xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_compat.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/clock.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/imgact.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/reg.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysproto.h>
57 #include <sys/systm.h>
58 #include <sys/unistd.h>
59 #include <sys/wait.h>
60 
61 #include <machine/frame.h>
62 #include <machine/md_var.h>
63 #include <machine/pcb.h>
64 #include <machine/psl.h>
65 #include <machine/segments.h>
66 #include <machine/specialreg.h>
67 #include <x86/ifunc.h>
68 
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_map.h>
72 
73 #include <security/audit/audit.h>
74 
75 #include <compat/freebsd32/freebsd32_util.h>
76 #include <amd64/linux32/linux.h>
77 #include <amd64/linux32/linux32_proto.h>
78 #include <compat/linux/linux_emul.h>
79 #include <compat/linux/linux_fork.h>
80 #include <compat/linux/linux_ipc.h>
81 #include <compat/linux/linux_misc.h>
82 #include <compat/linux/linux_mmap.h>
83 #include <compat/linux/linux_signal.h>
84 #include <compat/linux/linux_util.h>
85 
86 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
87 
88 struct l_old_select_argv {
89 	l_int		nfds;
90 	l_uintptr_t	readfds;
91 	l_uintptr_t	writefds;
92 	l_uintptr_t	exceptfds;
93 	l_uintptr_t	timeout;
94 } __packed;
95 
96 static void
97 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
98 {
99 
100 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
101 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
102 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
103 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
104 	lru->ru_maxrss = ru->ru_maxrss;
105 	lru->ru_ixrss = ru->ru_ixrss;
106 	lru->ru_idrss = ru->ru_idrss;
107 	lru->ru_isrss = ru->ru_isrss;
108 	lru->ru_minflt = ru->ru_minflt;
109 	lru->ru_majflt = ru->ru_majflt;
110 	lru->ru_nswap = ru->ru_nswap;
111 	lru->ru_inblock = ru->ru_inblock;
112 	lru->ru_oublock = ru->ru_oublock;
113 	lru->ru_msgsnd = ru->ru_msgsnd;
114 	lru->ru_msgrcv = ru->ru_msgrcv;
115 	lru->ru_nsignals = ru->ru_nsignals;
116 	lru->ru_nvcsw = ru->ru_nvcsw;
117 	lru->ru_nivcsw = ru->ru_nivcsw;
118 }
119 
120 int
121 linux_copyout_rusage(struct rusage *ru, void *uaddr)
122 {
123 	struct l_rusage lru;
124 
125 	bsd_to_linux_rusage(ru, &lru);
126 
127 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
128 }
129 
130 int
131 linux_execve(struct thread *td, struct linux_execve_args *args)
132 {
133 	struct image_args eargs;
134 	char *path;
135 	int error;
136 
137 	LCONVPATHEXIST(td, args->path, &path);
138 
139 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
140 	    args->argp, args->envp);
141 	free(path, M_TEMP);
142 	if (error == 0)
143 		error = linux_common_execve(td, &eargs);
144 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
145 	return (error);
146 }
147 
148 CTASSERT(sizeof(struct l_iovec32) == 8);
149 
150 int
151 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
152 {
153 	struct l_iovec32 iov32;
154 	struct iovec *iov;
155 	struct uio *uio;
156 	uint32_t iovlen;
157 	int error, i;
158 
159 	*uiop = NULL;
160 	if (iovcnt > UIO_MAXIOV)
161 		return (EINVAL);
162 	iovlen = iovcnt * sizeof(struct iovec);
163 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
164 	iov = (struct iovec *)(uio + 1);
165 	for (i = 0; i < iovcnt; i++) {
166 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
167 		if (error) {
168 			free(uio, M_IOV);
169 			return (error);
170 		}
171 		iov[i].iov_base = PTRIN(iov32.iov_base);
172 		iov[i].iov_len = iov32.iov_len;
173 	}
174 	uio->uio_iov = iov;
175 	uio->uio_iovcnt = iovcnt;
176 	uio->uio_segflg = UIO_USERSPACE;
177 	uio->uio_offset = -1;
178 	uio->uio_resid = 0;
179 	for (i = 0; i < iovcnt; i++) {
180 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
181 			free(uio, M_IOV);
182 			return (EINVAL);
183 		}
184 		uio->uio_resid += iov->iov_len;
185 		iov++;
186 	}
187 	*uiop = uio;
188 	return (0);
189 }
190 
191 int
192 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
193     int error)
194 {
195 	struct l_iovec32 iov32;
196 	struct iovec *iov;
197 	uint32_t iovlen;
198 	int i;
199 
200 	*iovp = NULL;
201 	if (iovcnt > UIO_MAXIOV)
202 		return (error);
203 	iovlen = iovcnt * sizeof(struct iovec);
204 	iov = malloc(iovlen, M_IOV, M_WAITOK);
205 	for (i = 0; i < iovcnt; i++) {
206 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
207 		if (error) {
208 			free(iov, M_IOV);
209 			return (error);
210 		}
211 		iov[i].iov_base = PTRIN(iov32.iov_base);
212 		iov[i].iov_len = iov32.iov_len;
213 	}
214 	*iovp = iov;
215 	return(0);
216 
217 }
218 
219 int
220 linux_readv(struct thread *td, struct linux_readv_args *uap)
221 {
222 	struct uio *auio;
223 	int error;
224 
225 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
226 	if (error)
227 		return (error);
228 	error = kern_readv(td, uap->fd, auio);
229 	free(auio, M_IOV);
230 	return (error);
231 }
232 
233 int
234 linux_writev(struct thread *td, struct linux_writev_args *uap)
235 {
236 	struct uio *auio;
237 	int error;
238 
239 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
240 	if (error)
241 		return (error);
242 	error = kern_writev(td, uap->fd, auio);
243 	free(auio, M_IOV);
244 	return (error);
245 }
246 
247 struct l_ipc_kludge {
248 	l_uintptr_t msgp;
249 	l_long msgtyp;
250 } __packed;
251 
252 int
253 linux_ipc(struct thread *td, struct linux_ipc_args *args)
254 {
255 
256 	switch (args->what & 0xFFFF) {
257 	case LINUX_SEMOP: {
258 		struct linux_semop_args a;
259 
260 		a.semid = args->arg1;
261 		a.tsops = PTRIN(args->ptr);
262 		a.nsops = args->arg2;
263 		return (linux_semop(td, &a));
264 	}
265 	case LINUX_SEMGET: {
266 		struct linux_semget_args a;
267 
268 		a.key = args->arg1;
269 		a.nsems = args->arg2;
270 		a.semflg = args->arg3;
271 		return (linux_semget(td, &a));
272 	}
273 	case LINUX_SEMCTL: {
274 		struct linux_semctl_args a;
275 		int error;
276 
277 		a.semid = args->arg1;
278 		a.semnum = args->arg2;
279 		a.cmd = args->arg3;
280 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
281 		if (error)
282 			return (error);
283 		return (linux_semctl(td, &a));
284 	}
285 	case LINUX_MSGSND: {
286 		struct linux_msgsnd_args a;
287 
288 		a.msqid = args->arg1;
289 		a.msgp = PTRIN(args->ptr);
290 		a.msgsz = args->arg2;
291 		a.msgflg = args->arg3;
292 		return (linux_msgsnd(td, &a));
293 	}
294 	case LINUX_MSGRCV: {
295 		struct linux_msgrcv_args a;
296 
297 		a.msqid = args->arg1;
298 		a.msgsz = args->arg2;
299 		a.msgflg = args->arg3;
300 		if ((args->what >> 16) == 0) {
301 			struct l_ipc_kludge tmp;
302 			int error;
303 
304 			if (args->ptr == 0)
305 				return (EINVAL);
306 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
307 			if (error)
308 				return (error);
309 			a.msgp = PTRIN(tmp.msgp);
310 			a.msgtyp = tmp.msgtyp;
311 		} else {
312 			a.msgp = PTRIN(args->ptr);
313 			a.msgtyp = args->arg5;
314 		}
315 		return (linux_msgrcv(td, &a));
316 	}
317 	case LINUX_MSGGET: {
318 		struct linux_msgget_args a;
319 
320 		a.key = args->arg1;
321 		a.msgflg = args->arg2;
322 		return (linux_msgget(td, &a));
323 	}
324 	case LINUX_MSGCTL: {
325 		struct linux_msgctl_args a;
326 
327 		a.msqid = args->arg1;
328 		a.cmd = args->arg2;
329 		a.buf = PTRIN(args->ptr);
330 		return (linux_msgctl(td, &a));
331 	}
332 	case LINUX_SHMAT: {
333 		struct linux_shmat_args a;
334 		l_uintptr_t addr;
335 		int error;
336 
337 		a.shmid = args->arg1;
338 		a.shmaddr = PTRIN(args->ptr);
339 		a.shmflg = args->arg2;
340 		error = linux_shmat(td, &a);
341 		if (error != 0)
342 			return (error);
343 		addr = td->td_retval[0];
344 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
345 		td->td_retval[0] = 0;
346 		return (error);
347 	}
348 	case LINUX_SHMDT: {
349 		struct linux_shmdt_args a;
350 
351 		a.shmaddr = PTRIN(args->ptr);
352 		return (linux_shmdt(td, &a));
353 	}
354 	case LINUX_SHMGET: {
355 		struct linux_shmget_args a;
356 
357 		a.key = args->arg1;
358 		a.size = args->arg2;
359 		a.shmflg = args->arg3;
360 		return (linux_shmget(td, &a));
361 	}
362 	case LINUX_SHMCTL: {
363 		struct linux_shmctl_args a;
364 
365 		a.shmid = args->arg1;
366 		a.cmd = args->arg2;
367 		a.buf = PTRIN(args->ptr);
368 		return (linux_shmctl(td, &a));
369 	}
370 	default:
371 		break;
372 	}
373 
374 	return (EINVAL);
375 }
376 
377 int
378 linux_old_select(struct thread *td, struct linux_old_select_args *args)
379 {
380 	struct l_old_select_argv linux_args;
381 	struct linux_select_args newsel;
382 	int error;
383 
384 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
385 	if (error)
386 		return (error);
387 
388 	newsel.nfds = linux_args.nfds;
389 	newsel.readfds = PTRIN(linux_args.readfds);
390 	newsel.writefds = PTRIN(linux_args.writefds);
391 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
392 	newsel.timeout = PTRIN(linux_args.timeout);
393 	return (linux_select(td, &newsel));
394 }
395 
396 int
397 linux_set_cloned_tls(struct thread *td, void *desc)
398 {
399 	struct l_user_desc info;
400 	struct pcb *pcb;
401 	int error;
402 
403 	error = copyin(desc, &info, sizeof(struct l_user_desc));
404 	if (error) {
405 		linux_msg(td, "set_cloned_tls copyin info failed!");
406 	} else {
407 		/* We might copy out the entry_number as GUGS32_SEL. */
408 		info.entry_number = GUGS32_SEL;
409 		error = copyout(&info, desc, sizeof(struct l_user_desc));
410 		if (error)
411 			linux_msg(td, "set_cloned_tls copyout info failed!");
412 
413 		pcb = td->td_pcb;
414 		update_pcb_bases(pcb);
415 		pcb->pcb_gsbase = (register_t)info.base_addr;
416 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
417 	}
418 
419 	return (error);
420 }
421 
422 int
423 linux_set_upcall(struct thread *td, register_t stack)
424 {
425 
426 	if (stack)
427 		td->td_frame->tf_rsp = stack;
428 
429 	/*
430 	 * The newly created Linux thread returns
431 	 * to the user space by the same path that a parent do.
432 	 */
433 	td->td_frame->tf_rax = 0;
434 	return (0);
435 }
436 
437 int
438 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
439 {
440 
441 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
442 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
443 		PAGE_SIZE));
444 }
445 
446 int
447 linux_mmap(struct thread *td, struct linux_mmap_args *args)
448 {
449 	int error;
450 	struct l_mmap_argv linux_args;
451 
452 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
453 	if (error)
454 		return (error);
455 
456 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
457 	    linux_args.prot, linux_args.flags, linux_args.fd,
458 	    (uint32_t)linux_args.pgoff));
459 }
460 
461 int
462 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
463 {
464 
465 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
466 }
467 
468 int
469 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
470 {
471 
472 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
473 }
474 
475 int
476 linux_iopl(struct thread *td, struct linux_iopl_args *args)
477 {
478 	int error;
479 
480 	if (args->level < 0 || args->level > 3)
481 		return (EINVAL);
482 	if ((error = priv_check(td, PRIV_IO)) != 0)
483 		return (error);
484 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
485 		return (error);
486 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
487 	    (args->level * (PSL_IOPL / 3));
488 
489 	return (0);
490 }
491 
492 int
493 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
494 {
495 	l_osigaction_t osa;
496 	l_sigaction_t act, oact;
497 	int error;
498 
499 	if (args->nsa != NULL) {
500 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
501 		if (error)
502 			return (error);
503 		act.lsa_handler = osa.lsa_handler;
504 		act.lsa_flags = osa.lsa_flags;
505 		act.lsa_restorer = osa.lsa_restorer;
506 		LINUX_SIGEMPTYSET(act.lsa_mask);
507 		act.lsa_mask.__mask = osa.lsa_mask;
508 	}
509 
510 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
511 	    args->osa ? &oact : NULL);
512 
513 	if (args->osa != NULL && !error) {
514 		osa.lsa_handler = oact.lsa_handler;
515 		osa.lsa_flags = oact.lsa_flags;
516 		osa.lsa_restorer = oact.lsa_restorer;
517 		osa.lsa_mask = oact.lsa_mask.__mask;
518 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
519 	}
520 
521 	return (error);
522 }
523 
524 /*
525  * Linux has two extra args, restart and oldmask.  We don't use these,
526  * but it seems that "restart" is actually a context pointer that
527  * enables the signal to happen with a different register set.
528  */
529 int
530 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
531 {
532 	sigset_t sigmask;
533 	l_sigset_t mask;
534 
535 	LINUX_SIGEMPTYSET(mask);
536 	mask.__mask = args->mask;
537 	linux_to_bsd_sigset(&mask, &sigmask);
538 	return (kern_sigsuspend(td, sigmask));
539 }
540 
541 int
542 linux_pause(struct thread *td, struct linux_pause_args *args)
543 {
544 	struct proc *p = td->td_proc;
545 	sigset_t sigmask;
546 
547 	PROC_LOCK(p);
548 	sigmask = td->td_sigmask;
549 	PROC_UNLOCK(p);
550 	return (kern_sigsuspend(td, sigmask));
551 }
552 
553 int
554 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
555 {
556 	struct timeval atv;
557 	l_timeval atv32;
558 	struct timezone rtz;
559 	int error = 0;
560 
561 	if (uap->tp) {
562 		microtime(&atv);
563 		atv32.tv_sec = atv.tv_sec;
564 		atv32.tv_usec = atv.tv_usec;
565 		error = copyout(&atv32, uap->tp, sizeof(atv32));
566 	}
567 	if (error == 0 && uap->tzp != NULL) {
568 		rtz.tz_minuteswest = 0;
569 		rtz.tz_dsttime = 0;
570 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
571 	}
572 	return (error);
573 }
574 
575 int
576 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
577 {
578 	l_timeval atv32;
579 	struct timeval atv, *tvp;
580 	struct timezone atz, *tzp;
581 	int error;
582 
583 	if (uap->tp) {
584 		error = copyin(uap->tp, &atv32, sizeof(atv32));
585 		if (error)
586 			return (error);
587 		atv.tv_sec = atv32.tv_sec;
588 		atv.tv_usec = atv32.tv_usec;
589 		tvp = &atv;
590 	} else
591 		tvp = NULL;
592 	if (uap->tzp) {
593 		error = copyin(uap->tzp, &atz, sizeof(atz));
594 		if (error)
595 			return (error);
596 		tzp = &atz;
597 	} else
598 		tzp = NULL;
599 	return (kern_settimeofday(td, tvp, tzp));
600 }
601 
602 int
603 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
604 {
605 	struct rusage s;
606 	int error;
607 
608 	error = kern_getrusage(td, uap->who, &s);
609 	if (error != 0)
610 		return (error);
611 	if (uap->rusage != NULL)
612 		error = linux_copyout_rusage(&s, uap->rusage);
613 	return (error);
614 }
615 
616 int
617 linux_set_thread_area(struct thread *td,
618     struct linux_set_thread_area_args *args)
619 {
620 	struct l_user_desc info;
621 	struct pcb *pcb;
622 	int error;
623 
624 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
625 	if (error)
626 		return (error);
627 
628 	/*
629 	 * Semantics of Linux version: every thread in the system has array
630 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
631 	 * This syscall loads one of the selected TLS decriptors with a value
632 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
633 	 * the per-thread descriptors.
634 	 *
635 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
636 	 * three per-thread descriptors and use just the first one.
637 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
638 	 * for loading the GDT descriptors. We use just one GDT descriptor
639 	 * for TLS, so we will load just one.
640 	 *
641 	 * XXX: This doesn't work when a user space process tries to use more
642 	 * than one TLS segment. Comment in the Linux source says wine might
643 	 * do this.
644 	 */
645 
646 	/*
647 	 * GLIBC reads current %gs and call set_thread_area() with it.
648 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
649 	 * we use these segments.
650 	 */
651 	switch (info.entry_number) {
652 	case GUGS32_SEL:
653 	case GUDATA_SEL:
654 	case 6:
655 	case -1:
656 		info.entry_number = GUGS32_SEL;
657 		break;
658 	default:
659 		return (EINVAL);
660 	}
661 
662 	/*
663 	 * We have to copy out the GDT entry we use.
664 	 *
665 	 * XXX: What if a user space program does not check the return value
666 	 * and tries to use 6, 7 or 8?
667 	 */
668 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
669 	if (error)
670 		return (error);
671 
672 	pcb = td->td_pcb;
673 	update_pcb_bases(pcb);
674 	pcb->pcb_gsbase = (register_t)info.base_addr;
675 	update_gdt_gsbase(td, info.base_addr);
676 
677 	return (0);
678 }
679 
680 void
681 bsd_to_linux_regset32(struct reg32 *b_reg, struct linux_pt_regset32 *l_regset)
682 {
683 
684 	l_regset->ebx = b_reg->r_ebx;
685 	l_regset->ecx = b_reg->r_ecx;
686 	l_regset->edx = b_reg->r_edx;
687 	l_regset->esi = b_reg->r_esi;
688 	l_regset->edi = b_reg->r_edi;
689 	l_regset->ebp = b_reg->r_ebp;
690 	l_regset->eax = b_reg->r_eax;
691 	l_regset->ds = b_reg->r_ds;
692 	l_regset->es = b_reg->r_es;
693 	l_regset->fs = b_reg->r_fs;
694 	l_regset->gs = b_reg->r_gs;
695 	l_regset->orig_eax = b_reg->r_eax;
696 	l_regset->eip = b_reg->r_eip;
697 	l_regset->cs = b_reg->r_cs;
698 	l_regset->eflags = b_reg->r_eflags;
699 	l_regset->esp = b_reg->r_esp;
700 	l_regset->ss = b_reg->r_ss;
701 }
702 
703 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
704 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
705 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
706 {
707 
708 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
709 	    futex_xchgl_smap : futex_xchgl_nosmap);
710 }
711 
712 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
713 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
714 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
715 {
716 
717 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
718 	    futex_addl_smap : futex_addl_nosmap);
719 }
720 
721 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
722 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
723 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
724 {
725 
726 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
727 	    futex_orl_smap : futex_orl_nosmap);
728 }
729 
730 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
731 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
732 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
733 {
734 
735 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
736 	    futex_andl_smap : futex_andl_nosmap);
737 }
738 
739 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
740 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
741 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
742 {
743 
744 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
745 	    futex_xorl_smap : futex_xorl_nosmap);
746 }
747