456 			}
3457 			critical_exit();
3458 		}
3459 	} else if (pmap_pcid_enabled)
3460 		pmap->pm_pcids[0].pm_gen = 0;
3461 }
3462 
3463 void
3464 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3465 {
3466 	struct invpcid_descr d;
3467 	vm_offset_t addr;
3468 	uint64_t kcr3, ucr3;
3469 
3470 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3471 		pmap->pm_eptgen++;
3472 		return;
3473 	}
3474 	KASSERT(pmap->pm_type == PT_X86,
3475 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3476 
3477 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3478 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3479 			invlpg(addr);
3480 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3481 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3482 			critical_enter();
3483 			if (invpcid_works) {
3484 				d.pcid = pmap->pm_pcids[0].pm_pcid |
3485 				    PMAP_PCID_USER_PT;
3486 				d.pad = 0;
3487 				d.addr = sva;
3488 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3489 					invpcid(&d, INVPCID_ADDR);
3490 			} else {
3491 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
3492 				    pm_pcid | CR3_PCID_SAVE;
3493 				ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
3494 				    pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3495 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3496 			}
3497 			critical_exit();
3498 		}
3499 	} else if (pmap_pcid_enabled) {
3500 		pmap->pm_pcids[0].pm_gen = 0;
3501 	}
3502 }
3503 
3504 void
3505 pmap_invalidate_all(pmap_t pmap)
3506 {
3507 	struct invpcid_descr d;
3508 	uint64_t kcr3, ucr3;
3509 
3510 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3511 		pmap->pm_eptgen++;
3512 		return;
3513 	}
3514 	KASSERT(pmap->pm_type == PT_X86,
3515 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3516 
3517 	if (pmap == kernel_pmap) {
3518 		if (pmap_pcid_enabled && invpcid_works) {
3519 			bzero(&d, sizeof(d));
3520 			invpcid(&d, INVPCID_CTXGLOB);
3521 		} else {
3522 			invltlb_glob();
3523 		}
3524 	} else if (pmap == PCPU_GET(curpmap)) {
3525 		if (pmap_pcid_enabled) {
3526 			critical_enter();
3527 			if (invpcid_works) {
3528 				d.pcid = pmap->pm_pcids[0].pm_pcid;
3529 				d.pad = 0;
3530 				d.addr = 0;
3531 				invpcid(&d, INVPCID_CTX);
3532 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3533 					d.pcid |= PMAP_PCID_USER_PT;
3534 					invpcid(&d, INVPCID_CTX);
3535 				}
3536 			} else {
3537 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
3538 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3539 					ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
3540 					    0].pm_pcid | PMAP_PCID_USER_PT;
3541 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3542 				} else
3543 					load_cr3(kcr3);
3544 			}
3545 			critical_exit();
3546 		} else {
3547 			invltlb();
3548 		}
3549 	} else if (pmap_pcid_enabled) {
3550 		pmap->pm_pcids[0].pm_gen = 0;
3551 	}
3552 }
3553 
3554 PMAP_INLINE void
3555 pmap_invalidate_cache(void)
3556 {
3557 
3558 	wbinvd();
3559 }
3560 
3561 static void
3562 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3563 {
3564 
3565 	pmap_update_pde_store(pmap, pde, newpde);
3566 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3567 		pmap_update_pde_invalidate(pmap, va, newpde);
3568 	else
3569 		pmap->pm_pcids[0].pm_gen = 0;
3570 }
3571 #endif /* !SMP */
3572 
3573 static void
3574 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3575 {
3576 
3577 	/*
3578 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3579 	 * by a promotion that did not invalidate the 512 4KB page mappings
3580 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3581 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3582 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3583 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3584 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3585 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3586 	 * TLB.
3587 	 */
3588 	if ((pde & PG_PROMOTED) != 0)
3589 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3590 	else
3591 		pmap_invalidate_page(pmap, va);
3592 }
3593 
3594 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3595     (vm_offset_t sva, vm_offset_t eva))
3596 {
3597 
3598 	if ((cpu_feature & CPUID_SS) != 0)
3599 		return (pmap_invalidate_cache_range_selfsnoop);
3600 	if ((cpu_feature & CPUID_CLFSH) != 0)
3601 		return (pmap_force_invalidate_cache_range);
3602 	return (pmap_invalidate_cache_range_all);
3603 }
3604 
3605 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3606 
3607 static void
3608 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3609 {
3610 
3611 	KASSERT((sva & PAGE_MASK) == 0,
3612 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3613 	KASSERT((eva & PAGE_MASK) == 0,
3614 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3615 }
3616 
3617 static void
3618 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3619 {
3620 
3621 	pmap_invalidate_cache_range_check_align(sva, eva);
3622 }
3623 
3624 void
3625 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3626 {
3627 
3628 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3629 
3630 	/*
3631 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3632 	 * registers if we use CLFLUSH on the local APIC range.  The
3633 	 * local APIC is always uncached, so we don't need to flush
3634 	 * for that range anyway.
3635 	 */
3636 	if (pmap_kextract(sva) == lapic_paddr)
3637 		return;
3638 
3639 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3640 		/*
3641 		 * Do per-cache line flush.  Use a locked
3642 		 * instruction to insure that previous stores are
3643 		 * included in the write-back.  The processor
3644 		 * propagates flush to other processors in the cache
3645 		 * coherence domain.
3646 		 */
3647 		atomic_thread_fence_seq_cst();
3648 		for (; sva < eva; sva += cpu_clflush_line_size)
3649 			clflushopt(sva);
3650 		atomic_thread_fence_seq_cst();
3651 	} else {
3652 		/*
3653 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3654 		 */
3655 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3656 			mfence();
3657 		for (; sva < eva; sva += cpu_clflush_line_size)
3658 			clflush(sva);
3659 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3660 			mfence();
3661 	}
3662 }
3663 
3664 static void
3665 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3666 {
3667 
3668 	pmap_invalidate_cache_range_check_align(sva, eva);
3669 	pmap_invalidate_cache();
3670 }
3671 
3672 /*
3673  * Remove the specified set of pages from the data and instruction caches.
3674  *
3675  * In contrast to pmap_invalidate_cache_range(), this function does not
3676  * rely on the CPU's self-snoop feature, because it is intended for use
3677  * when moving pages into a different cache domain.
3678  */
3679 void
3680 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3681 {
3682 	vm_offset_t daddr, eva;
3683 	int i;
3684 	bool useclflushopt;
3685 
3686 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3687 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3688 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3689 		pmap_invalidate_cache();
3690 	else {
3691 		if (useclflushopt)
3692 			atomic_thread_fence_seq_cst();
3693 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3694 			mfence();
3695 		for (i = 0; i < count; i++) {
3696 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3697 			eva = daddr + PAGE_SIZE;
3698 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3699 				if (useclflushopt)
3700 					clflushopt(daddr);
3701 				else
3702 					clflush(daddr);
3703 			}
3704 		}
3705 		if (useclflushopt)
3706 			atomic_thread_fence_seq_cst();
3707 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3708 			mfence();
3709 	}
3710 }
3711 
3712 void
3713 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3714 {
3715 
3716 	pmap_invalidate_cache_range_check_align(sva, eva);
3717 
3718 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3719 		pmap_force_invalidate_cache_range(sva, eva);
3720 		return;
3721 	}
3722 
3723 	/* See comment in pmap_force_invalidate_cache_range(). */
3724 	if (pmap_kextract(sva) == lapic_paddr)
3725 		return;
3726 
3727 	atomic_thread_fence_seq_cst();
3728 	for (; sva < eva; sva += cpu_clflush_line_size)
3729 		clwb(sva);
3730 	atomic_thread_fence_seq_cst();
3731 }
3732 
3733 void
3734 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3735 {
3736 	pt_entry_t *pte;
3737 	vm_offset_t vaddr;
3738 	int error, pte_bits;
3739 
3740 	KASSERT((spa & PAGE_MASK) == 0,
3741 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3742 	KASSERT((epa & PAGE_MASK) == 0,
3743 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3744 
3745 	if (spa < dmaplimit) {
3746 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3747 		    dmaplimit, epa)));
3748 		if (dmaplimit >= epa)
3749 			return;
3750 		spa = dmaplimit;
3751 	}
3752 
3753 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3754 	    X86_PG_V;
3755 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3756 	    &vaddr);
3757 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3758 	pte = vtopte(vaddr);
3759 	for (; spa < epa; spa += PAGE_SIZE) {
3760 		sched_pin();
3761 		pte_store(pte, spa | pte_bits);
3762 		invlpg(vaddr);
3763 		/* XXXKIB atomic inside flush_cache_range are excessive */
3764 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3765 		sched_unpin();
3766 	}
3767 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3768 }
3769 
3770 /*
3771  *	Routine:	pmap_extract
3772  *	Function:
3773  *		Extract the physical page address associated
3774  *		with the given map/virtual_address pair.
3775  */
3776 vm_paddr_t
3777 pmap_extract(pmap_t pmap, vm_offset_t va)
3778 {
3779 	pdp_entry_t *pdpe;
3780 	pd_entry_t *pde;
3781 	pt_entry_t *pte, PG_V;
3782 	vm_paddr_t pa;
3783 
3784 	pa = 0;
3785 	PG_V = pmap_valid_bit(pmap);
3786 	PMAP_LOCK(pmap);
3787 	pdpe = pmap_pdpe(pmap, va);
3788 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3789 		if ((*pdpe & PG_PS) != 0)
3790 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3791 		else {
3792 			pde = pmap_pdpe_to_pde(pdpe, va);
3793 			if ((*pde & PG_V) != 0) {
3794 				if ((*pde & PG_PS) != 0) {
3795 					pa = (*pde & PG_PS_FRAME) |
3796 					    (va & PDRMASK);
3797 				} else {
3798 					pte = pmap_pde_to_pte(pde, va);
3799 					pa = (*pte & PG_FRAME) |
3800 					    (va & PAGE_MASK);
3801 				}
3802 			}
3803 		}
3804 	}
3805 	PMAP_UNLOCK(pmap);
3806 	return (pa);
3807 }
3808 
3809 /*
3810  *	Routine:	pmap_extract_and_hold
3811  *	Function:
3812  *		Atomically extract and hold the physical page
3813  *		with the given pmap and virtual address pair
3814  *		if that mapping permits the given protection.
3815  */
3816 vm_page_t
3817 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3818 {
3819 	pdp_entry_t pdpe, *pdpep;
3820 	pd_entry_t pde, *pdep;
3821 	pt_entry_t pte, PG_RW, PG_V;
3822 	vm_page_t m;
3823 
3824 	m = NULL;
3825 	PG_RW = pmap_rw_bit(pmap);
3826 	PG_V = pmap_valid_bit(pmap);
3827 	PMAP_LOCK(pmap);
3828 
3829 	pdpep = pmap_pdpe(pmap, va);
3830 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3831 		goto out;
3832 	if ((pdpe & PG_PS) != 0) {
3833 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3834 			goto out;
3835 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3836 		goto check_page;
3837 	}
3838 
3839 	pdep = pmap_pdpe_to_pde(pdpep, va);
3840 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3841 		goto out;
3842 	if ((pde & PG_PS) != 0) {
3843 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3844 			goto out;
3845 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3846 		goto check_page;
3847 	}
3848 
3849 	pte = *pmap_pde_to_pte(pdep, va);
3850 	if ((pte & PG_V) == 0 ||
3851 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3852 		goto out;
3853 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3854 
3855 check_page:
3856 	if (m != NULL && !vm_page_wire_mapped(m))
3857 		m = NULL;
3858 out:
3859 	PMAP_UNLOCK(pmap);
3860 	return (m);
3861 }
3862 
3863 vm_paddr_t
3864 pmap_kextract(vm_offset_t va)
3865 {
3866 	pd_entry_t pde;
3867 	vm_paddr_t pa;
3868 
3869 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3870 		pa = DMAP_TO_PHYS(va);
3871 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3872 		pa = pmap_large_map_kextract(va);
3873 	} else {
3874 		pde = *vtopde(va);
3875 		if (pde & PG_PS) {
3876 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3877 		} else {
3878 			/*
3879 			 * Beware of a concurrent promotion that changes the
3880 			 * PDE at this point!  For example, vtopte() must not
3881 			 * be used to access the PTE because it would use the
3882 			 * new PDE.  It is, however, safe to use the old PDE
3883 			 * because the page table page is preserved by the
3884 			 * promotion.
3885 			 */
3886 			pa = *pmap_pde_to_pte(&pde, va);
3887 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3888 		}
3889 	}
3890 	return (pa);
3891 }
3892 
3893 /***************************************************
3894  * Low level mapping routines.....
3895  ***************************************************/
3896 
3897 /*
3898  * Add a wired page to the kva.
3899  * Note: not SMP coherent.
3900  */
3901 PMAP_INLINE void
3902 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3903 {
3904 	pt_entry_t *pte;
3905 
3906 	pte = vtopte(va);
3907 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx);
3908 }
3909 
3910 static __inline void
3911 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3912 {
3913 	pt_entry_t *pte;
3914 	int cache_bits;
3915 
3916 	pte = vtopte(va);
3917 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3918 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx | cache_bits);
3919 }
3920 
3921 /*
3922  * Remove a page from the kernel pagetables.
3923  * Note: not SMP coherent.
3924  */
3925 PMAP_INLINE void
3926 pmap_kremove(vm_offset_t va)
3927 {
3928 	pt_entry_t *pte;
3929 
3930 	pte = vtopte(va);
3931 	pte_clear(pte);
3932 }
3933 
3934 /*
3935  *	Used to map a range of physical addresses into kernel
3936  *	virtual address space.
3937  *
3938  *	The value passed in '*virt' is a suggested virtual address for
3939  *	the mapping. Architectures which can support a direct-mapped
3940  *	physical to virtual region can return the appropriate address
3941  *	within that region, leaving '*virt' unchanged. Other
3942  *	architectures should map the pages starting at '*virt' and
3943  *	update '*virt' with the first usable address after the mapped
3944  *	region.
3945  */
3946 vm_offset_t
3947 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3948 {
3949 	return PHYS_TO_DMAP(start);
3950 }
3951 
3952 /*
3953  * Add a list of wired pages to the kva
3954  * this routine is only used for temporary
3955  * kernel mappings that do not need to have
3956  * page modification or references recorded.
3957  * Note that old mappings are simply written
3958  * over.  The page *must* be wired.
3959  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3960  */
3961 void
3962 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3963 {
3964 	pt_entry_t *endpte, oldpte, pa, *pte;
3965 	vm_page_t m;
3966 	int cache_bits;
3967 
3968 	oldpte = 0;
3969 	pte = vtopte(sva);
3970 	endpte = pte + count;
3971 	while (pte < endpte) {
3972 		m = *ma++;
3973 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
3974 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3975 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3976 			oldpte |= *pte;
3977 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_RW | X86_PG_V);
3978 		}
3979 		pte++;
3980 	}
3981 	if (__predict_false((oldpte & X86_PG_V) != 0))
3982 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
3983 		    PAGE_SIZE);
3984 }
3985 
3986 /*
3987  * This routine tears out page mappings from the
3988  * kernel -- it is meant only for temporary mappings.
3989  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3990  */
3991 void
3992 pmap_qremove(vm_offset_t sva, int count)
3993 {
3994 	vm_offset_t va;
3995 
3996 	va = sva;
3997 	while (count-- > 0) {
3998 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
3999 		pmap_kremove(va);
4000 		va += PAGE_SIZE;
4001 	}
4002 	pmap_invalidate_range(kernel_pmap, sva, va);
4003 }
4004 
4005 /***************************************************
4006  * Page table page management routines.....
4007  ***************************************************/
4008 /*
4009  * Schedule the specified unused page table page to be freed.  Specifically,
4010  * add the page to the specified list of pages that will be released to the
4011  * physical memory manager after the TLB has been updated.
4012  */
4013 static __inline void
4014 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4015     boolean_t set_PG_ZERO)
4016 {
4017 
4018 	if (set_PG_ZERO)
4019 		m->flags |= PG_ZERO;
4020 	else
4021 		m->flags &= ~PG_ZERO;
4022 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4023 }
4024 
4025 /*
4026  * Inserts the specified page table page into the specified pmap's collection
4027  * of idle page table pages.  Each of a pmap's page table pages is responsible
4028  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4029  * ordered by this virtual address range.
4030  *
4031  * If "promoted" is false, then the page table page "mpte" must be zero filled.
4032  */
4033 static __inline int
4034 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
4035 {
4036 
4037 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4038 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
4039 	return (vm_radix_insert(&pmap->pm_root, mpte));
4040 }
4041 
4042 /*
4043  * Removes the page table page mapping the specified virtual address from the
4044  * specified pmap's collection of idle page table pages, and returns it.
4045  * Otherwise, returns NULL if there is no page table page corresponding to the
4046  * specified virtual address.
4047  */
4048 static __inline vm_page_t
4049 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4050 {
4051 
4052 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4053 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4054 }
4055 
4056 /*
4057  * Decrements a page table page's reference count, which is used to record the
4058  * number of valid page table entries within the page.  If the reference count
4059  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4060  * page table page was unmapped and FALSE otherwise.
4061  */
4062 static inline boolean_t
4063 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4064 {
4065 
4066 	--m->ref_count;
4067 	if (m->ref_count == 0) {
4068 		_pmap_unwire_ptp(pmap, va, m, free);
4069 		return (TRUE);
4070 	} else
4071 		return (FALSE);
4072 }
4073 
4074 static void
4075 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4076 {
4077 	pml5_entry_t *pml5;
4078 	pml4_entry_t *pml4;
4079 	pdp_entry_t *pdp;
4080 	pd_entry_t *pd;
4081 	vm_page_t pdpg, pdppg, pml4pg;
4082 
4083 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4084 
4085 	/*
4086 	 * unmap the page table page
4087 	 */
4088 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4089 		/* PML4 page */
4090 		MPASS(pmap_is_la57(pmap));
4091 		pml5 = pmap_pml5e(pmap, va);
4092 		*pml5 = 0;
4093 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4094 			pml5 = pmap_pml5e_u(pmap, va);
4095 			*pml5 = 0;
4096 		}
4097 	} else if (m->pindex >= NUPDE + NUPDPE) {
4098 		/* PDP page */
4099 		pml4 = pmap_pml4e(pmap, va);
4100 		*pml4 = 0;
4101 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4102 		    va <= VM_MAXUSER_ADDRESS) {
4103 			pml4 = pmap_pml4e_u(pmap, va);
4104 			*pml4 = 0;
4105 		}
4106 	} else if (m->pindex >= NUPDE) {
4107 		/* PD page */
4108 		pdp = pmap_pdpe(pmap, va);
4109 		*pdp = 0;
4110 	} else {
4111 		/* PTE page */
4112 		pd = pmap_pde(pmap, va);
4113 		*pd = 0;
4114 	}
4115 	if (m->pindex < NUPDE) {
4116 		/* We just released a PT, unhold the matching PD */
4117 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4118 		pmap_unwire_ptp(pmap, va, pdpg, free);
4119 	} else if (m->pindex < NUPDE + NUPDPE) {
4120 		/* We just released a PD, unhold the matching PDP */
4121 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4122 		pmap_unwire_ptp(pmap, va, pdppg, free);
4123 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4124 		/* We just released a PDP, unhold the matching PML4 */
4125 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4126 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4127 	}
4128 
4129 	pmap_pt_page_count_adj(pmap, -1);
4130 
4131 	/*
4132 	 * Put page on a list so that it is released after
4133 	 * *ALL* TLB shootdown is done
4134 	 */
4135 	pmap_add_delayed_free_list(m, free, TRUE);
4136 }
4137 
4138 /*
4139  * After removing a page table entry, this routine is used to
4140  * conditionally free the page, and manage the reference count.
4141  */
4142 static int
4143 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4144     struct spglist *free)
4145 {
4146 	vm_page_t mpte;
4147 
4148 	if (va >= VM_MAXUSER_ADDRESS)
4149 		return (0);
4150 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4151 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4152 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4153 }
4154 
4155 /*
4156  * Release a page table page reference after a failed attempt to create a
4157  * mapping.
4158  */
4159 static void
4160 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4161 {
4162 	struct spglist free;
4163 
4164 	SLIST_INIT(&free);
4165 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4166 		/*
4167 		 * Although "va" was never mapped, paging-structure caches
4168 		 * could nonetheless have entries that refer to the freed
4169 		 * page table pages.  Invalidate those entries.
4170 		 */
4171 		pmap_invalidate_page(pmap, va);
4172 		vm_page_free_pages_toq(&free, true);
4173 	}
4174 }
4175 
4176 void
4177 pmap_pinit0(pmap_t pmap)
4178 {
4179 	struct proc *p;
4180 	struct thread *td;
4181 	int i;
4182 
4183 	PMAP_LOCK_INIT(pmap);
4184 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4185 	pmap->pm_pmltopu = NULL;
4186 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4187 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4188 	pmap->pm_ucr3 = PMAP_NO_CR3;
4189 	vm_radix_init(&pmap->pm_root);
4190 	CPU_ZERO(&pmap->pm_active);
4191 	TAILQ_INIT(&pmap->pm_pvchunk);
4192 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4193 	pmap->pm_flags = pmap_flags;
4194 	CPU_FOREACH(i) {
4195 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN + 1;
4196 		pmap->pm_pcids[i].pm_gen = 1;
4197 	}
4198 	pmap_activate_boot(pmap);
4199 	td = curthread;
4200 	if (pti) {
4201 		p = td->td_proc;
4202 		PROC_LOCK(p);
4203 		p->p_md.md_flags |= P_MD_KPTI;
4204 		PROC_UNLOCK(p);
4205 	}
4206 	pmap_thread_init_invl_gen(td);
4207 
4208 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4209 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4210 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4211 		    UMA_ALIGN_PTR, 0);
4212 	}
4213 }
4214 
4215 void
4216 pmap_pinit_pml4(vm_page_t pml4pg)
4217 {
4218 	pml4_entry_t *pm_pml4;
4219 	int i;
4220 
4221 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4222 
4223 	/* Wire in kernel global address entries. */
4224 	for (i = 0; i < NKPML4E; i++) {
4225 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4226 		    X86_PG_V;
4227 	}
4228 #ifdef KASAN
4229 	for (i = 0; i < NKASANPML4E; i++) {
4230 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4231 		    X86_PG_V | pg_nx;
4232 	}
4233 #endif
4234 #ifdef KMSAN
4235 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4236 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4237 		    X86_PG_RW | X86_PG_V | pg_nx;
4238 	}
4239 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4240 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4241 		    X86_PG_RW | X86_PG_V | pg_nx;
4242 	}
4243 #endif
4244 	for (i = 0; i < ndmpdpphys; i++) {
4245 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4246 		    X86_PG_V;
4247 	}
4248 
4249 	/* install self-referential address mapping entry(s) */
4250 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4251 	    X86_PG_A | X86_PG_M;
4252 
4253 	/* install large map entries if configured */
4254 	for (i = 0; i < lm_ents; i++)
4255 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4256 }
4257 
4258 void
4259 pmap_pinit_pml5(vm_page_t pml5pg)
4260 {
4261 	pml5_entry_t *pm_pml5;
4262 
4263 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4264 
4265 	/*
4266 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4267 	 * entering all existing kernel mappings into level 5 table.
4268 	 */
4269 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4270 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4271 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4272 
4273 	/*
4274 	 * Install self-referential address mapping entry.
4275 	 */
4276 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4277 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4278 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4279 }
4280 
4281 static void
4282 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4283 {
4284 	pml4_entry_t *pm_pml4u;
4285 	int i;
4286 
4287 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4288 	for (i = 0; i < NPML4EPG; i++)
4289 		pm_pml4u[i] = pti_pml4[i];
4290 }
4291 
4292 static void
4293 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4294 {
4295 	pml5_entry_t *pm_pml5u;
4296 
4297 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4298 	pagezero(pm_pml5u);
4299 
4300 	/*
4301 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4302 	 * table, entering all kernel mappings needed for usermode
4303 	 * into level 5 table.
4304 	 */
4305 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4306 	    pmap_kextract((vm_offset_t)pti_pml4) |
4307 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4308 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4309 }
4310 
4311 /* Allocate a page table page and do related bookkeeping */
4312 static vm_page_t
4313 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4314 {
4315 	vm_page_t m;
4316 
4317 	m = vm_page_alloc_noobj(flags);
4318 	if (__predict_false(m == NULL))
4319 		return (NULL);
4320 	m->pindex = pindex;
4321 	pmap_pt_page_count_adj(pmap, 1);
4322 	return (m);
4323 }
4324 
4325 static void
4326 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4327 {
4328 	/*
4329 	 * This function assumes the page will need to be unwired,
4330 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4331 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4332 	 * of pmap_free_pt_page() require unwiring.  The case in which
4333 	 * a PT page doesn't require unwiring because its ref_count has
4334 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4335 	 */
4336 	vm_page_unwire_noq(m);
4337 	if (zerofilled)
4338 		vm_page_free_zero(m);
4339 	else
4340 		vm_page_free(m);
4341 
4342 	pmap_pt_page_count_adj(pmap, -1);
4343 }
4344 
4345 /*
4346  * Initialize a preallocated and zeroed pmap structure,
4347  * such as one in a vmspace structure.
4348  */
4349 int
4350 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4351 {
4352 	vm_page_t pmltop_pg, pmltop_pgu;
4353 	vm_paddr_t pmltop_phys;
4354 	int i;
4355 
4356 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4357 
4358 	/*
4359 	 * Allocate the page directory page.  Pass NULL instead of a
4360 	 * pointer to the pmap here to avoid calling
4361 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4362 	 * since that requires pmap lock.  Instead do the accounting
4363 	 * manually.
4364 	 *
4365 	 * Note that final call to pmap_remove() optimization that
4366 	 * checks for zero resident_count is basically disabled by
4367 	 * accounting for top-level page.  But the optimization was
4368 	 * not effective since we started using non-managed mapping of
4369 	 * the shared page.
4370 	 */
4371 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4372 	    VM_ALLOC_WAITOK);
4373 	pmap_pt_page_count_pinit(pmap, 1);
4374 
4375 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4376 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4377 
4378 	CPU_FOREACH(i) {
4379 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
4380 		pmap->pm_pcids[i].pm_gen = 0;
4381 	}
4382 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4383 	pmap->pm_ucr3 = PMAP_NO_CR3;
4384 	pmap->pm_pmltopu = NULL;
4385 
4386 	pmap->pm_type = pm_type;
4387 
4388 	/*
4389 	 * Do not install the host kernel mappings in the nested page
4390 	 * tables. These mappings are meaningless in the guest physical
4391 	 * address space.
4392 	 * Install minimal kernel mappings in PTI case.
4393 	 */
4394 	switch (pm_type) {
4395 	case PT_X86:
4396 		pmap->pm_cr3 = pmltop_phys;
4397 		if (pmap_is_la57(pmap))
4398 			pmap_pinit_pml5(pmltop_pg);
4399 		else
4400 			pmap_pinit_pml4(pmltop_pg);
4401 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4402 			/*
4403 			 * As with pmltop_pg, pass NULL instead of a
4404 			 * pointer to the pmap to ensure that the PTI
4405 			 * page counted explicitly.
4406 			 */
4407 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4408 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4409 			pmap_pt_page_count_pinit(pmap, 1);
4410 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4411 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4412 			if (pmap_is_la57(pmap))
4413 				pmap_pinit_pml5_pti(pmltop_pgu);
4414 			else
4415 				pmap_pinit_pml4_pti(pmltop_pgu);
4416 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4417 		}
4418 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4419 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4420 			    pkru_free_range, pmap, M_NOWAIT);
4421 		}
4422 		break;
4423 	case PT_EPT:
4424 	case PT_RVI:
4425 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4426 		break;
4427 	}
4428 
4429 	vm_radix_init(&pmap->pm_root);
4430 	CPU_ZERO(&pmap->pm_active);
4431 	TAILQ_INIT(&pmap->pm_pvchunk);
4432 	pmap->pm_flags = flags;
4433 	pmap->pm_eptgen = 0;
4434 
4435 	return (1);
4436 }
4437 
4438 int
4439 pmap_pinit(pmap_t pmap)
4440 {
4441 
4442 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4443 }
4444 
4445 static void
4446 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4447 {
4448 	vm_page_t mpg;
4449 	struct spglist free;
4450 
4451 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4452 	if (mpg->ref_count != 0)
4453 		return;
4454 	SLIST_INIT(&free);
4455 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4456 	pmap_invalidate_page(pmap, va);
4457 	vm_page_free_pages_toq(&free, true);
4458 }
4459 
4460 static pml4_entry_t *
4461 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4462     bool addref)
4463 {
4464 	vm_pindex_t pml5index;
4465 	pml5_entry_t *pml5;
4466 	pml4_entry_t *pml4;
4467 	vm_page_t pml4pg;
4468 	pt_entry_t PG_V;
4469 	bool allocated;
4470 
4471 	if (!pmap_is_la57(pmap))
4472 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4473 
4474 	PG_V = pmap_valid_bit(pmap);
4475 	pml5index = pmap_pml5e_index(va);
4476 	pml5 = &pmap->pm_pmltop[pml5index];
4477 	if ((*pml5 & PG_V) == 0) {
4478 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4479 		    va) == NULL)
4480 			return (NULL);
4481 		allocated = true;
4482 	} else {
4483 		allocated = false;
4484 	}
4485 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4486 	pml4 = &pml4[pmap_pml4e_index(va)];
4487 	if ((*pml4 & PG_V) == 0) {
4488 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4489 		if (allocated && !addref)
4490 			pml4pg->ref_count--;
4491 		else if (!allocated && addref)
4492 			pml4pg->ref_count++;
4493 	}
4494 	return (pml4);
4495 }
4496 
4497 static pdp_entry_t *
4498 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4499     bool addref)
4500 {
4501 	vm_page_t pdppg;
4502 	pml4_entry_t *pml4;
4503 	pdp_entry_t *pdp;
4504 	pt_entry_t PG_V;
4505 	bool allocated;
4506 
4507 	PG_V = pmap_valid_bit(pmap);
4508 
4509 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4510 	if (pml4 == NULL)
4511 		return (NULL);
4512 
4513 	if ((*pml4 & PG_V) == 0) {
4514 		/* Have to allocate a new pdp, recurse */
4515 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4516 		    va) == NULL) {
4517 			if (pmap_is_la57(pmap))
4518 				pmap_allocpte_free_unref(pmap, va,
4519 				    pmap_pml5e(pmap, va));
4520 			return (NULL);
4521 		}
4522 		allocated = true;
4523 	} else {
4524 		allocated = false;
4525 	}
4526 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4527 	pdp = &pdp[pmap_pdpe_index(va)];
4528 	if ((*pdp & PG_V) == 0) {
4529 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4530 		if (allocated && !addref)
4531 			pdppg->ref_count--;
4532 		else if (!allocated && addref)
4533 			pdppg->ref_count++;
4534 	}
4535 	return (pdp);
4536 }
4537 
4538 /*
4539  * The ptepindexes, i.e. page indices, of the page table pages encountered
4540  * while translating virtual address va are defined as follows:
4541  * - for the page table page (last level),
4542  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4543  *   in other words, it is just the index of the PDE that maps the page
4544  *   table page.
4545  * - for the page directory page,
4546  *      ptepindex = NUPDE (number of userland PD entries) +
4547  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4548  *   i.e. index of PDPE is put after the last index of PDE,
4549  * - for the page directory pointer page,
4550  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4551  *          NPML4EPGSHIFT),
4552  *   i.e. index of pml4e is put after the last index of PDPE,
4553  * - for the PML4 page (if LA57 mode is enabled),
4554  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4555  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4556  *   i.e. index of pml5e is put after the last index of PML4E.
4557  *
4558  * Define an order on the paging entries, where all entries of the
4559  * same height are put together, then heights are put from deepest to
4560  * root.  Then ptexpindex is the sequential number of the
4561  * corresponding paging entry in this order.
4562  *
4563  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4564  * LA57 paging structures even in LA48 paging mode. Moreover, the
4565  * ptepindexes are calculated as if the paging structures were 5-level
4566  * regardless of the actual mode of operation.
4567  *
4568  * The root page at PML4/PML5 does not participate in this indexing scheme,
4569  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4570  */
4571 static vm_page_t
4572 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4573     vm_offset_t va)
4574 {
4575 	vm_pindex_t pml5index, pml4index;
4576 	pml5_entry_t *pml5, *pml5u;
4577 	pml4_entry_t *pml4, *pml4u;
4578 	pdp_entry_t *pdp;
4579 	pd_entry_t *pd;
4580 	vm_page_t m, pdpg;
4581 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4582 
4583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4584 
4585 	PG_A = pmap_accessed_bit(pmap);
4586 	PG_M = pmap_modified_bit(pmap);
4587 	PG_V = pmap_valid_bit(pmap);
4588 	PG_RW = pmap_rw_bit(pmap);
4589 
4590 	/*
4591 	 * Allocate a page table page.
4592 	 */
4593 	m = pmap_alloc_pt_page(pmap, ptepindex,
4594 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4595 	if (m == NULL)
4596 		return (NULL);
4597 
4598 	/*
4599 	 * Map the pagetable page into the process address space, if
4600 	 * it isn't already there.
4601 	 */
4602 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4603 		MPASS(pmap_is_la57(pmap));
4604 
4605 		pml5index = pmap_pml5e_index(va);
4606 		pml5 = &pmap->pm_pmltop[pml5index];
4607 		KASSERT((*pml5 & PG_V) == 0,
4608 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4609 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4610 
4611 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4612 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4613 				*pml5 |= pg_nx;
4614 
4615 			pml5u = &pmap->pm_pmltopu[pml5index];
4616 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4617 			    PG_A | PG_M;
4618 		}
4619 	} else if (ptepindex >= NUPDE + NUPDPE) {
4620 		pml4index = pmap_pml4e_index(va);
4621 		/* Wire up a new PDPE page */
4622 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4623 		if (pml4 == NULL) {
4624 			pmap_free_pt_page(pmap, m, true);
4625 			return (NULL);
4626 		}
4627 		KASSERT((*pml4 & PG_V) == 0,
4628 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4629 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4630 
4631 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4632 		    pml4index < NUPML4E) {
4633 			/*
4634 			 * PTI: Make all user-space mappings in the
4635 			 * kernel-mode page table no-execute so that
4636 			 * we detect any programming errors that leave
4637 			 * the kernel-mode page table active on return
4638 			 * to user space.
4639 			 */
4640 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4641 				*pml4 |= pg_nx;
4642 
4643 			pml4u = &pmap->pm_pmltopu[pml4index];
4644 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4645 			    PG_A | PG_M;
4646 		}
4647 	} else if (ptepindex >= NUPDE) {
4648 		/* Wire up a new PDE page */
4649 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4650 		if (pdp == NULL) {
4651 			pmap_free_pt_page(pmap, m, true);
4652 			return (NULL);
4653 		}
4654 		KASSERT((*pdp & PG_V) == 0,
4655 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4656 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4657 	} else {
4658 		/* Wire up a new PTE page */
4659 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4660 		if (pdp == NULL) {
4661 			pmap_free_pt_page(pmap, m, true);
4662 			return (NULL);
4663 		}
4664 		if ((*pdp & PG_V) == 0) {
4665 			/* Have to allocate a new pd, recurse */
4666 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4667 		      lockp, va) == NULL) {
4668 				pmap_allocpte_free_unref(pmap, va,
4669 				    pmap_pml4e(pmap, va));
4670 				pmap_free_pt_page(pmap, m, true);
4671 				return (NULL);
4672 			}
4673 		} else {
4674 			/* Add reference to the pd page */
4675 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4676 			pdpg->ref_count++;
4677 		}
4678 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4679 
4680 		/* Now we know where the page directory page is */
4681 		pd = &pd[pmap_pde_index(va)];
4682 		KASSERT((*pd & PG_V) == 0,
4683 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4684 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4685 	}
4686 
4687 	return (m);
4688 }
4689 
4690 /*
4691  * This routine is called if the desired page table page does not exist.
4692  *
4693  * If page table page allocation fails, this routine may sleep before
4694  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4695  * occurs right before returning to the caller. This way, we never
4696  * drop pmap lock to sleep while a page table page has ref_count == 0,
4697  * which prevents the page from being freed under us.
4698  */
4699 static vm_page_t
4700 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4701     vm_offset_t va)
4702 {
4703 	vm_page_t m;
4704 
4705 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4706 	if (m == NULL && lockp != NULL) {
4707 		RELEASE_PV_LIST_LOCK(lockp);
4708 		PMAP_UNLOCK(pmap);
4709 		PMAP_ASSERT_NOT_IN_DI();
4710 		vm_wait(NULL);
4711 		PMAP_LOCK(pmap);
4712 	}
4713 	return (m);
4714 }
4715 
4716 static pd_entry_t *
4717 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4718     struct rwlock **lockp)
4719 {
4720 	pdp_entry_t *pdpe, PG_V;
4721 	pd_entry_t *pde;
4722 	vm_page_t pdpg;
4723 	vm_pindex_t pdpindex;
4724 
4725 	PG_V = pmap_valid_bit(pmap);
4726 
4727 retry:
4728 	pdpe = pmap_pdpe(pmap, va);
4729 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4730 		pde = pmap_pdpe_to_pde(pdpe, va);
4731 		if (va < VM_MAXUSER_ADDRESS) {
4732 			/* Add a reference to the pd page. */
4733 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4734 			pdpg->ref_count++;
4735 		} else
4736 			pdpg = NULL;
4737 	} else if (va < VM_MAXUSER_ADDRESS) {
4738 		/* Allocate a pd page. */
4739 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4740 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4741 		if (pdpg == NULL) {
4742 			if (lockp != NULL)
4743 				goto retry;
4744 			else
4745 				return (NULL);
4746 		}
4747 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4748 		pde = &pde[pmap_pde_index(va)];
4749 	} else
4750 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4751 		    va);
4752 	*pdpgp = pdpg;
4753 	return (pde);
4754 }
4755 
4756 static vm_page_t
4757 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4758 {
4759 	vm_pindex_t ptepindex;
4760 	pd_entry_t *pd, PG_V;
4761 	vm_page_t m;
4762 
4763 	PG_V = pmap_valid_bit(pmap);
4764 
4765 	/*
4766 	 * Calculate pagetable page index
4767 	 */
4768 	ptepindex = pmap_pde_pindex(va);
4769 retry:
4770 	/*
4771 	 * Get the page directory entry
4772 	 */
4773 	pd = pmap_pde(pmap, va);
4774 
4775 	/*
4776 	 * This supports switching from a 2MB page to a
4777 	 * normal 4K page.
4778 	 */
4779 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4780 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4781 			/*
4782 			 * Invalidation of the 2MB page mapping may have caused
4783 			 * the deallocation of the underlying PD page.
4784 			 */
4785 			pd = NULL;
4786 		}
4787 	}
4788 
4789 	/*
4790 	 * If the page table page is mapped, we just increment the
4791 	 * hold count, and activate it.
4792 	 */
4793 	if (pd != NULL && (*pd & PG_V) != 0) {
4794 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4795 		m->ref_count++;
4796 	} else {
4797 		/*
4798 		 * Here if the pte page isn't mapped, or if it has been
4799 		 * deallocated.
4800 		 */
4801 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4802 		if (m == NULL && lockp != NULL)
4803 			goto retry;
4804 	}
4805 	return (m);
4806 }
4807 
4808 /***************************************************
4809  * Pmap allocation/deallocation routines.
4810  ***************************************************/
4811 
4812 /*
4813  * Release any resources held by the given physical map.
4814  * Called when a pmap initialized by pmap_pinit is being released.
4815  * Should only be called if the map contains no valid mappings.
4816  */
4817 void
4818 pmap_release(pmap_t pmap)
4819 {
4820 	vm_page_t m;
4821 	int i;
4822 
4823 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4824 	    ("pmap_release: pmap %p has reserved page table page(s)",
4825 	    pmap));
4826 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4827 	    ("releasing active pmap %p", pmap));
4828 
4829 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4830 
4831 	if (pmap_is_la57(pmap)) {
4832 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4833 		pmap->pm_pmltop[PML5PML5I] = 0;
4834 	} else {
4835 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4836 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4837 #ifdef KASAN
4838 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4839 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4840 #endif
4841 #ifdef KMSAN
4842 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4843 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4844 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4845 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4846 #endif
4847 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4848 			pmap->pm_pmltop[DMPML4I + i] = 0;
4849 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4850 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4851 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4852 	}
4853 
4854 	pmap_free_pt_page(NULL, m, true);
4855 	pmap_pt_page_count_pinit(pmap, -1);
4856 
4857 	if (pmap->pm_pmltopu != NULL) {
4858 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4859 		    pm_pmltopu));
4860 		pmap_free_pt_page(NULL, m, false);
4861 		pmap_pt_page_count_pinit(pmap, -1);
4862 	}
4863 	if (pmap->pm_type == PT_X86 &&
4864 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4865 		rangeset_fini(&pmap->pm_pkru);
4866 
4867 	KASSERT(pmap->pm_stats.resident_count == 0,
4868 	    ("pmap_release: pmap %p resident count %ld != 0",
4869 	    pmap, pmap->pm_stats.resident_count));
4870 }
4871 
4872 static int
4873 kvm_size(SYSCTL_HANDLER_ARGS)
4874 {
4875 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4876 
4877 	return sysctl_handle_long(oidp, &ksize, 0, req);
4878 }
4879 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4880     0, 0, kvm_size, "LU",
4881     "Size of KVM");
4882 
4883 static int
4884 kvm_free(SYSCTL_HANDLER_ARGS)
4885 {
4886 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4887 
4888 	return sysctl_handle_long(oidp, &kfree, 0, req);
4889 }
4890 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4891     0, 0, kvm_free, "LU",
4892     "Amount of KVM free");
4893 
4894 #ifdef KMSAN
4895 static void
4896 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4897 {
4898 	pdp_entry_t *pdpe;
4899 	pd_entry_t *pde;
4900 	pt_entry_t *pte;
4901 	vm_paddr_t dummypa, dummypd, dummypt;
4902 	int i, npde, npdpg;
4903 
4904 	npdpg = howmany(size, NBPDP);
4905 	npde = size / NBPDR;
4906 
4907 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4908 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4909 
4910 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4911 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4912 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4913 	for (i = 0; i < npdpg; i++)
4914 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4915 
4916 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4917 	for (i = 0; i < NPTEPG; i++)
4918 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4919 		    X86_PG_A | X86_PG_M | pg_nx);
4920 
4921 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4922 	for (i = 0; i < npde; i++)
4923 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4924 
4925 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4926 	for (i = 0; i < npdpg; i++)
4927 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4928 		    X86_PG_RW | pg_nx);
4929 }
4930 
4931 static void
4932 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4933 {
4934 	vm_size_t size;
4935 
4936 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4937 
4938 	/*
4939 	 * The end of the page array's KVA region is 2MB aligned, see
4940 	 * kmem_init().
4941 	 */
4942 	size = round_2mpage(end) - start;
4943 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4944 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4945 }
4946 #endif
4947 
4948 /*
4949  * Allocate physical memory for the vm_page array and map it into KVA,
4950  * attempting to back the vm_pages with domain-local memory.
4951  */
4952 void
4953 pmap_page_array_startup(long pages)
4954 {
4955 	pdp_entry_t *pdpe;
4956 	pd_entry_t *pde, newpdir;
4957 	vm_offset_t va, start, end;
4958 	vm_paddr_t pa;
4959 	long pfn;
4960 	int domain, i;
4961 
4962 	vm_page_array_size = pages;
4963 
4964 	start = VM_MIN_KERNEL_ADDRESS;
4965 	end = start + pages * sizeof(struct vm_page);
4966 	for (va = start; va < end; va += NBPDR) {
4967 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4968 		domain = vm_phys_domain(ptoa(pfn));
4969 		pdpe = pmap_pdpe(kernel_pmap, va);
4970 		if ((*pdpe & X86_PG_V) == 0) {
4971 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4972 			dump_add_page(pa);
4973 			pagezero((void *)PHYS_TO_DMAP(pa));
4974 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4975 			    X86_PG_A | X86_PG_M);
4976 		}
4977 		pde = pmap_pdpe_to_pde(pdpe, va);
4978 		if ((*pde & X86_PG_V) != 0)
4979 			panic("Unexpected pde");
4980 		pa = vm_phys_early_alloc(domain, NBPDR);
4981 		for (i = 0; i < NPDEPG; i++)
4982 			dump_add_page(pa + i * PAGE_SIZE);
4983 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4984 		    X86_PG_M | PG_PS | pg_g | pg_nx);
4985 		pde_store(pde, newpdir);
4986 	}
4987 	vm_page_array = (vm_page_t)start;
4988 
4989 #ifdef KMSAN
4990 	pmap_kmsan_page_array_startup(start, end);
4991 #endif
4992 }
4993 
4994 /*
4995  * grow the number of kernel page table entries, if needed
4996  */
4997 void
4998 pmap_growkernel(vm_offset_t addr)
4999 {
5000 	vm_paddr_t paddr;
5001 	vm_page_t nkpg;
5002 	pd_entry_t *pde, newpdir;
5003 	pdp_entry_t *pdpe;
5004 
5005 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5006 
5007 	/*
5008 	 * Return if "addr" is within the range of kernel page table pages
5009 	 * that were preallocated during pmap bootstrap.  Moreover, leave
5010 	 * "kernel_vm_end" and the kernel page table as they were.
5011 	 *
5012 	 * The correctness of this action is based on the following
5013 	 * argument: vm_map_insert() allocates contiguous ranges of the
5014 	 * kernel virtual address space.  It calls this function if a range
5015 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5016 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5017 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5018 	 * than the kernel.  Thus, there is no immediate need to allocate
5019 	 * any new kernel page table pages between "kernel_vm_end" and
5020 	 * "KERNBASE".
5021 	 */
5022 	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
5023 		return;
5024 
5025 	addr = roundup2(addr, NBPDR);
5026 	if (addr - 1 >= vm_map_max(kernel_map))
5027 		addr = vm_map_max(kernel_map);
5028 	if (kernel_vm_end < addr)
5029 		kasan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
5030 	if (kernel_vm_end < addr)
5031 		kmsan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
5032 	while (kernel_vm_end < addr) {
5033 		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
5034 		if ((*pdpe & X86_PG_V) == 0) {
5035 			/* We need a new PDP entry */
5036 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5037 			    kernel_vm_end >> PDPSHIFT, VM_ALLOC_WIRED |
5038 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5039 			if (nkpg == NULL)
5040 				panic("pmap_growkernel: no memory to grow kernel");
5041 			paddr = VM_PAGE_TO_PHYS(nkpg);
5042 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5043 			    X86_PG_A | X86_PG_M);
5044 			continue; /* try again */
5045 		}
5046 		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
5047 		if ((*pde & X86_PG_V) != 0) {
5048 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
5049 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
5050 				kernel_vm_end = vm_map_max(kernel_map);
5051 				break;
5052 			}
5053 			continue;
5054 		}
5055 
5056 		nkpg = pmap_alloc_pt_page(kernel_pmap,
5057 		    pmap_pde_pindex(kernel_vm_end), VM_ALLOC_WIRED |
5058 		    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5059 		if (nkpg == NULL)
5060 			panic("pmap_growkernel: no memory to grow kernel");
5061 		paddr = VM_PAGE_TO_PHYS(nkpg);
5062 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5063 		pde_store(pde, newpdir);
5064 
5065 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
5066 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
5067 			kernel_vm_end = vm_map_max(kernel_map);
5068 			break;
5069 		}
5070 	}
5071 }
5072 
5073 /***************************************************
5074  * page management routines.
5075  ***************************************************/
5076 
5077 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
5078 CTASSERT(_NPCM == 3);
5079 CTASSERT(_NPCPV == 168);
5080 
5081 static __inline struct pv_chunk *
5082 pv_to_chunk(pv_entry_t pv)
5083 {
5084 
5085 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
5086 }
5087 
5088 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
5089 
5090 #define	PC_FREE0	0xfffffffffffffffful
5091 #define	PC_FREE1	0xfffffffffffffffful
5092 #define	PC_FREE2	0x000000fffffffffful
5093 
5094 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
5095 
5096 #ifdef PV_STATS
5097 
5098 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5099 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5100     &pc_chunk_count, "Current number of pv entry cnunks");
5101 
5102 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5103 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5104     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5105 
5106 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5107 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5108     &pc_chunk_frees, "Total number of pv entry chunks freed");
5109 
5110 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5111 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5112     &pc_chunk_tryfail,
5113     "Number of failed attempts to get a pv entry chunk page");
5114 
5115 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5116 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5117     &pv_entry_frees, "Total number of pv entries freed");
5118 
5119 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5120 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5121     &pv_entry_allocs, "Total number of pv entries allocated");
5122 
5123 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5124 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5125     &pv_entry_count, "Current number of pv entries");
5126 
5127 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5128 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5129     &pv_entry_spare, "Current number of spare pv entries");
5130 #endif
5131 
5132 static void
5133 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5134 {
5135 
5136 	if (pmap == NULL)
5137 		return;
5138 	pmap_invalidate_all(pmap);
5139 	if (pmap != locked_pmap)
5140 		PMAP_UNLOCK(pmap);
5141 	if (start_di)
5142 		pmap_delayed_invl_finish();
5143 }
5144 
5145 /*
5146  * We are in a serious low memory condition.  Resort to
5147  * drastic measures to free some pages so we can allocate
5148  * another pv entry chunk.
5149  *
5150  * Returns NULL if PV entries were reclaimed from the specified pmap.
5151  *
5152  * We do not, however, unmap 2mpages because subsequent accesses will
5153  * allocate per-page pv entries until repromotion occurs, thereby
5154  * exacerbating the shortage of free pv entries.
5155  */
5156 static vm_page_t
5157 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5158 {
5159 	struct pv_chunks_list *pvc;
5160 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5161 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5162 	struct md_page *pvh;
5163 	pd_entry_t *pde;
5164 	pmap_t next_pmap, pmap;
5165 	pt_entry_t *pte, tpte;
5166 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5167 	pv_entry_t pv;
5168 	vm_offset_t va;
5169 	vm_page_t m, m_pc;
5170 	struct spglist free;
5171 	uint64_t inuse;
5172 	int bit, field, freed;
5173 	bool start_di, restart;
5174 
5175 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5176 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5177 	pmap = NULL;
5178 	m_pc = NULL;
5179 	PG_G = PG_A = PG_M = PG_RW = 0;
5180 	SLIST_INIT(&free);
5181 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5182 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5183 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5184 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5185 
5186 	/*
5187 	 * A delayed invalidation block should already be active if
5188 	 * pmap_advise() or pmap_remove() called this function by way
5189 	 * of pmap_demote_pde_locked().
5190 	 */
5191 	start_di = pmap_not_in_di();
5192 
5193 	pvc = &pv_chunks[domain];
5194 	mtx_lock(&pvc->pvc_lock);
5195 	pvc->active_reclaims++;
5196 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5197 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5198 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5199 	    SLIST_EMPTY(&free)) {
5200 		next_pmap = pc->pc_pmap;
5201 		if (next_pmap == NULL) {
5202 			/*
5203 			 * The next chunk is a marker.  However, it is
5204 			 * not our marker, so active_reclaims must be
5205 			 * > 1.  Consequently, the next_chunk code
5206 			 * will not rotate the pv_chunks list.
5207 			 */
5208 			goto next_chunk;
5209 		}
5210 		mtx_unlock(&pvc->pvc_lock);
5211 
5212 		/*
5213 		 * A pv_chunk can only be removed from the pc_lru list
5214 		 * when both pc_chunks_mutex is owned and the
5215 		 * corresponding pmap is locked.
5216 		 */
5217 		if (pmap != next_pmap) {
5218 			restart = false;
5219 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5220 			    start_di);
5221 			pmap = next_pmap;
5222 			/* Avoid deadlock and lock recursion. */
5223 			if (pmap > locked_pmap) {
5224 				RELEASE_PV_LIST_LOCK(lockp);
5225 				PMAP_LOCK(pmap);
5226 				if (start_di)
5227 					pmap_delayed_invl_start();
5228 				mtx_lock(&pvc->pvc_lock);
5229 				restart = true;
5230 			} else if (pmap != locked_pmap) {
5231 				if (PMAP_TRYLOCK(pmap)) {
5232 					if (start_di)
5233 						pmap_delayed_invl_start();
5234 					mtx_lock(&pvc->pvc_lock);
5235 					restart = true;
5236 				} else {
5237 					pmap = NULL; /* pmap is not locked */
5238 					mtx_lock(&pvc->pvc_lock);
5239 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5240 					if (pc == NULL ||
5241 					    pc->pc_pmap != next_pmap)
5242 						continue;
5243 					goto next_chunk;
5244 				}
5245 			} else if (start_di)
5246 				pmap_delayed_invl_start();
5247 			PG_G = pmap_global_bit(pmap);
5248 			PG_A = pmap_accessed_bit(pmap);
5249 			PG_M = pmap_modified_bit(pmap);
5250 			PG_RW = pmap_rw_bit(pmap);
5251 			if (restart)
5252 				continue;
5253 		}
5254 
5255 		/*
5256 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5257 		 */
5258 		freed = 0;
5259 		for (field = 0; field < _NPCM; field++) {
5260 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5261 			    inuse != 0; inuse &= ~(1UL << bit)) {
5262 				bit = bsfq(inuse);
5263 				pv = &pc->pc_pventry[field * 64 + bit];
5264 				va = pv->pv_va;
5265 				pde = pmap_pde(pmap, va);
5266 				if ((*pde & PG_PS) != 0)
5267 					continue;
5268 				pte = pmap_pde_to_pte(pde, va);
5269 				if ((*pte & PG_W) != 0)
5270 					continue;
5271 				tpte = pte_load_clear(pte);
5272 				if ((tpte & PG_G) != 0)
5273 					pmap_invalidate_page(pmap, va);
5274 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5275 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5276 					vm_page_dirty(m);
5277 				if ((tpte & PG_A) != 0)
5278 					vm_page_aflag_set(m, PGA_REFERENCED);
5279 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5280 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5281 				m->md.pv_gen++;
5282 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5283 				    (m->flags & PG_FICTITIOUS) == 0) {
5284 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5285 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5286 						vm_page_aflag_clear(m,
5287 						    PGA_WRITEABLE);
5288 					}
5289 				}
5290 				pmap_delayed_invl_page(m);
5291 				pc->pc_map[field] |= 1UL << bit;
5292 				pmap_unuse_pt(pmap, va, *pde, &free);
5293 				freed++;
5294 			}
5295 		}
5296 		if (freed == 0) {
5297 			mtx_lock(&pvc->pvc_lock);
5298 			goto next_chunk;
5299 		}
5300 		/* Every freed mapping is for a 4 KB page. */
5301 		pmap_resident_count_adj(pmap, -freed);
5302 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5303 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5304 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5305 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5306 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
5307 		    pc->pc_map[2] == PC_FREE2) {
5308 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5309 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5310 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5311 			/* Entire chunk is free; return it. */
5312 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5313 			dump_drop_page(m_pc->phys_addr);
5314 			mtx_lock(&pvc->pvc_lock);
5315 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5316 			break;
5317 		}
5318 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5319 		mtx_lock(&pvc->pvc_lock);
5320 		/* One freed pv entry in locked_pmap is sufficient. */
5321 		if (pmap == locked_pmap)
5322 			break;
5323 next_chunk:
5324 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5325 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5326 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5327 			/*
5328 			 * Rotate the pv chunks list so that we do not
5329 			 * scan the same pv chunks that could not be
5330 			 * freed (because they contained a wired
5331 			 * and/or superpage mapping) on every
5332 			 * invocation of reclaim_pv_chunk().
5333 			 */
5334 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5335 				MPASS(pc->pc_pmap != NULL);
5336 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5337 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5338 			}
5339 		}
5340 	}
5341 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5342 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5343 	pvc->active_reclaims--;
5344 	mtx_unlock(&pvc->pvc_lock);
5345 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5346 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5347 		m_pc = SLIST_FIRST(&free);
5348 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5349 		/* Recycle a freed page table page. */
5350 		m_pc->ref_count = 1;
5351 	}
5352 	vm_page_free_pages_toq(&free, true);
5353 	return (m_pc);
5354 }
5355 
5356 static vm_page_t
5357 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5358 {
5359 	vm_page_t m;
5360 	int i, domain;
5361 
5362 	domain = PCPU_GET(domain);
5363 	for (i = 0; i < vm_ndomains; i++) {
5364 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5365 		if (m != NULL)
5366 			break;
5367 		domain = (domain + 1) % vm_ndomains;
5368 	}
5369 
5370 	return (m);
5371 }
5372 
5373 /*
5374  * free the pv_entry back to the free list
5375  */
5376 static void
5377 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5378 {
5379 	struct pv_chunk *pc;
5380 	int idx, field, bit;
5381 
5382 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5383 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5384 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5385 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5386 	pc = pv_to_chunk(pv);
5387 	idx = pv - &pc->pc_pventry[0];
5388 	field = idx / 64;
5389 	bit = idx % 64;
5390 	pc->pc_map[field] |= 1ul << bit;
5391 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
5392 	    pc->pc_map[2] != PC_FREE2) {
5393 		/* 98% of the time, pc is already at the head of the list. */
5394 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5395 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5396 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5397 		}
5398 		return;
5399 	}
5400 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5401 	free_pv_chunk(pc);
5402 }
5403 
5404 static void
5405 free_pv_chunk_dequeued(struct pv_chunk *pc)
5406 {
5407 	vm_page_t m;
5408 
5409 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5410 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5411 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5412 	counter_u64_add(pv_page_count, -1);
5413 	/* entire chunk is free, return it */
5414 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5415 	dump_drop_page(m->phys_addr);
5416 	vm_page_unwire_noq(m);
5417 	vm_page_free(m);
5418 }
5419 
5420 static void
5421 free_pv_chunk(struct pv_chunk *pc)
5422 {
5423 	struct pv_chunks_list *pvc;
5424 
5425 	pvc = &pv_chunks[pc_to_domain(pc)];
5426 	mtx_lock(&pvc->pvc_lock);
5427 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5428 	mtx_unlock(&pvc->pvc_lock);
5429 	free_pv_chunk_dequeued(pc);
5430 }
5431 
5432 static void
5433 free_pv_chunk_batch(struct pv_chunklist *batch)
5434 {
5435 	struct pv_chunks_list *pvc;
5436 	struct pv_chunk *pc, *npc;
5437 	int i;
5438 
5439 	for (i = 0; i < vm_ndomains; i++) {
5440 		if (TAILQ_EMPTY(&batch[i]))
5441 			continue;
5442 		pvc = &pv_chunks[i];
5443 		mtx_lock(&pvc->pvc_lock);
5444 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5445 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5446 		}
5447 		mtx_unlock(&pvc->pvc_lock);
5448 	}
5449 
5450 	for (i = 0; i < vm_ndomains; i++) {
5451 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5452 			free_pv_chunk_dequeued(pc);
5453 		}
5454 	}
5455 }
5456 
5457 /*
5458  * Returns a new PV entry, allocating a new PV chunk from the system when
5459  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5460  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5461  * returned.
5462  *
5463  * The given PV list lock may be released.
5464  */
5465 static pv_entry_t
5466 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5467 {
5468 	struct pv_chunks_list *pvc;
5469 	int bit, field;
5470 	pv_entry_t pv;
5471 	struct pv_chunk *pc;
5472 	vm_page_t m;
5473 
5474 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5475 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5476 retry:
5477 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5478 	if (pc != NULL) {
5479 		for (field = 0; field < _NPCM; field++) {
5480 			if (pc->pc_map[field]) {
5481 				bit = bsfq(pc->pc_map[field]);
5482 				break;
5483 			}
5484 		}
5485 		if (field < _NPCM) {
5486 			pv = &pc->pc_pventry[field * 64 + bit];
5487 			pc->pc_map[field] &= ~(1ul << bit);
5488 			/* If this was the last item, move it to tail */
5489 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5490 			    pc->pc_map[2] == 0) {
5491 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5492 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5493 				    pc_list);
5494 			}
5495 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5496 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5497 			return (pv);
5498 		}
5499 	}
5500 	/* No free items, allocate another chunk */
5501 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5502 	if (m == NULL) {
5503 		if (lockp == NULL) {
5504 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5505 			return (NULL);
5506 		}
5507 		m = reclaim_pv_chunk(pmap, lockp);
5508 		if (m == NULL)
5509 			goto retry;
5510 	} else
5511 		counter_u64_add(pv_page_count, 1);
5512 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5513 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5514 	dump_add_page(m->phys_addr);
5515 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5516 	pc->pc_pmap = pmap;
5517 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
5518 	pc->pc_map[1] = PC_FREE1;
5519 	pc->pc_map[2] = PC_FREE2;
5520 	pvc = &pv_chunks[vm_page_domain(m)];
5521 	mtx_lock(&pvc->pvc_lock);
5522 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5523 	mtx_unlock(&pvc->pvc_lock);
5524 	pv = &pc->pc_pventry[0];
5525 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5526 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5527 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5528 	return (pv);
5529 }
5530 
5531 /*
5532  * Returns the number of one bits within the given PV chunk map.
5533  *
5534  * The erratas for Intel processors state that "POPCNT Instruction May
5535  * Take Longer to Execute Than Expected".  It is believed that the
5536  * issue is the spurious dependency on the destination register.
5537  * Provide a hint to the register rename logic that the destination
5538  * value is overwritten, by clearing it, as suggested in the
5539  * optimization manual.  It should be cheap for unaffected processors
5540  * as well.
5541  *
5542  * Reference numbers for erratas are
5543  * 4th Gen Core: HSD146
5544  * 5th Gen Core: BDM85
5545  * 6th Gen Core: SKL029
5546  */
5547 static int
5548 popcnt_pc_map_pq(uint64_t *map)
5549 {
5550 	u_long result, tmp;
5551 
5552 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5553 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5554 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5555 	    : "=&r" (result), "=&r" (tmp)
5556 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5557 	return (result);
5558 }
5559 
5560 /*
5561  * Ensure that the number of spare PV entries in the specified pmap meets or
5562  * exceeds the given count, "needed".
5563  *
5564  * The given PV list lock may be released.
5565  */
5566 static void
5567 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5568 {
5569 	struct pv_chunks_list *pvc;
5570 	struct pch new_tail[PMAP_MEMDOM];
5571 	struct pv_chunk *pc;
5572 	vm_page_t m;
5573 	int avail, free, i;
5574 	bool reclaimed;
5575 
5576 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5577 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5578 
5579 	/*
5580 	 * Newly allocated PV chunks must be stored in a private list until
5581 	 * the required number of PV chunks have been allocated.  Otherwise,
5582 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5583 	 * contrast, these chunks must be added to the pmap upon allocation.
5584 	 */
5585 	for (i = 0; i < PMAP_MEMDOM; i++)
5586 		TAILQ_INIT(&new_tail[i]);
5587 retry:
5588 	avail = 0;
5589 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5590 #ifndef __POPCNT__
5591 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5592 			bit_count((bitstr_t *)pc->pc_map, 0,
5593 			    sizeof(pc->pc_map) * NBBY, &free);
5594 		else
5595 #endif
5596 		free = popcnt_pc_map_pq(pc->pc_map);
5597 		if (free == 0)
5598 			break;
5599 		avail += free;
5600 		if (avail >= needed)
5601 			break;
5602 	}
5603 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5604 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5605 		if (m == NULL) {
5606 			m = reclaim_pv_chunk(pmap, lockp);
5607 			if (m == NULL)
5608 				goto retry;
5609 			reclaimed = true;
5610 		} else
5611 			counter_u64_add(pv_page_count, 1);
5612 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5613 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5614 		dump_add_page(m->phys_addr);
5615 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5616 		pc->pc_pmap = pmap;
5617 		pc->pc_map[0] = PC_FREE0;
5618 		pc->pc_map[1] = PC_FREE1;
5619 		pc->pc_map[2] = PC_FREE2;
5620 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5621 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5622 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5623 
5624 		/*
5625 		 * The reclaim might have freed a chunk from the current pmap.
5626 		 * If that chunk contained available entries, we need to
5627 		 * re-count the number of available entries.
5628 		 */
5629 		if (reclaimed)
5630 			goto retry;
5631 	}
5632 	for (i = 0; i < vm_ndomains; i++) {
5633 		if (TAILQ_EMPTY(&new_tail[i]))
5634 			continue;
5635 		pvc = &pv_chunks[i];
5636 		mtx_lock(&pvc->pvc_lock);
5637 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5638 		mtx_unlock(&pvc->pvc_lock);
5639 	}
5640 }
5641 
5642 /*
5643  * First find and then remove the pv entry for the specified pmap and virtual
5644  * address from the specified pv list.  Returns the pv entry if found and NULL
5645  * otherwise.  This operation can be performed on pv lists for either 4KB or
5646  * 2MB page mappings.
5647  */
5648 static __inline pv_entry_t
5649 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5650 {
5651 	pv_entry_t pv;
5652 
5653 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5654 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5655 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5656 			pvh->pv_gen++;
5657 			break;
5658 		}
5659 	}
5660 	return (pv);
5661 }
5662 
5663 /*
5664  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5665  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5666  * entries for each of the 4KB page mappings.
5667  */
5668 static void
5669 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5670     struct rwlock **lockp)
5671 {
5672 	struct md_page *pvh;
5673 	struct pv_chunk *pc;
5674 	pv_entry_t pv;
5675 	vm_offset_t va_last;
5676 	vm_page_t m;
5677 	int bit, field;
5678 
5679 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5680 	KASSERT((pa & PDRMASK) == 0,
5681 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5682 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5683 
5684 	/*
5685 	 * Transfer the 2mpage's pv entry for this mapping to the first
5686 	 * page's pv list.  Once this transfer begins, the pv list lock
5687 	 * must not be released until the last pv entry is reinstantiated.
5688 	 */
5689 	pvh = pa_to_pvh(pa);
5690 	va = trunc_2mpage(va);
5691 	pv = pmap_pvh_remove(pvh, pmap, va);
5692 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5693 	m = PHYS_TO_VM_PAGE(pa);
5694 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5695 	m->md.pv_gen++;
5696 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5697 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5698 	va_last = va + NBPDR - PAGE_SIZE;
5699 	for (;;) {
5700 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5701 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5702 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5703 		for (field = 0; field < _NPCM; field++) {
5704 			while (pc->pc_map[field]) {
5705 				bit = bsfq(pc->pc_map[field]);
5706 				pc->pc_map[field] &= ~(1ul << bit);
5707 				pv = &pc->pc_pventry[field * 64 + bit];
5708 				va += PAGE_SIZE;
5709 				pv->pv_va = va;
5710 				m++;
5711 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5712 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5713 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5714 				m->md.pv_gen++;
5715 				if (va == va_last)
5716 					goto out;
5717 			}
5718 		}
5719 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5720 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5721 	}
5722 out:
5723 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5724 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5725 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5726 	}
5727 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5728 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5729 }
5730 
5731 #if VM_NRESERVLEVEL > 0
5732 /*
5733  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5734  * replace the many pv entries for the 4KB page mappings by a single pv entry
5735  * for the 2MB page mapping.
5736  */
5737 static void
5738 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5739     struct rwlock **lockp)
5740 {
5741 	struct md_page *pvh;
5742 	pv_entry_t pv;
5743 	vm_offset_t va_last;
5744 	vm_page_t m;
5745 
5746 	KASSERT((pa & PDRMASK) == 0,
5747 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5748 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5749 
5750 	/*
5751 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5752 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5753 	 * a transfer avoids the possibility that get_pv_entry() calls
5754 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5755 	 * mappings that is being promoted.
5756 	 */
5757 	m = PHYS_TO_VM_PAGE(pa);
5758 	va = trunc_2mpage(va);
5759 	pv = pmap_pvh_remove(&m->md, pmap, va);
5760 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5761 	pvh = pa_to_pvh(pa);
5762 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5763 	pvh->pv_gen++;
5764 	/* Free the remaining NPTEPG - 1 pv entries. */
5765 	va_last = va + NBPDR - PAGE_SIZE;
5766 	do {
5767 		m++;
5768 		va += PAGE_SIZE;
5769 		pmap_pvh_free(&m->md, pmap, va);
5770 	} while (va < va_last);
5771 }
5772 #endif /* VM_NRESERVLEVEL > 0 */
5773 
5774 /*
5775  * First find and then destroy the pv entry for the specified pmap and virtual
5776  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5777  * page mappings.
5778  */
5779 static void
5780 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5781 {
5782 	pv_entry_t pv;
5783 
5784 	pv = pmap_pvh_remove(pvh, pmap, va);
5785 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5786 	free_pv_entry(pmap, pv);
5787 }
5788 
5789 /*
5790  * Conditionally create the PV entry for a 4KB page mapping if the required
5791  * memory can be allocated without resorting to reclamation.
5792  */
5793 static boolean_t
5794 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5795     struct rwlock **lockp)
5796 {
5797 	pv_entry_t pv;
5798 
5799 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5800 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5801 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5802 		pv->pv_va = va;
5803 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5804 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5805 		m->md.pv_gen++;
5806 		return (TRUE);
5807 	} else
5808 		return (FALSE);
5809 }
5810 
5811 /*
5812  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5813  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5814  * false if the PV entry cannot be allocated without resorting to reclamation.
5815  */
5816 static bool
5817 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5818     struct rwlock **lockp)
5819 {
5820 	struct md_page *pvh;
5821 	pv_entry_t pv;
5822 	vm_paddr_t pa;
5823 
5824 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5825 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5826 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5827 	    NULL : lockp)) == NULL)
5828 		return (false);
5829 	pv->pv_va = va;
5830 	pa = pde & PG_PS_FRAME;
5831 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5832 	pvh = pa_to_pvh(pa);
5833 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5834 	pvh->pv_gen++;
5835 	return (true);
5836 }
5837 
5838 /*
5839  * Fills a page table page with mappings to consecutive physical pages.
5840  */
5841 static void
5842 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5843 {
5844 	pt_entry_t *pte;
5845 
5846 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5847 		*pte = newpte;
5848 		newpte += PAGE_SIZE;
5849 	}
5850 }
5851 
5852 /*
5853  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5854  * mapping is invalidated.
5855  */
5856 static boolean_t
5857 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5858 {
5859 	struct rwlock *lock;
5860 	boolean_t rv;
5861 
5862 	lock = NULL;
5863 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5864 	if (lock != NULL)
5865 		rw_wunlock(lock);
5866 	return (rv);
5867 }
5868 
5869 static void
5870 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5871 {
5872 #ifdef INVARIANTS
5873 #ifdef DIAGNOSTIC
5874 	pt_entry_t *xpte, *ypte;
5875 
5876 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5877 	    xpte++, newpte += PAGE_SIZE) {
5878 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5879 			printf("pmap_demote_pde: xpte %zd and newpte map "
5880 			    "different pages: found %#lx, expected %#lx\n",
5881 			    xpte - firstpte, *xpte, newpte);
5882 			printf("page table dump\n");
5883 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5884 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5885 			panic("firstpte");
5886 		}
5887 	}
5888 #else
5889 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5890 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5891 	    " addresses"));
5892 #endif
5893 #endif
5894 }
5895 
5896 static void
5897 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5898     pd_entry_t oldpde, struct rwlock **lockp)
5899 {
5900 	struct spglist free;
5901 	vm_offset_t sva;
5902 
5903 	SLIST_INIT(&free);
5904 	sva = trunc_2mpage(va);
5905 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
5906 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5907 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5908 	vm_page_free_pages_toq(&free, true);
5909 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5910 	    va, pmap);
5911 }
5912 
5913 static boolean_t
5914 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5915     struct rwlock **lockp)
5916 {
5917 	pd_entry_t newpde, oldpde;
5918 	pt_entry_t *firstpte, newpte;
5919 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5920 	vm_paddr_t mptepa;
5921 	vm_page_t mpte;
5922 	int PG_PTE_CACHE;
5923 	bool in_kernel;
5924 
5925 	PG_A = pmap_accessed_bit(pmap);
5926 	PG_G = pmap_global_bit(pmap);
5927 	PG_M = pmap_modified_bit(pmap);
5928 	PG_RW = pmap_rw_bit(pmap);
5929 	PG_V = pmap_valid_bit(pmap);
5930 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
5931 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5932 
5933 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5934 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5935 	oldpde = *pde;
5936 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5937 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5938 
5939 	/*
5940 	 * Invalidate the 2MB page mapping and return "failure" if the
5941 	 * mapping was never accessed.
5942 	 */
5943 	if ((oldpde & PG_A) == 0) {
5944 		KASSERT((oldpde & PG_W) == 0,
5945 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
5946 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5947 		return (FALSE);
5948 	}
5949 
5950 	mpte = pmap_remove_pt_page(pmap, va);
5951 	if (mpte == NULL) {
5952 		KASSERT((oldpde & PG_W) == 0,
5953 		    ("pmap_demote_pde: page table page for a wired mapping"
5954 		    " is missing"));
5955 
5956 		/*
5957 		 * If the page table page is missing and the mapping
5958 		 * is for a kernel address, the mapping must belong to
5959 		 * the direct map.  Page table pages are preallocated
5960 		 * for every other part of the kernel address space,
5961 		 * so the direct map region is the only part of the
5962 		 * kernel address space that must be handled here.
5963 		 */
5964 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
5965 		    va < DMAP_MAX_ADDRESS),
5966 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
5967 
5968 		/*
5969 		 * If the 2MB page mapping belongs to the direct map
5970 		 * region of the kernel's address space, then the page
5971 		 * allocation request specifies the highest possible
5972 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5973 		 * priority is normal.
5974 		 */
5975 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
5976 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
5977 
5978 		/*
5979 		 * If the allocation of the new page table page fails,
5980 		 * invalidate the 2MB page mapping and return "failure".
5981 		 */
5982 		if (mpte == NULL) {
5983 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5984 			return (FALSE);
5985 		}
5986 
5987 		if (!in_kernel)
5988 			mpte->ref_count = NPTEPG;
5989 	}
5990 	mptepa = VM_PAGE_TO_PHYS(mpte);
5991 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
5992 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
5993 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
5994 	    ("pmap_demote_pde: oldpde is missing PG_M"));
5995 	newpte = oldpde & ~PG_PS;
5996 	newpte = pmap_swap_pat(pmap, newpte);
5997 
5998 	/*
5999 	 * If the page table page is not leftover from an earlier promotion,
6000 	 * initialize it.
6001 	 */
6002 	if (mpte->valid == 0)
6003 		pmap_fill_ptp(firstpte, newpte);
6004 
6005 	pmap_demote_pde_check(firstpte, newpte);
6006 
6007 	/*
6008 	 * If the mapping has changed attributes, update the page table
6009 	 * entries.
6010 	 */
6011 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6012 		pmap_fill_ptp(firstpte, newpte);
6013 
6014 	/*
6015 	 * The spare PV entries must be reserved prior to demoting the
6016 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6017 	 * of the PDE and the PV lists will be inconsistent, which can result
6018 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6019 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6020 	 * PV entry for the 2MB page mapping that is being demoted.
6021 	 */
6022 	if ((oldpde & PG_MANAGED) != 0)
6023 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6024 
6025 	/*
6026 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6027 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6028 	 * set.  Thus, there is no danger of a race with another
6029 	 * processor changing the setting of PG_A and/or PG_M between
6030 	 * the read above and the store below.
6031 	 */
6032 	if (workaround_erratum383)
6033 		pmap_update_pde(pmap, va, pde, newpde);
6034 	else
6035 		pde_store(pde, newpde);
6036 
6037 	/*
6038 	 * Invalidate a stale recursive mapping of the page table page.
6039 	 */
6040 	if (in_kernel)
6041 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6042 
6043 	/*
6044 	 * Demote the PV entry.
6045 	 */
6046 	if ((oldpde & PG_MANAGED) != 0)
6047 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6048 
6049 	counter_u64_add(pmap_pde_demotions, 1);
6050 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6051 	    va, pmap);
6052 	return (TRUE);
6053 }
6054 
6055 /*
6056  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6057  */
6058 static void
6059 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6060 {
6061 	pd_entry_t newpde;
6062 	vm_paddr_t mptepa;
6063 	vm_page_t mpte;
6064 
6065 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6066 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6067 	mpte = pmap_remove_pt_page(pmap, va);
6068 	if (mpte == NULL)
6069 		panic("pmap_remove_kernel_pde: Missing pt page.");
6070 
6071 	mptepa = VM_PAGE_TO_PHYS(mpte);
6072 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6073 
6074 	/*
6075 	 * If this page table page was unmapped by a promotion, then it
6076 	 * contains valid mappings.  Zero it to invalidate those mappings.
6077 	 */
6078 	if (mpte->valid != 0)
6079 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6080 
6081 	/*
6082 	 * Demote the mapping.
6083 	 */
6084 	if (workaround_erratum383)
6085 		pmap_update_pde(pmap, va, pde, newpde);
6086 	else
6087 		pde_store(pde, newpde);
6088 
6089 	/*
6090 	 * Invalidate a stale recursive mapping of the page table page.
6091 	 */
6092 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6093 }
6094 
6095 /*
6096  * pmap_remove_pde: do the things to unmap a superpage in a process
6097  */
6098 static int
6099 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6100     struct spglist *free, struct rwlock **lockp)
6101 {
6102 	struct md_page *pvh;
6103 	pd_entry_t oldpde;
6104 	vm_offset_t eva, va;
6105 	vm_page_t m, mpte;
6106 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6107 
6108 	PG_G = pmap_global_bit(pmap);
6109 	PG_A = pmap_accessed_bit(pmap);
6110 	PG_M = pmap_modified_bit(pmap);
6111 	PG_RW = pmap_rw_bit(pmap);
6112 
6113 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6114 	KASSERT((sva & PDRMASK) == 0,
6115 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6116 	oldpde = pte_load_clear(pdq);
6117 	if (oldpde & PG_W)
6118 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6119 	if ((oldpde & PG_G) != 0)
6120 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6121 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6122 	if (oldpde & PG_MANAGED) {
6123 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6124 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6125 		pmap_pvh_free(pvh, pmap, sva);
6126 		eva = sva + NBPDR;
6127 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6128 		    va < eva; va += PAGE_SIZE, m++) {
6129 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6130 				vm_page_dirty(m);
6131 			if (oldpde & PG_A)
6132 				vm_page_aflag_set(m, PGA_REFERENCED);
6133 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6134 			    TAILQ_EMPTY(&pvh->pv_list))
6135 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6136 			pmap_delayed_invl_page(m);
6137 		}
6138 	}
6139 	if (pmap == kernel_pmap) {
6140 		pmap_remove_kernel_pde(pmap, pdq, sva);
6141 	} else {
6142 		mpte = pmap_remove_pt_page(pmap, sva);
6143 		if (mpte != NULL) {
6144 			KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
6145 			    ("pmap_remove_pde: pte page not promoted"));
6146 			pmap_resident_count_adj(pmap, -1);
6147 			KASSERT(mpte->ref_count == NPTEPG,
6148 			    ("pmap_remove_pde: pte page ref count error"));
6149 			mpte->ref_count = 0;
6150 			pmap_add_delayed_free_list(mpte, free, FALSE);
6151 		}
6152 	}
6153 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6154 }
6155 
6156 /*
6157  * pmap_remove_pte: do the things to unmap a page in a process
6158  */
6159 static int
6160 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6161     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6162 {
6163 	struct md_page *pvh;
6164 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6165 	vm_page_t m;
6166 
6167 	PG_A = pmap_accessed_bit(pmap);
6168 	PG_M = pmap_modified_bit(pmap);
6169 	PG_RW = pmap_rw_bit(pmap);
6170 
6171 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6172 	oldpte = pte_load_clear(ptq);
6173 	if (oldpte & PG_W)
6174 		pmap->pm_stats.wired_count -= 1;
6175 	pmap_resident_count_adj(pmap, -1);
6176 	if (oldpte & PG_MANAGED) {
6177 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6178 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6179 			vm_page_dirty(m);
6180 		if (oldpte & PG_A)
6181 			vm_page_aflag_set(m, PGA_REFERENCED);
6182 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6183 		pmap_pvh_free(&m->md, pmap, va);
6184 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6185 		    (m->flags & PG_FICTITIOUS) == 0) {
6186 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6187 			if (TAILQ_EMPTY(&pvh->pv_list))
6188 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6189 		}
6190 		pmap_delayed_invl_page(m);
6191 	}
6192 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6193 }
6194 
6195 /*
6196  * Remove a single page from a process address space
6197  */
6198 static void
6199 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6200     struct spglist *free)
6201 {
6202 	struct rwlock *lock;
6203 	pt_entry_t *pte, PG_V;
6204 
6205 	PG_V = pmap_valid_bit(pmap);
6206 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6207 	if ((*pde & PG_V) == 0)
6208 		return;
6209 	pte = pmap_pde_to_pte(pde, va);
6210 	if ((*pte & PG_V) == 0)
6211 		return;
6212 	lock = NULL;
6213 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6214 	if (lock != NULL)
6215 		rw_wunlock(lock);
6216 	pmap_invalidate_page(pmap, va);
6217 }
6218 
6219 /*
6220  * Removes the specified range of addresses from the page table page.
6221  */
6222 static bool
6223 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6224     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6225 {
6226 	pt_entry_t PG_G, *pte;
6227 	vm_offset_t va;
6228 	bool anyvalid;
6229 
6230 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6231 	PG_G = pmap_global_bit(pmap);
6232 	anyvalid = false;
6233 	va = eva;
6234 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6235 	    sva += PAGE_SIZE) {
6236 		if (*pte == 0) {
6237 			if (va != eva) {
6238 				pmap_invalidate_range(pmap, va, sva);
6239 				va = eva;
6240 			}
6241 			continue;
6242 		}
6243 		if ((*pte & PG_G) == 0)
6244 			anyvalid = true;
6245 		else if (va == eva)
6246 			va = sva;
6247 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6248 			sva += PAGE_SIZE;
6249 			break;
6250 		}
6251 	}
6252 	if (va != eva)
6253 		pmap_invalidate_range(pmap, va, sva);
6254 	return (anyvalid);
6255 }
6256 
6257 /*
6258  *	Remove the given range of addresses from the specified map.
6259  *
6260  *	It is assumed that the start and end are properly
6261  *	rounded to the page size.
6262  */
6263 void
6264 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6265 {
6266 	struct rwlock *lock;
6267 	vm_page_t mt;
6268 	vm_offset_t va_next;
6269 	pml5_entry_t *pml5e;
6270 	pml4_entry_t *pml4e;
6271 	pdp_entry_t *pdpe;
6272 	pd_entry_t ptpaddr, *pde;
6273 	pt_entry_t PG_G, PG_V;
6274 	struct spglist free;
6275 	int anyvalid;
6276 
6277 	PG_G = pmap_global_bit(pmap);
6278 	PG_V = pmap_valid_bit(pmap);
6279 
6280 	/*
6281 	 * If there are no resident pages besides the top level page
6282 	 * table page(s), there is nothing to do.  Kernel pmap always
6283 	 * accounts whole preloaded area as resident, which makes its
6284 	 * resident count > 2.
6285 	 * Perform an unsynchronized read.  This is, however, safe.
6286 	 */
6287 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6288 	    1 : 0))
6289 		return;
6290 
6291 	anyvalid = 0;
6292 	SLIST_INIT(&free);
6293 
6294 	pmap_delayed_invl_start();
6295 	PMAP_LOCK(pmap);
6296 	pmap_pkru_on_remove(pmap, sva, eva);
6297 
6298 	/*
6299 	 * special handling of removing one page.  a very
6300 	 * common operation and easy to short circuit some
6301 	 * code.
6302 	 */
6303 	if (sva + PAGE_SIZE == eva) {
6304 		pde = pmap_pde(pmap, sva);
6305 		if (pde && (*pde & PG_PS) == 0) {
6306 			pmap_remove_page(pmap, sva, pde, &free);
6307 			goto out;
6308 		}
6309 	}
6310 
6311 	lock = NULL;
6312 	for (; sva < eva; sva = va_next) {
6313 		if (pmap->pm_stats.resident_count == 0)
6314 			break;
6315 
6316 		if (pmap_is_la57(pmap)) {
6317 			pml5e = pmap_pml5e(pmap, sva);
6318 			if ((*pml5e & PG_V) == 0) {
6319 				va_next = (sva + NBPML5) & ~PML5MASK;
6320 				if (va_next < sva)
6321 					va_next = eva;
6322 				continue;
6323 			}
6324 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6325 		} else {
6326 			pml4e = pmap_pml4e(pmap, sva);
6327 		}
6328 		if ((*pml4e & PG_V) == 0) {
6329 			va_next = (sva + NBPML4) & ~PML4MASK;
6330 			if (va_next < sva)
6331 				va_next = eva;
6332 			continue;
6333 		}
6334 
6335 		va_next = (sva + NBPDP) & ~PDPMASK;
6336 		if (va_next < sva)
6337 			va_next = eva;
6338 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6339 		if ((*pdpe & PG_V) == 0)
6340 			continue;
6341 		if ((*pdpe & PG_PS) != 0) {
6342 			KASSERT(va_next <= eva,
6343 			    ("partial update of non-transparent 1G mapping "
6344 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6345 			    *pdpe, sva, eva, va_next));
6346 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6347 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6348 			anyvalid = 1;
6349 			*pdpe = 0;
6350 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6351 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6352 			pmap_unwire_ptp(pmap, sva, mt, &free);
6353 			continue;
6354 		}
6355 
6356 		/*
6357 		 * Calculate index for next page table.
6358 		 */
6359 		va_next = (sva + NBPDR) & ~PDRMASK;
6360 		if (va_next < sva)
6361 			va_next = eva;
6362 
6363 		pde = pmap_pdpe_to_pde(pdpe, sva);
6364 		ptpaddr = *pde;
6365 
6366 		/*
6367 		 * Weed out invalid mappings.
6368 		 */
6369 		if (ptpaddr == 0)
6370 			continue;
6371 
6372 		/*
6373 		 * Check for large page.
6374 		 */
6375 		if ((ptpaddr & PG_PS) != 0) {
6376 			/*
6377 			 * Are we removing the entire large page?  If not,
6378 			 * demote the mapping and fall through.
6379 			 */
6380 			if (sva + NBPDR == va_next && eva >= va_next) {
6381 				/*
6382 				 * The TLB entry for a PG_G mapping is
6383 				 * invalidated by pmap_remove_pde().
6384 				 */
6385 				if ((ptpaddr & PG_G) == 0)
6386 					anyvalid = 1;
6387 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6388 				continue;
6389 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6390 			    &lock)) {
6391 				/* The large page mapping was destroyed. */
6392 				continue;
6393 			} else
6394 				ptpaddr = *pde;
6395 		}
6396 
6397 		/*
6398 		 * Limit our scan to either the end of the va represented
6399 		 * by the current page table page, or to the end of the
6400 		 * range being removed.
6401 		 */
6402 		if (va_next > eva)
6403 			va_next = eva;
6404 
6405 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6406 			anyvalid = 1;
6407 	}
6408 	if (lock != NULL)
6409 		rw_wunlock(lock);
6410 out:
6411 	if (anyvalid)
6412 		pmap_invalidate_all(pmap);
6413 	PMAP_UNLOCK(pmap);
6414 	pmap_delayed_invl_finish();
6415 	vm_page_free_pages_toq(&free, true);
6416 }
6417 
6418 /*
6419  *	Routine:	pmap_remove_all
6420  *	Function:
6421  *		Removes this physical page from
6422  *		all physical maps in which it resides.
6423  *		Reflects back modify bits to the pager.
6424  *
6425  *	Notes:
6426  *		Original versions of this routine were very
6427  *		inefficient because they iteratively called
6428  *		pmap_remove (slow...)
6429  */
6430 
6431 void
6432 pmap_remove_all(vm_page_t m)
6433 {
6434 	struct md_page *pvh;
6435 	pv_entry_t pv;
6436 	pmap_t pmap;
6437 	struct rwlock *lock;
6438 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6439 	pd_entry_t *pde;
6440 	vm_offset_t va;
6441 	struct spglist free;
6442 	int pvh_gen, md_gen;
6443 
6444 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6445 	    ("pmap_remove_all: page %p is not managed", m));
6446 	SLIST_INIT(&free);
6447 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6448 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6449 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6450 	rw_wlock(lock);
6451 retry:
6452 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6453 		pmap = PV_PMAP(pv);
6454 		if (!PMAP_TRYLOCK(pmap)) {
6455 			pvh_gen = pvh->pv_gen;
6456 			rw_wunlock(lock);
6457 			PMAP_LOCK(pmap);
6458 			rw_wlock(lock);
6459 			if (pvh_gen != pvh->pv_gen) {
6460 				PMAP_UNLOCK(pmap);
6461 				goto retry;
6462 			}
6463 		}
6464 		va = pv->pv_va;
6465 		pde = pmap_pde(pmap, va);
6466 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6467 		PMAP_UNLOCK(pmap);
6468 	}
6469 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6470 		pmap = PV_PMAP(pv);
6471 		if (!PMAP_TRYLOCK(pmap)) {
6472 			pvh_gen = pvh->pv_gen;
6473 			md_gen = m->md.pv_gen;
6474 			rw_wunlock(lock);
6475 			PMAP_LOCK(pmap);
6476 			rw_wlock(lock);
6477 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6478 				PMAP_UNLOCK(pmap);
6479 				goto retry;
6480 			}
6481 		}
6482 		PG_A = pmap_accessed_bit(pmap);
6483 		PG_M = pmap_modified_bit(pmap);
6484 		PG_RW = pmap_rw_bit(pmap);
6485 		pmap_resident_count_adj(pmap, -1);
6486 		pde = pmap_pde(pmap, pv->pv_va);
6487 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6488 		    " a 2mpage in page %p's pv list", m));
6489 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6490 		tpte = pte_load_clear(pte);
6491 		if (tpte & PG_W)
6492 			pmap->pm_stats.wired_count--;
6493 		if (tpte & PG_A)
6494 			vm_page_aflag_set(m, PGA_REFERENCED);
6495 
6496 		/*
6497 		 * Update the vm_page_t clean and reference bits.
6498 		 */
6499 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6500 			vm_page_dirty(m);
6501 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6502 		pmap_invalidate_page(pmap, pv->pv_va);
6503 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6504 		m->md.pv_gen++;
6505 		free_pv_entry(pmap, pv);
6506 		PMAP_UNLOCK(pmap);
6507 	}
6508 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6509 	rw_wunlock(lock);
6510 	pmap_delayed_invl_wait(m);
6511 	vm_page_free_pages_toq(&free, true);
6512 }
6513 
6514 /*
6515  * pmap_protect_pde: do the things to protect a 2mpage in a process
6516  */
6517 static boolean_t
6518 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6519 {
6520 	pd_entry_t newpde, oldpde;
6521 	vm_page_t m, mt;
6522 	boolean_t anychanged;
6523 	pt_entry_t PG_G, PG_M, PG_RW;
6524 
6525 	PG_G = pmap_global_bit(pmap);
6526 	PG_M = pmap_modified_bit(pmap);
6527 	PG_RW = pmap_rw_bit(pmap);
6528 
6529 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6530 	KASSERT((sva & PDRMASK) == 0,
6531 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6532 	anychanged = FALSE;
6533 retry:
6534 	oldpde = newpde = *pde;
6535 	if ((prot & VM_PROT_WRITE) == 0) {
6536 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6537 		    (PG_MANAGED | PG_M | PG_RW)) {
6538 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6539 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6540 				vm_page_dirty(mt);
6541 		}
6542 		newpde &= ~(PG_RW | PG_M);
6543 	}
6544 	if ((prot & VM_PROT_EXECUTE) == 0)
6545 		newpde |= pg_nx;
6546 	if (newpde != oldpde) {
6547 		/*
6548 		 * As an optimization to future operations on this PDE, clear
6549 		 * PG_PROMOTED.  The impending invalidation will remove any
6550 		 * lingering 4KB page mappings from the TLB.
6551 		 */
6552 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6553 			goto retry;
6554 		if ((oldpde & PG_G) != 0)
6555 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6556 		else
6557 			anychanged = TRUE;
6558 	}
6559 	return (anychanged);
6560 }
6561 
6562 /*
6563  *	Set the physical protection on the
6564  *	specified range of this map as requested.
6565  */
6566 void
6567 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6568 {
6569 	vm_page_t m;
6570 	vm_offset_t va_next;
6571 	pml4_entry_t *pml4e;
6572 	pdp_entry_t *pdpe;
6573 	pd_entry_t ptpaddr, *pde;
6574 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6575 	pt_entry_t obits, pbits;
6576 	boolean_t anychanged;
6577 
6578 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6579 	if (prot == VM_PROT_NONE) {
6580 		pmap_remove(pmap, sva, eva);
6581 		return;
6582 	}
6583 
6584 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6585 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6586 		return;
6587 
6588 	PG_G = pmap_global_bit(pmap);
6589 	PG_M = pmap_modified_bit(pmap);
6590 	PG_V = pmap_valid_bit(pmap);
6591 	PG_RW = pmap_rw_bit(pmap);
6592 	anychanged = FALSE;
6593 
6594 	/*
6595 	 * Although this function delays and batches the invalidation
6596 	 * of stale TLB entries, it does not need to call
6597 	 * pmap_delayed_invl_start() and
6598 	 * pmap_delayed_invl_finish(), because it does not
6599 	 * ordinarily destroy mappings.  Stale TLB entries from
6600 	 * protection-only changes need only be invalidated before the
6601 	 * pmap lock is released, because protection-only changes do
6602 	 * not destroy PV entries.  Even operations that iterate over
6603 	 * a physical page's PV list of mappings, like
6604 	 * pmap_remove_write(), acquire the pmap lock for each
6605 	 * mapping.  Consequently, for protection-only changes, the
6606 	 * pmap lock suffices to synchronize both page table and TLB
6607 	 * updates.
6608 	 *
6609 	 * This function only destroys a mapping if pmap_demote_pde()
6610 	 * fails.  In that case, stale TLB entries are immediately
6611 	 * invalidated.
6612 	 */
6613 
6614 	PMAP_LOCK(pmap);
6615 	for (; sva < eva; sva = va_next) {
6616 		pml4e = pmap_pml4e(pmap, sva);
6617 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6618 			va_next = (sva + NBPML4) & ~PML4MASK;
6619 			if (va_next < sva)
6620 				va_next = eva;
6621 			continue;
6622 		}
6623 
6624 		va_next = (sva + NBPDP) & ~PDPMASK;
6625 		if (va_next < sva)
6626 			va_next = eva;
6627 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6628 		if ((*pdpe & PG_V) == 0)
6629 			continue;
6630 		if ((*pdpe & PG_PS) != 0) {
6631 			KASSERT(va_next <= eva,
6632 			    ("partial update of non-transparent 1G mapping "
6633 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6634 			    *pdpe, sva, eva, va_next));
6635 retry_pdpe:
6636 			obits = pbits = *pdpe;
6637 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6638 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6639 			if ((prot & VM_PROT_WRITE) == 0)
6640 				pbits &= ~(PG_RW | PG_M);
6641 			if ((prot & VM_PROT_EXECUTE) == 0)
6642 				pbits |= pg_nx;
6643 
6644 			if (pbits != obits) {
6645 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6646 					/* PG_PS cannot be cleared under us, */
6647 					goto retry_pdpe;
6648 				anychanged = TRUE;
6649 			}
6650 			continue;
6651 		}
6652 
6653 		va_next = (sva + NBPDR) & ~PDRMASK;
6654 		if (va_next < sva)
6655 			va_next = eva;
6656 
6657 		pde = pmap_pdpe_to_pde(pdpe, sva);
6658 		ptpaddr = *pde;
6659 
6660 		/*
6661 		 * Weed out invalid mappings.
6662 		 */
6663 		if (ptpaddr == 0)
6664 			continue;
6665 
6666 		/*
6667 		 * Check for large page.
6668 		 */
6669 		if ((ptpaddr & PG_PS) != 0) {
6670 			/*
6671 			 * Are we protecting the entire large page?  If not,
6672 			 * demote the mapping and fall through.
6673 			 */
6674 			if (sva + NBPDR == va_next && eva >= va_next) {
6675 				/*
6676 				 * The TLB entry for a PG_G mapping is
6677 				 * invalidated by pmap_protect_pde().
6678 				 */
6679 				if (pmap_protect_pde(pmap, pde, sva, prot))
6680 					anychanged = TRUE;
6681 				continue;
6682 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6683 				/*
6684 				 * The large page mapping was destroyed.
6685 				 */
6686 				continue;
6687 			}
6688 		}
6689 
6690 		if (va_next > eva)
6691 			va_next = eva;
6692 
6693 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6694 		    sva += PAGE_SIZE) {
6695 retry:
6696 			obits = pbits = *pte;
6697 			if ((pbits & PG_V) == 0)
6698 				continue;
6699 
6700 			if ((prot & VM_PROT_WRITE) == 0) {
6701 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6702 				    (PG_MANAGED | PG_M | PG_RW)) {
6703 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6704 					vm_page_dirty(m);
6705 				}
6706 				pbits &= ~(PG_RW | PG_M);
6707 			}
6708 			if ((prot & VM_PROT_EXECUTE) == 0)
6709 				pbits |= pg_nx;
6710 
6711 			if (pbits != obits) {
6712 				if (!atomic_cmpset_long(pte, obits, pbits))
6713 					goto retry;
6714 				if (obits & PG_G)
6715 					pmap_invalidate_page(pmap, sva);
6716 				else
6717 					anychanged = TRUE;
6718 			}
6719 		}
6720 	}
6721 	if (anychanged)
6722 		pmap_invalidate_all(pmap);
6723 	PMAP_UNLOCK(pmap);
6724 }
6725 
6726 #if VM_NRESERVLEVEL > 0
6727 static bool
6728 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6729 {
6730 
6731 	if (pmap->pm_type != PT_EPT)
6732 		return (false);
6733 	return ((pde & EPT_PG_EXECUTE) != 0);
6734 }
6735 
6736 /*
6737  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6738  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6739  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6740  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6741  * identical characteristics.
6742  */
6743 static void
6744 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6745     struct rwlock **lockp)
6746 {
6747 	pd_entry_t newpde;
6748 	pt_entry_t *firstpte, oldpte, pa, *pte;
6749 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V, PG_PKU_MASK;
6750 	vm_page_t mpte;
6751 	int PG_PTE_CACHE;
6752 
6753 	PG_A = pmap_accessed_bit(pmap);
6754 	PG_G = pmap_global_bit(pmap);
6755 	PG_M = pmap_modified_bit(pmap);
6756 	PG_V = pmap_valid_bit(pmap);
6757 	PG_RW = pmap_rw_bit(pmap);
6758 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6759 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6760 
6761 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6762 
6763 	/*
6764 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6765 	 * either invalid, unused, or does not map the first 4KB physical page
6766 	 * within a 2MB page.
6767 	 */
6768 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6769 	newpde = *firstpte;
6770 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V) ||
6771 	    !pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
6772 	    newpde))) {
6773 		counter_u64_add(pmap_pde_p_failures, 1);
6774 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6775 		    " in pmap %p", va, pmap);
6776 		return;
6777 	}
6778 setpde:
6779 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6780 		/*
6781 		 * When PG_M is already clear, PG_RW can be cleared without
6782 		 * a TLB invalidation.
6783 		 */
6784 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6785 			goto setpde;
6786 		newpde &= ~PG_RW;
6787 	}
6788 
6789 	/*
6790 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6791 	 * PTE maps an unexpected 4KB physical page or does not have identical
6792 	 * characteristics to the first PTE.
6793 	 */
6794 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
6795 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6796 		oldpte = *pte;
6797 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
6798 			counter_u64_add(pmap_pde_p_failures, 1);
6799 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6800 			    " in pmap %p", va, pmap);
6801 			return;
6802 		}
6803 setpte:
6804 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6805 			/*
6806 			 * When PG_M is already clear, PG_RW can be cleared
6807 			 * without a TLB invalidation.
6808 			 */
6809 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6810 				goto setpte;
6811 			oldpte &= ~PG_RW;
6812 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6813 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6814 			    (va & ~PDRMASK), pmap);
6815 		}
6816 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6817 			counter_u64_add(pmap_pde_p_failures, 1);
6818 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6819 			    " in pmap %p", va, pmap);
6820 			return;
6821 		}
6822 		pa -= PAGE_SIZE;
6823 	}
6824 
6825 	/*
6826 	 * Save the page table page in its current state until the PDE
6827 	 * mapping the superpage is demoted by pmap_demote_pde() or
6828 	 * destroyed by pmap_remove_pde().
6829 	 */
6830 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6831 	KASSERT(mpte >= vm_page_array &&
6832 	    mpte < &vm_page_array[vm_page_array_size],
6833 	    ("pmap_promote_pde: page table page is out of range"));
6834 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6835 	    ("pmap_promote_pde: page table page's pindex is wrong "
6836 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6837 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6838 	if (pmap_insert_pt_page(pmap, mpte, true)) {
6839 		counter_u64_add(pmap_pde_p_failures, 1);
6840 		CTR2(KTR_PMAP,
6841 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6842 		    pmap);
6843 		return;
6844 	}
6845 
6846 	/*
6847 	 * Promote the pv entries.
6848 	 */
6849 	if ((newpde & PG_MANAGED) != 0)
6850 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6851 
6852 	/*
6853 	 * Propagate the PAT index to its proper position.
6854 	 */
6855 	newpde = pmap_swap_pat(pmap, newpde);
6856 
6857 	/*
6858 	 * Map the superpage.
6859 	 */
6860 	if (workaround_erratum383)
6861 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6862 	else
6863 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6864 
6865 	counter_u64_add(pmap_pde_promotions, 1);
6866 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6867 	    " in pmap %p", va, pmap);
6868 }
6869 #endif /* VM_NRESERVLEVEL > 0 */
6870 
6871 static int
6872 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6873     int psind)
6874 {
6875 	vm_page_t mp;
6876 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6877 
6878 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6879 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6880 	    ("psind %d unexpected", psind));
6881 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6882 	    ("unaligned phys address %#lx newpte %#lx psind %d",
6883 	    newpte & PG_FRAME, newpte, psind));
6884 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
6885 	    ("unaligned va %#lx psind %d", va, psind));
6886 	KASSERT(va < VM_MAXUSER_ADDRESS,
6887 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
6888 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
6889 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
6890 
6891 	PG_V = pmap_valid_bit(pmap);
6892 
6893 restart:
6894 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
6895 		return (KERN_PROTECTION_FAILURE);
6896 	pten = newpte;
6897 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6898 		pten |= pmap_pkru_get(pmap, va);
6899 
6900 	if (psind == 2) {	/* 1G */
6901 		pml4e = pmap_pml4e(pmap, va);
6902 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6903 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
6904 			    NULL, va);
6905 			if (mp == NULL)
6906 				goto allocf;
6907 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6908 			pdpe = &pdpe[pmap_pdpe_index(va)];
6909 			origpte = *pdpe;
6910 			MPASS(origpte == 0);
6911 		} else {
6912 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
6913 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
6914 			origpte = *pdpe;
6915 			if ((origpte & PG_V) == 0) {
6916 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
6917 				mp->ref_count++;
6918 			}
6919 		}
6920 		*pdpe = pten;
6921 	} else /* (psind == 1) */ {	/* 2M */
6922 		pde = pmap_pde(pmap, va);
6923 		if (pde == NULL) {
6924 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
6925 			    NULL, va);
6926 			if (mp == NULL)
6927 				goto allocf;
6928 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6929 			pde = &pde[pmap_pde_index(va)];
6930 			origpte = *pde;
6931 			MPASS(origpte == 0);
6932 		} else {
6933 			origpte = *pde;
6934 			if ((origpte & PG_V) == 0) {
6935 				pdpe = pmap_pdpe(pmap, va);
6936 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
6937 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
6938 				mp->ref_count++;
6939 			}
6940 		}
6941 		*pde = pten;
6942 	}
6943 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
6944 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
6945 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
6946 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
6947 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
6948 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
6949 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
6950 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
6951 	if ((origpte & PG_V) == 0)
6952 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
6953 
6954 	return (KERN_SUCCESS);
6955 
6956 allocf:
6957 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
6958 		return (KERN_RESOURCE_SHORTAGE);
6959 	PMAP_UNLOCK(pmap);
6960 	vm_wait(NULL);
6961 	PMAP_LOCK(pmap);
6962 	goto restart;
6963 }
6964 
6965 /*
6966  *	Insert the given physical page (p) at
6967  *	the specified virtual address (v) in the
6968  *	target physical map with the protection requested.
6969  *
6970  *	If specified, the page will be wired down, meaning
6971  *	that the related pte can not be reclaimed.
6972  *
6973  *	NB:  This is the only routine which MAY NOT lazy-evaluate
6974  *	or lose information.  That is, this routine must actually
6975  *	insert this page into the given map NOW.
6976  *
6977  *	When destroying both a page table and PV entry, this function
6978  *	performs the TLB invalidation before releasing the PV list
6979  *	lock, so we do not need pmap_delayed_invl_page() calls here.
6980  */
6981 int
6982 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
6983     u_int flags, int8_t psind)
6984 {
6985 	struct rwlock *lock;
6986 	pd_entry_t *pde;
6987 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
6988 	pt_entry_t newpte, origpte;
6989 	pv_entry_t pv;
6990 	vm_paddr_t opa, pa;
6991 	vm_page_t mpte, om;
6992 	int rv;
6993 	boolean_t nosleep;
6994 
6995 	PG_A = pmap_accessed_bit(pmap);
6996 	PG_G = pmap_global_bit(pmap);
6997 	PG_M = pmap_modified_bit(pmap);
6998 	PG_V = pmap_valid_bit(pmap);
6999 	PG_RW = pmap_rw_bit(pmap);
7000 
7001 	va = trunc_page(va);
7002 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7003 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7004 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7005 	    va));
7006 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7007 	    ("pmap_enter: managed mapping within the clean submap"));
7008 	if ((m->oflags & VPO_UNMANAGED) == 0)
7009 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7010 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7011 	    ("pmap_enter: flags %u has reserved bits set", flags));
7012 	pa = VM_PAGE_TO_PHYS(m);
7013 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7014 	if ((flags & VM_PROT_WRITE) != 0)
7015 		newpte |= PG_M;
7016 	if ((prot & VM_PROT_WRITE) != 0)
7017 		newpte |= PG_RW;
7018 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7019 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7020 	if ((prot & VM_PROT_EXECUTE) == 0)
7021 		newpte |= pg_nx;
7022 	if ((flags & PMAP_ENTER_WIRED) != 0)
7023 		newpte |= PG_W;
7024 	if (va < VM_MAXUSER_ADDRESS)
7025 		newpte |= PG_U;
7026 	if (pmap == kernel_pmap)
7027 		newpte |= PG_G;
7028 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7029 
7030 	/*
7031 	 * Set modified bit gratuitously for writeable mappings if
7032 	 * the page is unmanaged. We do not want to take a fault
7033 	 * to do the dirty bit accounting for these mappings.
7034 	 */
7035 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7036 		if ((newpte & PG_RW) != 0)
7037 			newpte |= PG_M;
7038 	} else
7039 		newpte |= PG_MANAGED;
7040 
7041 	lock = NULL;
7042 	PMAP_LOCK(pmap);
7043 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7044 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7045 		    ("managed largepage va %#lx flags %#x", va, flags));
7046 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7047 		    psind);
7048 		goto out;
7049 	}
7050 	if (psind == 1) {
7051 		/* Assert the required virtual and physical alignment. */
7052 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7053 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7054 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7055 		goto out;
7056 	}
7057 	mpte = NULL;
7058 
7059 	/*
7060 	 * In the case that a page table page is not
7061 	 * resident, we are creating it here.
7062 	 */
7063 retry:
7064 	pde = pmap_pde(pmap, va);
7065 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7066 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7067 		pte = pmap_pde_to_pte(pde, va);
7068 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7069 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7070 			mpte->ref_count++;
7071 		}
7072 	} else if (va < VM_MAXUSER_ADDRESS) {
7073 		/*
7074 		 * Here if the pte page isn't mapped, or if it has been
7075 		 * deallocated.
7076 		 */
7077 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7078 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7079 		    nosleep ? NULL : &lock, va);
7080 		if (mpte == NULL && nosleep) {
7081 			rv = KERN_RESOURCE_SHORTAGE;
7082 			goto out;
7083 		}
7084 		goto retry;
7085 	} else
7086 		panic("pmap_enter: invalid page directory va=%#lx", va);
7087 
7088 	origpte = *pte;
7089 	pv = NULL;
7090 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7091 		newpte |= pmap_pkru_get(pmap, va);
7092 
7093 	/*
7094 	 * Is the specified virtual address already mapped?
7095 	 */
7096 	if ((origpte & PG_V) != 0) {
7097 		/*
7098 		 * Wiring change, just update stats. We don't worry about
7099 		 * wiring PT pages as they remain resident as long as there
7100 		 * are valid mappings in them. Hence, if a user page is wired,
7101 		 * the PT page will be also.
7102 		 */
7103 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7104 			pmap->pm_stats.wired_count++;
7105 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7106 			pmap->pm_stats.wired_count--;
7107 
7108 		/*
7109 		 * Remove the extra PT page reference.
7110 		 */
7111 		if (mpte != NULL) {
7112 			mpte->ref_count--;
7113 			KASSERT(mpte->ref_count > 0,
7114 			    ("pmap_enter: missing reference to page table page,"
7115 			     " va: 0x%lx", va));
7116 		}
7117 
7118 		/*
7119 		 * Has the physical page changed?
7120 		 */
7121 		opa = origpte & PG_FRAME;
7122 		if (opa == pa) {
7123 			/*
7124 			 * No, might be a protection or wiring change.
7125 			 */
7126 			if ((origpte & PG_MANAGED) != 0 &&
7127 			    (newpte & PG_RW) != 0)
7128 				vm_page_aflag_set(m, PGA_WRITEABLE);
7129 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7130 				goto unchanged;
7131 			goto validate;
7132 		}
7133 
7134 		/*
7135 		 * The physical page has changed.  Temporarily invalidate
7136 		 * the mapping.  This ensures that all threads sharing the
7137 		 * pmap keep a consistent view of the mapping, which is
7138 		 * necessary for the correct handling of COW faults.  It
7139 		 * also permits reuse of the old mapping's PV entry,
7140 		 * avoiding an allocation.
7141 		 *
7142 		 * For consistency, handle unmanaged mappings the same way.
7143 		 */
7144 		origpte = pte_load_clear(pte);
7145 		KASSERT((origpte & PG_FRAME) == opa,
7146 		    ("pmap_enter: unexpected pa update for %#lx", va));
7147 		if ((origpte & PG_MANAGED) != 0) {
7148 			om = PHYS_TO_VM_PAGE(opa);
7149 
7150 			/*
7151 			 * The pmap lock is sufficient to synchronize with
7152 			 * concurrent calls to pmap_page_test_mappings() and
7153 			 * pmap_ts_referenced().
7154 			 */
7155 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7156 				vm_page_dirty(om);
7157 			if ((origpte & PG_A) != 0) {
7158 				pmap_invalidate_page(pmap, va);
7159 				vm_page_aflag_set(om, PGA_REFERENCED);
7160 			}
7161 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7162 			pv = pmap_pvh_remove(&om->md, pmap, va);
7163 			KASSERT(pv != NULL,
7164 			    ("pmap_enter: no PV entry for %#lx", va));
7165 			if ((newpte & PG_MANAGED) == 0)
7166 				free_pv_entry(pmap, pv);
7167 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7168 			    TAILQ_EMPTY(&om->md.pv_list) &&
7169 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7170 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7171 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7172 		} else {
7173 			/*
7174 			 * Since this mapping is unmanaged, assume that PG_A
7175 			 * is set.
7176 			 */
7177 			pmap_invalidate_page(pmap, va);
7178 		}
7179 		origpte = 0;
7180 	} else {
7181 		/*
7182 		 * Increment the counters.
7183 		 */
7184 		if ((newpte & PG_W) != 0)
7185 			pmap->pm_stats.wired_count++;
7186 		pmap_resident_count_adj(pmap, 1);
7187 	}
7188 
7189 	/*
7190 	 * Enter on the PV list if part of our managed memory.
7191 	 */
7192 	if ((newpte & PG_MANAGED) != 0) {
7193 		if (pv == NULL) {
7194 			pv = get_pv_entry(pmap, &lock);
7195 			pv->pv_va = va;
7196 		}
7197 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7198 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7199 		m->md.pv_gen++;
7200 		if ((newpte & PG_RW) != 0)
7201 			vm_page_aflag_set(m, PGA_WRITEABLE);
7202 	}
7203 
7204 	/*
7205 	 * Update the PTE.
7206 	 */
7207 	if ((origpte & PG_V) != 0) {
7208 validate:
7209 		origpte = pte_load_store(pte, newpte);
7210 		KASSERT((origpte & PG_FRAME) == pa,
7211 		    ("pmap_enter: unexpected pa update for %#lx", va));
7212 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7213 		    (PG_M | PG_RW)) {
7214 			if ((origpte & PG_MANAGED) != 0)
7215 				vm_page_dirty(m);
7216 
7217 			/*
7218 			 * Although the PTE may still have PG_RW set, TLB
7219 			 * invalidation may nonetheless be required because
7220 			 * the PTE no longer has PG_M set.
7221 			 */
7222 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7223 			/*
7224 			 * This PTE change does not require TLB invalidation.
7225 			 */
7226 			goto unchanged;
7227 		}
7228 		if ((origpte & PG_A) != 0)
7229 			pmap_invalidate_page(pmap, va);
7230 	} else
7231 		pte_store(pte, newpte);
7232 
7233 unchanged:
7234 
7235 #if VM_NRESERVLEVEL > 0
7236 	/*
7237 	 * If both the page table page and the reservation are fully
7238 	 * populated, then attempt promotion.
7239 	 */
7240 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7241 	    pmap_ps_enabled(pmap) &&
7242 	    (m->flags & PG_FICTITIOUS) == 0 &&
7243 	    vm_reserv_level_iffullpop(m) == 0)
7244 		pmap_promote_pde(pmap, pde, va, &lock);
7245 #endif
7246 
7247 	rv = KERN_SUCCESS;
7248 out:
7249 	if (lock != NULL)
7250 		rw_wunlock(lock);
7251 	PMAP_UNLOCK(pmap);
7252 	return (rv);
7253 }
7254 
7255 /*
7256  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
7257  * if successful.  Returns false if (1) a page table page cannot be allocated
7258  * without sleeping, (2) a mapping already exists at the specified virtual
7259  * address, or (3) a PV entry cannot be allocated without reclaiming another
7260  * PV entry.
7261  */
7262 static bool
7263 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7264     struct rwlock **lockp)
7265 {
7266 	pd_entry_t newpde;
7267 	pt_entry_t PG_V;
7268 
7269 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7270 	PG_V = pmap_valid_bit(pmap);
7271 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7272 	    PG_PS | PG_V;
7273 	if ((m->oflags & VPO_UNMANAGED) == 0)
7274 		newpde |= PG_MANAGED;
7275 	if ((prot & VM_PROT_EXECUTE) == 0)
7276 		newpde |= pg_nx;
7277 	if (va < VM_MAXUSER_ADDRESS)
7278 		newpde |= PG_U;
7279 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7280 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
7281 	    KERN_SUCCESS);
7282 }
7283 
7284 /*
7285  * Returns true if every page table entry in the specified page table page is
7286  * zero.
7287  */
7288 static bool
7289 pmap_every_pte_zero(vm_paddr_t pa)
7290 {
7291 	pt_entry_t *pt_end, *pte;
7292 
7293 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7294 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7295 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7296 		if (*pte != 0)
7297 			return (false);
7298 	}
7299 	return (true);
7300 }
7301 
7302 /*
7303  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7304  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
7305  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
7306  * a mapping already exists at the specified virtual address.  Returns
7307  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
7308  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
7309  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
7310  *
7311  * The parameter "m" is only used when creating a managed, writeable mapping.
7312  */
7313 static int
7314 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7315     vm_page_t m, struct rwlock **lockp)
7316 {
7317 	struct spglist free;
7318 	pd_entry_t oldpde, *pde;
7319 	pt_entry_t PG_G, PG_RW, PG_V;
7320 	vm_page_t mt, pdpg;
7321 
7322 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7323 	    ("pmap_enter_pde: cannot create wired user mapping"));
7324 	PG_G = pmap_global_bit(pmap);
7325 	PG_RW = pmap_rw_bit(pmap);
7326 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7327 	    ("pmap_enter_pde: newpde is missing PG_M"));
7328 	PG_V = pmap_valid_bit(pmap);
7329 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7330 
7331 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7332 	    newpde))) {
7333 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7334 		    " in pmap %p", va, pmap);
7335 		return (KERN_FAILURE);
7336 	}
7337 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7338 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7339 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7340 		    " in pmap %p", va, pmap);
7341 		return (KERN_RESOURCE_SHORTAGE);
7342 	}
7343 
7344 	/*
7345 	 * If pkru is not same for the whole pde range, return failure
7346 	 * and let vm_fault() cope.  Check after pde allocation, since
7347 	 * it could sleep.
7348 	 */
7349 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7350 		pmap_abort_ptp(pmap, va, pdpg);
7351 		return (KERN_PROTECTION_FAILURE);
7352 	}
7353 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7354 		newpde &= ~X86_PG_PKU_MASK;
7355 		newpde |= pmap_pkru_get(pmap, va);
7356 	}
7357 
7358 	/*
7359 	 * If there are existing mappings, either abort or remove them.
7360 	 */
7361 	oldpde = *pde;
7362 	if ((oldpde & PG_V) != 0) {
7363 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7364 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7365 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
7366 		    VM_MAXUSER_ADDRESS || (oldpde & PG_PS) != 0 ||
7367 		    !pmap_every_pte_zero(oldpde & PG_FRAME))) {
7368 			if (pdpg != NULL)
7369 				pdpg->ref_count--;
7370 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7371 			    " in pmap %p", va, pmap);
7372 			return (KERN_FAILURE);
7373 		}
7374 		/* Break the existing mapping(s). */
7375 		SLIST_INIT(&free);
7376 		if ((oldpde & PG_PS) != 0) {
7377 			/*
7378 			 * The reference to the PD page that was acquired by
7379 			 * pmap_alloc_pde() ensures that it won't be freed.
7380 			 * However, if the PDE resulted from a promotion, then
7381 			 * a reserved PT page could be freed.
7382 			 */
7383 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7384 			if ((oldpde & PG_G) == 0)
7385 				pmap_invalidate_pde_page(pmap, va, oldpde);
7386 		} else {
7387 			pmap_delayed_invl_start();
7388 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7389 			    lockp))
7390 		               pmap_invalidate_all(pmap);
7391 			pmap_delayed_invl_finish();
7392 		}
7393 		if (va < VM_MAXUSER_ADDRESS) {
7394 			vm_page_free_pages_toq(&free, true);
7395 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7396 			    pde));
7397 		} else {
7398 			KASSERT(SLIST_EMPTY(&free),
7399 			    ("pmap_enter_pde: freed kernel page table page"));
7400 
7401 			/*
7402 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7403 			 * leave the kernel page table page zero filled.
7404 			 */
7405 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7406 			if (pmap_insert_pt_page(pmap, mt, false))
7407 				panic("pmap_enter_pde: trie insert failed");
7408 		}
7409 	}
7410 
7411 	if ((newpde & PG_MANAGED) != 0) {
7412 		/*
7413 		 * Abort this mapping if its PV entry could not be created.
7414 		 */
7415 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7416 			if (pdpg != NULL)
7417 				pmap_abort_ptp(pmap, va, pdpg);
7418 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7419 			    " in pmap %p", va, pmap);
7420 			return (KERN_RESOURCE_SHORTAGE);
7421 		}
7422 		if ((newpde & PG_RW) != 0) {
7423 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7424 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7425 		}
7426 	}
7427 
7428 	/*
7429 	 * Increment counters.
7430 	 */
7431 	if ((newpde & PG_W) != 0)
7432 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7433 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7434 
7435 	/*
7436 	 * Map the superpage.  (This is not a promoted mapping; there will not
7437 	 * be any lingering 4KB page mappings in the TLB.)
7438 	 */
7439 	pde_store(pde, newpde);
7440 
7441 	counter_u64_add(pmap_pde_mappings, 1);
7442 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7443 	    va, pmap);
7444 	return (KERN_SUCCESS);
7445 }
7446 
7447 /*
7448  * Maps a sequence of resident pages belonging to the same object.
7449  * The sequence begins with the given page m_start.  This page is
7450  * mapped at the given virtual address start.  Each subsequent page is
7451  * mapped at a virtual address that is offset from start by the same
7452  * amount as the page is offset from m_start within the object.  The
7453  * last page in the sequence is the page with the largest offset from
7454  * m_start that can be mapped at a virtual address less than the given
7455  * virtual address end.  Not every virtual page between start and end
7456  * is mapped; only those for which a resident page exists with the
7457  * corresponding offset from m_start are mapped.
7458  */
7459 void
7460 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7461     vm_page_t m_start, vm_prot_t prot)
7462 {
7463 	struct rwlock *lock;
7464 	vm_offset_t va;
7465 	vm_page_t m, mpte;
7466 	vm_pindex_t diff, psize;
7467 
7468 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7469 
7470 	psize = atop(end - start);
7471 	mpte = NULL;
7472 	m = m_start;
7473 	lock = NULL;
7474 	PMAP_LOCK(pmap);
7475 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7476 		va = start + ptoa(diff);
7477 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7478 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7479 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
7480 			m = &m[NBPDR / PAGE_SIZE - 1];
7481 		else
7482 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7483 			    mpte, &lock);
7484 		m = TAILQ_NEXT(m, listq);
7485 	}
7486 	if (lock != NULL)
7487 		rw_wunlock(lock);
7488 	PMAP_UNLOCK(pmap);
7489 }
7490 
7491 /*
7492  * this code makes some *MAJOR* assumptions:
7493  * 1. Current pmap & pmap exists.
7494  * 2. Not wired.
7495  * 3. Read access.
7496  * 4. No page table pages.
7497  * but is *MUCH* faster than pmap_enter...
7498  */
7499 
7500 void
7501 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7502 {
7503 	struct rwlock *lock;
7504 
7505 	lock = NULL;
7506 	PMAP_LOCK(pmap);
7507 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7508 	if (lock != NULL)
7509 		rw_wunlock(lock);
7510 	PMAP_UNLOCK(pmap);
7511 }
7512 
7513 static vm_page_t
7514 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7515     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7516 {
7517 	pt_entry_t newpte, *pte, PG_V;
7518 
7519 	KASSERT(!VA_IS_CLEANMAP(va) ||
7520 	    (m->oflags & VPO_UNMANAGED) != 0,
7521 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7522 	PG_V = pmap_valid_bit(pmap);
7523 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7524 
7525 	/*
7526 	 * In the case that a page table page is not
7527 	 * resident, we are creating it here.
7528 	 */
7529 	if (va < VM_MAXUSER_ADDRESS) {
7530 		vm_pindex_t ptepindex;
7531 		pd_entry_t *ptepa;
7532 
7533 		/*
7534 		 * Calculate pagetable page index
7535 		 */
7536 		ptepindex = pmap_pde_pindex(va);
7537 		if (mpte && (mpte->pindex == ptepindex)) {
7538 			mpte->ref_count++;
7539 		} else {
7540 			/*
7541 			 * Get the page directory entry
7542 			 */
7543 			ptepa = pmap_pde(pmap, va);
7544 
7545 			/*
7546 			 * If the page table page is mapped, we just increment
7547 			 * the hold count, and activate it.  Otherwise, we
7548 			 * attempt to allocate a page table page.  If this
7549 			 * attempt fails, we don't retry.  Instead, we give up.
7550 			 */
7551 			if (ptepa && (*ptepa & PG_V) != 0) {
7552 				if (*ptepa & PG_PS)
7553 					return (NULL);
7554 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
7555 				mpte->ref_count++;
7556 			} else {
7557 				/*
7558 				 * Pass NULL instead of the PV list lock
7559 				 * pointer, because we don't intend to sleep.
7560 				 */
7561 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7562 				    NULL, va);
7563 				if (mpte == NULL)
7564 					return (mpte);
7565 			}
7566 		}
7567 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7568 		pte = &pte[pmap_pte_index(va)];
7569 	} else {
7570 		mpte = NULL;
7571 		pte = vtopte(va);
7572 	}
7573 	if (*pte) {
7574 		if (mpte != NULL)
7575 			mpte->ref_count--;
7576 		return (NULL);
7577 	}
7578 
7579 	/*
7580 	 * Enter on the PV list if part of our managed memory.
7581 	 */
7582 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7583 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7584 		if (mpte != NULL)
7585 			pmap_abort_ptp(pmap, va, mpte);
7586 		return (NULL);
7587 	}
7588 
7589 	/*
7590 	 * Increment counters
7591 	 */
7592 	pmap_resident_count_adj(pmap, 1);
7593 
7594 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7595 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
7596 	if ((m->oflags & VPO_UNMANAGED) == 0)
7597 		newpte |= PG_MANAGED;
7598 	if ((prot & VM_PROT_EXECUTE) == 0)
7599 		newpte |= pg_nx;
7600 	if (va < VM_MAXUSER_ADDRESS)
7601 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7602 	pte_store(pte, newpte);
7603 	return (mpte);
7604 }
7605 
7606 /*
7607  * Make a temporary mapping for a physical address.  This is only intended
7608  * to be used for panic dumps.
7609  */
7610 void *
7611 pmap_kenter_temporary(vm_paddr_t pa, int i)
7612 {
7613 	vm_offset_t va;
7614 
7615 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7616 	pmap_kenter(va, pa);
7617 	invlpg(va);
7618 	return ((void *)crashdumpmap);
7619 }
7620 
7621 /*
7622  * This code maps large physical mmap regions into the
7623  * processor address space.  Note that some shortcuts
7624  * are taken, but the code works.
7625  */
7626 void
7627 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7628     vm_pindex_t pindex, vm_size_t size)
7629 {
7630 	pd_entry_t *pde;
7631 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7632 	vm_paddr_t pa, ptepa;
7633 	vm_page_t p, pdpg;
7634 	int pat_mode;
7635 
7636 	PG_A = pmap_accessed_bit(pmap);
7637 	PG_M = pmap_modified_bit(pmap);
7638 	PG_V = pmap_valid_bit(pmap);
7639 	PG_RW = pmap_rw_bit(pmap);
7640 
7641 	VM_OBJECT_ASSERT_WLOCKED(object);
7642 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7643 	    ("pmap_object_init_pt: non-device object"));
7644 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7645 		if (!pmap_ps_enabled(pmap))
7646 			return;
7647 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7648 			return;
7649 		p = vm_page_lookup(object, pindex);
7650 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
7651 		    ("pmap_object_init_pt: invalid page %p", p));
7652 		pat_mode = p->md.pat_mode;
7653 
7654 		/*
7655 		 * Abort the mapping if the first page is not physically
7656 		 * aligned to a 2MB page boundary.
7657 		 */
7658 		ptepa = VM_PAGE_TO_PHYS(p);
7659 		if (ptepa & (NBPDR - 1))
7660 			return;
7661 
7662 		/*
7663 		 * Skip the first page.  Abort the mapping if the rest of
7664 		 * the pages are not physically contiguous or have differing
7665 		 * memory attributes.
7666 		 */
7667 		p = TAILQ_NEXT(p, listq);
7668 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7669 		    pa += PAGE_SIZE) {
7670 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
7671 			    ("pmap_object_init_pt: invalid page %p", p));
7672 			if (pa != VM_PAGE_TO_PHYS(p) ||
7673 			    pat_mode != p->md.pat_mode)
7674 				return;
7675 			p = TAILQ_NEXT(p, listq);
7676 		}
7677 
7678 		/*
7679 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7680 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7681 		 * will not affect the termination of this loop.
7682 		 */
7683 		PMAP_LOCK(pmap);
7684 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7685 		    pa < ptepa + size; pa += NBPDR) {
7686 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7687 			if (pde == NULL) {
7688 				/*
7689 				 * The creation of mappings below is only an
7690 				 * optimization.  If a page directory page
7691 				 * cannot be allocated without blocking,
7692 				 * continue on to the next mapping rather than
7693 				 * blocking.
7694 				 */
7695 				addr += NBPDR;
7696 				continue;
7697 			}
7698 			if ((*pde & PG_V) == 0) {
7699 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7700 				    PG_U | PG_RW | PG_V);
7701 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7702 				counter_u64_add(pmap_pde_mappings, 1);
7703 			} else {
7704 				/* Continue on if the PDE is already valid. */
7705 				pdpg->ref_count--;
7706 				KASSERT(pdpg->ref_count > 0,
7707 				    ("pmap_object_init_pt: missing reference "
7708 				    "to page directory page, va: 0x%lx", addr));
7709 			}
7710 			addr += NBPDR;
7711 		}
7712 		PMAP_UNLOCK(pmap);
7713 	}
7714 }
7715 
7716 /*
7717  *	Clear the wired attribute from the mappings for the specified range of
7718  *	addresses in the given pmap.  Every valid mapping within that range
7719  *	must have the wired attribute set.  In contrast, invalid mappings
7720  *	cannot have the wired attribute set, so they are ignored.
7721  *
7722  *	The wired attribute of the page table entry is not a hardware
7723  *	feature, so there is no need to invalidate any TLB entries.
7724  *	Since pmap_demote_pde() for the wired entry must never fail,
7725  *	pmap_delayed_invl_start()/finish() calls around the
7726  *	function are not needed.
7727  */
7728 void
7729 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7730 {
7731 	vm_offset_t va_next;
7732 	pml4_entry_t *pml4e;
7733 	pdp_entry_t *pdpe;
7734 	pd_entry_t *pde;
7735 	pt_entry_t *pte, PG_V, PG_G;
7736 
7737 	PG_V = pmap_valid_bit(pmap);
7738 	PG_G = pmap_global_bit(pmap);
7739 	PMAP_LOCK(pmap);
7740 	for (; sva < eva; sva = va_next) {
7741 		pml4e = pmap_pml4e(pmap, sva);
7742 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7743 			va_next = (sva + NBPML4) & ~PML4MASK;
7744 			if (va_next < sva)
7745 				va_next = eva;
7746 			continue;
7747 		}
7748 
7749 		va_next = (sva + NBPDP) & ~PDPMASK;
7750 		if (va_next < sva)
7751 			va_next = eva;
7752 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7753 		if ((*pdpe & PG_V) == 0)
7754 			continue;
7755 		if ((*pdpe & PG_PS) != 0) {
7756 			KASSERT(va_next <= eva,
7757 			    ("partial update of non-transparent 1G mapping "
7758 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7759 			    *pdpe, sva, eva, va_next));
7760 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7761 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7762 			atomic_clear_long(pdpe, PG_W);
7763 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7764 			continue;
7765 		}
7766 
7767 		va_next = (sva + NBPDR) & ~PDRMASK;
7768 		if (va_next < sva)
7769 			va_next = eva;
7770 		pde = pmap_pdpe_to_pde(pdpe, sva);
7771 		if ((*pde & PG_V) == 0)
7772 			continue;
7773 		if ((*pde & PG_PS) != 0) {
7774 			if ((*pde & PG_W) == 0)
7775 				panic("pmap_unwire: pde %#jx is missing PG_W",
7776 				    (uintmax_t)*pde);
7777 
7778 			/*
7779 			 * Are we unwiring the entire large page?  If not,
7780 			 * demote the mapping and fall through.
7781 			 */
7782 			if (sva + NBPDR == va_next && eva >= va_next) {
7783 				atomic_clear_long(pde, PG_W);
7784 				pmap->pm_stats.wired_count -= NBPDR /
7785 				    PAGE_SIZE;
7786 				continue;
7787 			} else if (!pmap_demote_pde(pmap, pde, sva))
7788 				panic("pmap_unwire: demotion failed");
7789 		}
7790 		if (va_next > eva)
7791 			va_next = eva;
7792 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
7793 		    sva += PAGE_SIZE) {
7794 			if ((*pte & PG_V) == 0)
7795 				continue;
7796 			if ((*pte & PG_W) == 0)
7797 				panic("pmap_unwire: pte %#jx is missing PG_W",
7798 				    (uintmax_t)*pte);
7799 
7800 			/*
7801 			 * PG_W must be cleared atomically.  Although the pmap
7802 			 * lock synchronizes access to PG_W, another processor
7803 			 * could be setting PG_M and/or PG_A concurrently.
7804 			 */
7805 			atomic_clear_long(pte, PG_W);
7806 			pmap->pm_stats.wired_count--;
7807 		}
7808 	}
7809 	PMAP_UNLOCK(pmap);
7810 }
7811 
7812 /*
7813  *	Copy the range specified by src_addr/len
7814  *	from the source map to the range dst_addr/len
7815  *	in the destination map.
7816  *
7817  *	This routine is only advisory and need not do anything.
7818  */
7819 void
7820 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
7821     vm_offset_t src_addr)
7822 {
7823 	struct rwlock *lock;
7824 	pml4_entry_t *pml4e;
7825 	pdp_entry_t *pdpe;
7826 	pd_entry_t *pde, srcptepaddr;
7827 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
7828 	vm_offset_t addr, end_addr, va_next;
7829 	vm_page_t dst_pdpg, dstmpte, srcmpte;
7830 
7831 	if (dst_addr != src_addr)
7832 		return;
7833 
7834 	if (dst_pmap->pm_type != src_pmap->pm_type)
7835 		return;
7836 
7837 	/*
7838 	 * EPT page table entries that require emulation of A/D bits are
7839 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
7840 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
7841 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
7842 	 * implementations flag an EPT misconfiguration for exec-only
7843 	 * mappings we skip this function entirely for emulated pmaps.
7844 	 */
7845 	if (pmap_emulate_ad_bits(dst_pmap))
7846 		return;
7847 
7848 	end_addr = src_addr + len;
7849 	lock = NULL;
7850 	if (dst_pmap < src_pmap) {
7851 		PMAP_LOCK(dst_pmap);
7852 		PMAP_LOCK(src_pmap);
7853 	} else {
7854 		PMAP_LOCK(src_pmap);
7855 		PMAP_LOCK(dst_pmap);
7856 	}
7857 
7858 	PG_A = pmap_accessed_bit(dst_pmap);
7859 	PG_M = pmap_modified_bit(dst_pmap);
7860 	PG_V = pmap_valid_bit(dst_pmap);
7861 
7862 	for (addr = src_addr; addr < end_addr; addr = va_next) {
7863 		KASSERT(addr < UPT_MIN_ADDRESS,
7864 		    ("pmap_copy: invalid to pmap_copy page tables"));
7865 
7866 		pml4e = pmap_pml4e(src_pmap, addr);
7867 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7868 			va_next = (addr + NBPML4) & ~PML4MASK;
7869 			if (va_next < addr)
7870 				va_next = end_addr;
7871 			continue;
7872 		}
7873 
7874 		va_next = (addr + NBPDP) & ~PDPMASK;
7875 		if (va_next < addr)
7876 			va_next = end_addr;
7877 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
7878 		if ((*pdpe & PG_V) == 0)
7879 			continue;
7880 		if ((*pdpe & PG_PS) != 0) {
7881 			KASSERT(va_next <= end_addr,
7882 			    ("partial update of non-transparent 1G mapping "
7883 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7884 			    *pdpe, addr, end_addr, va_next));
7885 			MPASS((addr & PDPMASK) == 0);
7886 			MPASS((*pdpe & PG_MANAGED) == 0);
7887 			srcptepaddr = *pdpe;
7888 			pdpe = pmap_pdpe(dst_pmap, addr);
7889 			if (pdpe == NULL) {
7890 				if (pmap_allocpte_alloc(dst_pmap,
7891 				    pmap_pml4e_pindex(addr), NULL, addr) ==
7892 				    NULL)
7893 					break;
7894 				pdpe = pmap_pdpe(dst_pmap, addr);
7895 			} else {
7896 				pml4e = pmap_pml4e(dst_pmap, addr);
7897 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7898 				dst_pdpg->ref_count++;
7899 			}
7900 			KASSERT(*pdpe == 0,
7901 			    ("1G mapping present in dst pmap "
7902 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7903 			    *pdpe, addr, end_addr, va_next));
7904 			*pdpe = srcptepaddr & ~PG_W;
7905 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
7906 			continue;
7907 		}
7908 
7909 		va_next = (addr + NBPDR) & ~PDRMASK;
7910 		if (va_next < addr)
7911 			va_next = end_addr;
7912 
7913 		pde = pmap_pdpe_to_pde(pdpe, addr);
7914 		srcptepaddr = *pde;
7915 		if (srcptepaddr == 0)
7916 			continue;
7917 
7918 		if (srcptepaddr & PG_PS) {
7919 			/*
7920 			 * We can only virtual copy whole superpages.
7921 			 */
7922 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
7923 				continue;
7924 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
7925 			if (pde == NULL)
7926 				break;
7927 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
7928 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
7929 			    PMAP_ENTER_NORECLAIM, &lock))) {
7930 				/*
7931 				 * We leave the dirty bit unchanged because
7932 				 * managed read/write superpage mappings are
7933 				 * required to be dirty.  However, managed
7934 				 * superpage mappings are not required to
7935 				 * have their accessed bit set, so we clear
7936 				 * it because we don't know if this mapping
7937 				 * will be used.
7938 				 */
7939 				srcptepaddr &= ~PG_W;
7940 				if ((srcptepaddr & PG_MANAGED) != 0)
7941 					srcptepaddr &= ~PG_A;
7942 				*pde = srcptepaddr;
7943 				pmap_resident_count_adj(dst_pmap, NBPDR /
7944 				    PAGE_SIZE);
7945 				counter_u64_add(pmap_pde_mappings, 1);
7946 			} else
7947 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
7948 			continue;
7949 		}
7950 
7951 		srcptepaddr &= PG_FRAME;
7952 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
7953 		KASSERT(srcmpte->ref_count > 0,
7954 		    ("pmap_copy: source page table page is unused"));
7955 
7956 		if (va_next > end_addr)
7957 			va_next = end_addr;
7958 
7959 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
7960 		src_pte = &src_pte[pmap_pte_index(addr)];
7961 		dstmpte = NULL;
7962 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
7963 			ptetemp = *src_pte;
7964 
7965 			/*
7966 			 * We only virtual copy managed pages.
7967 			 */
7968 			if ((ptetemp & PG_MANAGED) == 0)
7969 				continue;
7970 
7971 			if (dstmpte != NULL) {
7972 				KASSERT(dstmpte->pindex ==
7973 				    pmap_pde_pindex(addr),
7974 				    ("dstmpte pindex/addr mismatch"));
7975 				dstmpte->ref_count++;
7976 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
7977 			    NULL)) == NULL)
7978 				goto out;
7979 			dst_pte = (pt_entry_t *)
7980 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
7981 			dst_pte = &dst_pte[pmap_pte_index(addr)];
7982 			if (*dst_pte == 0 &&
7983 			    pmap_try_insert_pv_entry(dst_pmap, addr,
7984 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
7985 				/*
7986 				 * Clear the wired, modified, and accessed
7987 				 * (referenced) bits during the copy.
7988 				 */
7989 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
7990 				pmap_resident_count_adj(dst_pmap, 1);
7991 			} else {
7992 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
7993 				goto out;
7994 			}
7995 			/* Have we copied all of the valid mappings? */
7996 			if (dstmpte->ref_count >= srcmpte->ref_count)
7997 				break;
7998 		}
7999 	}
8000 out:
8001 	if (lock != NULL)
8002 		rw_wunlock(lock);
8003 	PMAP_UNLOCK(src_pmap);
8004 	PMAP_UNLOCK(dst_pmap);
8005 }
8006 
8007 int
8008 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8009 {
8010 	int error;
8011 
8012 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8013 	    dst_pmap->pm_type != PT_X86 ||
8014 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8015 		return (0);
8016 	for (;;) {
8017 		if (dst_pmap < src_pmap) {
8018 			PMAP_LOCK(dst_pmap);
8019 			PMAP_LOCK(src_pmap);
8020 		} else {
8021 			PMAP_LOCK(src_pmap);
8022 			PMAP_LOCK(dst_pmap);
8023 		}
8024 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8025 		/* Clean up partial copy on failure due to no memory. */
8026 		if (error == ENOMEM)
8027 			pmap_pkru_deassign_all(dst_pmap);
8028 		PMAP_UNLOCK(src_pmap);
8029 		PMAP_UNLOCK(dst_pmap);
8030 		if (error != ENOMEM)
8031 			break;
8032 		vm_wait(NULL);
8033 	}
8034 	return (error);
8035 }
8036 
8037 /*
8038  * Zero the specified hardware page.
8039  */
8040 void
8041 pmap_zero_page(vm_page_t m)
8042 {
8043 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8044 
8045 	pagezero((void *)va);
8046 }
8047 
8048 /*
8049  * Zero an an area within a single hardware page.  off and size must not
8050  * cover an area beyond a single hardware page.
8051  */
8052 void
8053 pmap_zero_page_area(vm_page_t m, int off, int size)
8054 {
8055 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8056 
8057 	if (off == 0 && size == PAGE_SIZE)
8058 		pagezero((void *)va);
8059 	else
8060 		bzero((char *)va + off, size);
8061 }
8062 
8063 /*
8064  * Copy 1 specified hardware page to another.
8065  */
8066 void
8067 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8068 {
8069 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8070 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8071 
8072 	pagecopy((void *)src, (void *)dst);
8073 }
8074 
8075 int unmapped_buf_allowed = 1;
8076 
8077 void
8078 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8079     vm_offset_t b_offset, int xfersize)
8080 {
8081 	void *a_cp, *b_cp;
8082 	vm_page_t pages[2];
8083 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8084 	int cnt;
8085 	boolean_t mapped;
8086 
8087 	while (xfersize > 0) {
8088 		a_pg_offset = a_offset & PAGE_MASK;
8089 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8090 		b_pg_offset = b_offset & PAGE_MASK;
8091 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8092 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8093 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8094 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
8095 		a_cp = (char *)vaddr[0] + a_pg_offset;
8096 		b_cp = (char *)vaddr[1] + b_pg_offset;
8097 		bcopy(a_cp, b_cp, cnt);
8098 		if (__predict_false(mapped))
8099 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
8100 		a_offset += cnt;
8101 		b_offset += cnt;
8102 		xfersize -= cnt;
8103 	}
8104 }
8105 
8106 /*
8107  * Returns true if the pmap's pv is one of the first
8108  * 16 pvs linked to from this page.  This count may
8109  * be changed upwards or downwards in the future; it
8110  * is only necessary that true be returned for a small
8111  * subset of pmaps for proper page aging.
8112  */
8113 boolean_t
8114 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8115 {
8116 	struct md_page *pvh;
8117 	struct rwlock *lock;
8118 	pv_entry_t pv;
8119 	int loops = 0;
8120 	boolean_t rv;
8121 
8122 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8123 	    ("pmap_page_exists_quick: page %p is not managed", m));
8124 	rv = FALSE;
8125 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8126 	rw_rlock(lock);
8127 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8128 		if (PV_PMAP(pv) == pmap) {
8129 			rv = TRUE;
8130 			break;
8131 		}
8132 		loops++;
8133 		if (loops >= 16)
8134 			break;
8135 	}
8136 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8137 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8138 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8139 			if (PV_PMAP(pv) == pmap) {
8140 				rv = TRUE;
8141 				break;
8142 			}
8143 			loops++;
8144 			if (loops >= 16)
8145 				break;
8146 		}
8147 	}
8148 	rw_runlock(lock);
8149 	return (rv);
8150 }
8151 
8152 /*
8153  *	pmap_page_wired_mappings:
8154  *
8155  *	Return the number of managed mappings to the given physical page
8156  *	that are wired.
8157  */
8158 int
8159 pmap_page_wired_mappings(vm_page_t m)
8160 {
8161 	struct rwlock *lock;
8162 	struct md_page *pvh;
8163 	pmap_t pmap;
8164 	pt_entry_t *pte;
8165 	pv_entry_t pv;
8166 	int count, md_gen, pvh_gen;
8167 
8168 	if ((m->oflags & VPO_UNMANAGED) != 0)
8169 		return (0);
8170 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8171 	rw_rlock(lock);
8172 restart:
8173 	count = 0;
8174 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8175 		pmap = PV_PMAP(pv);
8176 		if (!PMAP_TRYLOCK(pmap)) {
8177 			md_gen = m->md.pv_gen;
8178 			rw_runlock(lock);
8179 			PMAP_LOCK(pmap);
8180 			rw_rlock(lock);
8181 			if (md_gen != m->md.pv_gen) {
8182 				PMAP_UNLOCK(pmap);
8183 				goto restart;
8184 			}
8185 		}
8186 		pte = pmap_pte(pmap, pv->pv_va);
8187 		if ((*pte & PG_W) != 0)
8188 			count++;
8189 		PMAP_UNLOCK(pmap);
8190 	}
8191 	if ((m->flags & PG_FICTITIOUS) == 0) {
8192 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8193 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8194 			pmap = PV_PMAP(pv);
8195 			if (!PMAP_TRYLOCK(pmap)) {
8196 				md_gen = m->md.pv_gen;
8197 				pvh_gen = pvh->pv_gen;
8198 				rw_runlock(lock);
8199 				PMAP_LOCK(pmap);
8200 				rw_rlock(lock);
8201 				if (md_gen != m->md.pv_gen ||
8202 				    pvh_gen != pvh->pv_gen) {
8203 					PMAP_UNLOCK(pmap);
8204 					goto restart;
8205 				}
8206 			}
8207 			pte = pmap_pde(pmap, pv->pv_va);
8208 			if ((*pte & PG_W) != 0)
8209 				count++;
8210 			PMAP_UNLOCK(pmap);
8211 		}
8212 	}
8213 	rw_runlock(lock);
8214 	return (count);
8215 }
8216 
8217 /*
8218  * Returns TRUE if the given page is mapped individually or as part of
8219  * a 2mpage.  Otherwise, returns FALSE.
8220  */
8221 boolean_t
8222 pmap_page_is_mapped(vm_page_t m)
8223 {
8224 	struct rwlock *lock;
8225 	boolean_t rv;
8226 
8227 	if ((m->oflags & VPO_UNMANAGED) != 0)
8228 		return (FALSE);
8229 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8230 	rw_rlock(lock);
8231 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8232 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8233 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8234 	rw_runlock(lock);
8235 	return (rv);
8236 }
8237 
8238 /*
8239  * Destroy all managed, non-wired mappings in the given user-space
8240  * pmap.  This pmap cannot be active on any processor besides the
8241  * caller.
8242  *
8243  * This function cannot be applied to the kernel pmap.  Moreover, it
8244  * is not intended for general use.  It is only to be used during
8245  * process termination.  Consequently, it can be implemented in ways
8246  * that make it faster than pmap_remove().  First, it can more quickly
8247  * destroy mappings by iterating over the pmap's collection of PV
8248  * entries, rather than searching the page table.  Second, it doesn't
8249  * have to test and clear the page table entries atomically, because
8250  * no processor is currently accessing the user address space.  In
8251  * particular, a page table entry's dirty bit won't change state once
8252  * this function starts.
8253  *
8254  * Although this function destroys all of the pmap's managed,
8255  * non-wired mappings, it can delay and batch the invalidation of TLB
8256  * entries without calling pmap_delayed_invl_start() and
8257  * pmap_delayed_invl_finish().  Because the pmap is not active on
8258  * any other processor, none of these TLB entries will ever be used
8259  * before their eventual invalidation.  Consequently, there is no need
8260  * for either pmap_remove_all() or pmap_remove_write() to wait for
8261  * that eventual TLB invalidation.
8262  */
8263 void
8264 pmap_remove_pages(pmap_t pmap)
8265 {
8266 	pd_entry_t ptepde;
8267 	pt_entry_t *pte, tpte;
8268 	pt_entry_t PG_M, PG_RW, PG_V;
8269 	struct spglist free;
8270 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8271 	vm_page_t m, mpte, mt;
8272 	pv_entry_t pv;
8273 	struct md_page *pvh;
8274 	struct pv_chunk *pc, *npc;
8275 	struct rwlock *lock;
8276 	int64_t bit;
8277 	uint64_t inuse, bitmask;
8278 	int allfree, field, freed, i, idx;
8279 	boolean_t superpage;
8280 	vm_paddr_t pa;
8281 
8282 	/*
8283 	 * Assert that the given pmap is only active on the current
8284 	 * CPU.  Unfortunately, we cannot block another CPU from
8285 	 * activating the pmap while this function is executing.
8286 	 */
8287 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8288 #ifdef INVARIANTS
8289 	{
8290 		cpuset_t other_cpus;
8291 
8292 		other_cpus = all_cpus;
8293 		critical_enter();
8294 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8295 		CPU_AND(&other_cpus, &pmap->pm_active);
8296 		critical_exit();
8297 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8298 	}
8299 #endif
8300 
8301 	lock = NULL;
8302 	PG_M = pmap_modified_bit(pmap);
8303 	PG_V = pmap_valid_bit(pmap);
8304 	PG_RW = pmap_rw_bit(pmap);
8305 
8306 	for (i = 0; i < PMAP_MEMDOM; i++)
8307 		TAILQ_INIT(&free_chunks[i]);
8308 	SLIST_INIT(&free);
8309 	PMAP_LOCK(pmap);
8310 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8311 		allfree = 1;
8312 		freed = 0;
8313 		for (field = 0; field < _NPCM; field++) {
8314 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8315 			while (inuse != 0) {
8316 				bit = bsfq(inuse);
8317 				bitmask = 1UL << bit;
8318 				idx = field * 64 + bit;
8319 				pv = &pc->pc_pventry[idx];
8320 				inuse &= ~bitmask;
8321 
8322 				pte = pmap_pdpe(pmap, pv->pv_va);
8323 				ptepde = *pte;
8324 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8325 				tpte = *pte;
8326 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8327 					superpage = FALSE;
8328 					ptepde = tpte;
8329 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8330 					    PG_FRAME);
8331 					pte = &pte[pmap_pte_index(pv->pv_va)];
8332 					tpte = *pte;
8333 				} else {
8334 					/*
8335 					 * Keep track whether 'tpte' is a
8336 					 * superpage explicitly instead of
8337 					 * relying on PG_PS being set.
8338 					 *
8339 					 * This is because PG_PS is numerically
8340 					 * identical to PG_PTE_PAT and thus a
8341 					 * regular page could be mistaken for
8342 					 * a superpage.
8343 					 */
8344 					superpage = TRUE;
8345 				}
8346 
8347 				if ((tpte & PG_V) == 0) {
8348 					panic("bad pte va %lx pte %lx",
8349 					    pv->pv_va, tpte);
8350 				}
8351 
8352 /*
8353  * We cannot remove wired pages from a process' mapping at this time
8354  */
8355 				if (tpte & PG_W) {
8356 					allfree = 0;
8357 					continue;
8358 				}
8359 
8360 				/* Mark free */
8361 				pc->pc_map[field] |= bitmask;
8362 
8363 				/*
8364 				 * Because this pmap is not active on other
8365 				 * processors, the dirty bit cannot have
8366 				 * changed state since we last loaded pte.
8367 				 */
8368 				pte_clear(pte);
8369 
8370 				if (superpage)
8371 					pa = tpte & PG_PS_FRAME;
8372 				else
8373 					pa = tpte & PG_FRAME;
8374 
8375 				m = PHYS_TO_VM_PAGE(pa);
8376 				KASSERT(m->phys_addr == pa,
8377 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8378 				    m, (uintmax_t)m->phys_addr,
8379 				    (uintmax_t)tpte));
8380 
8381 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8382 				    m < &vm_page_array[vm_page_array_size],
8383 				    ("pmap_remove_pages: bad tpte %#jx",
8384 				    (uintmax_t)tpte));
8385 
8386 				/*
8387 				 * Update the vm_page_t clean/reference bits.
8388 				 */
8389 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8390 					if (superpage) {
8391 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8392 							vm_page_dirty(mt);
8393 					} else
8394 						vm_page_dirty(m);
8395 				}
8396 
8397 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8398 
8399 				if (superpage) {
8400 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8401 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8402 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8403 					pvh->pv_gen++;
8404 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8405 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8406 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8407 							    TAILQ_EMPTY(&mt->md.pv_list))
8408 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8409 					}
8410 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8411 					if (mpte != NULL) {
8412 						KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
8413 						    ("pmap_remove_pages: pte page not promoted"));
8414 						pmap_resident_count_adj(pmap, -1);
8415 						KASSERT(mpte->ref_count == NPTEPG,
8416 						    ("pmap_remove_pages: pte page reference count error"));
8417 						mpte->ref_count = 0;
8418 						pmap_add_delayed_free_list(mpte, &free, FALSE);
8419 					}
8420 				} else {
8421 					pmap_resident_count_adj(pmap, -1);
8422 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8423 					m->md.pv_gen++;
8424 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8425 					    TAILQ_EMPTY(&m->md.pv_list) &&
8426 					    (m->flags & PG_FICTITIOUS) == 0) {
8427 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8428 						if (TAILQ_EMPTY(&pvh->pv_list))
8429 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8430 					}
8431 				}
8432 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8433 				freed++;
8434 			}
8435 		}
8436 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8437 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8438 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8439 		if (allfree) {
8440 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8441 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8442 		}
8443 	}
8444 	if (lock != NULL)
8445 		rw_wunlock(lock);
8446 	pmap_invalidate_all(pmap);
8447 	pmap_pkru_deassign_all(pmap);
8448 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8449 	PMAP_UNLOCK(pmap);
8450 	vm_page_free_pages_toq(&free, true);
8451 }
8452 
8453 static boolean_t
8454 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8455 {
8456 	struct rwlock *lock;
8457 	pv_entry_t pv;
8458 	struct md_page *pvh;
8459 	pt_entry_t *pte, mask;
8460 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8461 	pmap_t pmap;
8462 	int md_gen, pvh_gen;
8463 	boolean_t rv;
8464 
8465 	rv = FALSE;
8466 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8467 	rw_rlock(lock);
8468 restart:
8469 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8470 		pmap = PV_PMAP(pv);
8471 		if (!PMAP_TRYLOCK(pmap)) {
8472 			md_gen = m->md.pv_gen;
8473 			rw_runlock(lock);
8474 			PMAP_LOCK(pmap);
8475 			rw_rlock(lock);
8476 			if (md_gen != m->md.pv_gen) {
8477 				PMAP_UNLOCK(pmap);
8478 				goto restart;
8479 			}
8480 		}
8481 		pte = pmap_pte(pmap, pv->pv_va);
8482 		mask = 0;
8483 		if (modified) {
8484 			PG_M = pmap_modified_bit(pmap);
8485 			PG_RW = pmap_rw_bit(pmap);
8486 			mask |= PG_RW | PG_M;
8487 		}
8488 		if (accessed) {
8489 			PG_A = pmap_accessed_bit(pmap);
8490 			PG_V = pmap_valid_bit(pmap);
8491 			mask |= PG_V | PG_A;
8492 		}
8493 		rv = (*pte & mask) == mask;
8494 		PMAP_UNLOCK(pmap);
8495 		if (rv)
8496 			goto out;
8497 	}
8498 	if ((m->flags & PG_FICTITIOUS) == 0) {
8499 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8500 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8501 			pmap = PV_PMAP(pv);
8502 			if (!PMAP_TRYLOCK(pmap)) {
8503 				md_gen = m->md.pv_gen;
8504 				pvh_gen = pvh->pv_gen;
8505 				rw_runlock(lock);
8506 				PMAP_LOCK(pmap);
8507 				rw_rlock(lock);
8508 				if (md_gen != m->md.pv_gen ||
8509 				    pvh_gen != pvh->pv_gen) {
8510 					PMAP_UNLOCK(pmap);
8511 					goto restart;
8512 				}
8513 			}
8514 			pte = pmap_pde(pmap, pv->pv_va);
8515 			mask = 0;
8516 			if (modified) {
8517 				PG_M = pmap_modified_bit(pmap);
8518 				PG_RW = pmap_rw_bit(pmap);
8519 				mask |= PG_RW | PG_M;
8520 			}
8521 			if (accessed) {
8522 				PG_A = pmap_accessed_bit(pmap);
8523 				PG_V = pmap_valid_bit(pmap);
8524 				mask |= PG_V | PG_A;
8525 			}
8526 			rv = (*pte & mask) == mask;
8527 			PMAP_UNLOCK(pmap);
8528 			if (rv)
8529 				goto out;
8530 		}
8531 	}
8532 out:
8533 	rw_runlock(lock);
8534 	return (rv);
8535 }
8536 
8537 /*
8538  *	pmap_is_modified:
8539  *
8540  *	Return whether or not the specified physical page was modified
8541  *	in any physical maps.
8542  */
8543 boolean_t
8544 pmap_is_modified(vm_page_t m)
8545 {
8546 
8547 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8548 	    ("pmap_is_modified: page %p is not managed", m));
8549 
8550 	/*
8551 	 * If the page is not busied then this check is racy.
8552 	 */
8553 	if (!pmap_page_is_write_mapped(m))
8554 		return (FALSE);
8555 	return (pmap_page_test_mappings(m, FALSE, TRUE));
8556 }
8557 
8558 /*
8559  *	pmap_is_prefaultable:
8560  *
8561  *	Return whether or not the specified virtual address is eligible
8562  *	for prefault.
8563  */
8564 boolean_t
8565 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8566 {
8567 	pd_entry_t *pde;
8568 	pt_entry_t *pte, PG_V;
8569 	boolean_t rv;
8570 
8571 	PG_V = pmap_valid_bit(pmap);
8572 	rv = FALSE;
8573 	PMAP_LOCK(pmap);
8574 	pde = pmap_pde(pmap, addr);
8575 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8576 		pte = pmap_pde_to_pte(pde, addr);
8577 		rv = (*pte & PG_V) == 0;
8578 	}
8579 	PMAP_UNLOCK(pmap);
8580 	return (rv);
8581 }
8582 
8583 /*
8584  *	pmap_is_referenced:
8585  *
8586  *	Return whether or not the specified physical page was referenced
8587  *	in any physical maps.
8588  */
8589 boolean_t
8590 pmap_is_referenced(vm_page_t m)
8591 {
8592 
8593 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8594 	    ("pmap_is_referenced: page %p is not managed", m));
8595 	return (pmap_page_test_mappings(m, TRUE, FALSE));
8596 }
8597 
8598 /*
8599  * Clear the write and modified bits in each of the given page's mappings.
8600  */
8601 void
8602 pmap_remove_write(vm_page_t m)
8603 {
8604 	struct md_page *pvh;
8605 	pmap_t pmap;
8606 	struct rwlock *lock;
8607 	pv_entry_t next_pv, pv;
8608 	pd_entry_t *pde;
8609 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8610 	vm_offset_t va;
8611 	int pvh_gen, md_gen;
8612 
8613 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8614 	    ("pmap_remove_write: page %p is not managed", m));
8615 
8616 	vm_page_assert_busied(m);
8617 	if (!pmap_page_is_write_mapped(m))
8618 		return;
8619 
8620 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8621 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8622 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8623 	rw_wlock(lock);
8624 retry:
8625 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8626 		pmap = PV_PMAP(pv);
8627 		if (!PMAP_TRYLOCK(pmap)) {
8628 			pvh_gen = pvh->pv_gen;
8629 			rw_wunlock(lock);
8630 			PMAP_LOCK(pmap);
8631 			rw_wlock(lock);
8632 			if (pvh_gen != pvh->pv_gen) {
8633 				PMAP_UNLOCK(pmap);
8634 				goto retry;
8635 			}
8636 		}
8637 		PG_RW = pmap_rw_bit(pmap);
8638 		va = pv->pv_va;
8639 		pde = pmap_pde(pmap, va);
8640 		if ((*pde & PG_RW) != 0)
8641 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8642 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8643 		    ("inconsistent pv lock %p %p for page %p",
8644 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8645 		PMAP_UNLOCK(pmap);
8646 	}
8647 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8648 		pmap = PV_PMAP(pv);
8649 		if (!PMAP_TRYLOCK(pmap)) {
8650 			pvh_gen = pvh->pv_gen;
8651 			md_gen = m->md.pv_gen;
8652 			rw_wunlock(lock);
8653 			PMAP_LOCK(pmap);
8654 			rw_wlock(lock);
8655 			if (pvh_gen != pvh->pv_gen ||
8656 			    md_gen != m->md.pv_gen) {
8657 				PMAP_UNLOCK(pmap);
8658 				goto retry;
8659 			}
8660 		}
8661 		PG_M = pmap_modified_bit(pmap);
8662 		PG_RW = pmap_rw_bit(pmap);
8663 		pde = pmap_pde(pmap, pv->pv_va);
8664 		KASSERT((*pde & PG_PS) == 0,
8665 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8666 		    m));
8667 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8668 		oldpte = *pte;
8669 		if (oldpte & PG_RW) {
8670 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8671 			    ~(PG_RW | PG_M)))
8672 				cpu_spinwait();
8673 			if ((oldpte & PG_M) != 0)
8674 				vm_page_dirty(m);
8675 			pmap_invalidate_page(pmap, pv->pv_va);
8676 		}
8677 		PMAP_UNLOCK(pmap);
8678 	}
8679 	rw_wunlock(lock);
8680 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8681 	pmap_delayed_invl_wait(m);
8682 }
8683 
8684 static __inline boolean_t
8685 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
8686 {
8687 
8688 	if (!pmap_emulate_ad_bits(pmap))
8689 		return (TRUE);
8690 
8691 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
8692 
8693 	/*
8694 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
8695 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
8696 	 * if the EPT_PG_WRITE bit is set.
8697 	 */
8698 	if ((pte & EPT_PG_WRITE) != 0)
8699 		return (FALSE);
8700 
8701 	/*
8702 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
8703 	 */
8704 	if ((pte & EPT_PG_EXECUTE) == 0 ||
8705 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
8706 		return (TRUE);
8707 	else
8708 		return (FALSE);
8709 }
8710 
8711 /*
8712  *	pmap_ts_referenced:
8713  *
8714  *	Return a count of reference bits for a page, clearing those bits.
8715  *	It is not necessary for every reference bit to be cleared, but it
8716  *	is necessary that 0 only be returned when there are truly no
8717  *	reference bits set.
8718  *
8719  *	As an optimization, update the page's dirty field if a modified bit is
8720  *	found while counting reference bits.  This opportunistic update can be
8721  *	performed at low cost and can eliminate the need for some future calls
8722  *	to pmap_is_modified().  However, since this function stops after
8723  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8724  *	dirty pages.  Those dirty pages will only be detected by a future call
8725  *	to pmap_is_modified().
8726  *
8727  *	A DI block is not needed within this function, because
8728  *	invalidations are performed before the PV list lock is
8729  *	released.
8730  */
8731 int
8732 pmap_ts_referenced(vm_page_t m)
8733 {
8734 	struct md_page *pvh;
8735 	pv_entry_t pv, pvf;
8736 	pmap_t pmap;
8737 	struct rwlock *lock;
8738 	pd_entry_t oldpde, *pde;
8739 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8740 	vm_offset_t va;
8741 	vm_paddr_t pa;
8742 	int cleared, md_gen, not_cleared, pvh_gen;
8743 	struct spglist free;
8744 	boolean_t demoted;
8745 
8746 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8747 	    ("pmap_ts_referenced: page %p is not managed", m));
8748 	SLIST_INIT(&free);
8749 	cleared = 0;
8750 	pa = VM_PAGE_TO_PHYS(m);
8751 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8752 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8753 	rw_wlock(lock);
8754 retry:
8755 	not_cleared = 0;
8756 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8757 		goto small_mappings;
8758 	pv = pvf;
8759 	do {
8760 		if (pvf == NULL)
8761 			pvf = pv;
8762 		pmap = PV_PMAP(pv);
8763 		if (!PMAP_TRYLOCK(pmap)) {
8764 			pvh_gen = pvh->pv_gen;
8765 			rw_wunlock(lock);
8766 			PMAP_LOCK(pmap);
8767 			rw_wlock(lock);
8768 			if (pvh_gen != pvh->pv_gen) {
8769 				PMAP_UNLOCK(pmap);
8770 				goto retry;
8771 			}
8772 		}
8773 		PG_A = pmap_accessed_bit(pmap);
8774 		PG_M = pmap_modified_bit(pmap);
8775 		PG_RW = pmap_rw_bit(pmap);
8776 		va = pv->pv_va;
8777 		pde = pmap_pde(pmap, pv->pv_va);
8778 		oldpde = *pde;
8779 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8780 			/*
8781 			 * Although "oldpde" is mapping a 2MB page, because
8782 			 * this function is called at a 4KB page granularity,
8783 			 * we only update the 4KB page under test.
8784 			 */
8785 			vm_page_dirty(m);
8786 		}
8787 		if ((oldpde & PG_A) != 0) {
8788 			/*
8789 			 * Since this reference bit is shared by 512 4KB
8790 			 * pages, it should not be cleared every time it is
8791 			 * tested.  Apply a simple "hash" function on the
8792 			 * physical page number, the virtual superpage number,
8793 			 * and the pmap address to select one 4KB page out of
8794 			 * the 512 on which testing the reference bit will
8795 			 * result in clearing that reference bit.  This
8796 			 * function is designed to avoid the selection of the
8797 			 * same 4KB page for every 2MB page mapping.
8798 			 *
8799 			 * On demotion, a mapping that hasn't been referenced
8800 			 * is simply destroyed.  To avoid the possibility of a
8801 			 * subsequent page fault on a demoted wired mapping,
8802 			 * always leave its reference bit set.  Moreover,
8803 			 * since the superpage is wired, the current state of
8804 			 * its reference bit won't affect page replacement.
8805 			 */
8806 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
8807 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
8808 			    (oldpde & PG_W) == 0) {
8809 				if (safe_to_clear_referenced(pmap, oldpde)) {
8810 					atomic_clear_long(pde, PG_A);
8811 					pmap_invalidate_page(pmap, pv->pv_va);
8812 					demoted = FALSE;
8813 				} else if (pmap_demote_pde_locked(pmap, pde,
8814 				    pv->pv_va, &lock)) {
8815 					/*
8816 					 * Remove the mapping to a single page
8817 					 * so that a subsequent access may
8818 					 * repromote.  Since the underlying
8819 					 * page table page is fully populated,
8820 					 * this removal never frees a page
8821 					 * table page.
8822 					 */
8823 					demoted = TRUE;
8824 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
8825 					    PG_PS_FRAME);
8826 					pte = pmap_pde_to_pte(pde, va);
8827 					pmap_remove_pte(pmap, pte, va, *pde,
8828 					    NULL, &lock);
8829 					pmap_invalidate_page(pmap, va);
8830 				} else
8831 					demoted = TRUE;
8832 
8833 				if (demoted) {
8834 					/*
8835 					 * The superpage mapping was removed
8836 					 * entirely and therefore 'pv' is no
8837 					 * longer valid.
8838 					 */
8839 					if (pvf == pv)
8840 						pvf = NULL;
8841 					pv = NULL;
8842 				}
8843 				cleared++;
8844 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8845 				    ("inconsistent pv lock %p %p for page %p",
8846 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8847 			} else
8848 				not_cleared++;
8849 		}
8850 		PMAP_UNLOCK(pmap);
8851 		/* Rotate the PV list if it has more than one entry. */
8852 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8853 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8854 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
8855 			pvh->pv_gen++;
8856 		}
8857 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
8858 			goto out;
8859 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
8860 small_mappings:
8861 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
8862 		goto out;
8863 	pv = pvf;
8864 	do {
8865 		if (pvf == NULL)
8866 			pvf = pv;
8867 		pmap = PV_PMAP(pv);
8868 		if (!PMAP_TRYLOCK(pmap)) {
8869 			pvh_gen = pvh->pv_gen;
8870 			md_gen = m->md.pv_gen;
8871 			rw_wunlock(lock);
8872 			PMAP_LOCK(pmap);
8873 			rw_wlock(lock);
8874 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8875 				PMAP_UNLOCK(pmap);
8876 				goto retry;
8877 			}
8878 		}
8879 		PG_A = pmap_accessed_bit(pmap);
8880 		PG_M = pmap_modified_bit(pmap);
8881 		PG_RW = pmap_rw_bit(pmap);
8882 		pde = pmap_pde(pmap, pv->pv_va);
8883 		KASSERT((*pde & PG_PS) == 0,
8884 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
8885 		    m));
8886 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8887 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
8888 			vm_page_dirty(m);
8889 		if ((*pte & PG_A) != 0) {
8890 			if (safe_to_clear_referenced(pmap, *pte)) {
8891 				atomic_clear_long(pte, PG_A);
8892 				pmap_invalidate_page(pmap, pv->pv_va);
8893 				cleared++;
8894 			} else if ((*pte & PG_W) == 0) {
8895 				/*
8896 				 * Wired pages cannot be paged out so
8897 				 * doing accessed bit emulation for
8898 				 * them is wasted effort. We do the
8899 				 * hard work for unwired pages only.
8900 				 */
8901 				pmap_remove_pte(pmap, pte, pv->pv_va,
8902 				    *pde, &free, &lock);
8903 				pmap_invalidate_page(pmap, pv->pv_va);
8904 				cleared++;
8905 				if (pvf == pv)
8906 					pvf = NULL;
8907 				pv = NULL;
8908 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8909 				    ("inconsistent pv lock %p %p for page %p",
8910 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8911 			} else
8912 				not_cleared++;
8913 		}
8914 		PMAP_UNLOCK(pmap);
8915 		/* Rotate the PV list if it has more than one entry. */
8916 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8917 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8918 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
8919 			m->md.pv_gen++;
8920 		}
8921 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
8922 	    not_cleared < PMAP_TS_REFERENCED_MAX);
8923 out:
8924 	rw_wunlock(lock);
8925 	vm_page_free_pages_toq(&free, true);
8926 	return (cleared + not_cleared);
8927 }
8928 
8929 /*
8930  *	Apply the given advice to the specified range of addresses within the
8931  *	given pmap.  Depending on the advice, clear the referenced and/or
8932  *	modified flags in each mapping and set the mapped page's dirty field.
8933  */
8934 void
8935 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
8936 {
8937 	struct rwlock *lock;
8938 	pml4_entry_t *pml4e;
8939 	pdp_entry_t *pdpe;
8940 	pd_entry_t oldpde, *pde;
8941 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
8942 	vm_offset_t va, va_next;
8943 	vm_page_t m;
8944 	bool anychanged;
8945 
8946 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
8947 		return;
8948 
8949 	/*
8950 	 * A/D bit emulation requires an alternate code path when clearing
8951 	 * the modified and accessed bits below. Since this function is
8952 	 * advisory in nature we skip it entirely for pmaps that require
8953 	 * A/D bit emulation.
8954 	 */
8955 	if (pmap_emulate_ad_bits(pmap))
8956 		return;
8957 
8958 	PG_A = pmap_accessed_bit(pmap);
8959 	PG_G = pmap_global_bit(pmap);
8960 	PG_M = pmap_modified_bit(pmap);
8961 	PG_V = pmap_valid_bit(pmap);
8962 	PG_RW = pmap_rw_bit(pmap);
8963 	anychanged = false;
8964 	pmap_delayed_invl_start();
8965 	PMAP_LOCK(pmap);
8966 	for (; sva < eva; sva = va_next) {
8967 		pml4e = pmap_pml4e(pmap, sva);
8968 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8969 			va_next = (sva + NBPML4) & ~PML4MASK;
8970 			if (va_next < sva)
8971 				va_next = eva;
8972 			continue;
8973 		}
8974 
8975 		va_next = (sva + NBPDP) & ~PDPMASK;
8976 		if (va_next < sva)
8977 			va_next = eva;
8978 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8979 		if ((*pdpe & PG_V) == 0)
8980 			continue;
8981 		if ((*pdpe & PG_PS) != 0) {
8982 			KASSERT(va_next <= eva,
8983 			    ("partial update of non-transparent 1G mapping "
8984 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8985 			    *pdpe, sva, eva, va_next));
8986 			continue;
8987 		}
8988 
8989 		va_next = (sva + NBPDR) & ~PDRMASK;
8990 		if (va_next < sva)
8991 			va_next = eva;
8992 		pde = pmap_pdpe_to_pde(pdpe, sva);
8993 		oldpde = *pde;
8994 		if ((oldpde & PG_V) == 0)
8995 			continue;
8996 		else if ((oldpde & PG_PS) != 0) {
8997 			if ((oldpde & PG_MANAGED) == 0)
8998 				continue;
8999 			lock = NULL;
9000 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9001 				if (lock != NULL)
9002 					rw_wunlock(lock);
9003 
9004 				/*
9005 				 * The large page mapping was destroyed.
9006 				 */
9007 				continue;
9008 			}
9009 
9010 			/*
9011 			 * Unless the page mappings are wired, remove the
9012 			 * mapping to a single page so that a subsequent
9013 			 * access may repromote.  Choosing the last page
9014 			 * within the address range [sva, min(va_next, eva))
9015 			 * generally results in more repromotions.  Since the
9016 			 * underlying page table page is fully populated, this
9017 			 * removal never frees a page table page.
9018 			 */
9019 			if ((oldpde & PG_W) == 0) {
9020 				va = eva;
9021 				if (va > va_next)
9022 					va = va_next;
9023 				va -= PAGE_SIZE;
9024 				KASSERT(va >= sva,
9025 				    ("pmap_advise: no address gap"));
9026 				pte = pmap_pde_to_pte(pde, va);
9027 				KASSERT((*pte & PG_V) != 0,
9028 				    ("pmap_advise: invalid PTE"));
9029 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9030 				    &lock);
9031 				anychanged = true;
9032 			}
9033 			if (lock != NULL)
9034 				rw_wunlock(lock);
9035 		}
9036 		if (va_next > eva)
9037 			va_next = eva;
9038 		va = va_next;
9039 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9040 		    sva += PAGE_SIZE) {
9041 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9042 				goto maybe_invlrng;
9043 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9044 				if (advice == MADV_DONTNEED) {
9045 					/*
9046 					 * Future calls to pmap_is_modified()
9047 					 * can be avoided by making the page
9048 					 * dirty now.
9049 					 */
9050 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9051 					vm_page_dirty(m);
9052 				}
9053 				atomic_clear_long(pte, PG_M | PG_A);
9054 			} else if ((*pte & PG_A) != 0)
9055 				atomic_clear_long(pte, PG_A);
9056 			else
9057 				goto maybe_invlrng;
9058 
9059 			if ((*pte & PG_G) != 0) {
9060 				if (va == va_next)
9061 					va = sva;
9062 			} else
9063 				anychanged = true;
9064 			continue;
9065 maybe_invlrng:
9066 			if (va != va_next) {
9067 				pmap_invalidate_range(pmap, va, sva);
9068 				va = va_next;
9069 			}
9070 		}
9071 		if (va != va_next)
9072 			pmap_invalidate_range(pmap, va, sva);
9073 	}
9074 	if (anychanged)
9075 		pmap_invalidate_all(pmap);
9076 	PMAP_UNLOCK(pmap);
9077 	pmap_delayed_invl_finish();
9078 }
9079 
9080 /*
9081  *	Clear the modify bits on the specified physical page.
9082  */
9083 void
9084 pmap_clear_modify(vm_page_t m)
9085 {
9086 	struct md_page *pvh;
9087 	pmap_t pmap;
9088 	pv_entry_t next_pv, pv;
9089 	pd_entry_t oldpde, *pde;
9090 	pt_entry_t *pte, PG_M, PG_RW;
9091 	struct rwlock *lock;
9092 	vm_offset_t va;
9093 	int md_gen, pvh_gen;
9094 
9095 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9096 	    ("pmap_clear_modify: page %p is not managed", m));
9097 	vm_page_assert_busied(m);
9098 
9099 	if (!pmap_page_is_write_mapped(m))
9100 		return;
9101 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9102 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9103 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9104 	rw_wlock(lock);
9105 restart:
9106 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9107 		pmap = PV_PMAP(pv);
9108 		if (!PMAP_TRYLOCK(pmap)) {
9109 			pvh_gen = pvh->pv_gen;
9110 			rw_wunlock(lock);
9111 			PMAP_LOCK(pmap);
9112 			rw_wlock(lock);
9113 			if (pvh_gen != pvh->pv_gen) {
9114 				PMAP_UNLOCK(pmap);
9115 				goto restart;
9116 			}
9117 		}
9118 		PG_M = pmap_modified_bit(pmap);
9119 		PG_RW = pmap_rw_bit(pmap);
9120 		va = pv->pv_va;
9121 		pde = pmap_pde(pmap, va);
9122 		oldpde = *pde;
9123 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9124 		if ((oldpde & PG_RW) != 0 &&
9125 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9126 		    (oldpde & PG_W) == 0) {
9127 			/*
9128 			 * Write protect the mapping to a single page so that
9129 			 * a subsequent write access may repromote.
9130 			 */
9131 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9132 			pte = pmap_pde_to_pte(pde, va);
9133 			atomic_clear_long(pte, PG_M | PG_RW);
9134 			vm_page_dirty(m);
9135 			pmap_invalidate_page(pmap, va);
9136 		}
9137 		PMAP_UNLOCK(pmap);
9138 	}
9139 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9140 		pmap = PV_PMAP(pv);
9141 		if (!PMAP_TRYLOCK(pmap)) {
9142 			md_gen = m->md.pv_gen;
9143 			pvh_gen = pvh->pv_gen;
9144 			rw_wunlock(lock);
9145 			PMAP_LOCK(pmap);
9146 			rw_wlock(lock);
9147 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9148 				PMAP_UNLOCK(pmap);
9149 				goto restart;
9150 			}
9151 		}
9152 		PG_M = pmap_modified_bit(pmap);
9153 		PG_RW = pmap_rw_bit(pmap);
9154 		pde = pmap_pde(pmap, pv->pv_va);
9155 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9156 		    " a 2mpage in page %p's pv list", m));
9157 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9158 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9159 			atomic_clear_long(pte, PG_M);
9160 			pmap_invalidate_page(pmap, pv->pv_va);
9161 		}
9162 		PMAP_UNLOCK(pmap);
9163 	}
9164 	rw_wunlock(lock);
9165 }
9166 
9167 /*
9168  * Miscellaneous support routines follow
9169  */
9170 
9171 /* Adjust the properties for a leaf page table entry. */
9172 static __inline void
9173 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9174 {
9175 	u_long opte, npte;
9176 
9177 	opte = *(u_long *)pte;
9178 	do {
9179 		npte = opte & ~mask;
9180 		npte |= bits;
9181 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9182 	    npte));
9183 }
9184 
9185 /*
9186  * Map a set of physical memory pages into the kernel virtual
9187  * address space. Return a pointer to where it is mapped. This
9188  * routine is intended to be used for mapping device memory,
9189  * NOT real memory.
9190  */
9191 static void *
9192 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9193 {
9194 	struct pmap_preinit_mapping *ppim;
9195 	vm_offset_t va, offset;
9196 	vm_size_t tmpsize;
9197 	int i;
9198 
9199 	offset = pa & PAGE_MASK;
9200 	size = round_page(offset + size);
9201 	pa = trunc_page(pa);
9202 
9203 	if (!pmap_initialized) {
9204 		va = 0;
9205 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9206 			ppim = pmap_preinit_mapping + i;
9207 			if (ppim->va == 0) {
9208 				ppim->pa = pa;
9209 				ppim->sz = size;
9210 				ppim->mode = mode;
9211 				ppim->va = virtual_avail;
9212 				virtual_avail += size;
9213 				va = ppim->va;
9214 				break;
9215 			}
9216 		}
9217 		if (va == 0)
9218 			panic("%s: too many preinit mappings", __func__);
9219 	} else {
9220 		/*
9221 		 * If we have a preinit mapping, re-use it.
9222 		 */
9223 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9224 			ppim = pmap_preinit_mapping + i;
9225 			if (ppim->pa == pa && ppim->sz == size &&
9226 			    (ppim->mode == mode ||
9227 			    (flags & MAPDEV_SETATTR) == 0))
9228 				return ((void *)(ppim->va + offset));
9229 		}
9230 		/*
9231 		 * If the specified range of physical addresses fits within
9232 		 * the direct map window, use the direct map.
9233 		 */
9234 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9235 			va = PHYS_TO_DMAP(pa);
9236 			if ((flags & MAPDEV_SETATTR) != 0) {
9237 				PMAP_LOCK(kernel_pmap);
9238 				i = pmap_change_props_locked(va, size,
9239 				    PROT_NONE, mode, flags);
9240 				PMAP_UNLOCK(kernel_pmap);
9241 			} else
9242 				i = 0;
9243 			if (!i)
9244 				return ((void *)(va + offset));
9245 		}
9246 		va = kva_alloc(size);
9247 		if (va == 0)
9248 			panic("%s: Couldn't allocate KVA", __func__);
9249 	}
9250 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9251 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9252 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9253 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9254 		pmap_invalidate_cache_range(va, va + tmpsize);
9255 	return ((void *)(va + offset));
9256 }
9257 
9258 void *
9259 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9260 {
9261 
9262 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9263 	    MAPDEV_SETATTR));
9264 }
9265 
9266 void *
9267 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9268 {
9269 
9270 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9271 }
9272 
9273 void *
9274 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9275 {
9276 
9277 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9278 	    MAPDEV_SETATTR));
9279 }
9280 
9281 void *
9282 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9283 {
9284 
9285 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9286 	    MAPDEV_FLUSHCACHE));
9287 }
9288 
9289 void
9290 pmap_unmapdev(vm_offset_t va, vm_size_t size)
9291 {
9292 	struct pmap_preinit_mapping *ppim;
9293 	vm_offset_t offset;
9294 	int i;
9295 
9296 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9297 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9298 		return;
9299 	offset = va & PAGE_MASK;
9300 	size = round_page(offset + size);
9301 	va = trunc_page(va);
9302 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9303 		ppim = pmap_preinit_mapping + i;
9304 		if (ppim->va == va && ppim->sz == size) {
9305 			if (pmap_initialized)
9306 				return;
9307 			ppim->pa = 0;
9308 			ppim->va = 0;
9309 			ppim->sz = 0;
9310 			ppim->mode = 0;
9311 			if (va + size == virtual_avail)
9312 				virtual_avail = va;
9313 			return;
9314 		}
9315 	}
9316 	if (pmap_initialized) {
9317 		pmap_qremove(va, atop(size));
9318 		kva_free(va, size);
9319 	}
9320 }
9321 
9322 /*
9323  * Tries to demote a 1GB page mapping.
9324  */
9325 static boolean_t
9326 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9327 {
9328 	pdp_entry_t newpdpe, oldpdpe;
9329 	pd_entry_t *firstpde, newpde, *pde;
9330 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9331 	vm_paddr_t pdpgpa;
9332 	vm_page_t pdpg;
9333 
9334 	PG_A = pmap_accessed_bit(pmap);
9335 	PG_M = pmap_modified_bit(pmap);
9336 	PG_V = pmap_valid_bit(pmap);
9337 	PG_RW = pmap_rw_bit(pmap);
9338 
9339 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9340 	oldpdpe = *pdpe;
9341 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9342 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9343 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9344 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9345 	if (pdpg  == NULL) {
9346 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9347 		    " in pmap %p", va, pmap);
9348 		return (FALSE);
9349 	}
9350 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9351 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9352 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9353 	KASSERT((oldpdpe & PG_A) != 0,
9354 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9355 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9356 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9357 	newpde = oldpdpe;
9358 
9359 	/*
9360 	 * Initialize the page directory page.
9361 	 */
9362 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9363 		*pde = newpde;
9364 		newpde += NBPDR;
9365 	}
9366 
9367 	/*
9368 	 * Demote the mapping.
9369 	 */
9370 	*pdpe = newpdpe;
9371 
9372 	/*
9373 	 * Invalidate a stale recursive mapping of the page directory page.
9374 	 */
9375 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9376 
9377 	counter_u64_add(pmap_pdpe_demotions, 1);
9378 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9379 	    " in pmap %p", va, pmap);
9380 	return (TRUE);
9381 }
9382 
9383 /*
9384  * Sets the memory attribute for the specified page.
9385  */
9386 void
9387 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9388 {
9389 
9390 	m->md.pat_mode = ma;
9391 
9392 	/*
9393 	 * If "m" is a normal page, update its direct mapping.  This update
9394 	 * can be relied upon to perform any cache operations that are
9395 	 * required for data coherence.
9396 	 */
9397 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9398 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9399 	    m->md.pat_mode))
9400 		panic("memory attribute change on the direct map failed");
9401 }
9402 
9403 void
9404 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9405 {
9406 	int error;
9407 
9408 	m->md.pat_mode = ma;
9409 
9410 	if ((m->flags & PG_FICTITIOUS) != 0)
9411 		return;
9412 	PMAP_LOCK(kernel_pmap);
9413 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9414 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9415 	PMAP_UNLOCK(kernel_pmap);
9416 	if (error != 0)
9417 		panic("memory attribute change on the direct map failed");
9418 }
9419 
9420 /*
9421  * Changes the specified virtual address range's memory type to that given by
9422  * the parameter "mode".  The specified virtual address range must be
9423  * completely contained within either the direct map or the kernel map.  If
9424  * the virtual address range is contained within the kernel map, then the
9425  * memory type for each of the corresponding ranges of the direct map is also
9426  * changed.  (The corresponding ranges of the direct map are those ranges that
9427  * map the same physical pages as the specified virtual address range.)  These
9428  * changes to the direct map are necessary because Intel describes the
9429  * behavior of their processors as "undefined" if two or more mappings to the
9430  * same physical page have different memory types.
9431  *
9432  * Returns zero if the change completed successfully, and either EINVAL or
9433  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9434  * of the virtual address range was not mapped, and ENOMEM is returned if
9435  * there was insufficient memory available to complete the change.  In the
9436  * latter case, the memory type may have been changed on some part of the
9437  * virtual address range or the direct map.
9438  */
9439 int
9440 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9441 {
9442 	int error;
9443 
9444 	PMAP_LOCK(kernel_pmap);
9445 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9446 	    MAPDEV_FLUSHCACHE);
9447 	PMAP_UNLOCK(kernel_pmap);
9448 	return (error);
9449 }
9450 
9451 /*
9452  * Changes the specified virtual address range's protections to those
9453  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9454  * in the direct map are updated as well.  Protections on aliasing mappings may
9455  * be a subset of the requested protections; for example, mappings in the direct
9456  * map are never executable.
9457  */
9458 int
9459 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9460 {
9461 	int error;
9462 
9463 	/* Only supported within the kernel map. */
9464 	if (va < VM_MIN_KERNEL_ADDRESS)
9465 		return (EINVAL);
9466 
9467 	PMAP_LOCK(kernel_pmap);
9468 	error = pmap_change_props_locked(va, size, prot, -1,
9469 	    MAPDEV_ASSERTVALID);
9470 	PMAP_UNLOCK(kernel_pmap);
9471 	return (error);
9472 }
9473 
9474 static int
9475 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9476     int mode, int flags)
9477 {
9478 	vm_offset_t base, offset, tmpva;
9479 	vm_paddr_t pa_start, pa_end, pa_end1;
9480 	pdp_entry_t *pdpe;
9481 	pd_entry_t *pde, pde_bits, pde_mask;
9482 	pt_entry_t *pte, pte_bits, pte_mask;
9483 	int error;
9484 	bool changed;
9485 
9486 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9487 	base = trunc_page(va);
9488 	offset = va & PAGE_MASK;
9489 	size = round_page(offset + size);
9490 
9491 	/*
9492 	 * Only supported on kernel virtual addresses, including the direct
9493 	 * map but excluding the recursive map.
9494 	 */
9495 	if (base < DMAP_MIN_ADDRESS)
9496 		return (EINVAL);
9497 
9498 	/*
9499 	 * Construct our flag sets and masks.  "bits" is the subset of
9500 	 * "mask" that will be set in each modified PTE.
9501 	 *
9502 	 * Mappings in the direct map are never allowed to be executable.
9503 	 */
9504 	pde_bits = pte_bits = 0;
9505 	pde_mask = pte_mask = 0;
9506 	if (mode != -1) {
9507 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9508 		pde_mask |= X86_PG_PDE_CACHE;
9509 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9510 		pte_mask |= X86_PG_PTE_CACHE;
9511 	}
9512 	if (prot != VM_PROT_NONE) {
9513 		if ((prot & VM_PROT_WRITE) != 0) {
9514 			pde_bits |= X86_PG_RW;
9515 			pte_bits |= X86_PG_RW;
9516 		}
9517 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9518 		    va < VM_MIN_KERNEL_ADDRESS) {
9519 			pde_bits |= pg_nx;
9520 			pte_bits |= pg_nx;
9521 		}
9522 		pde_mask |= X86_PG_RW | pg_nx;
9523 		pte_mask |= X86_PG_RW | pg_nx;
9524 	}
9525 
9526 	/*
9527 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9528 	 * into 4KB pages if required.
9529 	 */
9530 	for (tmpva = base; tmpva < base + size; ) {
9531 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9532 		if (pdpe == NULL || *pdpe == 0) {
9533 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9534 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9535 			return (EINVAL);
9536 		}
9537 		if (*pdpe & PG_PS) {
9538 			/*
9539 			 * If the current 1GB page already has the required
9540 			 * properties, then we need not demote this page.  Just
9541 			 * increment tmpva to the next 1GB page frame.
9542 			 */
9543 			if ((*pdpe & pde_mask) == pde_bits) {
9544 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9545 				continue;
9546 			}
9547 
9548 			/*
9549 			 * If the current offset aligns with a 1GB page frame
9550 			 * and there is at least 1GB left within the range, then
9551 			 * we need not break down this page into 2MB pages.
9552 			 */
9553 			if ((tmpva & PDPMASK) == 0 &&
9554 			    tmpva + PDPMASK < base + size) {
9555 				tmpva += NBPDP;
9556 				continue;
9557 			}
9558 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9559 				return (ENOMEM);
9560 		}
9561 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9562 		if (*pde == 0) {
9563 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9564 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9565 			return (EINVAL);
9566 		}
9567 		if (*pde & PG_PS) {
9568 			/*
9569 			 * If the current 2MB page already has the required
9570 			 * properties, then we need not demote this page.  Just
9571 			 * increment tmpva to the next 2MB page frame.
9572 			 */
9573 			if ((*pde & pde_mask) == pde_bits) {
9574 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9575 				continue;
9576 			}
9577 
9578 			/*
9579 			 * If the current offset aligns with a 2MB page frame
9580 			 * and there is at least 2MB left within the range, then
9581 			 * we need not break down this page into 4KB pages.
9582 			 */
9583 			if ((tmpva & PDRMASK) == 0 &&
9584 			    tmpva + PDRMASK < base + size) {
9585 				tmpva += NBPDR;
9586 				continue;
9587 			}
9588 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9589 				return (ENOMEM);
9590 		}
9591 		pte = pmap_pde_to_pte(pde, tmpva);
9592 		if (*pte == 0) {
9593 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9594 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9595 			return (EINVAL);
9596 		}
9597 		tmpva += PAGE_SIZE;
9598 	}
9599 	error = 0;
9600 
9601 	/*
9602 	 * Ok, all the pages exist, so run through them updating their
9603 	 * properties if required.
9604 	 */
9605 	changed = false;
9606 	pa_start = pa_end = 0;
9607 	for (tmpva = base; tmpva < base + size; ) {
9608 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9609 		if (*pdpe & PG_PS) {
9610 			if ((*pdpe & pde_mask) != pde_bits) {
9611 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9612 				changed = true;
9613 			}
9614 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9615 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9616 				if (pa_start == pa_end) {
9617 					/* Start physical address run. */
9618 					pa_start = *pdpe & PG_PS_FRAME;
9619 					pa_end = pa_start + NBPDP;
9620 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9621 					pa_end += NBPDP;
9622 				else {
9623 					/* Run ended, update direct map. */
9624 					error = pmap_change_props_locked(
9625 					    PHYS_TO_DMAP(pa_start),
9626 					    pa_end - pa_start, prot, mode,
9627 					    flags);
9628 					if (error != 0)
9629 						break;
9630 					/* Start physical address run. */
9631 					pa_start = *pdpe & PG_PS_FRAME;
9632 					pa_end = pa_start + NBPDP;
9633 				}
9634 			}
9635 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9636 			continue;
9637 		}
9638 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9639 		if (*pde & PG_PS) {
9640 			if ((*pde & pde_mask) != pde_bits) {
9641 				pmap_pte_props(pde, pde_bits, pde_mask);
9642 				changed = true;
9643 			}
9644 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9645 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9646 				if (pa_start == pa_end) {
9647 					/* Start physical address run. */
9648 					pa_start = *pde & PG_PS_FRAME;
9649 					pa_end = pa_start + NBPDR;
9650 				} else if (pa_end == (*pde & PG_PS_FRAME))
9651 					pa_end += NBPDR;
9652 				else {
9653 					/* Run ended, update direct map. */
9654 					error = pmap_change_props_locked(
9655 					    PHYS_TO_DMAP(pa_start),
9656 					    pa_end - pa_start, prot, mode,
9657 					    flags);
9658 					if (error != 0)
9659 						break;
9660 					/* Start physical address run. */
9661 					pa_start = *pde & PG_PS_FRAME;
9662 					pa_end = pa_start + NBPDR;
9663 				}
9664 			}
9665 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9666 		} else {
9667 			pte = pmap_pde_to_pte(pde, tmpva);
9668 			if ((*pte & pte_mask) != pte_bits) {
9669 				pmap_pte_props(pte, pte_bits, pte_mask);
9670 				changed = true;
9671 			}
9672 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9673 			    (*pte & PG_FRAME) < dmaplimit) {
9674 				if (pa_start == pa_end) {
9675 					/* Start physical address run. */
9676 					pa_start = *pte & PG_FRAME;
9677 					pa_end = pa_start + PAGE_SIZE;
9678 				} else if (pa_end == (*pte & PG_FRAME))
9679 					pa_end += PAGE_SIZE;
9680 				else {
9681 					/* Run ended, update direct map. */
9682 					error = pmap_change_props_locked(
9683 					    PHYS_TO_DMAP(pa_start),
9684 					    pa_end - pa_start, prot, mode,
9685 					    flags);
9686 					if (error != 0)
9687 						break;
9688 					/* Start physical address run. */
9689 					pa_start = *pte & PG_FRAME;
9690 					pa_end = pa_start + PAGE_SIZE;
9691 				}
9692 			}
9693 			tmpva += PAGE_SIZE;
9694 		}
9695 	}
9696 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9697 		pa_end1 = MIN(pa_end, dmaplimit);
9698 		if (pa_start != pa_end1)
9699 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9700 			    pa_end1 - pa_start, prot, mode, flags);
9701 	}
9702 
9703 	/*
9704 	 * Flush CPU caches if required to make sure any data isn't cached that
9705 	 * shouldn't be, etc.
9706 	 */
9707 	if (changed) {
9708 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9709 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9710 			pmap_invalidate_cache_range(base, tmpva);
9711 	}
9712 	return (error);
9713 }
9714 
9715 /*
9716  * Demotes any mapping within the direct map region that covers more than the
9717  * specified range of physical addresses.  This range's size must be a power
9718  * of two and its starting address must be a multiple of its size.  Since the
9719  * demotion does not change any attributes of the mapping, a TLB invalidation
9720  * is not mandatory.  The caller may, however, request a TLB invalidation.
9721  */
9722 void
9723 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9724 {
9725 	pdp_entry_t *pdpe;
9726 	pd_entry_t *pde;
9727 	vm_offset_t va;
9728 	boolean_t changed;
9729 
9730 	if (len == 0)
9731 		return;
9732 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9733 	KASSERT((base & (len - 1)) == 0,
9734 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9735 	if (len < NBPDP && base < dmaplimit) {
9736 		va = PHYS_TO_DMAP(base);
9737 		changed = FALSE;
9738 		PMAP_LOCK(kernel_pmap);
9739 		pdpe = pmap_pdpe(kernel_pmap, va);
9740 		if ((*pdpe & X86_PG_V) == 0)
9741 			panic("pmap_demote_DMAP: invalid PDPE");
9742 		if ((*pdpe & PG_PS) != 0) {
9743 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9744 				panic("pmap_demote_DMAP: PDPE failed");
9745 			changed = TRUE;
9746 		}
9747 		if (len < NBPDR) {
9748 			pde = pmap_pdpe_to_pde(pdpe, va);
9749 			if ((*pde & X86_PG_V) == 0)
9750 				panic("pmap_demote_DMAP: invalid PDE");
9751 			if ((*pde & PG_PS) != 0) {
9752 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9753 					panic("pmap_demote_DMAP: PDE failed");
9754 				changed = TRUE;
9755 			}
9756 		}
9757 		if (changed && invalidate)
9758 			pmap_invalidate_page(kernel_pmap, va);
9759 		PMAP_UNLOCK(kernel_pmap);
9760 	}
9761 }
9762 
9763 /*
9764  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9765  * modified by this pmap, returns its physical address so that the caller can
9766  * find other mappings.
9767  */
9768 int
9769 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9770 {
9771 	pdp_entry_t *pdpe;
9772 	pd_entry_t *pdep;
9773 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9774 	vm_paddr_t pa;
9775 	int val;
9776 
9777 	PG_A = pmap_accessed_bit(pmap);
9778 	PG_M = pmap_modified_bit(pmap);
9779 	PG_V = pmap_valid_bit(pmap);
9780 	PG_RW = pmap_rw_bit(pmap);
9781 
9782 	PMAP_LOCK(pmap);
9783 	pte = 0;
9784 	pa = 0;
9785 	val = 0;
9786 	pdpe = pmap_pdpe(pmap, addr);
9787 	if (pdpe == NULL)
9788 		goto out;
9789 	if ((*pdpe & PG_V) != 0) {
9790 		if ((*pdpe & PG_PS) != 0) {
9791 			pte = *pdpe;
9792 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9793 			    PG_FRAME;
9794 			val = MINCORE_PSIND(2);
9795 		} else {
9796 			pdep = pmap_pde(pmap, addr);
9797 			if (pdep != NULL && (*pdep & PG_V) != 0) {
9798 				if ((*pdep & PG_PS) != 0) {
9799 					pte = *pdep;
9800 			/* Compute the physical address of the 4KB page. */
9801 					pa = ((pte & PG_PS_FRAME) | (addr &
9802 					    PDRMASK)) & PG_FRAME;
9803 					val = MINCORE_PSIND(1);
9804 				} else {
9805 					pte = *pmap_pde_to_pte(pdep, addr);
9806 					pa = pte & PG_FRAME;
9807 					val = 0;
9808 				}
9809 			}
9810 		}
9811 	}
9812 	if ((pte & PG_V) != 0) {
9813 		val |= MINCORE_INCORE;
9814 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9815 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
9816 		if ((pte & PG_A) != 0)
9817 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
9818 	}
9819 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
9820 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
9821 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
9822 		*pap = pa;
9823 	}
9824 out:
9825 	PMAP_UNLOCK(pmap);
9826 	return (val);
9827 }
9828 
9829 static uint64_t
9830 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
9831 {
9832 	uint32_t gen, new_gen, pcid_next;
9833 
9834 	CRITICAL_ASSERT(curthread);
9835 	gen = PCPU_GET(pcid_gen);
9836 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
9837 		return (pti ? 0 : CR3_PCID_SAVE);
9838 	if (pmap->pm_pcids[cpuid].pm_gen == gen)
9839 		return (CR3_PCID_SAVE);
9840 	pcid_next = PCPU_GET(pcid_next);
9841 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
9842 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
9843 	    ("cpu %d pcid_next %#x", cpuid, pcid_next));
9844 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
9845 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
9846 		new_gen = gen + 1;
9847 		if (new_gen == 0)
9848 			new_gen = 1;
9849 		PCPU_SET(pcid_gen, new_gen);
9850 		pcid_next = PMAP_PCID_KERN + 1;
9851 	} else {
9852 		new_gen = gen;
9853 	}
9854 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
9855 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
9856 	PCPU_SET(pcid_next, pcid_next + 1);
9857 	return (0);
9858 }
9859 
9860 static uint64_t
9861 pmap_pcid_alloc_checked(pmap_t pmap, u_int cpuid)
9862 {
9863 	uint64_t cached;
9864 
9865 	cached = pmap_pcid_alloc(pmap, cpuid);
9866 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
9867 	    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
9868 	    pmap->pm_pcids[cpuid].pm_pcid));
9869 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
9870 	    pmap == kernel_pmap,
9871 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
9872 	    pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
9873 	return (cached);
9874 }
9875 
9876 static void
9877 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
9878 {
9879 
9880 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
9881 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
9882 }
9883 
9884 static void
9885 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
9886 {
9887 	pmap_t old_pmap;
9888 	uint64_t cached, cr3, kcr3, ucr3;
9889 
9890 	KASSERT((read_rflags() & PSL_I) == 0,
9891 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9892 
9893 	/* See the comment in pmap_invalidate_page_pcid(). */
9894 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
9895 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
9896 		old_pmap = PCPU_GET(curpmap);
9897 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
9898 		old_pmap->pm_pcids[cpuid].pm_gen = 0;
9899 	}
9900 
9901 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
9902 	cr3 = rcr3();
9903 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9904 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid);
9905 	PCPU_SET(curpmap, pmap);
9906 	kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
9907 	ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
9908 	    PMAP_PCID_USER_PT;
9909 
9910 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
9911 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
9912 
9913 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
9914 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
9915 	if (cached)
9916 		counter_u64_add(pcid_save_cnt, 1);
9917 
9918 	pmap_activate_sw_pti_post(td, pmap);
9919 }
9920 
9921 static void
9922 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
9923     u_int cpuid)
9924 {
9925 	uint64_t cached, cr3;
9926 
9927 	KASSERT((read_rflags() & PSL_I) == 0,
9928 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9929 
9930 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
9931 	cr3 = rcr3();
9932 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9933 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
9934 		    cached);
9935 	PCPU_SET(curpmap, pmap);
9936 	if (cached)
9937 		counter_u64_add(pcid_save_cnt, 1);
9938 }
9939 
9940 static void
9941 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
9942     u_int cpuid __unused)
9943 {
9944 
9945 	load_cr3(pmap->pm_cr3);
9946 	PCPU_SET(curpmap, pmap);
9947 }
9948 
9949 static void
9950 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
9951     u_int cpuid __unused)
9952 {
9953 
9954 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
9955 	PCPU_SET(kcr3, pmap->pm_cr3);
9956 	PCPU_SET(ucr3, pmap->pm_ucr3);
9957 	pmap_activate_sw_pti_post(td, pmap);
9958 }
9959 
9960 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
9961     u_int))
9962 {
9963 
9964 	if (pmap_pcid_enabled && pti)
9965 		return (pmap_activate_sw_pcid_pti);
9966 	else if (pmap_pcid_enabled && !pti)
9967 		return (pmap_activate_sw_pcid_nopti);
9968 	else if (!pmap_pcid_enabled && pti)
9969 		return (pmap_activate_sw_nopcid_pti);
9970 	else /* if (!pmap_pcid_enabled && !pti) */
9971 		return (pmap_activate_sw_nopcid_nopti);
9972 }
9973 
9974 void
9975 pmap_activate_sw(struct thread *td)
9976 {
9977 	pmap_t oldpmap, pmap;
9978 	u_int cpuid;
9979 
9980 	oldpmap = PCPU_GET(curpmap);
9981 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
9982 	if (oldpmap == pmap) {
9983 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
9984 			mfence();
9985 		return;
9986 	}
9987 	cpuid = PCPU_GET(cpuid);
9988 #ifdef SMP
9989 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
9990 #else
9991 	CPU_SET(cpuid, &pmap->pm_active);
9992 #endif
9993 	pmap_activate_sw_mode(td, pmap, cpuid);
9994 #ifdef SMP
9995 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
9996 #else
9997 	CPU_CLR(cpuid, &oldpmap->pm_active);
9998 #endif
9999 }
10000 
10001 void
10002 pmap_activate(struct thread *td)
10003 {
10004 	/*
10005 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10006 	 * invalidate_all IPI, which checks for curpmap ==
10007 	 * smp_tlb_pmap.  The below sequence of operations has a
10008 	 * window where %CR3 is loaded with the new pmap's PML4
10009 	 * address, but the curpmap value has not yet been updated.
10010 	 * This causes the invltlb IPI handler, which is called
10011 	 * between the updates, to execute as a NOP, which leaves
10012 	 * stale TLB entries.
10013 	 *
10014 	 * Note that the most common use of pmap_activate_sw(), from
10015 	 * a context switch, is immune to this race, because
10016 	 * interrupts are disabled (while the thread lock is owned),
10017 	 * so the IPI is delayed until after curpmap is updated.  Protect
10018 	 * other callers in a similar way, by disabling interrupts
10019 	 * around the %cr3 register reload and curpmap assignment.
10020 	 */
10021 	spinlock_enter();
10022 	pmap_activate_sw(td);
10023 	spinlock_exit();
10024 }
10025 
10026 void
10027 pmap_activate_boot(pmap_t pmap)
10028 {
10029 	uint64_t kcr3;
10030 	u_int cpuid;
10031 
10032 	/*
10033 	 * kernel_pmap must be never deactivated, and we ensure that
10034 	 * by never activating it at all.
10035 	 */
10036 	MPASS(pmap != kernel_pmap);
10037 
10038 	cpuid = PCPU_GET(cpuid);
10039 #ifdef SMP
10040 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10041 #else
10042 	CPU_SET(cpuid, &pmap->pm_active);
10043 #endif
10044 	PCPU_SET(curpmap, pmap);
10045 	if (pti) {
10046 		kcr3 = pmap->pm_cr3;
10047 		if (pmap_pcid_enabled)
10048 			kcr3 |= pmap->pm_pcids[cpuid].pm_pcid | CR3_PCID_SAVE;
10049 	} else {
10050 		kcr3 = PMAP_NO_CR3;
10051 	}
10052 	PCPU_SET(kcr3, kcr3);
10053 	PCPU_SET(ucr3, PMAP_NO_CR3);
10054 }
10055 
10056 void
10057 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10058 {
10059 }
10060 
10061 /*
10062  *	Increase the starting virtual address of the given mapping if a
10063  *	different alignment might result in more superpage mappings.
10064  */
10065 void
10066 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10067     vm_offset_t *addr, vm_size_t size)
10068 {
10069 	vm_offset_t superpage_offset;
10070 
10071 	if (size < NBPDR)
10072 		return;
10073 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10074 		offset += ptoa(object->pg_color);
10075 	superpage_offset = offset & PDRMASK;
10076 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10077 	    (*addr & PDRMASK) == superpage_offset)
10078 		return;
10079 	if ((*addr & PDRMASK) < superpage_offset)
10080 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10081 	else
10082 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10083 }
10084 
10085 #ifdef INVARIANTS
10086 static unsigned long num_dirty_emulations;
10087 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10088 	     &num_dirty_emulations, 0, NULL);
10089 
10090 static unsigned long num_accessed_emulations;
10091 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10092 	     &num_accessed_emulations, 0, NULL);
10093 
10094 static unsigned long num_superpage_accessed_emulations;
10095 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10096 	     &num_superpage_accessed_emulations, 0, NULL);
10097 
10098 static unsigned long ad_emulation_superpage_promotions;
10099 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10100 	     &ad_emulation_superpage_promotions, 0, NULL);
10101 #endif	/* INVARIANTS */
10102 
10103 int
10104 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10105 {
10106 	int rv;
10107 	struct rwlock *lock;
10108 #if VM_NRESERVLEVEL > 0
10109 	vm_page_t m, mpte;
10110 #endif
10111 	pd_entry_t *pde;
10112 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10113 
10114 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10115 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10116 
10117 	if (!pmap_emulate_ad_bits(pmap))
10118 		return (-1);
10119 
10120 	PG_A = pmap_accessed_bit(pmap);
10121 	PG_M = pmap_modified_bit(pmap);
10122 	PG_V = pmap_valid_bit(pmap);
10123 	PG_RW = pmap_rw_bit(pmap);
10124 
10125 	rv = -1;
10126 	lock = NULL;
10127 	PMAP_LOCK(pmap);
10128 
10129 	pde = pmap_pde(pmap, va);
10130 	if (pde == NULL || (*pde & PG_V) == 0)
10131 		goto done;
10132 
10133 	if ((*pde & PG_PS) != 0) {
10134 		if (ftype == VM_PROT_READ) {
10135 #ifdef INVARIANTS
10136 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10137 #endif
10138 			*pde |= PG_A;
10139 			rv = 0;
10140 		}
10141 		goto done;
10142 	}
10143 
10144 	pte = pmap_pde_to_pte(pde, va);
10145 	if ((*pte & PG_V) == 0)
10146 		goto done;
10147 
10148 	if (ftype == VM_PROT_WRITE) {
10149 		if ((*pte & PG_RW) == 0)
10150 			goto done;
10151 		/*
10152 		 * Set the modified and accessed bits simultaneously.
10153 		 *
10154 		 * Intel EPT PTEs that do software emulation of A/D bits map
10155 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10156 		 * An EPT misconfiguration is triggered if the PTE is writable
10157 		 * but not readable (WR=10). This is avoided by setting PG_A
10158 		 * and PG_M simultaneously.
10159 		 */
10160 		*pte |= PG_M | PG_A;
10161 	} else {
10162 		*pte |= PG_A;
10163 	}
10164 
10165 #if VM_NRESERVLEVEL > 0
10166 	/* try to promote the mapping */
10167 	if (va < VM_MAXUSER_ADDRESS)
10168 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10169 	else
10170 		mpte = NULL;
10171 
10172 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10173 
10174 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10175 	    pmap_ps_enabled(pmap) &&
10176 	    (m->flags & PG_FICTITIOUS) == 0 &&
10177 	    vm_reserv_level_iffullpop(m) == 0) {
10178 		pmap_promote_pde(pmap, pde, va, &lock);
10179 #ifdef INVARIANTS
10180 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10181 #endif
10182 	}
10183 #endif
10184 
10185 #ifdef INVARIANTS
10186 	if (ftype == VM_PROT_WRITE)
10187 		atomic_add_long(&num_dirty_emulations, 1);
10188 	else
10189 		atomic_add_long(&num_accessed_emulations, 1);
10190 #endif
10191 	rv = 0;		/* success */
10192 done:
10193 	if (lock != NULL)
10194 		rw_wunlock(lock);
10195 	PMAP_UNLOCK(pmap);
10196 	return (rv);
10197 }
10198 
10199 void
10200 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10201 {
10202 	pml4_entry_t *pml4;
10203 	pdp_entry_t *pdp;
10204 	pd_entry_t *pde;
10205 	pt_entry_t *pte, PG_V;
10206 	int idx;
10207 
10208 	idx = 0;
10209 	PG_V = pmap_valid_bit(pmap);
10210 	PMAP_LOCK(pmap);
10211 
10212 	pml4 = pmap_pml4e(pmap, va);
10213 	if (pml4 == NULL)
10214 		goto done;
10215 	ptr[idx++] = *pml4;
10216 	if ((*pml4 & PG_V) == 0)
10217 		goto done;
10218 
10219 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10220 	ptr[idx++] = *pdp;
10221 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10222 		goto done;
10223 
10224 	pde = pmap_pdpe_to_pde(pdp, va);
10225 	ptr[idx++] = *pde;
10226 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10227 		goto done;
10228 
10229 	pte = pmap_pde_to_pte(pde, va);
10230 	ptr[idx++] = *pte;
10231 
10232 done:
10233 	PMAP_UNLOCK(pmap);
10234 	*num = idx;
10235 }
10236 
10237 /**
10238  * Get the kernel virtual address of a set of physical pages. If there are
10239  * physical addresses not covered by the DMAP perform a transient mapping
10240  * that will be removed when calling pmap_unmap_io_transient.
10241  *
10242  * \param page        The pages the caller wishes to obtain the virtual
10243  *                    address on the kernel memory map.
10244  * \param vaddr       On return contains the kernel virtual memory address
10245  *                    of the pages passed in the page parameter.
10246  * \param count       Number of pages passed in.
10247  * \param can_fault   TRUE if the thread using the mapped pages can take
10248  *                    page faults, FALSE otherwise.
10249  *
10250  * \returns TRUE if the caller must call pmap_unmap_io_transient when
10251  *          finished or FALSE otherwise.
10252  *
10253  */
10254 boolean_t
10255 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10256     boolean_t can_fault)
10257 {
10258 	vm_paddr_t paddr;
10259 	boolean_t needs_mapping;
10260 	pt_entry_t *pte;
10261 	int cache_bits, error __unused, i;
10262 
10263 	/*
10264 	 * Allocate any KVA space that we need, this is done in a separate
10265 	 * loop to prevent calling vmem_alloc while pinned.
10266 	 */
10267 	needs_mapping = FALSE;
10268 	for (i = 0; i < count; i++) {
10269 		paddr = VM_PAGE_TO_PHYS(page[i]);
10270 		if (__predict_false(paddr >= dmaplimit)) {
10271 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10272 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10273 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10274 			needs_mapping = TRUE;
10275 		} else {
10276 			vaddr[i] = PHYS_TO_DMAP(paddr);
10277 		}
10278 	}
10279 
10280 	/* Exit early if everything is covered by the DMAP */
10281 	if (!needs_mapping)
10282 		return (FALSE);
10283 
10284 	/*
10285 	 * NB:  The sequence of updating a page table followed by accesses
10286 	 * to the corresponding pages used in the !DMAP case is subject to
10287 	 * the situation described in the "AMD64 Architecture Programmer's
10288 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10289 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10290 	 * after modifying the PTE bits is crucial.
10291 	 */
10292 	if (!can_fault)
10293 		sched_pin();
10294 	for (i = 0; i < count; i++) {
10295 		paddr = VM_PAGE_TO_PHYS(page[i]);
10296 		if (paddr >= dmaplimit) {
10297 			if (can_fault) {
10298 				/*
10299 				 * Slow path, since we can get page faults
10300 				 * while mappings are active don't pin the
10301 				 * thread to the CPU and instead add a global
10302 				 * mapping visible to all CPUs.
10303 				 */
10304 				pmap_qenter(vaddr[i], &page[i], 1);
10305 			} else {
10306 				pte = vtopte(vaddr[i]);
10307 				cache_bits = pmap_cache_bits(kernel_pmap,
10308 				    page[i]->md.pat_mode, 0);
10309 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10310 				    cache_bits);
10311 				invlpg(vaddr[i]);
10312 			}
10313 		}
10314 	}
10315 
10316 	return (needs_mapping);
10317 }
10318 
10319 void
10320 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10321     boolean_t can_fault)
10322 {
10323 	vm_paddr_t paddr;
10324 	int i;
10325 
10326 	if (!can_fault)
10327 		sched_unpin();
10328 	for (i = 0; i < count; i++) {
10329 		paddr = VM_PAGE_TO_PHYS(page[i]);
10330 		if (paddr >= dmaplimit) {
10331 			if (can_fault)
10332 				pmap_qremove(vaddr[i], 1);
10333 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10334 		}
10335 	}
10336 }
10337 
10338 vm_offset_t
10339 pmap_quick_enter_page(vm_page_t m)
10340 {
10341 	vm_paddr_t paddr;
10342 
10343 	paddr = VM_PAGE_TO_PHYS(m);
10344 	if (paddr < dmaplimit)
10345 		return (PHYS_TO_DMAP(paddr));
10346 	mtx_lock_spin(&qframe_mtx);
10347 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10348 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10349 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10350 	return (qframe);
10351 }
10352 
10353 void
10354 pmap_quick_remove_page(vm_offset_t addr)
10355 {
10356 
10357 	if (addr != qframe)
10358 		return;
10359 	pte_store(vtopte(qframe), 0);
10360 	invlpg(qframe);
10361 	mtx_unlock_spin(&qframe_mtx);
10362 }
10363 
10364 /*
10365  * Pdp pages from the large map are managed differently from either
10366  * kernel or user page table pages.  They are permanently allocated at
10367  * initialization time, and their reference count is permanently set to
10368  * zero.  The pml4 entries pointing to those pages are copied into
10369  * each allocated pmap.
10370  *
10371  * In contrast, pd and pt pages are managed like user page table
10372  * pages.  They are dynamically allocated, and their reference count
10373  * represents the number of valid entries within the page.
10374  */
10375 static vm_page_t
10376 pmap_large_map_getptp_unlocked(void)
10377 {
10378 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10379 }
10380 
10381 static vm_page_t
10382 pmap_large_map_getptp(void)
10383 {
10384 	vm_page_t m;
10385 
10386 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10387 	m = pmap_large_map_getptp_unlocked();
10388 	if (m == NULL) {
10389 		PMAP_UNLOCK(kernel_pmap);
10390 		vm_wait(NULL);
10391 		PMAP_LOCK(kernel_pmap);
10392 		/* Callers retry. */
10393 	}
10394 	return (m);
10395 }
10396 
10397 static pdp_entry_t *
10398 pmap_large_map_pdpe(vm_offset_t va)
10399 {
10400 	vm_pindex_t pml4_idx;
10401 	vm_paddr_t mphys;
10402 
10403 	pml4_idx = pmap_pml4e_index(va);
10404 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10405 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10406 	    "%#jx lm_ents %d",
10407 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10408 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10409 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10410 	    "LMSPML4I %#jx lm_ents %d",
10411 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10412 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10413 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10414 }
10415 
10416 static pd_entry_t *
10417 pmap_large_map_pde(vm_offset_t va)
10418 {
10419 	pdp_entry_t *pdpe;
10420 	vm_page_t m;
10421 	vm_paddr_t mphys;
10422 
10423 retry:
10424 	pdpe = pmap_large_map_pdpe(va);
10425 	if (*pdpe == 0) {
10426 		m = pmap_large_map_getptp();
10427 		if (m == NULL)
10428 			goto retry;
10429 		mphys = VM_PAGE_TO_PHYS(m);
10430 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10431 	} else {
10432 		MPASS((*pdpe & X86_PG_PS) == 0);
10433 		mphys = *pdpe & PG_FRAME;
10434 	}
10435 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10436 }
10437 
10438 static pt_entry_t *
10439 pmap_large_map_pte(vm_offset_t va)
10440 {
10441 	pd_entry_t *pde;
10442 	vm_page_t m;
10443 	vm_paddr_t mphys;
10444 
10445 retry:
10446 	pde = pmap_large_map_pde(va);
10447 	if (*pde == 0) {
10448 		m = pmap_large_map_getptp();
10449 		if (m == NULL)
10450 			goto retry;
10451 		mphys = VM_PAGE_TO_PHYS(m);
10452 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10453 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10454 	} else {
10455 		MPASS((*pde & X86_PG_PS) == 0);
10456 		mphys = *pde & PG_FRAME;
10457 	}
10458 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10459 }
10460 
10461 static vm_paddr_t
10462 pmap_large_map_kextract(vm_offset_t va)
10463 {
10464 	pdp_entry_t *pdpe, pdp;
10465 	pd_entry_t *pde, pd;
10466 	pt_entry_t *pte, pt;
10467 
10468 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10469 	    ("not largemap range %#lx", (u_long)va));
10470 	pdpe = pmap_large_map_pdpe(va);
10471 	pdp = *pdpe;
10472 	KASSERT((pdp & X86_PG_V) != 0,
10473 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10474 	    (u_long)pdpe, pdp));
10475 	if ((pdp & X86_PG_PS) != 0) {
10476 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10477 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10478 		    (u_long)pdpe, pdp));
10479 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10480 	}
10481 	pde = pmap_pdpe_to_pde(pdpe, va);
10482 	pd = *pde;
10483 	KASSERT((pd & X86_PG_V) != 0,
10484 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10485 	if ((pd & X86_PG_PS) != 0)
10486 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10487 	pte = pmap_pde_to_pte(pde, va);
10488 	pt = *pte;
10489 	KASSERT((pt & X86_PG_V) != 0,
10490 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10491 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10492 }
10493 
10494 static int
10495 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10496     vmem_addr_t *vmem_res)
10497 {
10498 
10499 	/*
10500 	 * Large mappings are all but static.  Consequently, there
10501 	 * is no point in waiting for an earlier allocation to be
10502 	 * freed.
10503 	 */
10504 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10505 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10506 }
10507 
10508 int
10509 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10510     vm_memattr_t mattr)
10511 {
10512 	pdp_entry_t *pdpe;
10513 	pd_entry_t *pde;
10514 	pt_entry_t *pte;
10515 	vm_offset_t va, inc;
10516 	vmem_addr_t vmem_res;
10517 	vm_paddr_t pa;
10518 	int error;
10519 
10520 	if (len == 0 || spa + len < spa)
10521 		return (EINVAL);
10522 
10523 	/* See if DMAP can serve. */
10524 	if (spa + len <= dmaplimit) {
10525 		va = PHYS_TO_DMAP(spa);
10526 		*addr = (void *)va;
10527 		return (pmap_change_attr(va, len, mattr));
10528 	}
10529 
10530 	/*
10531 	 * No, allocate KVA.  Fit the address with best possible
10532 	 * alignment for superpages.  Fall back to worse align if
10533 	 * failed.
10534 	 */
10535 	error = ENOMEM;
10536 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10537 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10538 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10539 		    &vmem_res);
10540 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10541 	    NBPDR) + NBPDR)
10542 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10543 		    &vmem_res);
10544 	if (error != 0)
10545 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10546 	if (error != 0)
10547 		return (error);
10548 
10549 	/*
10550 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10551 	 * in the pagetable to minimize flushing.  No need to
10552 	 * invalidate TLB, since we only update invalid entries.
10553 	 */
10554 	PMAP_LOCK(kernel_pmap);
10555 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10556 	    len -= inc) {
10557 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10558 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10559 			pdpe = pmap_large_map_pdpe(va);
10560 			MPASS(*pdpe == 0);
10561 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10562 			    X86_PG_V | X86_PG_A | pg_nx |
10563 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10564 			inc = NBPDP;
10565 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10566 		    (va & PDRMASK) == 0) {
10567 			pde = pmap_large_map_pde(va);
10568 			MPASS(*pde == 0);
10569 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10570 			    X86_PG_V | X86_PG_A | pg_nx |
10571 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10572 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10573 			    ref_count++;
10574 			inc = NBPDR;
10575 		} else {
10576 			pte = pmap_large_map_pte(va);
10577 			MPASS(*pte == 0);
10578 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10579 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10580 			    mattr, FALSE);
10581 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10582 			    ref_count++;
10583 			inc = PAGE_SIZE;
10584 		}
10585 	}
10586 	PMAP_UNLOCK(kernel_pmap);
10587 	MPASS(len == 0);
10588 
10589 	*addr = (void *)vmem_res;
10590 	return (0);
10591 }
10592 
10593 void
10594 pmap_large_unmap(void *svaa, vm_size_t len)
10595 {
10596 	vm_offset_t sva, va;
10597 	vm_size_t inc;
10598 	pdp_entry_t *pdpe, pdp;
10599 	pd_entry_t *pde, pd;
10600 	pt_entry_t *pte;
10601 	vm_page_t m;
10602 	struct spglist spgf;
10603 
10604 	sva = (vm_offset_t)svaa;
10605 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10606 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10607 		return;
10608 
10609 	SLIST_INIT(&spgf);
10610 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10611 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10612 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10613 	PMAP_LOCK(kernel_pmap);
10614 	for (va = sva; va < sva + len; va += inc) {
10615 		pdpe = pmap_large_map_pdpe(va);
10616 		pdp = *pdpe;
10617 		KASSERT((pdp & X86_PG_V) != 0,
10618 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10619 		    (u_long)pdpe, pdp));
10620 		if ((pdp & X86_PG_PS) != 0) {
10621 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10622 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10623 			    (u_long)pdpe, pdp));
10624 			KASSERT((va & PDPMASK) == 0,
10625 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10626 			    (u_long)pdpe, pdp));
10627 			KASSERT(va + NBPDP <= sva + len,
10628 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10629 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10630 			    (u_long)pdpe, pdp, len));
10631 			*pdpe = 0;
10632 			inc = NBPDP;
10633 			continue;
10634 		}
10635 		pde = pmap_pdpe_to_pde(pdpe, va);
10636 		pd = *pde;
10637 		KASSERT((pd & X86_PG_V) != 0,
10638 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10639 		    (u_long)pde, pd));
10640 		if ((pd & X86_PG_PS) != 0) {
10641 			KASSERT((va & PDRMASK) == 0,
10642 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10643 			    (u_long)pde, pd));
10644 			KASSERT(va + NBPDR <= sva + len,
10645 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10646 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10647 			    pd, len));
10648 			pde_store(pde, 0);
10649 			inc = NBPDR;
10650 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10651 			m->ref_count--;
10652 			if (m->ref_count == 0) {
10653 				*pdpe = 0;
10654 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10655 			}
10656 			continue;
10657 		}
10658 		pte = pmap_pde_to_pte(pde, va);
10659 		KASSERT((*pte & X86_PG_V) != 0,
10660 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10661 		    (u_long)pte, *pte));
10662 		pte_clear(pte);
10663 		inc = PAGE_SIZE;
10664 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10665 		m->ref_count--;
10666 		if (m->ref_count == 0) {
10667 			*pde = 0;
10668 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10669 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10670 			m->ref_count--;
10671 			if (m->ref_count == 0) {
10672 				*pdpe = 0;
10673 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10674 			}
10675 		}
10676 	}
10677 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10678 	PMAP_UNLOCK(kernel_pmap);
10679 	vm_page_free_pages_toq(&spgf, false);
10680 	vmem_free(large_vmem, sva, len);
10681 }
10682 
10683 static void
10684 pmap_large_map_wb_fence_mfence(void)
10685 {
10686 
10687 	mfence();
10688 }
10689 
10690 static void
10691 pmap_large_map_wb_fence_atomic(void)
10692 {
10693 
10694 	atomic_thread_fence_seq_cst();
10695 }
10696 
10697 static void
10698 pmap_large_map_wb_fence_nop(void)
10699 {
10700 }
10701 
10702 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10703 {
10704 
10705 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10706 		return (pmap_large_map_wb_fence_mfence);
10707 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10708 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10709 		return (pmap_large_map_wb_fence_atomic);
10710 	else
10711 		/* clflush is strongly enough ordered */
10712 		return (pmap_large_map_wb_fence_nop);
10713 }
10714 
10715 static void
10716 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10717 {
10718 
10719 	for (; len > 0; len -= cpu_clflush_line_size,
10720 	    va += cpu_clflush_line_size)
10721 		clwb(va);
10722 }
10723 
10724 static void
10725 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10726 {
10727 
10728 	for (; len > 0; len -= cpu_clflush_line_size,
10729 	    va += cpu_clflush_line_size)
10730 		clflushopt(va);
10731 }
10732 
10733 static void
10734 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10735 {
10736 
10737 	for (; len > 0; len -= cpu_clflush_line_size,
10738 	    va += cpu_clflush_line_size)
10739 		clflush(va);
10740 }
10741 
10742 static void
10743 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10744 {
10745 }
10746 
10747 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10748 {
10749 
10750 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10751 		return (pmap_large_map_flush_range_clwb);
10752 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10753 		return (pmap_large_map_flush_range_clflushopt);
10754 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10755 		return (pmap_large_map_flush_range_clflush);
10756 	else
10757 		return (pmap_large_map_flush_range_nop);
10758 }
10759 
10760 static void
10761 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10762 {
10763 	volatile u_long *pe;
10764 	u_long p;
10765 	vm_offset_t va;
10766 	vm_size_t inc;
10767 	bool seen_other;
10768 
10769 	for (va = sva; va < eva; va += inc) {
10770 		inc = 0;
10771 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
10772 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
10773 			p = *pe;
10774 			if ((p & X86_PG_PS) != 0)
10775 				inc = NBPDP;
10776 		}
10777 		if (inc == 0) {
10778 			pe = (volatile u_long *)pmap_large_map_pde(va);
10779 			p = *pe;
10780 			if ((p & X86_PG_PS) != 0)
10781 				inc = NBPDR;
10782 		}
10783 		if (inc == 0) {
10784 			pe = (volatile u_long *)pmap_large_map_pte(va);
10785 			p = *pe;
10786 			inc = PAGE_SIZE;
10787 		}
10788 		seen_other = false;
10789 		for (;;) {
10790 			if ((p & X86_PG_AVAIL1) != 0) {
10791 				/*
10792 				 * Spin-wait for the end of a parallel
10793 				 * write-back.
10794 				 */
10795 				cpu_spinwait();
10796 				p = *pe;
10797 
10798 				/*
10799 				 * If we saw other write-back
10800 				 * occuring, we cannot rely on PG_M to
10801 				 * indicate state of the cache.  The
10802 				 * PG_M bit is cleared before the
10803 				 * flush to avoid ignoring new writes,
10804 				 * and writes which are relevant for
10805 				 * us might happen after.
10806 				 */
10807 				seen_other = true;
10808 				continue;
10809 			}
10810 
10811 			if ((p & X86_PG_M) != 0 || seen_other) {
10812 				if (!atomic_fcmpset_long(pe, &p,
10813 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
10814 					/*
10815 					 * If we saw PG_M without
10816 					 * PG_AVAIL1, and then on the
10817 					 * next attempt we do not
10818 					 * observe either PG_M or
10819 					 * PG_AVAIL1, the other
10820 					 * write-back started after us
10821 					 * and finished before us.  We
10822 					 * can rely on it doing our
10823 					 * work.
10824 					 */
10825 					continue;
10826 				pmap_large_map_flush_range(va, inc);
10827 				atomic_clear_long(pe, X86_PG_AVAIL1);
10828 			}
10829 			break;
10830 		}
10831 		maybe_yield();
10832 	}
10833 }
10834 
10835 /*
10836  * Write-back cache lines for the given address range.
10837  *
10838  * Must be called only on the range or sub-range returned from
10839  * pmap_large_map().  Must not be called on the coalesced ranges.
10840  *
10841  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
10842  * instructions support.
10843  */
10844 void
10845 pmap_large_map_wb(void *svap, vm_size_t len)
10846 {
10847 	vm_offset_t eva, sva;
10848 
10849 	sva = (vm_offset_t)svap;
10850 	eva = sva + len;
10851 	pmap_large_map_wb_fence();
10852 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
10853 		pmap_large_map_flush_range(sva, len);
10854 	} else {
10855 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
10856 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
10857 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
10858 		pmap_large_map_wb_large(sva, eva);
10859 	}
10860 	pmap_large_map_wb_fence();
10861 }
10862 
10863 static vm_page_t
10864 pmap_pti_alloc_page(void)
10865 {
10866 	vm_page_t m;
10867 
10868 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10869 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_NOBUSY |
10870 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
10871 	return (m);
10872 }
10873 
10874 static bool
10875 pmap_pti_free_page(vm_page_t m)
10876 {
10877 
10878 	KASSERT(m->ref_count > 0, ("page %p not referenced", m));
10879 	if (!vm_page_unwire_noq(m))
10880 		return (false);
10881 	vm_page_free_zero(m);
10882 	return (true);
10883 }
10884 
10885 static void
10886 pmap_pti_init(void)
10887 {
10888 	vm_page_t pml4_pg;
10889 	pdp_entry_t *pdpe;
10890 	vm_offset_t va;
10891 	int i;
10892 
10893 	if (!pti)
10894 		return;
10895 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
10896 	VM_OBJECT_WLOCK(pti_obj);
10897 	pml4_pg = pmap_pti_alloc_page();
10898 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
10899 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
10900 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
10901 		pdpe = pmap_pti_pdpe(va);
10902 		pmap_pti_wire_pte(pdpe);
10903 	}
10904 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
10905 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
10906 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
10907 	    sizeof(struct gate_descriptor) * NIDT, false);
10908 	CPU_FOREACH(i) {
10909 		/* Doublefault stack IST 1 */
10910 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
10911 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
10912 		/* NMI stack IST 2 */
10913 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
10914 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
10915 		/* MC# stack IST 3 */
10916 		va = __pcpu[i].pc_common_tss.tss_ist3 +
10917 		    sizeof(struct nmi_pcpu);
10918 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
10919 		/* DB# stack IST 4 */
10920 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
10921 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
10922 	}
10923 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
10924 	    true);
10925 	pti_finalized = true;
10926 	VM_OBJECT_WUNLOCK(pti_obj);
10927 }
10928 SYSINIT(pmap_pti, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_pti_init, NULL);
10929 
10930 static pdp_entry_t *
10931 pmap_pti_pdpe(vm_offset_t va)
10932 {
10933 	pml4_entry_t *pml4e;
10934 	pdp_entry_t *pdpe;
10935 	vm_page_t m;
10936 	vm_pindex_t pml4_idx;
10937 	vm_paddr_t mphys;
10938 
10939 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10940 
10941 	pml4_idx = pmap_pml4e_index(va);
10942 	pml4e = &pti_pml4[pml4_idx];
10943 	m = NULL;
10944 	if (*pml4e == 0) {
10945 		if (pti_finalized)
10946 			panic("pml4 alloc after finalization\n");
10947 		m = pmap_pti_alloc_page();
10948 		if (*pml4e != 0) {
10949 			pmap_pti_free_page(m);
10950 			mphys = *pml4e & ~PAGE_MASK;
10951 		} else {
10952 			mphys = VM_PAGE_TO_PHYS(m);
10953 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
10954 		}
10955 	} else {
10956 		mphys = *pml4e & ~PAGE_MASK;
10957 	}
10958 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
10959 	return (pdpe);
10960 }
10961 
10962 static void
10963 pmap_pti_wire_pte(void *pte)
10964 {
10965 	vm_page_t m;
10966 
10967 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10968 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10969 	m->ref_count++;
10970 }
10971 
10972 static void
10973 pmap_pti_unwire_pde(void *pde, bool only_ref)
10974 {
10975 	vm_page_t m;
10976 
10977 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10978 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
10979 	MPASS(m->ref_count > 0);
10980 	MPASS(only_ref || m->ref_count > 1);
10981 	pmap_pti_free_page(m);
10982 }
10983 
10984 static void
10985 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
10986 {
10987 	vm_page_t m;
10988 	pd_entry_t *pde;
10989 
10990 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10991 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10992 	MPASS(m->ref_count > 0);
10993 	if (pmap_pti_free_page(m)) {
10994 		pde = pmap_pti_pde(va);
10995 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
10996 		*pde = 0;
10997 		pmap_pti_unwire_pde(pde, false);
10998 	}
10999 }
11000 
11001 static pd_entry_t *
11002 pmap_pti_pde(vm_offset_t va)
11003 {
11004 	pdp_entry_t *pdpe;
11005 	pd_entry_t *pde;
11006 	vm_page_t m;
11007 	vm_pindex_t pd_idx;
11008 	vm_paddr_t mphys;
11009 
11010 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11011 
11012 	pdpe = pmap_pti_pdpe(va);
11013 	if (*pdpe == 0) {
11014 		m = pmap_pti_alloc_page();
11015 		if (*pdpe != 0) {
11016 			pmap_pti_free_page(m);
11017 			MPASS((*pdpe & X86_PG_PS) == 0);
11018 			mphys = *pdpe & ~PAGE_MASK;
11019 		} else {
11020 			mphys =  VM_PAGE_TO_PHYS(m);
11021 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11022 		}
11023 	} else {
11024 		MPASS((*pdpe & X86_PG_PS) == 0);
11025 		mphys = *pdpe & ~PAGE_MASK;
11026 	}
11027 
11028 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11029 	pd_idx = pmap_pde_index(va);
11030 	pde += pd_idx;
11031 	return (pde);
11032 }
11033 
11034 static pt_entry_t *
11035 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11036 {
11037 	pd_entry_t *pde;
11038 	pt_entry_t *pte;
11039 	vm_page_t m;
11040 	vm_paddr_t mphys;
11041 
11042 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11043 
11044 	pde = pmap_pti_pde(va);
11045 	if (unwire_pde != NULL) {
11046 		*unwire_pde = true;
11047 		pmap_pti_wire_pte(pde);
11048 	}
11049 	if (*pde == 0) {
11050 		m = pmap_pti_alloc_page();
11051 		if (*pde != 0) {
11052 			pmap_pti_free_page(m);
11053 			MPASS((*pde & X86_PG_PS) == 0);
11054 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11055 		} else {
11056 			mphys = VM_PAGE_TO_PHYS(m);
11057 			*pde = mphys | X86_PG_RW | X86_PG_V;
11058 			if (unwire_pde != NULL)
11059 				*unwire_pde = false;
11060 		}
11061 	} else {
11062 		MPASS((*pde & X86_PG_PS) == 0);
11063 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11064 	}
11065 
11066 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11067 	pte += pmap_pte_index(va);
11068 
11069 	return (pte);
11070 }
11071 
11072 static void
11073 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11074 {
11075 	vm_paddr_t pa;
11076 	pd_entry_t *pde;
11077 	pt_entry_t *pte, ptev;
11078 	bool unwire_pde;
11079 
11080 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11081 
11082 	sva = trunc_page(sva);
11083 	MPASS(sva > VM_MAXUSER_ADDRESS);
11084 	eva = round_page(eva);
11085 	MPASS(sva < eva);
11086 	for (; sva < eva; sva += PAGE_SIZE) {
11087 		pte = pmap_pti_pte(sva, &unwire_pde);
11088 		pa = pmap_kextract(sva);
11089 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11090 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11091 		    VM_MEMATTR_DEFAULT, FALSE);
11092 		if (*pte == 0) {
11093 			pte_store(pte, ptev);
11094 			pmap_pti_wire_pte(pte);
11095 		} else {
11096 			KASSERT(!pti_finalized,
11097 			    ("pti overlap after fin %#lx %#lx %#lx",
11098 			    sva, *pte, ptev));
11099 			KASSERT(*pte == ptev,
11100 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11101 			    sva, *pte, ptev));
11102 		}
11103 		if (unwire_pde) {
11104 			pde = pmap_pti_pde(sva);
11105 			pmap_pti_unwire_pde(pde, true);
11106 		}
11107 	}
11108 }
11109 
11110 void
11111 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11112 {
11113 
11114 	if (!pti)
11115 		return;
11116 	VM_OBJECT_WLOCK(pti_obj);
11117 	pmap_pti_add_kva_locked(sva, eva, exec);
11118 	VM_OBJECT_WUNLOCK(pti_obj);
11119 }
11120 
11121 void
11122 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11123 {
11124 	pt_entry_t *pte;
11125 	vm_offset_t va;
11126 
11127 	if (!pti)
11128 		return;
11129 	sva = rounddown2(sva, PAGE_SIZE);
11130 	MPASS(sva > VM_MAXUSER_ADDRESS);
11131 	eva = roundup2(eva, PAGE_SIZE);
11132 	MPASS(sva < eva);
11133 	VM_OBJECT_WLOCK(pti_obj);
11134 	for (va = sva; va < eva; va += PAGE_SIZE) {
11135 		pte = pmap_pti_pte(va, NULL);
11136 		KASSERT((*pte & X86_PG_V) != 0,
11137 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11138 		    (u_long)pte, *pte));
11139 		pte_clear(pte);
11140 		pmap_pti_unwire_pte(pte, va);
11141 	}
11142 	pmap_invalidate_range(kernel_pmap, sva, eva);
11143 	VM_OBJECT_WUNLOCK(pti_obj);
11144 }
11145 
11146 static void *
11147 pkru_dup_range(void *ctx __unused, void *data)
11148 {
11149 	struct pmap_pkru_range *node, *new_node;
11150 
11151 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11152 	if (new_node == NULL)
11153 		return (NULL);
11154 	node = data;
11155 	memcpy(new_node, node, sizeof(*node));
11156 	return (new_node);
11157 }
11158 
11159 static void
11160 pkru_free_range(void *ctx __unused, void *node)
11161 {
11162 
11163 	uma_zfree(pmap_pkru_ranges_zone, node);
11164 }
11165 
11166 static int
11167 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11168     int flags)
11169 {
11170 	struct pmap_pkru_range *ppr;
11171 	int error;
11172 
11173 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11174 	MPASS(pmap->pm_type == PT_X86);
11175 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11176 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11177 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11178 		return (EBUSY);
11179 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11180 	if (ppr == NULL)
11181 		return (ENOMEM);
11182 	ppr->pkru_keyidx = keyidx;
11183 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11184 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11185 	if (error != 0)
11186 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11187 	return (error);
11188 }
11189 
11190 static int
11191 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11192 {
11193 
11194 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11195 	MPASS(pmap->pm_type == PT_X86);
11196 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11197 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11198 }
11199 
11200 static void
11201 pmap_pkru_deassign_all(pmap_t pmap)
11202 {
11203 
11204 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11205 	if (pmap->pm_type == PT_X86 &&
11206 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11207 		rangeset_remove_all(&pmap->pm_pkru);
11208 }
11209 
11210 static bool
11211 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11212 {
11213 	struct pmap_pkru_range *ppr, *prev_ppr;
11214 	vm_offset_t va;
11215 
11216 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11217 	if (pmap->pm_type != PT_X86 ||
11218 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11219 	    sva >= VM_MAXUSER_ADDRESS)
11220 		return (true);
11221 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11222 	for (va = sva; va < eva; prev_ppr = ppr) {
11223 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
11224 		if (va == sva)
11225 			prev_ppr = ppr;
11226 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
11227 			return (false);
11228 		if (ppr == NULL) {
11229 			va += PAGE_SIZE;
11230 			continue;
11231 		}
11232 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
11233 			return (false);
11234 		va = ppr->pkru_rs_el.re_end;
11235 	}
11236 	return (true);
11237 }
11238 
11239 static pt_entry_t
11240 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11241 {
11242 	struct pmap_pkru_range *ppr;
11243 
11244 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11245 	if (pmap->pm_type != PT_X86 ||
11246 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11247 	    va >= VM_MAXUSER_ADDRESS)
11248 		return (0);
11249 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11250 	if (ppr != NULL)
11251 		return (X86_PG_PKU(ppr->pkru_keyidx));
11252 	return (0);
11253 }
11254 
11255 static bool
11256 pred_pkru_on_remove(void *ctx __unused, void *r)
11257 {
11258 	struct pmap_pkru_range *ppr;
11259 
11260 	ppr = r;
11261 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11262 }
11263 
11264 static void
11265 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11266 {
11267 
11268 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11269 	if (pmap->pm_type == PT_X86 &&
11270 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11271 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11272 		    pred_pkru_on_remove);
11273 	}
11274 }
11275 
11276 static int
11277 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11278 {
11279 
11280 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11281 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11282 	MPASS(dst_pmap->pm_type == PT_X86);
11283 	MPASS(src_pmap->pm_type == PT_X86);
11284 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11285 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11286 		return (0);
11287 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11288 }
11289 
11290 static void
11291 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11292     u_int keyidx)
11293 {
11294 	pml4_entry_t *pml4e;
11295 	pdp_entry_t *pdpe;
11296 	pd_entry_t newpde, ptpaddr, *pde;
11297 	pt_entry_t newpte, *ptep, pte;
11298 	vm_offset_t va, va_next;
11299 	bool changed;
11300 
11301 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11302 	MPASS(pmap->pm_type == PT_X86);
11303 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11304 
11305 	for (changed = false, va = sva; va < eva; va = va_next) {
11306 		pml4e = pmap_pml4e(pmap, va);
11307 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11308 			va_next = (va + NBPML4) & ~PML4MASK;
11309 			if (va_next < va)
11310 				va_next = eva;
11311 			continue;
11312 		}
11313 
11314 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11315 		if ((*pdpe & X86_PG_V) == 0) {
11316 			va_next = (va + NBPDP) & ~PDPMASK;
11317 			if (va_next < va)
11318 				va_next = eva;
11319 			continue;
11320 		}
11321 
11322 		va_next = (va + NBPDR) & ~PDRMASK;
11323 		if (va_next < va)
11324 			va_next = eva;
11325 
11326 		pde = pmap_pdpe_to_pde(pdpe, va);
11327 		ptpaddr = *pde;
11328 		if (ptpaddr == 0)
11329 			continue;
11330 
11331 		MPASS((ptpaddr & X86_PG_V) != 0);
11332 		if ((ptpaddr & PG_PS) != 0) {
11333 			if (va + NBPDR == va_next && eva >= va_next) {
11334 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11335 				    X86_PG_PKU(keyidx);
11336 				if (newpde != ptpaddr) {
11337 					*pde = newpde;
11338 					changed = true;
11339 				}
11340 				continue;
11341 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11342 				continue;
11343 			}
11344 		}
11345 
11346 		if (va_next > eva)
11347 			va_next = eva;
11348 
11349 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11350 		    ptep++, va += PAGE_SIZE) {
11351 			pte = *ptep;
11352 			if ((pte & X86_PG_V) == 0)
11353 				continue;
11354 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11355 			if (newpte != pte) {
11356 				*ptep = newpte;
11357 				changed = true;
11358 			}
11359 		}
11360 	}
11361 	if (changed)
11362 		pmap_invalidate_range(pmap, sva, eva);
11363 }
11364 
11365 static int
11366 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11367     u_int keyidx, int flags)
11368 {
11369 
11370 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11371 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11372 		return (EINVAL);
11373 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11374 		return (EFAULT);
11375 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11376 		return (ENOTSUP);
11377 	return (0);
11378 }
11379 
11380 int
11381 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11382     int flags)
11383 {
11384 	int error;
11385 
11386 	sva = trunc_page(sva);
11387 	eva = round_page(eva);
11388 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11389 	if (error != 0)
11390 		return (error);
11391 	for (;;) {
11392 		PMAP_LOCK(pmap);
11393 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11394 		if (error == 0)
11395 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11396 		PMAP_UNLOCK(pmap);
11397 		if (error != ENOMEM)
11398 			break;
11399 		vm_wait(NULL);
11400 	}
11401 	return (error);
11402 }
11403 
11404 int
11405 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11406 {
11407 	int error;
11408 
11409 	sva = trunc_page(sva);
11410 	eva = round_page(eva);
11411 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11412 	if (error != 0)
11413 		return (error);
11414 	for (;;) {
11415 		PMAP_LOCK(pmap);
11416 		error = pmap_pkru_deassign(pmap, sva, eva);
11417 		if (error == 0)
11418 			pmap_pkru_update_range(pmap, sva, eva, 0);
11419 		PMAP_UNLOCK(pmap);
11420 		if (error != ENOMEM)
11421 			break;
11422 		vm_wait(NULL);
11423 	}
11424 	return (error);
11425 }
11426 
11427 #if defined(KASAN) || defined(KMSAN)
11428 static vm_page_t
11429 pmap_san_enter_alloc_4k(void)
11430 {
11431 	vm_page_t m;
11432 
11433 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11434 	    VM_ALLOC_ZERO);
11435 	if (m == NULL)
11436 		panic("%s: no memory to grow shadow map", __func__);
11437 	return (m);
11438 }
11439 
11440 static vm_page_t
11441 pmap_san_enter_alloc_2m(void)
11442 {
11443 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11444 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11445 }
11446 
11447 /*
11448  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11449  * pages when possible.
11450  */
11451 void
11452 pmap_san_enter(vm_offset_t va)
11453 {
11454 	pdp_entry_t *pdpe;
11455 	pd_entry_t *pde;
11456 	pt_entry_t *pte;
11457 	vm_page_t m;
11458 
11459 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11460 
11461 	pdpe = pmap_pdpe(kernel_pmap, va);
11462 	if ((*pdpe & X86_PG_V) == 0) {
11463 		m = pmap_san_enter_alloc_4k();
11464 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11465 		    X86_PG_V | pg_nx);
11466 	}
11467 	pde = pmap_pdpe_to_pde(pdpe, va);
11468 	if ((*pde & X86_PG_V) == 0) {
11469 		m = pmap_san_enter_alloc_2m();
11470 		if (m != NULL) {
11471 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11472 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11473 		} else {
11474 			m = pmap_san_enter_alloc_4k();
11475 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11476 			    X86_PG_V | pg_nx);
11477 		}
11478 	}
11479 	if ((*pde & X86_PG_PS) != 0)
11480 		return;
11481 	pte = pmap_pde_to_pte(pde, va);
11482 	if ((*pte & X86_PG_V) != 0)
11483 		return;
11484 	m = pmap_san_enter_alloc_4k();
11485 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11486 	    X86_PG_M | X86_PG_A | pg_nx);
11487 }
11488 #endif
11489 
11490 /*
11491  * Track a range of the kernel's virtual address space that is contiguous
11492  * in various mapping attributes.
11493  */
11494 struct pmap_kernel_map_range {
11495 	vm_offset_t sva;
11496 	pt_entry_t attrs;
11497 	int ptes;
11498 	int pdes;
11499 	int pdpes;
11500 };
11501 
11502 static void
11503 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11504     vm_offset_t eva)
11505 {
11506 	const char *mode;
11507 	int i, pat_idx;
11508 
11509 	if (eva <= range->sva)
11510 		return;
11511 
11512 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11513 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11514 		if (pat_index[i] == pat_idx)
11515 			break;
11516 
11517 	switch (i) {
11518 	case PAT_WRITE_BACK:
11519 		mode = "WB";
11520 		break;
11521 	case PAT_WRITE_THROUGH:
11522 		mode = "WT";
11523 		break;
11524 	case PAT_UNCACHEABLE:
11525 		mode = "UC";
11526 		break;
11527 	case PAT_UNCACHED:
11528 		mode = "U-";
11529 		break;
11530 	case PAT_WRITE_PROTECTED:
11531 		mode = "WP";
11532 		break;
11533 	case PAT_WRITE_COMBINING:
11534 		mode = "WC";
11535 		break;
11536 	default:
11537 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11538 		    __func__, pat_idx, range->sva, eva);
11539 		mode = "??";
11540 		break;
11541 	}
11542 
11543 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11544 	    range->sva, eva,
11545 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11546 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11547 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11548 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11549 	    mode, range->pdpes, range->pdes, range->ptes);
11550 
11551 	/* Reset to sentinel value. */
11552 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11553 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11554 	    NPDEPG - 1, NPTEPG - 1);
11555 }
11556 
11557 /*
11558  * Determine whether the attributes specified by a page table entry match those
11559  * being tracked by the current range.  This is not quite as simple as a direct
11560  * flag comparison since some PAT modes have multiple representations.
11561  */
11562 static bool
11563 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11564 {
11565 	pt_entry_t diff, mask;
11566 
11567 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11568 	diff = (range->attrs ^ attrs) & mask;
11569 	if (diff == 0)
11570 		return (true);
11571 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11572 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11573 	    pmap_pat_index(kernel_pmap, attrs, true))
11574 		return (true);
11575 	return (false);
11576 }
11577 
11578 static void
11579 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11580     pt_entry_t attrs)
11581 {
11582 
11583 	memset(range, 0, sizeof(*range));
11584 	range->sva = va;
11585 	range->attrs = attrs;
11586 }
11587 
11588 /*
11589  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11590  * those of the current run, dump the address range and its attributes, and
11591  * begin a new run.
11592  */
11593 static void
11594 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11595     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11596     pt_entry_t pte)
11597 {
11598 	pt_entry_t attrs;
11599 
11600 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11601 
11602 	attrs |= pdpe & pg_nx;
11603 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11604 	if ((pdpe & PG_PS) != 0) {
11605 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11606 	} else if (pde != 0) {
11607 		attrs |= pde & pg_nx;
11608 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11609 	}
11610 	if ((pde & PG_PS) != 0) {
11611 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11612 	} else if (pte != 0) {
11613 		attrs |= pte & pg_nx;
11614 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11615 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11616 
11617 		/* Canonicalize by always using the PDE PAT bit. */
11618 		if ((attrs & X86_PG_PTE_PAT) != 0)
11619 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11620 	}
11621 
11622 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11623 		sysctl_kmaps_dump(sb, range, va);
11624 		sysctl_kmaps_reinit(range, va, attrs);
11625 	}
11626 }
11627 
11628 static int
11629 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11630 {
11631 	struct pmap_kernel_map_range range;
11632 	struct sbuf sbuf, *sb;
11633 	pml4_entry_t pml4e;
11634 	pdp_entry_t *pdp, pdpe;
11635 	pd_entry_t *pd, pde;
11636 	pt_entry_t *pt, pte;
11637 	vm_offset_t sva;
11638 	vm_paddr_t pa;
11639 	int error, i, j, k, l;
11640 
11641 	error = sysctl_wire_old_buffer(req, 0);
11642 	if (error != 0)
11643 		return (error);
11644 	sb = &sbuf;
11645 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11646 
11647 	/* Sentinel value. */
11648 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11649 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11650 	    NPDEPG - 1, NPTEPG - 1);
11651 
11652 	/*
11653 	 * Iterate over the kernel page tables without holding the kernel pmap
11654 	 * lock.  Outside of the large map, kernel page table pages are never
11655 	 * freed, so at worst we will observe inconsistencies in the output.
11656 	 * Within the large map, ensure that PDP and PD page addresses are
11657 	 * valid before descending.
11658 	 */
11659 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11660 		switch (i) {
11661 		case PML4PML4I:
11662 			sbuf_printf(sb, "\nRecursive map:\n");
11663 			break;
11664 		case DMPML4I:
11665 			sbuf_printf(sb, "\nDirect map:\n");
11666 			break;
11667 #ifdef KASAN
11668 		case KASANPML4I:
11669 			sbuf_printf(sb, "\nKASAN shadow map:\n");
11670 			break;
11671 #endif
11672 #ifdef KMSAN
11673 		case KMSANSHADPML4I:
11674 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
11675 			break;
11676 		case KMSANORIGPML4I:
11677 			sbuf_printf(sb, "\nKMSAN origin map:\n");
11678 			break;
11679 #endif
11680 		case KPML4BASE:
11681 			sbuf_printf(sb, "\nKernel map:\n");
11682 			break;
11683 		case LMSPML4I:
11684 			sbuf_printf(sb, "\nLarge map:\n");
11685 			break;
11686 		}
11687 
11688 		/* Convert to canonical form. */
11689 		if (sva == 1ul << 47)
11690 			sva |= -1ul << 48;
11691 
11692 restart:
11693 		pml4e = kernel_pml4[i];
11694 		if ((pml4e & X86_PG_V) == 0) {
11695 			sva = rounddown2(sva, NBPML4);
11696 			sysctl_kmaps_dump(sb, &range, sva);
11697 			sva += NBPML4;
11698 			continue;
11699 		}
11700 		pa = pml4e & PG_FRAME;
11701 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
11702 
11703 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
11704 			pdpe = pdp[j];
11705 			if ((pdpe & X86_PG_V) == 0) {
11706 				sva = rounddown2(sva, NBPDP);
11707 				sysctl_kmaps_dump(sb, &range, sva);
11708 				sva += NBPDP;
11709 				continue;
11710 			}
11711 			pa = pdpe & PG_FRAME;
11712 			if ((pdpe & PG_PS) != 0) {
11713 				sva = rounddown2(sva, NBPDP);
11714 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
11715 				    0, 0);
11716 				range.pdpes++;
11717 				sva += NBPDP;
11718 				continue;
11719 			}
11720 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11721 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
11722 				/*
11723 				 * Page table pages for the large map may be
11724 				 * freed.  Validate the next-level address
11725 				 * before descending.
11726 				 */
11727 				goto restart;
11728 			}
11729 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
11730 
11731 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
11732 				pde = pd[k];
11733 				if ((pde & X86_PG_V) == 0) {
11734 					sva = rounddown2(sva, NBPDR);
11735 					sysctl_kmaps_dump(sb, &range, sva);
11736 					sva += NBPDR;
11737 					continue;
11738 				}
11739 				pa = pde & PG_FRAME;
11740 				if ((pde & PG_PS) != 0) {
11741 					sva = rounddown2(sva, NBPDR);
11742 					sysctl_kmaps_check(sb, &range, sva,
11743 					    pml4e, pdpe, pde, 0);
11744 					range.pdes++;
11745 					sva += NBPDR;
11746 					continue;
11747 				}
11748 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11749 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
11750 					/*
11751 					 * Page table pages for the large map
11752 					 * may be freed.  Validate the
11753 					 * next-level address before descending.
11754 					 */
11755 					goto restart;
11756 				}
11757 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
11758 
11759 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
11760 				    sva += PAGE_SIZE) {
11761 					pte = pt[l];
11762 					if ((pte & X86_PG_V) == 0) {
11763 						sysctl_kmaps_dump(sb, &range,
11764 						    sva);
11765 						continue;
11766 					}
11767 					sysctl_kmaps_check(sb, &range, sva,
11768 					    pml4e, pdpe, pde, pte);
11769 					range.ptes++;
11770 				}
11771 			}
11772 		}
11773 	}
11774 
11775 	error = sbuf_finish(sb);
11776 	sbuf_delete(sb);
11777 	return (error);
11778 }
11779 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
11780     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
11781     NULL, 0, sysctl_kmaps, "A",
11782     "Dump kernel address layout");
11783 
11784 #ifdef DDB
11785 DB_SHOW_COMMAND(pte, pmap_print_pte)
11786 {
11787 	pmap_t pmap;
11788 	pml5_entry_t *pml5;
11789 	pml4_entry_t *pml4;
11790 	pdp_entry_t *pdp;
11791 	pd_entry_t *pde;
11792 	pt_entry_t *pte, PG_V;
11793 	vm_offset_t va;
11794 
11795 	if (!have_addr) {
11796 		db_printf("show pte addr\n");
11797 		return;
11798 	}
11799 	va = (vm_offset_t)addr;
11800 
11801 	if (kdb_thread != NULL)
11802 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
11803 	else
11804 		pmap = PCPU_GET(curpmap);
11805 
11806 	PG_V = pmap_valid_bit(pmap);
11807 	db_printf("VA 0x%016lx", va);
11808 
11809 	if (pmap_is_la57(pmap)) {
11810 		pml5 = pmap_pml5e(pmap, va);
11811 		db_printf(" pml5e 0x%016lx", *pml5);
11812 		if ((*pml5 & PG_V) == 0) {
11813 			db_printf("\n");
11814 			return;
11815 		}
11816 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
11817 	} else {
11818 		pml4 = pmap_pml4e(pmap, va);
11819 	}
11820 	db_printf(" pml4e 0x%016lx", *pml4);
11821 	if ((*pml4 & PG_V) == 0) {
11822 		db_printf("\n");
11823 		return;
11824 	}
11825 	pdp = pmap_pml4e_to_pdpe(pml4, va);
11826 	db_printf(" pdpe 0x%016lx", *pdp);
11827 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
11828 		db_printf("\n");
11829 		return;
11830 	}
11831 	pde = pmap_pdpe_to_pde(pdp, va);
11832 	db_printf(" pde 0x%016lx", *pde);
11833 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
11834 		db_printf("\n");
11835 		return;
11836 	}
11837 	pte = pmap_pde_to_pte(pde, va);
11838 	db_printf(" pte 0x%016lx\n", *pte);
11839 }
11840 
11841 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
11842 {
11843 	vm_paddr_t a;
11844 
11845 	if (have_addr) {
11846 		a = (vm_paddr_t)addr;
11847 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
11848 	} else {
11849 		db_printf("show phys2dmap addr\n");
11850 	}
11851 }
11852 
11853 static void
11854 ptpages_show_page(int level, int idx, vm_page_t pg)
11855 {
11856 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
11857 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
11858 }
11859 
11860 static void
11861 ptpages_show_complain(int level, int idx, uint64_t pte)
11862 {
11863 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
11864 }
11865 
11866 static void
11867 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
11868 {
11869 	vm_page_t pg3, pg2, pg1;
11870 	pml4_entry_t *pml4;
11871 	pdp_entry_t *pdp;
11872 	pd_entry_t *pd;
11873 	int i4, i3, i2;
11874 
11875 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
11876 	for (i4 = 0; i4 < num_entries; i4++) {
11877 		if ((pml4[i4] & PG_V) == 0)
11878 			continue;
11879 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
11880 		if (pg3 == NULL) {
11881 			ptpages_show_complain(3, i4, pml4[i4]);
11882 			continue;
11883 		}
11884 		ptpages_show_page(3, i4, pg3);
11885 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
11886 		for (i3 = 0; i3 < NPDPEPG; i3++) {
11887 			if ((pdp[i3] & PG_V) == 0)
11888 				continue;
11889 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
11890 			if (pg3 == NULL) {
11891 				ptpages_show_complain(2, i3, pdp[i3]);
11892 				continue;
11893 			}
11894 			ptpages_show_page(2, i3, pg2);
11895 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
11896 			for (i2 = 0; i2 < NPDEPG; i2++) {
11897 				if ((pd[i2] & PG_V) == 0)
11898 					continue;
11899 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
11900 				if (pg1 == NULL) {
11901 					ptpages_show_complain(1, i2, pd[i2]);
11902 					continue;
11903 				}
11904 				ptpages_show_page(1, i2, pg1);
11905 			}
11906 		}
11907 	}
11908 }
11909 
11910 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
11911 {
11912 	pmap_t pmap;
11913 	vm_page_t pg;
11914 	pml5_entry_t *pml5;
11915 	uint64_t PG_V;
11916 	int i5;
11917 
11918 	if (have_addr)
11919 		pmap = (pmap_t)addr;
11920 	else
11921 		pmap = PCPU_GET(curpmap);
11922 
11923 	PG_V = pmap_valid_bit(pmap);
11924 
11925 	if (pmap_is_la57(pmap)) {
11926 		pml5 = pmap->pm_pmltop;
11927 		for (i5 = 0; i5 < NUPML5E; i5++) {
11928 			if ((pml5[i5] & PG_V) == 0)
11929 				continue;
11930 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
11931 			if (pg == NULL) {
11932 				ptpages_show_complain(4, i5, pml5[i5]);
11933 				continue;
11934 			}
11935 			ptpages_show_page(4, i5, pg);
11936 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
11937 		}
11938 	} else {
11939 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
11940 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
11941 	}
11942 }
11943 #endif
11944