xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 2a58b312)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/fcntl.h>
38 #include <sys/imgact.h>
39 #include <sys/limits.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mutex.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/reg.h>
46 #include <sys/syscallsubr.h>
47 
48 #include <machine/frame.h>
49 #include <machine/md_var.h>
50 #include <machine/pcb.h>
51 #include <machine/psl.h>
52 #include <machine/segments.h>
53 #include <machine/specialreg.h>
54 #include <x86/ifunc.h>
55 
56 #include <vm/pmap.h>
57 #include <vm/vm.h>
58 #include <vm/vm_map.h>
59 
60 #include <security/audit/audit.h>
61 
62 #include <compat/freebsd32/freebsd32_util.h>
63 #include <amd64/linux32/linux.h>
64 #include <amd64/linux32/linux32_proto.h>
65 #include <compat/linux/linux_emul.h>
66 #include <compat/linux/linux_fork.h>
67 #include <compat/linux/linux_ipc.h>
68 #include <compat/linux/linux_misc.h>
69 #include <compat/linux/linux_mmap.h>
70 #include <compat/linux/linux_signal.h>
71 #include <compat/linux/linux_util.h>
72 
73 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
74 
75 struct l_old_select_argv {
76 	l_int		nfds;
77 	l_uintptr_t	readfds;
78 	l_uintptr_t	writefds;
79 	l_uintptr_t	exceptfds;
80 	l_uintptr_t	timeout;
81 } __packed;
82 
83 static void
84 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
85 {
86 
87 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
88 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
89 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
90 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
91 	lru->ru_maxrss = ru->ru_maxrss;
92 	lru->ru_ixrss = ru->ru_ixrss;
93 	lru->ru_idrss = ru->ru_idrss;
94 	lru->ru_isrss = ru->ru_isrss;
95 	lru->ru_minflt = ru->ru_minflt;
96 	lru->ru_majflt = ru->ru_majflt;
97 	lru->ru_nswap = ru->ru_nswap;
98 	lru->ru_inblock = ru->ru_inblock;
99 	lru->ru_oublock = ru->ru_oublock;
100 	lru->ru_msgsnd = ru->ru_msgsnd;
101 	lru->ru_msgrcv = ru->ru_msgrcv;
102 	lru->ru_nsignals = ru->ru_nsignals;
103 	lru->ru_nvcsw = ru->ru_nvcsw;
104 	lru->ru_nivcsw = ru->ru_nivcsw;
105 }
106 
107 int
108 linux_copyout_rusage(struct rusage *ru, void *uaddr)
109 {
110 	struct l_rusage lru;
111 
112 	bsd_to_linux_rusage(ru, &lru);
113 
114 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
115 }
116 
117 int
118 linux_execve(struct thread *td, struct linux_execve_args *args)
119 {
120 	struct image_args eargs;
121 	char *path;
122 	int error;
123 
124 	if (!LUSECONVPATH(td)) {
125 		error = freebsd32_exec_copyin_args(&eargs, args->path, UIO_USERSPACE,
126 		    args->argp, args->envp);
127 	} else {
128 		LCONVPATHEXIST(args->path, &path);
129 		error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
130 		    args->argp, args->envp);
131 		LFREEPATH(path);
132 	}
133 	if (error == 0)
134 		error = linux_common_execve(td, &eargs);
135 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
136 	return (error);
137 }
138 
139 CTASSERT(sizeof(struct l_iovec32) == 8);
140 
141 int
142 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
143 {
144 	struct l_iovec32 iov32;
145 	struct iovec *iov;
146 	struct uio *uio;
147 	uint32_t iovlen;
148 	int error, i;
149 
150 	*uiop = NULL;
151 	if (iovcnt > UIO_MAXIOV)
152 		return (EINVAL);
153 	iovlen = iovcnt * sizeof(struct iovec);
154 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
155 	iov = (struct iovec *)(uio + 1);
156 	for (i = 0; i < iovcnt; i++) {
157 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
158 		if (error) {
159 			free(uio, M_IOV);
160 			return (error);
161 		}
162 		iov[i].iov_base = PTRIN(iov32.iov_base);
163 		iov[i].iov_len = iov32.iov_len;
164 	}
165 	uio->uio_iov = iov;
166 	uio->uio_iovcnt = iovcnt;
167 	uio->uio_segflg = UIO_USERSPACE;
168 	uio->uio_offset = -1;
169 	uio->uio_resid = 0;
170 	for (i = 0; i < iovcnt; i++) {
171 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
172 			free(uio, M_IOV);
173 			return (EINVAL);
174 		}
175 		uio->uio_resid += iov->iov_len;
176 		iov++;
177 	}
178 	*uiop = uio;
179 	return (0);
180 }
181 
182 int
183 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
184     int error)
185 {
186 	struct l_iovec32 iov32;
187 	struct iovec *iov;
188 	uint32_t iovlen;
189 	int i;
190 
191 	*iovp = NULL;
192 	if (iovcnt > UIO_MAXIOV)
193 		return (error);
194 	iovlen = iovcnt * sizeof(struct iovec);
195 	iov = malloc(iovlen, M_IOV, M_WAITOK);
196 	for (i = 0; i < iovcnt; i++) {
197 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
198 		if (error) {
199 			free(iov, M_IOV);
200 			return (error);
201 		}
202 		iov[i].iov_base = PTRIN(iov32.iov_base);
203 		iov[i].iov_len = iov32.iov_len;
204 	}
205 	*iovp = iov;
206 	return(0);
207 
208 }
209 
210 int
211 linux_readv(struct thread *td, struct linux_readv_args *uap)
212 {
213 	struct uio *auio;
214 	int error;
215 
216 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
217 	if (error)
218 		return (error);
219 	error = kern_readv(td, uap->fd, auio);
220 	free(auio, M_IOV);
221 	return (error);
222 }
223 
224 int
225 linux_writev(struct thread *td, struct linux_writev_args *uap)
226 {
227 	struct uio *auio;
228 	int error;
229 
230 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
231 	if (error)
232 		return (error);
233 	error = kern_writev(td, uap->fd, auio);
234 	free(auio, M_IOV);
235 	return (error);
236 }
237 
238 struct l_ipc_kludge {
239 	l_uintptr_t msgp;
240 	l_long msgtyp;
241 } __packed;
242 
243 int
244 linux_ipc(struct thread *td, struct linux_ipc_args *args)
245 {
246 
247 	switch (args->what & 0xFFFF) {
248 	case LINUX_SEMOP: {
249 
250 		return (kern_semop(td, args->arg1, PTRIN(args->ptr),
251 		    args->arg2, NULL));
252 	}
253 	case LINUX_SEMGET: {
254 		struct linux_semget_args a;
255 
256 		a.key = args->arg1;
257 		a.nsems = args->arg2;
258 		a.semflg = args->arg3;
259 		return (linux_semget(td, &a));
260 	}
261 	case LINUX_SEMCTL: {
262 		struct linux_semctl_args a;
263 		int error;
264 
265 		a.semid = args->arg1;
266 		a.semnum = args->arg2;
267 		a.cmd = args->arg3;
268 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
269 		if (error)
270 			return (error);
271 		return (linux_semctl(td, &a));
272 	}
273 	case LINUX_SEMTIMEDOP: {
274 		struct linux_semtimedop_args a;
275 
276 		a.semid = args->arg1;
277 		a.tsops = PTRIN(args->ptr);
278 		a.nsops = args->arg2;
279 		a.timeout = PTRIN(args->arg5);
280 		return (linux_semtimedop(td, &a));
281 	}
282 	case LINUX_MSGSND: {
283 		struct linux_msgsnd_args a;
284 
285 		a.msqid = args->arg1;
286 		a.msgp = PTRIN(args->ptr);
287 		a.msgsz = args->arg2;
288 		a.msgflg = args->arg3;
289 		return (linux_msgsnd(td, &a));
290 	}
291 	case LINUX_MSGRCV: {
292 		struct linux_msgrcv_args a;
293 
294 		a.msqid = args->arg1;
295 		a.msgsz = args->arg2;
296 		a.msgflg = args->arg3;
297 		if ((args->what >> 16) == 0) {
298 			struct l_ipc_kludge tmp;
299 			int error;
300 
301 			if (args->ptr == 0)
302 				return (EINVAL);
303 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
304 			if (error)
305 				return (error);
306 			a.msgp = PTRIN(tmp.msgp);
307 			a.msgtyp = tmp.msgtyp;
308 		} else {
309 			a.msgp = PTRIN(args->ptr);
310 			a.msgtyp = args->arg5;
311 		}
312 		return (linux_msgrcv(td, &a));
313 	}
314 	case LINUX_MSGGET: {
315 		struct linux_msgget_args a;
316 
317 		a.key = args->arg1;
318 		a.msgflg = args->arg2;
319 		return (linux_msgget(td, &a));
320 	}
321 	case LINUX_MSGCTL: {
322 		struct linux_msgctl_args a;
323 
324 		a.msqid = args->arg1;
325 		a.cmd = args->arg2;
326 		a.buf = PTRIN(args->ptr);
327 		return (linux_msgctl(td, &a));
328 	}
329 	case LINUX_SHMAT: {
330 		struct linux_shmat_args a;
331 		l_uintptr_t addr;
332 		int error;
333 
334 		a.shmid = args->arg1;
335 		a.shmaddr = PTRIN(args->ptr);
336 		a.shmflg = args->arg2;
337 		error = linux_shmat(td, &a);
338 		if (error != 0)
339 			return (error);
340 		addr = td->td_retval[0];
341 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
342 		td->td_retval[0] = 0;
343 		return (error);
344 	}
345 	case LINUX_SHMDT: {
346 		struct linux_shmdt_args a;
347 
348 		a.shmaddr = PTRIN(args->ptr);
349 		return (linux_shmdt(td, &a));
350 	}
351 	case LINUX_SHMGET: {
352 		struct linux_shmget_args a;
353 
354 		a.key = args->arg1;
355 		a.size = args->arg2;
356 		a.shmflg = args->arg3;
357 		return (linux_shmget(td, &a));
358 	}
359 	case LINUX_SHMCTL: {
360 		struct linux_shmctl_args a;
361 
362 		a.shmid = args->arg1;
363 		a.cmd = args->arg2;
364 		a.buf = PTRIN(args->ptr);
365 		return (linux_shmctl(td, &a));
366 	}
367 	default:
368 		break;
369 	}
370 
371 	return (EINVAL);
372 }
373 
374 int
375 linux_old_select(struct thread *td, struct linux_old_select_args *args)
376 {
377 	struct l_old_select_argv linux_args;
378 	struct linux_select_args newsel;
379 	int error;
380 
381 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
382 	if (error)
383 		return (error);
384 
385 	newsel.nfds = linux_args.nfds;
386 	newsel.readfds = PTRIN(linux_args.readfds);
387 	newsel.writefds = PTRIN(linux_args.writefds);
388 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
389 	newsel.timeout = PTRIN(linux_args.timeout);
390 	return (linux_select(td, &newsel));
391 }
392 
393 int
394 linux_set_cloned_tls(struct thread *td, void *desc)
395 {
396 	struct l_user_desc info;
397 	struct pcb *pcb;
398 	int error;
399 
400 	error = copyin(desc, &info, sizeof(struct l_user_desc));
401 	if (error) {
402 		linux_msg(td, "set_cloned_tls copyin info failed!");
403 	} else {
404 		/* We might copy out the entry_number as GUGS32_SEL. */
405 		info.entry_number = GUGS32_SEL;
406 		error = copyout(&info, desc, sizeof(struct l_user_desc));
407 		if (error)
408 			linux_msg(td, "set_cloned_tls copyout info failed!");
409 
410 		pcb = td->td_pcb;
411 		update_pcb_bases(pcb);
412 		pcb->pcb_gsbase = (register_t)info.base_addr;
413 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
414 	}
415 
416 	return (error);
417 }
418 
419 int
420 linux_set_upcall(struct thread *td, register_t stack)
421 {
422 
423 	if (stack)
424 		td->td_frame->tf_rsp = stack;
425 
426 	/*
427 	 * The newly created Linux thread returns
428 	 * to the user space by the same path that a parent do.
429 	 */
430 	td->td_frame->tf_rax = 0;
431 	return (0);
432 }
433 
434 int
435 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
436 {
437 
438 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
439 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
440 		PAGE_SIZE));
441 }
442 
443 int
444 linux_mmap(struct thread *td, struct linux_mmap_args *args)
445 {
446 	int error;
447 	struct l_mmap_argv linux_args;
448 
449 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
450 	if (error)
451 		return (error);
452 
453 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
454 	    linux_args.prot, linux_args.flags, linux_args.fd,
455 	    (uint32_t)linux_args.pgoff));
456 }
457 
458 int
459 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
460 {
461 
462 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
463 }
464 
465 int
466 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
467 {
468 
469 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
470 }
471 
472 int
473 linux_iopl(struct thread *td, struct linux_iopl_args *args)
474 {
475 	int error;
476 
477 	if (args->level < 0 || args->level > 3)
478 		return (EINVAL);
479 	if ((error = priv_check(td, PRIV_IO)) != 0)
480 		return (error);
481 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
482 		return (error);
483 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
484 	    (args->level * (PSL_IOPL / 3));
485 
486 	return (0);
487 }
488 
489 int
490 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
491 {
492 	l_osigaction_t osa;
493 	l_sigaction_t act, oact;
494 	int error;
495 
496 	if (args->nsa != NULL) {
497 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
498 		if (error)
499 			return (error);
500 		act.lsa_handler = osa.lsa_handler;
501 		act.lsa_flags = osa.lsa_flags;
502 		act.lsa_restorer = osa.lsa_restorer;
503 		LINUX_SIGEMPTYSET(act.lsa_mask);
504 		act.lsa_mask.__mask = osa.lsa_mask;
505 	}
506 
507 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
508 	    args->osa ? &oact : NULL);
509 
510 	if (args->osa != NULL && !error) {
511 		osa.lsa_handler = oact.lsa_handler;
512 		osa.lsa_flags = oact.lsa_flags;
513 		osa.lsa_restorer = oact.lsa_restorer;
514 		osa.lsa_mask = oact.lsa_mask.__mask;
515 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
516 	}
517 
518 	return (error);
519 }
520 
521 /*
522  * Linux has two extra args, restart and oldmask.  We don't use these,
523  * but it seems that "restart" is actually a context pointer that
524  * enables the signal to happen with a different register set.
525  */
526 int
527 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
528 {
529 	sigset_t sigmask;
530 	l_sigset_t mask;
531 
532 	LINUX_SIGEMPTYSET(mask);
533 	mask.__mask = args->mask;
534 	linux_to_bsd_sigset(&mask, &sigmask);
535 	return (kern_sigsuspend(td, sigmask));
536 }
537 
538 int
539 linux_pause(struct thread *td, struct linux_pause_args *args)
540 {
541 	struct proc *p = td->td_proc;
542 	sigset_t sigmask;
543 
544 	PROC_LOCK(p);
545 	sigmask = td->td_sigmask;
546 	PROC_UNLOCK(p);
547 	return (kern_sigsuspend(td, sigmask));
548 }
549 
550 int
551 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
552 {
553 	struct timeval atv;
554 	l_timeval atv32;
555 	struct timezone rtz;
556 	int error = 0;
557 
558 	if (uap->tp) {
559 		microtime(&atv);
560 		atv32.tv_sec = atv.tv_sec;
561 		atv32.tv_usec = atv.tv_usec;
562 		error = copyout(&atv32, uap->tp, sizeof(atv32));
563 	}
564 	if (error == 0 && uap->tzp != NULL) {
565 		rtz.tz_minuteswest = 0;
566 		rtz.tz_dsttime = 0;
567 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
568 	}
569 	return (error);
570 }
571 
572 int
573 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
574 {
575 	l_timeval atv32;
576 	struct timeval atv, *tvp;
577 	struct timezone atz, *tzp;
578 	int error;
579 
580 	if (uap->tp) {
581 		error = copyin(uap->tp, &atv32, sizeof(atv32));
582 		if (error)
583 			return (error);
584 		atv.tv_sec = atv32.tv_sec;
585 		atv.tv_usec = atv32.tv_usec;
586 		tvp = &atv;
587 	} else
588 		tvp = NULL;
589 	if (uap->tzp) {
590 		error = copyin(uap->tzp, &atz, sizeof(atz));
591 		if (error)
592 			return (error);
593 		tzp = &atz;
594 	} else
595 		tzp = NULL;
596 	return (kern_settimeofday(td, tvp, tzp));
597 }
598 
599 int
600 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
601 {
602 	struct rusage s;
603 	int error;
604 
605 	error = kern_getrusage(td, uap->who, &s);
606 	if (error != 0)
607 		return (error);
608 	if (uap->rusage != NULL)
609 		error = linux_copyout_rusage(&s, uap->rusage);
610 	return (error);
611 }
612 
613 int
614 linux_set_thread_area(struct thread *td,
615     struct linux_set_thread_area_args *args)
616 {
617 	struct l_user_desc info;
618 	struct pcb *pcb;
619 	int error;
620 
621 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
622 	if (error)
623 		return (error);
624 
625 	/*
626 	 * Semantics of Linux version: every thread in the system has array
627 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
628 	 * This syscall loads one of the selected TLS decriptors with a value
629 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
630 	 * the per-thread descriptors.
631 	 *
632 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
633 	 * three per-thread descriptors and use just the first one.
634 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
635 	 * for loading the GDT descriptors. We use just one GDT descriptor
636 	 * for TLS, so we will load just one.
637 	 *
638 	 * XXX: This doesn't work when a user space process tries to use more
639 	 * than one TLS segment. Comment in the Linux source says wine might
640 	 * do this.
641 	 */
642 
643 	/*
644 	 * GLIBC reads current %gs and call set_thread_area() with it.
645 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
646 	 * we use these segments.
647 	 */
648 	switch (info.entry_number) {
649 	case GUGS32_SEL:
650 	case GUDATA_SEL:
651 	case 6:
652 	case -1:
653 		info.entry_number = GUGS32_SEL;
654 		break;
655 	default:
656 		return (EINVAL);
657 	}
658 
659 	/*
660 	 * We have to copy out the GDT entry we use.
661 	 *
662 	 * XXX: What if a user space program does not check the return value
663 	 * and tries to use 6, 7 or 8?
664 	 */
665 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
666 	if (error)
667 		return (error);
668 
669 	pcb = td->td_pcb;
670 	update_pcb_bases(pcb);
671 	pcb->pcb_gsbase = (register_t)info.base_addr;
672 	update_gdt_gsbase(td, info.base_addr);
673 
674 	return (0);
675 }
676 
677 void
678 bsd_to_linux_regset32(const struct reg32 *b_reg,
679     struct linux_pt_regset32 *l_regset)
680 {
681 
682 	l_regset->ebx = b_reg->r_ebx;
683 	l_regset->ecx = b_reg->r_ecx;
684 	l_regset->edx = b_reg->r_edx;
685 	l_regset->esi = b_reg->r_esi;
686 	l_regset->edi = b_reg->r_edi;
687 	l_regset->ebp = b_reg->r_ebp;
688 	l_regset->eax = b_reg->r_eax;
689 	l_regset->ds = b_reg->r_ds;
690 	l_regset->es = b_reg->r_es;
691 	l_regset->fs = b_reg->r_fs;
692 	l_regset->gs = b_reg->r_gs;
693 	l_regset->orig_eax = b_reg->r_eax;
694 	l_regset->eip = b_reg->r_eip;
695 	l_regset->cs = b_reg->r_cs;
696 	l_regset->eflags = b_reg->r_eflags;
697 	l_regset->esp = b_reg->r_esp;
698 	l_regset->ss = b_reg->r_ss;
699 }
700 
701 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
702 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
703 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
704 {
705 
706 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
707 	    futex_xchgl_smap : futex_xchgl_nosmap);
708 }
709 
710 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
711 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
712 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
713 {
714 
715 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
716 	    futex_addl_smap : futex_addl_nosmap);
717 }
718 
719 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
720 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
721 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
722 {
723 
724 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
725 	    futex_orl_smap : futex_orl_nosmap);
726 }
727 
728 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
729 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
730 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
731 {
732 
733 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
734 	    futex_andl_smap : futex_andl_nosmap);
735 }
736 
737 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
738 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
739 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
740 {
741 
742 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
743 	    futex_xorl_smap : futex_xorl_nosmap);
744 }
745