xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 1d386b48)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35 #include <sys/fcntl.h>
36 #include <sys/imgact.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/reg.h>
44 #include <sys/syscallsubr.h>
45 
46 #include <machine/frame.h>
47 #include <machine/md_var.h>
48 #include <machine/pcb.h>
49 #include <machine/psl.h>
50 #include <machine/segments.h>
51 #include <machine/specialreg.h>
52 #include <x86/ifunc.h>
53 
54 #include <vm/pmap.h>
55 #include <vm/vm.h>
56 #include <vm/vm_map.h>
57 
58 #include <security/audit/audit.h>
59 
60 #include <compat/freebsd32/freebsd32_util.h>
61 #include <amd64/linux32/linux.h>
62 #include <amd64/linux32/linux32_proto.h>
63 #include <compat/linux/linux_emul.h>
64 #include <compat/linux/linux_fork.h>
65 #include <compat/linux/linux_ipc.h>
66 #include <compat/linux/linux_misc.h>
67 #include <compat/linux/linux_mmap.h>
68 #include <compat/linux/linux_signal.h>
69 #include <compat/linux/linux_util.h>
70 
71 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
72 
73 struct l_old_select_argv {
74 	l_int		nfds;
75 	l_uintptr_t	readfds;
76 	l_uintptr_t	writefds;
77 	l_uintptr_t	exceptfds;
78 	l_uintptr_t	timeout;
79 } __packed;
80 
81 static void
82 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
83 {
84 
85 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
86 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
87 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
88 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
89 	lru->ru_maxrss = ru->ru_maxrss;
90 	lru->ru_ixrss = ru->ru_ixrss;
91 	lru->ru_idrss = ru->ru_idrss;
92 	lru->ru_isrss = ru->ru_isrss;
93 	lru->ru_minflt = ru->ru_minflt;
94 	lru->ru_majflt = ru->ru_majflt;
95 	lru->ru_nswap = ru->ru_nswap;
96 	lru->ru_inblock = ru->ru_inblock;
97 	lru->ru_oublock = ru->ru_oublock;
98 	lru->ru_msgsnd = ru->ru_msgsnd;
99 	lru->ru_msgrcv = ru->ru_msgrcv;
100 	lru->ru_nsignals = ru->ru_nsignals;
101 	lru->ru_nvcsw = ru->ru_nvcsw;
102 	lru->ru_nivcsw = ru->ru_nivcsw;
103 }
104 
105 int
106 linux_copyout_rusage(struct rusage *ru, void *uaddr)
107 {
108 	struct l_rusage lru;
109 
110 	bsd_to_linux_rusage(ru, &lru);
111 
112 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
113 }
114 
115 CTASSERT(sizeof(struct l_iovec32) == 8);
116 
117 int
118 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
119 {
120 	struct l_iovec32 iov32;
121 	struct iovec *iov;
122 	struct uio *uio;
123 	uint32_t iovlen;
124 	int error, i;
125 
126 	*uiop = NULL;
127 	if (iovcnt > UIO_MAXIOV)
128 		return (EINVAL);
129 	iovlen = iovcnt * sizeof(struct iovec);
130 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
131 	iov = (struct iovec *)(uio + 1);
132 	for (i = 0; i < iovcnt; i++) {
133 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
134 		if (error) {
135 			free(uio, M_IOV);
136 			return (error);
137 		}
138 		iov[i].iov_base = PTRIN(iov32.iov_base);
139 		iov[i].iov_len = iov32.iov_len;
140 	}
141 	uio->uio_iov = iov;
142 	uio->uio_iovcnt = iovcnt;
143 	uio->uio_segflg = UIO_USERSPACE;
144 	uio->uio_offset = -1;
145 	uio->uio_resid = 0;
146 	for (i = 0; i < iovcnt; i++) {
147 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
148 			free(uio, M_IOV);
149 			return (EINVAL);
150 		}
151 		uio->uio_resid += iov->iov_len;
152 		iov++;
153 	}
154 	*uiop = uio;
155 	return (0);
156 }
157 
158 int
159 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
160     int error)
161 {
162 	struct l_iovec32 iov32;
163 	struct iovec *iov;
164 	uint32_t iovlen;
165 	int i;
166 
167 	*iovp = NULL;
168 	if (iovcnt > UIO_MAXIOV)
169 		return (error);
170 	iovlen = iovcnt * sizeof(struct iovec);
171 	iov = malloc(iovlen, M_IOV, M_WAITOK);
172 	for (i = 0; i < iovcnt; i++) {
173 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
174 		if (error) {
175 			free(iov, M_IOV);
176 			return (error);
177 		}
178 		iov[i].iov_base = PTRIN(iov32.iov_base);
179 		iov[i].iov_len = iov32.iov_len;
180 	}
181 	*iovp = iov;
182 	return(0);
183 
184 }
185 
186 int
187 linux_readv(struct thread *td, struct linux_readv_args *uap)
188 {
189 	struct uio *auio;
190 	int error;
191 
192 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
193 	if (error)
194 		return (error);
195 	error = kern_readv(td, uap->fd, auio);
196 	free(auio, M_IOV);
197 	return (error);
198 }
199 
200 int
201 linux_writev(struct thread *td, struct linux_writev_args *uap)
202 {
203 	struct uio *auio;
204 	int error;
205 
206 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
207 	if (error)
208 		return (error);
209 	error = kern_writev(td, uap->fd, auio);
210 	free(auio, M_IOV);
211 	return (error);
212 }
213 
214 struct l_ipc_kludge {
215 	l_uintptr_t msgp;
216 	l_long msgtyp;
217 } __packed;
218 
219 int
220 linux_ipc(struct thread *td, struct linux_ipc_args *args)
221 {
222 
223 	switch (args->what & 0xFFFF) {
224 	case LINUX_SEMOP: {
225 
226 		return (kern_semop(td, args->arg1, PTRIN(args->ptr),
227 		    args->arg2, NULL));
228 	}
229 	case LINUX_SEMGET: {
230 		struct linux_semget_args a;
231 
232 		a.key = args->arg1;
233 		a.nsems = args->arg2;
234 		a.semflg = args->arg3;
235 		return (linux_semget(td, &a));
236 	}
237 	case LINUX_SEMCTL: {
238 		struct linux_semctl_args a;
239 		int error;
240 
241 		a.semid = args->arg1;
242 		a.semnum = args->arg2;
243 		a.cmd = args->arg3;
244 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
245 		if (error)
246 			return (error);
247 		return (linux_semctl(td, &a));
248 	}
249 	case LINUX_SEMTIMEDOP: {
250 		struct linux_semtimedop_args a;
251 
252 		a.semid = args->arg1;
253 		a.tsops = PTRIN(args->ptr);
254 		a.nsops = args->arg2;
255 		a.timeout = PTRIN(args->arg5);
256 		return (linux_semtimedop(td, &a));
257 	}
258 	case LINUX_MSGSND: {
259 		struct linux_msgsnd_args a;
260 
261 		a.msqid = args->arg1;
262 		a.msgp = PTRIN(args->ptr);
263 		a.msgsz = args->arg2;
264 		a.msgflg = args->arg3;
265 		return (linux_msgsnd(td, &a));
266 	}
267 	case LINUX_MSGRCV: {
268 		struct linux_msgrcv_args a;
269 
270 		a.msqid = args->arg1;
271 		a.msgsz = args->arg2;
272 		a.msgflg = args->arg3;
273 		if ((args->what >> 16) == 0) {
274 			struct l_ipc_kludge tmp;
275 			int error;
276 
277 			if (args->ptr == 0)
278 				return (EINVAL);
279 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
280 			if (error)
281 				return (error);
282 			a.msgp = PTRIN(tmp.msgp);
283 			a.msgtyp = tmp.msgtyp;
284 		} else {
285 			a.msgp = PTRIN(args->ptr);
286 			a.msgtyp = args->arg5;
287 		}
288 		return (linux_msgrcv(td, &a));
289 	}
290 	case LINUX_MSGGET: {
291 		struct linux_msgget_args a;
292 
293 		a.key = args->arg1;
294 		a.msgflg = args->arg2;
295 		return (linux_msgget(td, &a));
296 	}
297 	case LINUX_MSGCTL: {
298 		struct linux_msgctl_args a;
299 
300 		a.msqid = args->arg1;
301 		a.cmd = args->arg2;
302 		a.buf = PTRIN(args->ptr);
303 		return (linux_msgctl(td, &a));
304 	}
305 	case LINUX_SHMAT: {
306 		struct linux_shmat_args a;
307 		l_uintptr_t addr;
308 		int error;
309 
310 		a.shmid = args->arg1;
311 		a.shmaddr = PTRIN(args->ptr);
312 		a.shmflg = args->arg2;
313 		error = linux_shmat(td, &a);
314 		if (error != 0)
315 			return (error);
316 		addr = td->td_retval[0];
317 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
318 		td->td_retval[0] = 0;
319 		return (error);
320 	}
321 	case LINUX_SHMDT: {
322 		struct linux_shmdt_args a;
323 
324 		a.shmaddr = PTRIN(args->ptr);
325 		return (linux_shmdt(td, &a));
326 	}
327 	case LINUX_SHMGET: {
328 		struct linux_shmget_args a;
329 
330 		a.key = args->arg1;
331 		a.size = args->arg2;
332 		a.shmflg = args->arg3;
333 		return (linux_shmget(td, &a));
334 	}
335 	case LINUX_SHMCTL: {
336 		struct linux_shmctl_args a;
337 
338 		a.shmid = args->arg1;
339 		a.cmd = args->arg2;
340 		a.buf = PTRIN(args->ptr);
341 		return (linux_shmctl(td, &a));
342 	}
343 	default:
344 		break;
345 	}
346 
347 	return (EINVAL);
348 }
349 
350 int
351 linux_old_select(struct thread *td, struct linux_old_select_args *args)
352 {
353 	struct l_old_select_argv linux_args;
354 	struct linux_select_args newsel;
355 	int error;
356 
357 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
358 	if (error)
359 		return (error);
360 
361 	newsel.nfds = linux_args.nfds;
362 	newsel.readfds = PTRIN(linux_args.readfds);
363 	newsel.writefds = PTRIN(linux_args.writefds);
364 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
365 	newsel.timeout = PTRIN(linux_args.timeout);
366 	return (linux_select(td, &newsel));
367 }
368 
369 int
370 linux_set_cloned_tls(struct thread *td, void *desc)
371 {
372 	struct l_user_desc info;
373 	struct pcb *pcb;
374 	int error;
375 
376 	error = copyin(desc, &info, sizeof(struct l_user_desc));
377 	if (error) {
378 		linux_msg(td, "set_cloned_tls copyin info failed!");
379 	} else {
380 		/* We might copy out the entry_number as GUGS32_SEL. */
381 		info.entry_number = GUGS32_SEL;
382 		error = copyout(&info, desc, sizeof(struct l_user_desc));
383 		if (error)
384 			linux_msg(td, "set_cloned_tls copyout info failed!");
385 
386 		pcb = td->td_pcb;
387 		update_pcb_bases(pcb);
388 		pcb->pcb_gsbase = (register_t)info.base_addr;
389 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
390 	}
391 
392 	return (error);
393 }
394 
395 int
396 linux_set_upcall(struct thread *td, register_t stack)
397 {
398 
399 	if (stack)
400 		td->td_frame->tf_rsp = stack;
401 
402 	/*
403 	 * The newly created Linux thread returns
404 	 * to the user space by the same path that a parent do.
405 	 */
406 	td->td_frame->tf_rax = 0;
407 	return (0);
408 }
409 
410 int
411 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
412 {
413 
414 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
415 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
416 		PAGE_SIZE));
417 }
418 
419 int
420 linux_mmap(struct thread *td, struct linux_mmap_args *args)
421 {
422 	int error;
423 	struct l_mmap_argv linux_args;
424 
425 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
426 	if (error)
427 		return (error);
428 
429 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
430 	    linux_args.prot, linux_args.flags, linux_args.fd,
431 	    (uint32_t)linux_args.pgoff));
432 }
433 
434 int
435 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
436 {
437 
438 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
439 }
440 
441 int
442 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
443 {
444 
445 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
446 }
447 
448 int
449 linux_iopl(struct thread *td, struct linux_iopl_args *args)
450 {
451 	int error;
452 
453 	if (args->level < 0 || args->level > 3)
454 		return (EINVAL);
455 	if ((error = priv_check(td, PRIV_IO)) != 0)
456 		return (error);
457 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
458 		return (error);
459 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
460 	    (args->level * (PSL_IOPL / 3));
461 
462 	return (0);
463 }
464 
465 int
466 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
467 {
468 	l_osigaction_t osa;
469 	l_sigaction_t act, oact;
470 	int error;
471 
472 	if (args->nsa != NULL) {
473 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
474 		if (error)
475 			return (error);
476 		act.lsa_handler = osa.lsa_handler;
477 		act.lsa_flags = osa.lsa_flags;
478 		act.lsa_restorer = osa.lsa_restorer;
479 		LINUX_SIGEMPTYSET(act.lsa_mask);
480 		act.lsa_mask.__mask = osa.lsa_mask;
481 	}
482 
483 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
484 	    args->osa ? &oact : NULL);
485 
486 	if (args->osa != NULL && !error) {
487 		osa.lsa_handler = oact.lsa_handler;
488 		osa.lsa_flags = oact.lsa_flags;
489 		osa.lsa_restorer = oact.lsa_restorer;
490 		osa.lsa_mask = oact.lsa_mask.__mask;
491 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
492 	}
493 
494 	return (error);
495 }
496 
497 /*
498  * Linux has two extra args, restart and oldmask.  We don't use these,
499  * but it seems that "restart" is actually a context pointer that
500  * enables the signal to happen with a different register set.
501  */
502 int
503 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
504 {
505 	sigset_t sigmask;
506 	l_sigset_t mask;
507 
508 	LINUX_SIGEMPTYSET(mask);
509 	mask.__mask = args->mask;
510 	linux_to_bsd_sigset(&mask, &sigmask);
511 	return (kern_sigsuspend(td, sigmask));
512 }
513 
514 int
515 linux_pause(struct thread *td, struct linux_pause_args *args)
516 {
517 	struct proc *p = td->td_proc;
518 	sigset_t sigmask;
519 
520 	PROC_LOCK(p);
521 	sigmask = td->td_sigmask;
522 	PROC_UNLOCK(p);
523 	return (kern_sigsuspend(td, sigmask));
524 }
525 
526 int
527 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
528 {
529 	struct timeval atv;
530 	l_timeval atv32;
531 	struct timezone rtz;
532 	int error = 0;
533 
534 	if (uap->tp) {
535 		microtime(&atv);
536 		atv32.tv_sec = atv.tv_sec;
537 		atv32.tv_usec = atv.tv_usec;
538 		error = copyout(&atv32, uap->tp, sizeof(atv32));
539 	}
540 	if (error == 0 && uap->tzp != NULL) {
541 		rtz.tz_minuteswest = 0;
542 		rtz.tz_dsttime = 0;
543 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
544 	}
545 	return (error);
546 }
547 
548 int
549 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
550 {
551 	l_timeval atv32;
552 	struct timeval atv, *tvp;
553 	struct timezone atz, *tzp;
554 	int error;
555 
556 	if (uap->tp) {
557 		error = copyin(uap->tp, &atv32, sizeof(atv32));
558 		if (error)
559 			return (error);
560 		atv.tv_sec = atv32.tv_sec;
561 		atv.tv_usec = atv32.tv_usec;
562 		tvp = &atv;
563 	} else
564 		tvp = NULL;
565 	if (uap->tzp) {
566 		error = copyin(uap->tzp, &atz, sizeof(atz));
567 		if (error)
568 			return (error);
569 		tzp = &atz;
570 	} else
571 		tzp = NULL;
572 	return (kern_settimeofday(td, tvp, tzp));
573 }
574 
575 int
576 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
577 {
578 	struct rusage s;
579 	int error;
580 
581 	error = kern_getrusage(td, uap->who, &s);
582 	if (error != 0)
583 		return (error);
584 	if (uap->rusage != NULL)
585 		error = linux_copyout_rusage(&s, uap->rusage);
586 	return (error);
587 }
588 
589 int
590 linux_set_thread_area(struct thread *td,
591     struct linux_set_thread_area_args *args)
592 {
593 	struct l_user_desc info;
594 	struct pcb *pcb;
595 	int error;
596 
597 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
598 	if (error)
599 		return (error);
600 
601 	/*
602 	 * Semantics of Linux version: every thread in the system has array
603 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
604 	 * This syscall loads one of the selected TLS descriptors with a value
605 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
606 	 * the per-thread descriptors.
607 	 *
608 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
609 	 * three per-thread descriptors and use just the first one.
610 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
611 	 * for loading the GDT descriptors. We use just one GDT descriptor
612 	 * for TLS, so we will load just one.
613 	 *
614 	 * XXX: This doesn't work when a user space process tries to use more
615 	 * than one TLS segment. Comment in the Linux source says wine might
616 	 * do this.
617 	 */
618 
619 	/*
620 	 * GLIBC reads current %gs and call set_thread_area() with it.
621 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
622 	 * we use these segments.
623 	 */
624 	switch (info.entry_number) {
625 	case GUGS32_SEL:
626 	case GUDATA_SEL:
627 	case 6:
628 	case -1:
629 		info.entry_number = GUGS32_SEL;
630 		break;
631 	default:
632 		return (EINVAL);
633 	}
634 
635 	/*
636 	 * We have to copy out the GDT entry we use.
637 	 *
638 	 * XXX: What if a user space program does not check the return value
639 	 * and tries to use 6, 7 or 8?
640 	 */
641 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
642 	if (error)
643 		return (error);
644 
645 	pcb = td->td_pcb;
646 	update_pcb_bases(pcb);
647 	pcb->pcb_gsbase = (register_t)info.base_addr;
648 	update_gdt_gsbase(td, info.base_addr);
649 
650 	return (0);
651 }
652 
653 void
654 bsd_to_linux_regset32(const struct reg32 *b_reg,
655     struct linux_pt_regset32 *l_regset)
656 {
657 
658 	l_regset->ebx = b_reg->r_ebx;
659 	l_regset->ecx = b_reg->r_ecx;
660 	l_regset->edx = b_reg->r_edx;
661 	l_regset->esi = b_reg->r_esi;
662 	l_regset->edi = b_reg->r_edi;
663 	l_regset->ebp = b_reg->r_ebp;
664 	l_regset->eax = b_reg->r_eax;
665 	l_regset->ds = b_reg->r_ds;
666 	l_regset->es = b_reg->r_es;
667 	l_regset->fs = b_reg->r_fs;
668 	l_regset->gs = b_reg->r_gs;
669 	l_regset->orig_eax = b_reg->r_eax;
670 	l_regset->eip = b_reg->r_eip;
671 	l_regset->cs = b_reg->r_cs;
672 	l_regset->eflags = b_reg->r_eflags;
673 	l_regset->esp = b_reg->r_esp;
674 	l_regset->ss = b_reg->r_ss;
675 }
676 
677 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
678 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
679 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
680 {
681 
682 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
683 	    futex_xchgl_smap : futex_xchgl_nosmap);
684 }
685 
686 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
687 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
688 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
689 {
690 
691 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
692 	    futex_addl_smap : futex_addl_nosmap);
693 }
694 
695 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
696 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
697 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
698 {
699 
700 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
701 	    futex_orl_smap : futex_orl_nosmap);
702 }
703 
704 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
705 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
706 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
707 {
708 
709 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
710 	    futex_andl_smap : futex_andl_nosmap);
711 }
712 
713 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
714 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
715 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
716 {
717 
718 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
719 	    futex_xorl_smap : futex_xorl_nosmap);
720 }
721 
722 int
723 linux_ptrace_peekuser(struct thread *td, pid_t pid, void *addr, void *data)
724 {
725 
726 	LINUX_RATELIMIT_MSG_OPT1("PTRACE_PEEKUSER offset %ld not implemented; "
727 	    "returning EINVAL", (uintptr_t)addr);
728 	return (EINVAL);
729 }
730 
731 int
732 linux_ptrace_pokeuser(struct thread *td, pid_t pid, void *addr, void *data)
733 {
734 
735 	LINUX_RATELIMIT_MSG_OPT1("PTRACE_POKEUSER offset %ld "
736 	    "not implemented; returning EINVAL", (uintptr_t)addr);
737 	return (EINVAL);
738 }
739