xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 5b9c547c)
1 /*-
2  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/cpufunc.h>
43 #include <machine/psl.h>
44 #include <machine/pmap.h>
45 #include <machine/md_var.h>
46 #include <machine/specialreg.h>
47 #include <machine/smp.h>
48 #include <machine/vmm.h>
49 #include <machine/vmm_dev.h>
50 #include <machine/vmm_instruction_emul.h>
51 
52 #include "vmm_lapic.h"
53 #include "vmm_stat.h"
54 #include "vmm_ktr.h"
55 #include "vmm_ioport.h"
56 #include "vatpic.h"
57 #include "vlapic.h"
58 #include "vlapic_priv.h"
59 
60 #include "x86.h"
61 #include "vmcb.h"
62 #include "svm.h"
63 #include "svm_softc.h"
64 #include "svm_msr.h"
65 #include "npt.h"
66 
67 SYSCTL_DECL(_hw_vmm);
68 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69 
70 /*
71  * SVM CPUID function 0x8000_000A, edx bit decoding.
72  */
73 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84 
85 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86 				VMCB_CACHE_IOPM		|	\
87 				VMCB_CACHE_I		|	\
88 				VMCB_CACHE_TPR		|	\
89 				VMCB_CACHE_CR2		|	\
90 				VMCB_CACHE_CR		|	\
91 				VMCB_CACHE_DT		|	\
92 				VMCB_CACHE_SEG		|	\
93 				VMCB_CACHE_NP)
94 
95 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97     0, NULL);
98 
99 static MALLOC_DEFINE(M_SVM, "svm", "svm");
100 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101 
102 /* Per-CPU context area. */
103 extern struct pcpu __pcpu[];
104 
105 static uint32_t svm_feature;	/* AMD SVM features. */
106 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
107     "SVM features advertised by CPUID.8000000AH:EDX");
108 
109 static int disable_npf_assist;
110 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111     &disable_npf_assist, 0, NULL);
112 
113 /* Maximum ASIDs supported by the processor */
114 static uint32_t nasid;
115 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
116     "Number of ASIDs supported by this processor");
117 
118 /* Current ASID generation for each host cpu */
119 static struct asid asid[MAXCPU];
120 
121 /*
122  * SVM host state saved area of size 4KB for each core.
123  */
124 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129 
130 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131 
132 static __inline int
133 flush_by_asid(void)
134 {
135 
136 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137 }
138 
139 static __inline int
140 decode_assist(void)
141 {
142 
143 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144 }
145 
146 static void
147 svm_disable(void *arg __unused)
148 {
149 	uint64_t efer;
150 
151 	efer = rdmsr(MSR_EFER);
152 	efer &= ~EFER_SVM;
153 	wrmsr(MSR_EFER, efer);
154 }
155 
156 /*
157  * Disable SVM on all CPUs.
158  */
159 static int
160 svm_cleanup(void)
161 {
162 
163 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164 	return (0);
165 }
166 
167 /*
168  * Verify that all the features required by bhyve are available.
169  */
170 static int
171 check_svm_features(void)
172 {
173 	u_int regs[4];
174 
175 	/* CPUID Fn8000_000A is for SVM */
176 	do_cpuid(0x8000000A, regs);
177 	svm_feature = regs[3];
178 
179 	nasid = regs[1];
180 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
181 
182 	/* bhyve requires the Nested Paging feature */
183 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
184 		printf("SVM: Nested Paging feature not available.\n");
185 		return (ENXIO);
186 	}
187 
188 	/* bhyve requires the NRIP Save feature */
189 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
190 		printf("SVM: NRIP Save feature not available.\n");
191 		return (ENXIO);
192 	}
193 
194 	return (0);
195 }
196 
197 static void
198 svm_enable(void *arg __unused)
199 {
200 	uint64_t efer;
201 
202 	efer = rdmsr(MSR_EFER);
203 	efer |= EFER_SVM;
204 	wrmsr(MSR_EFER, efer);
205 
206 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
207 }
208 
209 /*
210  * Return 1 if SVM is enabled on this processor and 0 otherwise.
211  */
212 static int
213 svm_available(void)
214 {
215 	uint64_t msr;
216 
217 	/* Section 15.4 Enabling SVM from APM2. */
218 	if ((amd_feature2 & AMDID2_SVM) == 0) {
219 		printf("SVM: not available.\n");
220 		return (0);
221 	}
222 
223 	msr = rdmsr(MSR_VM_CR);
224 	if ((msr & VM_CR_SVMDIS) != 0) {
225 		printf("SVM: disabled by BIOS.\n");
226 		return (0);
227 	}
228 
229 	return (1);
230 }
231 
232 static int
233 svm_init(int ipinum)
234 {
235 	int error, cpu;
236 
237 	if (!svm_available())
238 		return (ENXIO);
239 
240 	error = check_svm_features();
241 	if (error)
242 		return (error);
243 
244 	vmcb_clean &= VMCB_CACHE_DEFAULT;
245 
246 	for (cpu = 0; cpu < MAXCPU; cpu++) {
247 		/*
248 		 * Initialize the host ASIDs to their "highest" valid values.
249 		 *
250 		 * The next ASID allocation will rollover both 'gen' and 'num'
251 		 * and start off the sequence at {1,1}.
252 		 */
253 		asid[cpu].gen = ~0UL;
254 		asid[cpu].num = nasid - 1;
255 	}
256 
257 	svm_msr_init();
258 	svm_npt_init(ipinum);
259 
260 	/* Enable SVM on all CPUs */
261 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
262 
263 	return (0);
264 }
265 
266 static void
267 svm_restore(void)
268 {
269 
270 	svm_enable(NULL);
271 }
272 
273 /* Pentium compatible MSRs */
274 #define MSR_PENTIUM_START 	0
275 #define MSR_PENTIUM_END 	0x1FFF
276 /* AMD 6th generation and Intel compatible MSRs */
277 #define MSR_AMD6TH_START 	0xC0000000UL
278 #define MSR_AMD6TH_END 		0xC0001FFFUL
279 /* AMD 7th and 8th generation compatible MSRs */
280 #define MSR_AMD7TH_START 	0xC0010000UL
281 #define MSR_AMD7TH_END 		0xC0011FFFUL
282 
283 /*
284  * Get the index and bit position for a MSR in permission bitmap.
285  * Two bits are used for each MSR: lower bit for read and higher bit for write.
286  */
287 static int
288 svm_msr_index(uint64_t msr, int *index, int *bit)
289 {
290 	uint32_t base, off;
291 
292 	*index = -1;
293 	*bit = (msr % 4) * 2;
294 	base = 0;
295 
296 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
297 		*index = msr / 4;
298 		return (0);
299 	}
300 
301 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
302 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
303 		off = (msr - MSR_AMD6TH_START);
304 		*index = (off + base) / 4;
305 		return (0);
306 	}
307 
308 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
309 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
310 		off = (msr - MSR_AMD7TH_START);
311 		*index = (off + base) / 4;
312 		return (0);
313 	}
314 
315 	return (EINVAL);
316 }
317 
318 /*
319  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
320  */
321 static void
322 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
323 {
324 	int index, bit, error;
325 
326 	error = svm_msr_index(msr, &index, &bit);
327 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
328 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
329 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
330 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
331 	    "msr %#lx", __func__, bit, msr));
332 
333 	if (read)
334 		perm_bitmap[index] &= ~(1UL << bit);
335 
336 	if (write)
337 		perm_bitmap[index] &= ~(2UL << bit);
338 }
339 
340 static void
341 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
342 {
343 
344 	svm_msr_perm(perm_bitmap, msr, true, true);
345 }
346 
347 static void
348 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
349 {
350 
351 	svm_msr_perm(perm_bitmap, msr, true, false);
352 }
353 
354 static __inline int
355 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
356 {
357 	struct vmcb_ctrl *ctrl;
358 
359 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
360 
361 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
362 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
363 }
364 
365 static __inline void
366 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
367     int enabled)
368 {
369 	struct vmcb_ctrl *ctrl;
370 	uint32_t oldval;
371 
372 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
373 
374 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
375 	oldval = ctrl->intercept[idx];
376 
377 	if (enabled)
378 		ctrl->intercept[idx] |= bitmask;
379 	else
380 		ctrl->intercept[idx] &= ~bitmask;
381 
382 	if (ctrl->intercept[idx] != oldval) {
383 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
384 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
385 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
386 	}
387 }
388 
389 static __inline void
390 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
391 {
392 
393 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
394 }
395 
396 static __inline void
397 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
398 {
399 
400 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
401 }
402 
403 static void
404 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
405     uint64_t msrpm_base_pa, uint64_t np_pml4)
406 {
407 	struct vmcb_ctrl *ctrl;
408 	struct vmcb_state *state;
409 	uint32_t mask;
410 	int n;
411 
412 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
413 	state = svm_get_vmcb_state(sc, vcpu);
414 
415 	ctrl->iopm_base_pa = iopm_base_pa;
416 	ctrl->msrpm_base_pa = msrpm_base_pa;
417 
418 	/* Enable nested paging */
419 	ctrl->np_enable = 1;
420 	ctrl->n_cr3 = np_pml4;
421 
422 	/*
423 	 * Intercept accesses to the control registers that are not shadowed
424 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
425 	 */
426 	for (n = 0; n < 16; n++) {
427 		mask = (BIT(n) << 16) | BIT(n);
428 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
429 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
430 		else
431 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
432 	}
433 
434 
435 	/*
436 	 * Intercept everything when tracing guest exceptions otherwise
437 	 * just intercept machine check exception.
438 	 */
439 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
440 		for (n = 0; n < 32; n++) {
441 			/*
442 			 * Skip unimplemented vectors in the exception bitmap.
443 			 */
444 			if (n == 2 || n == 9) {
445 				continue;
446 			}
447 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
448 		}
449 	} else {
450 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
451 	}
452 
453 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
454 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
455 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
456 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
457 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
458 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
462 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
463 	    VMCB_INTCPT_FERR_FREEZE);
464 
465 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
466 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
467 
468 	/*
469 	 * From section "Canonicalization and Consistency Checks" in APMv2
470 	 * the VMRUN intercept bit must be set to pass the consistency check.
471 	 */
472 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
473 
474 	/*
475 	 * The ASID will be set to a non-zero value just before VMRUN.
476 	 */
477 	ctrl->asid = 0;
478 
479 	/*
480 	 * Section 15.21.1, Interrupt Masking in EFLAGS
481 	 * Section 15.21.2, Virtualizing APIC.TPR
482 	 *
483 	 * This must be set for %rflag and %cr8 isolation of guest and host.
484 	 */
485 	ctrl->v_intr_masking = 1;
486 
487 	/* Enable Last Branch Record aka LBR for debugging */
488 	ctrl->lbr_virt_en = 1;
489 	state->dbgctl = BIT(0);
490 
491 	/* EFER_SVM must always be set when the guest is executing */
492 	state->efer = EFER_SVM;
493 
494 	/* Set up the PAT to power-on state */
495 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
496 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
497 	    PAT_VALUE(2, PAT_UNCACHED)		|
498 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
499 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
500 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
501 	    PAT_VALUE(6, PAT_UNCACHED)		|
502 	    PAT_VALUE(7, PAT_UNCACHEABLE);
503 }
504 
505 /*
506  * Initialize a virtual machine.
507  */
508 static void *
509 svm_vminit(struct vm *vm, pmap_t pmap)
510 {
511 	struct svm_softc *svm_sc;
512 	struct svm_vcpu *vcpu;
513 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
514 	int i;
515 
516 	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
517 	svm_sc->vm = vm;
518 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
519 
520 	/*
521 	 * Intercept read and write accesses to all MSRs.
522 	 */
523 	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
524 
525 	/*
526 	 * Access to the following MSRs is redirected to the VMCB when the
527 	 * guest is executing. Therefore it is safe to allow the guest to
528 	 * read/write these MSRs directly without hypervisor involvement.
529 	 */
530 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
531 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
532 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
533 
534 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
535 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
536 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
537 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
538 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
539 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
540 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
541 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
542 
543 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
544 
545 	/*
546 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
547 	 */
548 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
549 
550 	/* Intercept access to all I/O ports. */
551 	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
552 
553 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
554 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
555 	pml4_pa = svm_sc->nptp;
556 	for (i = 0; i < VM_MAXCPU; i++) {
557 		vcpu = svm_get_vcpu(svm_sc, i);
558 		vcpu->nextrip = ~0;
559 		vcpu->lastcpu = NOCPU;
560 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
561 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
562 		svm_msr_guest_init(svm_sc, i);
563 	}
564 	return (svm_sc);
565 }
566 
567 static int
568 svm_cpl(struct vmcb_state *state)
569 {
570 
571 	/*
572 	 * From APMv2:
573 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
574 	 *    from any segment DPL"
575 	 */
576 	return (state->cpl);
577 }
578 
579 static enum vm_cpu_mode
580 svm_vcpu_mode(struct vmcb *vmcb)
581 {
582 	struct vmcb_segment seg;
583 	struct vmcb_state *state;
584 	int error;
585 
586 	state = &vmcb->state;
587 
588 	if (state->efer & EFER_LMA) {
589 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
590 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
591 		    error));
592 
593 		/*
594 		 * Section 4.8.1 for APM2, check if Code Segment has
595 		 * Long attribute set in descriptor.
596 		 */
597 		if (seg.attrib & VMCB_CS_ATTRIB_L)
598 			return (CPU_MODE_64BIT);
599 		else
600 			return (CPU_MODE_COMPATIBILITY);
601 	} else  if (state->cr0 & CR0_PE) {
602 		return (CPU_MODE_PROTECTED);
603 	} else {
604 		return (CPU_MODE_REAL);
605 	}
606 }
607 
608 static enum vm_paging_mode
609 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
610 {
611 
612 	if ((cr0 & CR0_PG) == 0)
613 		return (PAGING_MODE_FLAT);
614 	if ((cr4 & CR4_PAE) == 0)
615 		return (PAGING_MODE_32);
616 	if (efer & EFER_LME)
617 		return (PAGING_MODE_64);
618 	else
619 		return (PAGING_MODE_PAE);
620 }
621 
622 /*
623  * ins/outs utility routines
624  */
625 static uint64_t
626 svm_inout_str_index(struct svm_regctx *regs, int in)
627 {
628 	uint64_t val;
629 
630 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
631 
632 	return (val);
633 }
634 
635 static uint64_t
636 svm_inout_str_count(struct svm_regctx *regs, int rep)
637 {
638 	uint64_t val;
639 
640 	val = rep ? regs->sctx_rcx : 1;
641 
642 	return (val);
643 }
644 
645 static void
646 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
647     int in, struct vm_inout_str *vis)
648 {
649 	int error, s;
650 
651 	if (in) {
652 		vis->seg_name = VM_REG_GUEST_ES;
653 	} else {
654 		/* The segment field has standard encoding */
655 		s = (info1 >> 10) & 0x7;
656 		vis->seg_name = vm_segment_name(s);
657 	}
658 
659 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
660 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
661 }
662 
663 static int
664 svm_inout_str_addrsize(uint64_t info1)
665 {
666         uint32_t size;
667 
668         size = (info1 >> 7) & 0x7;
669         switch (size) {
670         case 1:
671                 return (2);     /* 16 bit */
672         case 2:
673                 return (4);     /* 32 bit */
674         case 4:
675                 return (8);     /* 64 bit */
676         default:
677                 panic("%s: invalid size encoding %d", __func__, size);
678         }
679 }
680 
681 static void
682 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
683 {
684 	struct vmcb_state *state;
685 
686 	state = &vmcb->state;
687 	paging->cr3 = state->cr3;
688 	paging->cpl = svm_cpl(state);
689 	paging->cpu_mode = svm_vcpu_mode(vmcb);
690 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
691 	    state->efer);
692 }
693 
694 #define	UNHANDLED 0
695 
696 /*
697  * Handle guest I/O intercept.
698  */
699 static int
700 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
701 {
702 	struct vmcb_ctrl *ctrl;
703 	struct vmcb_state *state;
704 	struct svm_regctx *regs;
705 	struct vm_inout_str *vis;
706 	uint64_t info1;
707 	int inout_string;
708 
709 	state = svm_get_vmcb_state(svm_sc, vcpu);
710 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
711 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
712 
713 	info1 = ctrl->exitinfo1;
714 	inout_string = info1 & BIT(2) ? 1 : 0;
715 
716 	/*
717 	 * The effective segment number in EXITINFO1[12:10] is populated
718 	 * only if the processor has the DecodeAssist capability.
719 	 *
720 	 * XXX this is not specified explicitly in APMv2 but can be verified
721 	 * empirically.
722 	 */
723 	if (inout_string && !decode_assist())
724 		return (UNHANDLED);
725 
726 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
727 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
728 	vmexit->u.inout.string 	= inout_string;
729 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
730 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
731 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
732 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
733 
734 	if (inout_string) {
735 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
736 		vis = &vmexit->u.inout_str;
737 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
738 		vis->rflags = state->rflags;
739 		vis->cr0 = state->cr0;
740 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
741 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
742 		vis->addrsize = svm_inout_str_addrsize(info1);
743 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
744 		    vmexit->u.inout.in, vis);
745 	}
746 
747 	return (UNHANDLED);
748 }
749 
750 static int
751 npf_fault_type(uint64_t exitinfo1)
752 {
753 
754 	if (exitinfo1 & VMCB_NPF_INFO1_W)
755 		return (VM_PROT_WRITE);
756 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
757 		return (VM_PROT_EXECUTE);
758 	else
759 		return (VM_PROT_READ);
760 }
761 
762 static bool
763 svm_npf_emul_fault(uint64_t exitinfo1)
764 {
765 
766 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
767 		return (false);
768 	}
769 
770 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
771 		return (false);
772 	}
773 
774 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
775 		return (false);
776 	}
777 
778 	return (true);
779 }
780 
781 static void
782 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
783 {
784 	struct vm_guest_paging *paging;
785 	struct vmcb_segment seg;
786 	struct vmcb_ctrl *ctrl;
787 	char *inst_bytes;
788 	int error, inst_len;
789 
790 	ctrl = &vmcb->ctrl;
791 	paging = &vmexit->u.inst_emul.paging;
792 
793 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
794 	vmexit->u.inst_emul.gpa = gpa;
795 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
796 	svm_paging_info(vmcb, paging);
797 
798 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
799 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
800 
801 	switch(paging->cpu_mode) {
802 	case CPU_MODE_REAL:
803 		vmexit->u.inst_emul.cs_base = seg.base;
804 		vmexit->u.inst_emul.cs_d = 0;
805 	case CPU_MODE_PROTECTED:
806 	case CPU_MODE_COMPATIBILITY:
807 		vmexit->u.inst_emul.cs_base = seg.base;
808 
809 		/*
810 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
811 		 */
812 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
813 		    1 : 0;
814 		break;
815 	default:
816 		vmexit->u.inst_emul.cs_base = 0;
817 		vmexit->u.inst_emul.cs_d = 0;
818 		break;
819 	}
820 
821 	/*
822 	 * Copy the instruction bytes into 'vie' if available.
823 	 */
824 	if (decode_assist() && !disable_npf_assist) {
825 		inst_len = ctrl->inst_len;
826 		inst_bytes = ctrl->inst_bytes;
827 	} else {
828 		inst_len = 0;
829 		inst_bytes = NULL;
830 	}
831 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
832 }
833 
834 #ifdef KTR
835 static const char *
836 intrtype_to_str(int intr_type)
837 {
838 	switch (intr_type) {
839 	case VMCB_EVENTINJ_TYPE_INTR:
840 		return ("hwintr");
841 	case VMCB_EVENTINJ_TYPE_NMI:
842 		return ("nmi");
843 	case VMCB_EVENTINJ_TYPE_INTn:
844 		return ("swintr");
845 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
846 		return ("exception");
847 	default:
848 		panic("%s: unknown intr_type %d", __func__, intr_type);
849 	}
850 }
851 #endif
852 
853 /*
854  * Inject an event to vcpu as described in section 15.20, "Event injection".
855  */
856 static void
857 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
858 		 uint32_t error, bool ec_valid)
859 {
860 	struct vmcb_ctrl *ctrl;
861 
862 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
863 
864 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
865 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
866 
867 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
868 	    __func__, vector));
869 
870 	switch (intr_type) {
871 	case VMCB_EVENTINJ_TYPE_INTR:
872 	case VMCB_EVENTINJ_TYPE_NMI:
873 	case VMCB_EVENTINJ_TYPE_INTn:
874 		break;
875 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
876 		if (vector >= 0 && vector <= 31 && vector != 2)
877 			break;
878 		/* FALLTHROUGH */
879 	default:
880 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
881 		    intr_type, vector);
882 	}
883 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
884 	if (ec_valid) {
885 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
886 		ctrl->eventinj |= (uint64_t)error << 32;
887 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
888 		    intrtype_to_str(intr_type), vector, error);
889 	} else {
890 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
891 		    intrtype_to_str(intr_type), vector);
892 	}
893 }
894 
895 static void
896 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
897 {
898 	struct vm *vm;
899 	struct vlapic *vlapic;
900 	struct vmcb_ctrl *ctrl;
901 	int pending;
902 
903 	vm = sc->vm;
904 	vlapic = vm_lapic(vm, vcpu);
905 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
906 
907 	/* Update %cr8 in the emulated vlapic */
908 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
909 
910 	/*
911 	 * If V_IRQ indicates that the interrupt injection attempted on then
912 	 * last VMRUN was successful then update the vlapic accordingly.
913 	 */
914 	if (ctrl->v_intr_vector != 0) {
915 		pending = ctrl->v_irq;
916 		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
917 		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
918 		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
919 		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
920 		    pending ? "pending" : "accepted");
921 		if (!pending)
922 			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
923 	}
924 }
925 
926 static void
927 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
928 {
929 	struct vmcb_ctrl *ctrl;
930 	uint64_t intinfo;
931 
932 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
933 	intinfo = ctrl->exitintinfo;
934 	if (!VMCB_EXITINTINFO_VALID(intinfo))
935 		return;
936 
937 	/*
938 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
939 	 *
940 	 * If a #VMEXIT happened during event delivery then record the event
941 	 * that was being delivered.
942 	 */
943 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
944 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
945 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
946 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
947 }
948 
949 static __inline int
950 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
951 {
952 
953 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
954 	    VMCB_INTCPT_VINTR));
955 }
956 
957 static __inline void
958 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
959 {
960 	struct vmcb_ctrl *ctrl;
961 
962 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
963 
964 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
965 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
966 		KASSERT(vintr_intercept_enabled(sc, vcpu),
967 		    ("%s: vintr intercept should be enabled", __func__));
968 		return;
969 	}
970 
971 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
972 	ctrl->v_irq = 1;
973 	ctrl->v_ign_tpr = 1;
974 	ctrl->v_intr_vector = 0;
975 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
976 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
977 }
978 
979 static __inline void
980 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
981 {
982 	struct vmcb_ctrl *ctrl;
983 
984 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
985 
986 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
987 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
988 		    ("%s: vintr intercept should be disabled", __func__));
989 		return;
990 	}
991 
992 #ifdef KTR
993 	if (ctrl->v_intr_vector == 0)
994 		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
995 	else
996 		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
997 #endif
998 	ctrl->v_irq = 0;
999 	ctrl->v_intr_vector = 0;
1000 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1001 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1002 }
1003 
1004 static int
1005 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1006 {
1007 	struct vmcb_ctrl *ctrl;
1008 	int oldval, newval;
1009 
1010 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1011 	oldval = ctrl->intr_shadow;
1012 	newval = val ? 1 : 0;
1013 	if (newval != oldval) {
1014 		ctrl->intr_shadow = newval;
1015 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1016 	}
1017 	return (0);
1018 }
1019 
1020 static int
1021 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1022 {
1023 	struct vmcb_ctrl *ctrl;
1024 
1025 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1026 	*val = ctrl->intr_shadow;
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1032  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1033  * to track when the vcpu is done handling the NMI.
1034  */
1035 static int
1036 nmi_blocked(struct svm_softc *sc, int vcpu)
1037 {
1038 	int blocked;
1039 
1040 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1041 	    VMCB_INTCPT_IRET);
1042 	return (blocked);
1043 }
1044 
1045 static void
1046 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1047 {
1048 
1049 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1050 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1051 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1052 }
1053 
1054 static void
1055 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1056 {
1057 	int error;
1058 
1059 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1060 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1061 	/*
1062 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1063 	 * the "iret" when it runs next. However, it is possible to inject
1064 	 * another NMI into the vcpu before the "iret" has actually executed.
1065 	 *
1066 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1067 	 * it will trap back into the hypervisor. If an NMI is pending for
1068 	 * the vcpu it will be injected into the guest.
1069 	 *
1070 	 * XXX this needs to be fixed
1071 	 */
1072 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1073 
1074 	/*
1075 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1076 	 * immediate VMRUN.
1077 	 */
1078 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1079 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1080 }
1081 
1082 static int
1083 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1084     bool *retu)
1085 {
1086 	int error;
1087 
1088 	if (lapic_msr(num))
1089 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1090 	else if (num == MSR_EFER)
1091 		error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
1092 	else
1093 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1094 
1095 	return (error);
1096 }
1097 
1098 static int
1099 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1100 {
1101 	struct vmcb_state *state;
1102 	struct svm_regctx *ctx;
1103 	uint64_t result;
1104 	int error;
1105 
1106 	if (lapic_msr(num))
1107 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1108 	else
1109 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1110 
1111 	if (error == 0) {
1112 		state = svm_get_vmcb_state(sc, vcpu);
1113 		ctx = svm_get_guest_regctx(sc, vcpu);
1114 		state->rax = result & 0xffffffff;
1115 		ctx->sctx_rdx = result >> 32;
1116 	}
1117 
1118 	return (error);
1119 }
1120 
1121 #ifdef KTR
1122 static const char *
1123 exit_reason_to_str(uint64_t reason)
1124 {
1125 	static char reasonbuf[32];
1126 
1127 	switch (reason) {
1128 	case VMCB_EXIT_INVALID:
1129 		return ("invalvmcb");
1130 	case VMCB_EXIT_SHUTDOWN:
1131 		return ("shutdown");
1132 	case VMCB_EXIT_NPF:
1133 		return ("nptfault");
1134 	case VMCB_EXIT_PAUSE:
1135 		return ("pause");
1136 	case VMCB_EXIT_HLT:
1137 		return ("hlt");
1138 	case VMCB_EXIT_CPUID:
1139 		return ("cpuid");
1140 	case VMCB_EXIT_IO:
1141 		return ("inout");
1142 	case VMCB_EXIT_MC:
1143 		return ("mchk");
1144 	case VMCB_EXIT_INTR:
1145 		return ("extintr");
1146 	case VMCB_EXIT_NMI:
1147 		return ("nmi");
1148 	case VMCB_EXIT_VINTR:
1149 		return ("vintr");
1150 	case VMCB_EXIT_MSR:
1151 		return ("msr");
1152 	case VMCB_EXIT_IRET:
1153 		return ("iret");
1154 	case VMCB_EXIT_MONITOR:
1155 		return ("monitor");
1156 	case VMCB_EXIT_MWAIT:
1157 		return ("mwait");
1158 	default:
1159 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1160 		return (reasonbuf);
1161 	}
1162 }
1163 #endif	/* KTR */
1164 
1165 /*
1166  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1167  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1168  * and exceptions caused by INT3, INTO and BOUND instructions.
1169  *
1170  * Return 1 if the nRIP is valid and 0 otherwise.
1171  */
1172 static int
1173 nrip_valid(uint64_t exitcode)
1174 {
1175 	switch (exitcode) {
1176 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1177 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1178 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1179 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1180 	case 0x43:		/* INT3 */
1181 	case 0x44:		/* INTO */
1182 	case 0x45:		/* BOUND */
1183 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1184 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1185 		return (1);
1186 	default:
1187 		return (0);
1188 	}
1189 }
1190 
1191 /*
1192  * Collateral for a generic SVM VM-exit.
1193  */
1194 static void
1195 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
1196 {
1197 
1198 	vme->exitcode = VM_EXITCODE_SVM;
1199 	vme->u.svm.exitcode = code;
1200 	vme->u.svm.exitinfo1 = info1;
1201 	vme->u.svm.exitinfo2 = info2;
1202 }
1203 
1204 static int
1205 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1206 {
1207 	struct vmcb *vmcb;
1208 	struct vmcb_state *state;
1209 	struct vmcb_ctrl *ctrl;
1210 	struct svm_regctx *ctx;
1211 	uint64_t code, info1, info2, val;
1212 	uint32_t eax, ecx, edx;
1213 	int error, errcode_valid, handled, idtvec, reflect;
1214 	bool retu;
1215 
1216 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1217 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1218 	state = &vmcb->state;
1219 	ctrl = &vmcb->ctrl;
1220 
1221 	handled = 0;
1222 	code = ctrl->exitcode;
1223 	info1 = ctrl->exitinfo1;
1224 	info2 = ctrl->exitinfo2;
1225 
1226 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1227 	vmexit->rip = state->rip;
1228 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1229 
1230 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1231 
1232 	/*
1233 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1234 	 * in an inconsistent state and can trigger assertions that would
1235 	 * never happen otherwise.
1236 	 */
1237 	if (code == VMCB_EXIT_INVALID) {
1238 		vm_exit_svm(vmexit, code, info1, info2);
1239 		return (0);
1240 	}
1241 
1242 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1243 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1244 
1245 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1246 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1247 	    vmexit->inst_length, code, info1, info2));
1248 
1249 	svm_update_virqinfo(svm_sc, vcpu);
1250 	svm_save_intinfo(svm_sc, vcpu);
1251 
1252 	switch (code) {
1253 	case VMCB_EXIT_IRET:
1254 		/*
1255 		 * Restart execution at "iret" but with the intercept cleared.
1256 		 */
1257 		vmexit->inst_length = 0;
1258 		clear_nmi_blocking(svm_sc, vcpu);
1259 		handled = 1;
1260 		break;
1261 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1262 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1263 		handled = 1;
1264 		break;
1265 	case VMCB_EXIT_INTR:	/* external interrupt */
1266 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1267 		handled = 1;
1268 		break;
1269 	case VMCB_EXIT_NMI:	/* external NMI */
1270 		handled = 1;
1271 		break;
1272 	case 0x40 ... 0x5F:
1273 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1274 		reflect = 1;
1275 		idtvec = code - 0x40;
1276 		switch (idtvec) {
1277 		case IDT_MC:
1278 			/*
1279 			 * Call the machine check handler by hand. Also don't
1280 			 * reflect the machine check back into the guest.
1281 			 */
1282 			reflect = 0;
1283 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1284 			__asm __volatile("int $18");
1285 			break;
1286 		case IDT_PF:
1287 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1288 			    info2);
1289 			KASSERT(error == 0, ("%s: error %d updating cr2",
1290 			    __func__, error));
1291 			/* fallthru */
1292 		case IDT_NP:
1293 		case IDT_SS:
1294 		case IDT_GP:
1295 		case IDT_AC:
1296 		case IDT_TS:
1297 			errcode_valid = 1;
1298 			break;
1299 
1300 		case IDT_DF:
1301 			errcode_valid = 1;
1302 			info1 = 0;
1303 			break;
1304 
1305 		case IDT_BP:
1306 		case IDT_OF:
1307 		case IDT_BR:
1308 			/*
1309 			 * The 'nrip' field is populated for INT3, INTO and
1310 			 * BOUND exceptions and this also implies that
1311 			 * 'inst_length' is non-zero.
1312 			 *
1313 			 * Reset 'inst_length' to zero so the guest %rip at
1314 			 * event injection is identical to what it was when
1315 			 * the exception originally happened.
1316 			 */
1317 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1318 			    "to zero before injecting exception %d",
1319 			    vmexit->inst_length, idtvec);
1320 			vmexit->inst_length = 0;
1321 			/* fallthru */
1322 		default:
1323 			errcode_valid = 0;
1324 			info1 = 0;
1325 			break;
1326 		}
1327 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1328 		    "when reflecting exception %d into guest",
1329 		    vmexit->inst_length, idtvec));
1330 
1331 		if (reflect) {
1332 			/* Reflect the exception back into the guest */
1333 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1334 			    "%d/%#x into the guest", idtvec, (int)info1);
1335 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1336 			    errcode_valid, info1, 0);
1337 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1338 			    __func__, error));
1339 		}
1340 		handled = 1;
1341 		break;
1342 	case VMCB_EXIT_MSR:	/* MSR access. */
1343 		eax = state->rax;
1344 		ecx = ctx->sctx_rcx;
1345 		edx = ctx->sctx_rdx;
1346 		retu = false;
1347 
1348 		if (info1) {
1349 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1350 			val = (uint64_t)edx << 32 | eax;
1351 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1352 			    ecx, val);
1353 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1354 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1355 				vmexit->u.msr.code = ecx;
1356 				vmexit->u.msr.wval = val;
1357 			} else if (!retu) {
1358 				handled = 1;
1359 			} else {
1360 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1361 				    ("emulate_wrmsr retu with bogus exitcode"));
1362 			}
1363 		} else {
1364 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1365 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1366 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1367 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1368 				vmexit->u.msr.code = ecx;
1369 			} else if (!retu) {
1370 				handled = 1;
1371 			} else {
1372 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1373 				    ("emulate_rdmsr retu with bogus exitcode"));
1374 			}
1375 		}
1376 		break;
1377 	case VMCB_EXIT_IO:
1378 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1379 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1380 		break;
1381 	case VMCB_EXIT_CPUID:
1382 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1383 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1384 		    (uint32_t *)&state->rax,
1385 		    (uint32_t *)&ctx->sctx_rbx,
1386 		    (uint32_t *)&ctx->sctx_rcx,
1387 		    (uint32_t *)&ctx->sctx_rdx);
1388 		break;
1389 	case VMCB_EXIT_HLT:
1390 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1391 		vmexit->exitcode = VM_EXITCODE_HLT;
1392 		vmexit->u.hlt.rflags = state->rflags;
1393 		break;
1394 	case VMCB_EXIT_PAUSE:
1395 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1396 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1397 		break;
1398 	case VMCB_EXIT_NPF:
1399 		/* EXITINFO2 contains the faulting guest physical address */
1400 		if (info1 & VMCB_NPF_INFO1_RSV) {
1401 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1402 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1403 			    info1, info2);
1404 		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1405 			vmexit->exitcode = VM_EXITCODE_PAGING;
1406 			vmexit->u.paging.gpa = info2;
1407 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1408 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1409 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1410 			    "on gpa %#lx/%#lx at rip %#lx",
1411 			    info2, info1, state->rip);
1412 		} else if (svm_npf_emul_fault(info1)) {
1413 			svm_handle_inst_emul(vmcb, info2, vmexit);
1414 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1415 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1416 			    "for gpa %#lx/%#lx at rip %#lx",
1417 			    info2, info1, state->rip);
1418 		}
1419 		break;
1420 	case VMCB_EXIT_MONITOR:
1421 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1422 		break;
1423 	case VMCB_EXIT_MWAIT:
1424 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1425 		break;
1426 	default:
1427 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1428 		break;
1429 	}
1430 
1431 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1432 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1433 	    vmexit->rip, vmexit->inst_length);
1434 
1435 	if (handled) {
1436 		vmexit->rip += vmexit->inst_length;
1437 		vmexit->inst_length = 0;
1438 		state->rip = vmexit->rip;
1439 	} else {
1440 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1441 			/*
1442 			 * If this VM exit was not claimed by anybody then
1443 			 * treat it as a generic SVM exit.
1444 			 */
1445 			vm_exit_svm(vmexit, code, info1, info2);
1446 		} else {
1447 			/*
1448 			 * The exitcode and collateral have been populated.
1449 			 * The VM exit will be processed further in userland.
1450 			 */
1451 		}
1452 	}
1453 	return (handled);
1454 }
1455 
1456 static void
1457 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1458 {
1459 	uint64_t intinfo;
1460 
1461 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1462 		return;
1463 
1464 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1465 	    "valid: %#lx", __func__, intinfo));
1466 
1467 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1468 		VMCB_EXITINTINFO_VECTOR(intinfo),
1469 		VMCB_EXITINTINFO_EC(intinfo),
1470 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1471 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1472 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1473 }
1474 
1475 /*
1476  * Inject event to virtual cpu.
1477  */
1478 static void
1479 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1480 {
1481 	struct vmcb_ctrl *ctrl;
1482 	struct vmcb_state *state;
1483 	struct svm_vcpu *vcpustate;
1484 	uint8_t v_tpr;
1485 	int vector, need_intr_window, pending_apic_vector;
1486 
1487 	state = svm_get_vmcb_state(sc, vcpu);
1488 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1489 	vcpustate = svm_get_vcpu(sc, vcpu);
1490 
1491 	need_intr_window = 0;
1492 	pending_apic_vector = 0;
1493 
1494 	if (vcpustate->nextrip != state->rip) {
1495 		ctrl->intr_shadow = 0;
1496 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1497 		    "cleared due to rip change: %#lx/%#lx",
1498 		    vcpustate->nextrip, state->rip);
1499 	}
1500 
1501 	/*
1502 	 * Inject pending events or exceptions for this vcpu.
1503 	 *
1504 	 * An event might be pending because the previous #VMEXIT happened
1505 	 * during event delivery (i.e. ctrl->exitintinfo).
1506 	 *
1507 	 * An event might also be pending because an exception was injected
1508 	 * by the hypervisor (e.g. #PF during instruction emulation).
1509 	 */
1510 	svm_inj_intinfo(sc, vcpu);
1511 
1512 	/* NMI event has priority over interrupts. */
1513 	if (vm_nmi_pending(sc->vm, vcpu)) {
1514 		if (nmi_blocked(sc, vcpu)) {
1515 			/*
1516 			 * Can't inject another NMI if the guest has not
1517 			 * yet executed an "iret" after the last NMI.
1518 			 */
1519 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1520 			    "to NMI-blocking");
1521 		} else if (ctrl->intr_shadow) {
1522 			/*
1523 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1524 			 */
1525 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1526 			    "interrupt shadow");
1527 			need_intr_window = 1;
1528 			goto done;
1529 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1530 			/*
1531 			 * If there is already an exception/interrupt pending
1532 			 * then defer the NMI until after that.
1533 			 */
1534 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1535 			    "eventinj %#lx", ctrl->eventinj);
1536 
1537 			/*
1538 			 * Use self-IPI to trigger a VM-exit as soon as
1539 			 * possible after the event injection is completed.
1540 			 *
1541 			 * This works only if the external interrupt exiting
1542 			 * is at a lower priority than the event injection.
1543 			 *
1544 			 * Although not explicitly specified in APMv2 the
1545 			 * relative priorities were verified empirically.
1546 			 */
1547 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1548 		} else {
1549 			vm_nmi_clear(sc->vm, vcpu);
1550 
1551 			/* Inject NMI, vector number is not used */
1552 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1553 			    IDT_NMI, 0, false);
1554 
1555 			/* virtual NMI blocking is now in effect */
1556 			enable_nmi_blocking(sc, vcpu);
1557 
1558 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1559 		}
1560 	}
1561 
1562 	if (!vm_extint_pending(sc->vm, vcpu)) {
1563 		/*
1564 		 * APIC interrupts are delivered using the V_IRQ offload.
1565 		 *
1566 		 * The primary benefit is that the hypervisor doesn't need to
1567 		 * deal with the various conditions that inhibit interrupts.
1568 		 * It also means that TPR changes via CR8 will be handled
1569 		 * without any hypervisor involvement.
1570 		 *
1571 		 * Note that the APIC vector must remain pending in the vIRR
1572 		 * until it is confirmed that it was delivered to the guest.
1573 		 * This can be confirmed based on the value of V_IRQ at the
1574 		 * next #VMEXIT (1 = pending, 0 = delivered).
1575 		 *
1576 		 * Also note that it is possible that another higher priority
1577 		 * vector can become pending before this vector is delivered
1578 		 * to the guest. This is alright because vcpu_notify_event()
1579 		 * will send an IPI and force the vcpu to trap back into the
1580 		 * hypervisor. The higher priority vector will be injected on
1581 		 * the next VMRUN.
1582 		 */
1583 		if (vlapic_pending_intr(vlapic, &vector)) {
1584 			KASSERT(vector >= 16 && vector <= 255,
1585 			    ("invalid vector %d from local APIC", vector));
1586 			pending_apic_vector = vector;
1587 		}
1588 		goto done;
1589 	}
1590 
1591 	/* Ask the legacy pic for a vector to inject */
1592 	vatpic_pending_intr(sc->vm, &vector);
1593 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1594 	    vector));
1595 
1596 	/*
1597 	 * If the guest has disabled interrupts or is in an interrupt shadow
1598 	 * then we cannot inject the pending interrupt.
1599 	 */
1600 	if ((state->rflags & PSL_I) == 0) {
1601 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1602 		    "rflags %#lx", vector, state->rflags);
1603 		need_intr_window = 1;
1604 		goto done;
1605 	}
1606 
1607 	if (ctrl->intr_shadow) {
1608 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1609 		    "interrupt shadow", vector);
1610 		need_intr_window = 1;
1611 		goto done;
1612 	}
1613 
1614 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1615 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1616 		    "eventinj %#lx", vector, ctrl->eventinj);
1617 		need_intr_window = 1;
1618 		goto done;
1619 	}
1620 
1621 	/*
1622 	 * Legacy PIC interrupts are delivered via the event injection
1623 	 * mechanism.
1624 	 */
1625 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1626 
1627 	vm_extint_clear(sc->vm, vcpu);
1628 	vatpic_intr_accepted(sc->vm, vector);
1629 
1630 	/*
1631 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1632 	 * interrupt. This is done because the PIC might have another vector
1633 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1634 	 * that was preempted by the ExtInt then it allows us to inject the
1635 	 * APIC vector as soon as possible.
1636 	 */
1637 	need_intr_window = 1;
1638 done:
1639 	/*
1640 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1641 	 * the processor reflects this write to V_TPR without hypervisor
1642 	 * intervention.
1643 	 *
1644 	 * The guest can also modify the TPR by writing to it via the memory
1645 	 * mapped APIC page. In this case, the write will be emulated by the
1646 	 * hypervisor. For this reason V_TPR must be updated before every
1647 	 * VMRUN.
1648 	 */
1649 	v_tpr = vlapic_get_cr8(vlapic);
1650 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1651 	if (ctrl->v_tpr != v_tpr) {
1652 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1653 		    ctrl->v_tpr, v_tpr);
1654 		ctrl->v_tpr = v_tpr;
1655 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1656 	}
1657 
1658 	if (pending_apic_vector) {
1659 		/*
1660 		 * If an APIC vector is being injected then interrupt window
1661 		 * exiting is not possible on this VMRUN.
1662 		 */
1663 		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1664 		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1665 		    pending_apic_vector);
1666 
1667 		ctrl->v_irq = 1;
1668 		ctrl->v_ign_tpr = 0;
1669 		ctrl->v_intr_vector = pending_apic_vector;
1670 		ctrl->v_intr_prio = pending_apic_vector >> 4;
1671 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1672 	} else if (need_intr_window) {
1673 		/*
1674 		 * We use V_IRQ in conjunction with the VINTR intercept to
1675 		 * trap into the hypervisor as soon as a virtual interrupt
1676 		 * can be delivered.
1677 		 *
1678 		 * Since injected events are not subject to intercept checks
1679 		 * we need to ensure that the V_IRQ is not actually going to
1680 		 * be delivered on VM entry. The KASSERT below enforces this.
1681 		 */
1682 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1683 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1684 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1685 		    "intr_shadow (%u), rflags (%#lx)",
1686 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1687 		enable_intr_window_exiting(sc, vcpu);
1688 	} else {
1689 		disable_intr_window_exiting(sc, vcpu);
1690 	}
1691 }
1692 
1693 static __inline void
1694 restore_host_tss(void)
1695 {
1696 	struct system_segment_descriptor *tss_sd;
1697 
1698 	/*
1699 	 * The TSS descriptor was in use prior to launching the guest so it
1700 	 * has been marked busy.
1701 	 *
1702 	 * 'ltr' requires the descriptor to be marked available so change the
1703 	 * type to "64-bit available TSS".
1704 	 */
1705 	tss_sd = PCPU_GET(tss);
1706 	tss_sd->sd_type = SDT_SYSTSS;
1707 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1708 }
1709 
1710 static void
1711 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1712 {
1713 	struct svm_vcpu *vcpustate;
1714 	struct vmcb_ctrl *ctrl;
1715 	long eptgen;
1716 	bool alloc_asid;
1717 
1718 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1719 	    "active on cpu %u", __func__, thiscpu));
1720 
1721 	vcpustate = svm_get_vcpu(sc, vcpuid);
1722 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1723 
1724 	/*
1725 	 * The TLB entries associated with the vcpu's ASID are not valid
1726 	 * if either of the following conditions is true:
1727 	 *
1728 	 * 1. The vcpu's ASID generation is different than the host cpu's
1729 	 *    ASID generation. This happens when the vcpu migrates to a new
1730 	 *    host cpu. It can also happen when the number of vcpus executing
1731 	 *    on a host cpu is greater than the number of ASIDs available.
1732 	 *
1733 	 * 2. The pmap generation number is different than the value cached in
1734 	 *    the 'vcpustate'. This happens when the host invalidates pages
1735 	 *    belonging to the guest.
1736 	 *
1737 	 *	asidgen		eptgen	      Action
1738 	 *	mismatch	mismatch
1739 	 *	   0		   0		(a)
1740 	 *	   0		   1		(b1) or (b2)
1741 	 *	   1		   0		(c)
1742 	 *	   1		   1		(d)
1743 	 *
1744 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1745 	 *     no further action is needed.
1746 	 *
1747 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1748 	 *      retained and the TLB entries associated with this ASID
1749 	 *      are flushed by VMRUN.
1750 	 *
1751 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1752 	 *      allocated.
1753 	 *
1754 	 * (c) A new ASID is allocated.
1755 	 *
1756 	 * (d) A new ASID is allocated.
1757 	 */
1758 
1759 	alloc_asid = false;
1760 	eptgen = pmap->pm_eptgen;
1761 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1762 
1763 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1764 		alloc_asid = true;	/* (c) and (d) */
1765 	} else if (vcpustate->eptgen != eptgen) {
1766 		if (flush_by_asid())
1767 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1768 		else
1769 			alloc_asid = true;			/* (b2) */
1770 	} else {
1771 		/*
1772 		 * This is the common case (a).
1773 		 */
1774 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1775 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1776 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1777 	}
1778 
1779 	if (alloc_asid) {
1780 		if (++asid[thiscpu].num >= nasid) {
1781 			asid[thiscpu].num = 1;
1782 			if (++asid[thiscpu].gen == 0)
1783 				asid[thiscpu].gen = 1;
1784 			/*
1785 			 * If this cpu does not support "flush-by-asid"
1786 			 * then flush the entire TLB on a generation
1787 			 * bump. Subsequent ASID allocation in this
1788 			 * generation can be done without a TLB flush.
1789 			 */
1790 			if (!flush_by_asid())
1791 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1792 		}
1793 		vcpustate->asid.gen = asid[thiscpu].gen;
1794 		vcpustate->asid.num = asid[thiscpu].num;
1795 
1796 		ctrl->asid = vcpustate->asid.num;
1797 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1798 		/*
1799 		 * If this cpu supports "flush-by-asid" then the TLB
1800 		 * was not flushed after the generation bump. The TLB
1801 		 * is flushed selectively after every new ASID allocation.
1802 		 */
1803 		if (flush_by_asid())
1804 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1805 	}
1806 	vcpustate->eptgen = eptgen;
1807 
1808 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1809 	KASSERT(ctrl->asid == vcpustate->asid.num,
1810 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1811 }
1812 
1813 static __inline void
1814 disable_gintr(void)
1815 {
1816 
1817 	__asm __volatile("clgi");
1818 }
1819 
1820 static __inline void
1821 enable_gintr(void)
1822 {
1823 
1824         __asm __volatile("stgi");
1825 }
1826 
1827 /*
1828  * Start vcpu with specified RIP.
1829  */
1830 static int
1831 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1832 	void *rend_cookie, void *suspended_cookie)
1833 {
1834 	struct svm_regctx *gctx;
1835 	struct svm_softc *svm_sc;
1836 	struct svm_vcpu *vcpustate;
1837 	struct vmcb_state *state;
1838 	struct vmcb_ctrl *ctrl;
1839 	struct vm_exit *vmexit;
1840 	struct vlapic *vlapic;
1841 	struct vm *vm;
1842 	uint64_t vmcb_pa;
1843 	u_int thiscpu;
1844 	int handled;
1845 
1846 	svm_sc = arg;
1847 	vm = svm_sc->vm;
1848 
1849 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1850 	state = svm_get_vmcb_state(svm_sc, vcpu);
1851 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1852 	vmexit = vm_exitinfo(vm, vcpu);
1853 	vlapic = vm_lapic(vm, vcpu);
1854 
1855 	/*
1856 	 * Stash 'curcpu' on the stack as 'thiscpu'.
1857 	 *
1858 	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1859 	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1860 	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1861 	 */
1862 	thiscpu = curcpu;
1863 
1864 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1865 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1866 
1867 	if (vcpustate->lastcpu != thiscpu) {
1868 		/*
1869 		 * Force new ASID allocation by invalidating the generation.
1870 		 */
1871 		vcpustate->asid.gen = 0;
1872 
1873 		/*
1874 		 * Invalidate the VMCB state cache by marking all fields dirty.
1875 		 */
1876 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1877 
1878 		/*
1879 		 * XXX
1880 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1881 		 * we may return from this function without actually executing
1882 		 * the VMRUN  instruction. This could happen if a rendezvous
1883 		 * or an AST is pending on the first time through the loop.
1884 		 *
1885 		 * This works for now but any new side-effects of vcpu
1886 		 * migration should take this case into account.
1887 		 */
1888 		vcpustate->lastcpu = thiscpu;
1889 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1890 	}
1891 
1892 	svm_msr_guest_enter(svm_sc, vcpu);
1893 
1894 	/* Update Guest RIP */
1895 	state->rip = rip;
1896 
1897 	do {
1898 		/*
1899 		 * Disable global interrupts to guarantee atomicity during
1900 		 * loading of guest state. This includes not only the state
1901 		 * loaded by the "vmrun" instruction but also software state
1902 		 * maintained by the hypervisor: suspended and rendezvous
1903 		 * state, NPT generation number, vlapic interrupts etc.
1904 		 */
1905 		disable_gintr();
1906 
1907 		if (vcpu_suspended(suspended_cookie)) {
1908 			enable_gintr();
1909 			vm_exit_suspended(vm, vcpu, state->rip);
1910 			break;
1911 		}
1912 
1913 		if (vcpu_rendezvous_pending(rend_cookie)) {
1914 			enable_gintr();
1915 			vm_exit_rendezvous(vm, vcpu, state->rip);
1916 			break;
1917 		}
1918 
1919 		/* We are asked to give the cpu by scheduler. */
1920 		if (vcpu_should_yield(vm, vcpu)) {
1921 			enable_gintr();
1922 			vm_exit_astpending(vm, vcpu, state->rip);
1923 			break;
1924 		}
1925 
1926 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1927 
1928 		/* Activate the nested pmap on 'thiscpu' */
1929 		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
1930 
1931 		/*
1932 		 * Check the pmap generation and the ASID generation to
1933 		 * ensure that the vcpu does not use stale TLB mappings.
1934 		 */
1935 		check_asid(svm_sc, vcpu, pmap, thiscpu);
1936 
1937 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1938 		vcpustate->dirty = 0;
1939 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1940 
1941 		/* Launch Virtual Machine. */
1942 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1943 		svm_launch(vmcb_pa, gctx);
1944 
1945 		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
1946 
1947 		/*
1948 		 * Restore MSR_GSBASE to point to the pcpu data area.
1949 		 *
1950 		 * Note that accesses done via PCPU_GET/PCPU_SET will work
1951 		 * only after MSR_GSBASE is restored.
1952 		 *
1953 		 * Also note that we don't bother restoring MSR_KGSBASE
1954 		 * since it is not used in the kernel and will be restored
1955 		 * when the VMRUN ioctl returns to userspace.
1956 		 */
1957 		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
1958 		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
1959 		    thiscpu, curcpu));
1960 
1961 		/*
1962 		 * The host GDTR and IDTR is saved by VMRUN and restored
1963 		 * automatically on #VMEXIT. However, the host TSS needs
1964 		 * to be restored explicitly.
1965 		 */
1966 		restore_host_tss();
1967 
1968 		/* #VMEXIT disables interrupts so re-enable them here. */
1969 		enable_gintr();
1970 
1971 		/* Update 'nextrip' */
1972 		vcpustate->nextrip = state->rip;
1973 
1974 		/* Handle #VMEXIT and if required return to user space. */
1975 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1976 	} while (handled);
1977 
1978 	svm_msr_guest_exit(svm_sc, vcpu);
1979 
1980 	return (0);
1981 }
1982 
1983 static void
1984 svm_vmcleanup(void *arg)
1985 {
1986 	struct svm_softc *sc = arg;
1987 
1988 	free(sc, M_SVM);
1989 }
1990 
1991 static register_t *
1992 swctx_regptr(struct svm_regctx *regctx, int reg)
1993 {
1994 
1995 	switch (reg) {
1996 	case VM_REG_GUEST_RBX:
1997 		return (&regctx->sctx_rbx);
1998 	case VM_REG_GUEST_RCX:
1999 		return (&regctx->sctx_rcx);
2000 	case VM_REG_GUEST_RDX:
2001 		return (&regctx->sctx_rdx);
2002 	case VM_REG_GUEST_RDI:
2003 		return (&regctx->sctx_rdi);
2004 	case VM_REG_GUEST_RSI:
2005 		return (&regctx->sctx_rsi);
2006 	case VM_REG_GUEST_RBP:
2007 		return (&regctx->sctx_rbp);
2008 	case VM_REG_GUEST_R8:
2009 		return (&regctx->sctx_r8);
2010 	case VM_REG_GUEST_R9:
2011 		return (&regctx->sctx_r9);
2012 	case VM_REG_GUEST_R10:
2013 		return (&regctx->sctx_r10);
2014 	case VM_REG_GUEST_R11:
2015 		return (&regctx->sctx_r11);
2016 	case VM_REG_GUEST_R12:
2017 		return (&regctx->sctx_r12);
2018 	case VM_REG_GUEST_R13:
2019 		return (&regctx->sctx_r13);
2020 	case VM_REG_GUEST_R14:
2021 		return (&regctx->sctx_r14);
2022 	case VM_REG_GUEST_R15:
2023 		return (&regctx->sctx_r15);
2024 	default:
2025 		return (NULL);
2026 	}
2027 }
2028 
2029 static int
2030 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2031 {
2032 	struct svm_softc *svm_sc;
2033 	register_t *reg;
2034 
2035 	svm_sc = arg;
2036 
2037 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2038 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2039 	}
2040 
2041 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2042 		return (0);
2043 	}
2044 
2045 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2046 
2047 	if (reg != NULL) {
2048 		*val = *reg;
2049 		return (0);
2050 	}
2051 
2052 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2053 	return (EINVAL);
2054 }
2055 
2056 static int
2057 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2058 {
2059 	struct svm_softc *svm_sc;
2060 	register_t *reg;
2061 
2062 	svm_sc = arg;
2063 
2064 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2065 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2066 	}
2067 
2068 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2069 		return (0);
2070 	}
2071 
2072 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2073 
2074 	if (reg != NULL) {
2075 		*reg = val;
2076 		return (0);
2077 	}
2078 
2079 	/*
2080 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2081 	 * vcpu's ASID. This needs to be treated differently depending on
2082 	 * whether 'running' is true/false.
2083 	 */
2084 
2085 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2086 	return (EINVAL);
2087 }
2088 
2089 static int
2090 svm_setcap(void *arg, int vcpu, int type, int val)
2091 {
2092 	struct svm_softc *sc;
2093 	int error;
2094 
2095 	sc = arg;
2096 	error = 0;
2097 	switch (type) {
2098 	case VM_CAP_HALT_EXIT:
2099 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2100 		    VMCB_INTCPT_HLT, val);
2101 		break;
2102 	case VM_CAP_PAUSE_EXIT:
2103 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2104 		    VMCB_INTCPT_PAUSE, val);
2105 		break;
2106 	case VM_CAP_UNRESTRICTED_GUEST:
2107 		/* Unrestricted guest execution cannot be disabled in SVM */
2108 		if (val == 0)
2109 			error = EINVAL;
2110 		break;
2111 	default:
2112 		error = ENOENT;
2113 		break;
2114 	}
2115 	return (error);
2116 }
2117 
2118 static int
2119 svm_getcap(void *arg, int vcpu, int type, int *retval)
2120 {
2121 	struct svm_softc *sc;
2122 	int error;
2123 
2124 	sc = arg;
2125 	error = 0;
2126 
2127 	switch (type) {
2128 	case VM_CAP_HALT_EXIT:
2129 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2130 		    VMCB_INTCPT_HLT);
2131 		break;
2132 	case VM_CAP_PAUSE_EXIT:
2133 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2134 		    VMCB_INTCPT_PAUSE);
2135 		break;
2136 	case VM_CAP_UNRESTRICTED_GUEST:
2137 		*retval = 1;	/* unrestricted guest is always enabled */
2138 		break;
2139 	default:
2140 		error = ENOENT;
2141 		break;
2142 	}
2143 	return (error);
2144 }
2145 
2146 static struct vlapic *
2147 svm_vlapic_init(void *arg, int vcpuid)
2148 {
2149 	struct svm_softc *svm_sc;
2150 	struct vlapic *vlapic;
2151 
2152 	svm_sc = arg;
2153 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2154 	vlapic->vm = svm_sc->vm;
2155 	vlapic->vcpuid = vcpuid;
2156 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2157 
2158 	vlapic_init(vlapic);
2159 
2160 	return (vlapic);
2161 }
2162 
2163 static void
2164 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2165 {
2166 
2167         vlapic_cleanup(vlapic);
2168         free(vlapic, M_SVM_VLAPIC);
2169 }
2170 
2171 struct vmm_ops vmm_ops_amd = {
2172 	svm_init,
2173 	svm_cleanup,
2174 	svm_restore,
2175 	svm_vminit,
2176 	svm_vmrun,
2177 	svm_vmcleanup,
2178 	svm_getreg,
2179 	svm_setreg,
2180 	vmcb_getdesc,
2181 	vmcb_setdesc,
2182 	svm_getcap,
2183 	svm_setcap,
2184 	svm_npt_alloc,
2185 	svm_npt_free,
2186 	svm_vlapic_init,
2187 	svm_vlapic_cleanup
2188 };
2189