xref: /freebsd/sys/amd64/include/vmparam.h (revision 81ad6265)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * William Jolitz.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vmparam.h	5.9 (Berkeley) 5/12/91
43  * $FreeBSD$
44  */
45 
46 #ifdef __i386__
47 #include <i386/vmparam.h>
48 #else /* !__i386__ */
49 
50 #ifndef _MACHINE_VMPARAM_H_
51 #define	_MACHINE_VMPARAM_H_ 1
52 
53 /*
54  * Machine dependent constants for AMD64.
55  */
56 
57 /*
58  * Virtual memory related constants, all in bytes
59  */
60 #define	MAXTSIZ		(32768UL*1024*1024)	/* max text size */
61 #ifndef DFLDSIZ
62 #define	DFLDSIZ		(32768UL*1024*1024)	/* initial data size limit */
63 #endif
64 #ifndef MAXDSIZ
65 #define	MAXDSIZ		(32768UL*1024*1024)	/* max data size */
66 #endif
67 #ifndef	DFLSSIZ
68 #define	DFLSSIZ		(8UL*1024*1024)		/* initial stack size limit */
69 #endif
70 #ifndef	MAXSSIZ
71 #define	MAXSSIZ		(512UL*1024*1024)	/* max stack size */
72 #endif
73 #ifndef SGROWSIZ
74 #define	SGROWSIZ	(128UL*1024)		/* amount to grow stack */
75 #endif
76 
77 /*
78  * We provide a machine specific single page allocator through the use
79  * of the direct mapped segment.  This uses 2MB pages for reduced
80  * TLB pressure.
81  */
82 #if !defined(KASAN) && !defined(KMSAN)
83 #define	UMA_MD_SMALL_ALLOC
84 #endif
85 
86 /*
87  * The physical address space is densely populated.
88  */
89 #define	VM_PHYSSEG_DENSE
90 
91 /*
92  * The number of PHYSSEG entries must be one greater than the number
93  * of phys_avail entries because the phys_avail entry that spans the
94  * largest physical address that is accessible by ISA DMA is split
95  * into two PHYSSEG entries.
96  */
97 #define	VM_PHYSSEG_MAX		63
98 
99 /*
100  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
101  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
102  * the pool from which physical pages for page tables and small UMA
103  * objects are allocated.
104  */
105 #define	VM_NFREEPOOL		2
106 #define	VM_FREEPOOL_DEFAULT	0
107 #define	VM_FREEPOOL_DIRECT	1
108 
109 /*
110  * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
111  * that have physical addresses below 4G but are not accessible by ISA DMA,
112  * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
113  * DMA.
114  */
115 #define	VM_NFREELIST		3
116 #define	VM_FREELIST_DEFAULT	0
117 #define	VM_FREELIST_DMA32	1
118 #define	VM_FREELIST_LOWMEM	2
119 
120 #define VM_LOWMEM_BOUNDARY	(16 << 20)	/* 16MB ISA DMA limit */
121 
122 /*
123  * Create the DMA32 free list only if the number of physical pages above
124  * physical address 4G is at least 16M, which amounts to 64GB of physical
125  * memory.
126  */
127 #define	VM_DMA32_NPAGES_THRESHOLD	16777216
128 
129 /*
130  * An allocation size of 16MB is supported in order to optimize the
131  * use of the direct map by UMA.  Specifically, a cache line contains
132  * at most 8 PDEs, collectively mapping 16MB of physical memory.  By
133  * reducing the number of distinct 16MB "pages" that are used by UMA,
134  * the physical memory allocator reduces the likelihood of both 2MB
135  * page TLB misses and cache misses caused by 2MB page TLB misses.
136  */
137 #define	VM_NFREEORDER		13
138 
139 /*
140  * Enable superpage reservations: 1 level.
141  */
142 #ifndef	VM_NRESERVLEVEL
143 #define	VM_NRESERVLEVEL		1
144 #endif
145 
146 /*
147  * Level 0 reservations consist of 512 pages.
148  */
149 #ifndef	VM_LEVEL_0_ORDER
150 #define	VM_LEVEL_0_ORDER	9
151 #endif
152 
153 #ifdef	SMP
154 #define	PA_LOCK_COUNT	256
155 #endif
156 
157 /*
158  * Kernel physical load address for non-UEFI boot and for legacy UEFI loader.
159  * Newer UEFI loader loads kernel anywhere below 4G, with memory allocated
160  * by boot services.
161  * Needs to be aligned at 2MB superpage boundary.
162  */
163 #ifndef KERNLOAD
164 #define	KERNLOAD	0x200000
165 #endif
166 
167 /*
168  * Virtual addresses of things.  Derived from the page directory and
169  * page table indexes from pmap.h for precision.
170  *
171  * 0x0000000000000000 - 0x00007fffffffffff   user map
172  * 0x0000800000000000 - 0xffff7fffffffffff   does not exist (hole)
173  * 0xffff800000000000 - 0xffff804020100fff   recursive page table (512GB slot)
174  * 0xffff804020100fff - 0xffff807fffffffff   unused
175  * 0xffff808000000000 - 0xffff847fffffffff   large map (can be tuned up)
176  * 0xffff848000000000 - 0xfffff77fffffffff   unused (large map extends there)
177  * 0xfffff60000000000 - 0xfffff7ffffffffff   2TB KMSAN origin map, optional
178  * 0xfffff78000000000 - 0xfffff7bfffffffff   512GB KASAN shadow map, optional
179  * 0xfffff80000000000 - 0xfffffbffffffffff   4TB direct map
180  * 0xfffffc0000000000 - 0xfffffdffffffffff   2TB KMSAN shadow map, optional
181  * 0xfffffe0000000000 - 0xffffffffffffffff   2TB kernel map
182  *
183  * Within the kernel map:
184  *
185  * 0xfffffe0000000000                        vm_page_array
186  * 0xffffffff80000000                        KERNBASE
187  */
188 
189 #define	VM_MIN_KERNEL_ADDRESS	KV4ADDR(KPML4BASE, 0, 0, 0)
190 #define	VM_MAX_KERNEL_ADDRESS	KV4ADDR(KPML4BASE + NKPML4E - 1, \
191 					NPDPEPG-1, NPDEPG-1, NPTEPG-1)
192 
193 #define	DMAP_MIN_ADDRESS	KV4ADDR(DMPML4I, 0, 0, 0)
194 #define	DMAP_MAX_ADDRESS	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0)
195 
196 #define	KASAN_MIN_ADDRESS	KV4ADDR(KASANPML4I, 0, 0, 0)
197 #define	KASAN_MAX_ADDRESS	KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0)
198 
199 #define	KMSAN_SHAD_MIN_ADDRESS	KV4ADDR(KMSANSHADPML4I, 0, 0, 0)
200 #define	KMSAN_SHAD_MAX_ADDRESS	KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E, \
201 					0, 0, 0)
202 
203 #define	KMSAN_ORIG_MIN_ADDRESS	KV4ADDR(KMSANORIGPML4I, 0, 0, 0)
204 #define	KMSAN_ORIG_MAX_ADDRESS	KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E, \
205 					0, 0, 0)
206 
207 #define	LARGEMAP_MIN_ADDRESS	KV4ADDR(LMSPML4I, 0, 0, 0)
208 #define	LARGEMAP_MAX_ADDRESS	KV4ADDR(LMEPML4I + 1, 0, 0, 0)
209 
210 /*
211  * Formally kernel mapping starts at KERNBASE, but kernel linker
212  * script leaves first PDE reserved.  For legacy BIOS boot, kernel is
213  * loaded at KERNLOAD = 2M, and initial kernel page table maps
214  * physical memory from zero to KERNend starting at KERNBASE.
215  *
216  * KERNSTART is where the first actual kernel page is mapped, after
217  * the compatibility mapping.
218  */
219 #define	KERNBASE		KV4ADDR(KPML4I, KPDPI, 0, 0)
220 #define	KERNSTART		(KERNBASE + NBPDR)
221 
222 #define	UPT_MAX_ADDRESS		KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)
223 #define	UPT_MIN_ADDRESS		KV4ADDR(PML4PML4I, 0, 0, 0)
224 
225 #define	VM_MAXUSER_ADDRESS_LA57	UVADDR(NUPML5E, 0, 0, 0, 0)
226 #define	VM_MAXUSER_ADDRESS_LA48	UVADDR(0, NUP4ML4E, 0, 0, 0)
227 #define	VM_MAXUSER_ADDRESS	VM_MAXUSER_ADDRESS_LA57
228 
229 #define	SHAREDPAGE_LA57		(VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE)
230 #define	SHAREDPAGE_LA48		(VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE)
231 #define	USRSTACK_LA57		SHAREDPAGE_LA57
232 #define	USRSTACK_LA48		SHAREDPAGE_LA48
233 #define	USRSTACK		USRSTACK_LA48
234 #define	PS_STRINGS_LA57		(USRSTACK_LA57 - sizeof(struct ps_strings))
235 #define	PS_STRINGS_LA48		(USRSTACK_LA48 - sizeof(struct ps_strings))
236 
237 #define	VM_MAX_ADDRESS		UPT_MAX_ADDRESS
238 #define	VM_MIN_ADDRESS		(0)
239 
240 /*
241  * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's
242  * early use of PHYS_TO_DMAP before the mapping is actually setup. This works
243  * because the result is not actually accessed until later, but the early
244  * vt fb startup needs to be reworked.
245  */
246 #define	PHYS_IN_DMAP(pa)	(dmaplimit == 0 || (pa) < dmaplimit)
247 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS &&		\
248     (va) < (DMAP_MIN_ADDRESS + dmaplimit))
249 
250 #define	PMAP_HAS_DMAP	1
251 #define	PHYS_TO_DMAP(x)	({						\
252 	KASSERT(PHYS_IN_DMAP(x),					\
253 	    ("physical address %#jx not covered by the DMAP",		\
254 	    (uintmax_t)x));						\
255 	(x) | DMAP_MIN_ADDRESS; })
256 
257 #define	DMAP_TO_PHYS(x)	({						\
258 	KASSERT(VIRT_IN_DMAP(x),					\
259 	    ("virtual address %#jx not covered by the DMAP",		\
260 	    (uintmax_t)x));						\
261 	(x) & ~DMAP_MIN_ADDRESS; })
262 
263 /*
264  * amd64 maps the page array into KVA so that it can be more easily
265  * allocated on the correct memory domains.
266  */
267 #define	PMAP_HAS_PAGE_ARRAY	1
268 
269 /*
270  * How many physical pages per kmem arena virtual page.
271  */
272 #ifndef VM_KMEM_SIZE_SCALE
273 #define	VM_KMEM_SIZE_SCALE	(1)
274 #endif
275 
276 /*
277  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
278  * kernel map.
279  */
280 #ifndef VM_KMEM_SIZE_MAX
281 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
282     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
283 #endif
284 
285 /* initial pagein size of beginning of executable file */
286 #ifndef VM_INITIAL_PAGEIN
287 #define	VM_INITIAL_PAGEIN	16
288 #endif
289 
290 #define	ZERO_REGION_SIZE	(2 * 1024 * 1024)	/* 2MB */
291 
292 /*
293  * The pmap can create non-transparent large page mappings.
294  */
295 #define	PMAP_HAS_LARGEPAGES	1
296 
297 /*
298  * Need a page dump array for minidump.
299  */
300 #define MINIDUMP_PAGE_TRACKING	1
301 
302 #endif /* _MACHINE_VMPARAM_H_ */
303 
304 #endif /* __i386__ */
305