xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/pmap.h>
48 #include <machine/segments.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <x86/apicreg.h>
53 
54 #include <machine/vmm.h>
55 #include "vmm_host.h"
56 #include "vmm_lapic.h"
57 #include "vmm_msr.h"
58 #include "vmm_ktr.h"
59 #include "vmm_stat.h"
60 
61 #include "vmx_msr.h"
62 #include "ept.h"
63 #include "vmx_cpufunc.h"
64 #include "vmx.h"
65 #include "x86.h"
66 #include "vmx_controls.h"
67 
68 #define	PINBASED_CTLS_ONE_SETTING					\
69 	(PINBASED_EXTINT_EXITING	|				\
70 	 PINBASED_NMI_EXITING		|				\
71 	 PINBASED_VIRTUAL_NMI)
72 #define	PINBASED_CTLS_ZERO_SETTING	0
73 
74 #define PROCBASED_CTLS_WINDOW_SETTING					\
75 	(PROCBASED_INT_WINDOW_EXITING	|				\
76 	 PROCBASED_NMI_WINDOW_EXITING)
77 
78 #define	PROCBASED_CTLS_ONE_SETTING 					\
79 	(PROCBASED_SECONDARY_CONTROLS	|				\
80 	 PROCBASED_IO_EXITING		|				\
81 	 PROCBASED_MSR_BITMAPS		|				\
82 	 PROCBASED_CTLS_WINDOW_SETTING)
83 #define	PROCBASED_CTLS_ZERO_SETTING	\
84 	(PROCBASED_CR3_LOAD_EXITING |	\
85 	PROCBASED_CR3_STORE_EXITING |	\
86 	PROCBASED_IO_BITMAPS)
87 
88 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
89 #define	PROCBASED_CTLS2_ZERO_SETTING	0
90 
91 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
92 	(VM_EXIT_HOST_LMA			|			\
93 	VM_EXIT_SAVE_EFER			|			\
94 	VM_EXIT_LOAD_EFER)
95 
96 #define	VM_EXIT_CTLS_ONE_SETTING					\
97 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
98 	VM_EXIT_SAVE_PAT			|			\
99 	VM_EXIT_LOAD_PAT)
100 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
101 
102 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
103 
104 #define	VM_ENTRY_CTLS_ONE_SETTING					\
105 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
106 	VM_ENTRY_LOAD_PAT)
107 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
108 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
109 	VM_ENTRY_INTO_SMM			|			\
110 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
111 
112 #define	guest_msr_rw(vmx, msr) \
113 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
114 
115 #define	HANDLED		1
116 #define	UNHANDLED	0
117 
118 MALLOC_DEFINE(M_VMX, "vmx", "vmx");
119 
120 SYSCTL_DECL(_hw_vmm);
121 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
122 
123 int vmxon_enabled[MAXCPU];
124 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
127 static uint32_t exit_ctls, entry_ctls;
128 
129 static uint64_t cr0_ones_mask, cr0_zeros_mask;
130 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
131 	     &cr0_ones_mask, 0, NULL);
132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
133 	     &cr0_zeros_mask, 0, NULL);
134 
135 static uint64_t cr4_ones_mask, cr4_zeros_mask;
136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
137 	     &cr4_ones_mask, 0, NULL);
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
139 	     &cr4_zeros_mask, 0, NULL);
140 
141 static volatile u_int nextvpid;
142 
143 static int vmx_no_patmsr;
144 
145 static int vmx_initialized;
146 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147 	   &vmx_initialized, 0, "Intel VMX initialized");
148 
149 /*
150  * Virtual NMI blocking conditions.
151  *
152  * Some processor implementations also require NMI to be blocked if
153  * the STI_BLOCKING bit is set. It is possible to detect this at runtime
154  * based on the (exit_reason,exit_qual) tuple being set to
155  * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
156  *
157  * We take the easy way out and also include STI_BLOCKING as one of the
158  * gating items for vNMI injection.
159  */
160 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
161 				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
162 				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
163 
164 /*
165  * Optional capabilities
166  */
167 static int cap_halt_exit;
168 static int cap_pause_exit;
169 static int cap_unrestricted_guest;
170 static int cap_monitor_trap;
171 
172 /* statistics */
173 static VMM_STAT_INTEL(VMEXIT_HLT_IGNORED, "number of times hlt was ignored");
174 
175 #ifdef KTR
176 static const char *
177 exit_reason_to_str(int reason)
178 {
179 	static char reasonbuf[32];
180 
181 	switch (reason) {
182 	case EXIT_REASON_EXCEPTION:
183 		return "exception";
184 	case EXIT_REASON_EXT_INTR:
185 		return "extint";
186 	case EXIT_REASON_TRIPLE_FAULT:
187 		return "triplefault";
188 	case EXIT_REASON_INIT:
189 		return "init";
190 	case EXIT_REASON_SIPI:
191 		return "sipi";
192 	case EXIT_REASON_IO_SMI:
193 		return "iosmi";
194 	case EXIT_REASON_SMI:
195 		return "smi";
196 	case EXIT_REASON_INTR_WINDOW:
197 		return "intrwindow";
198 	case EXIT_REASON_NMI_WINDOW:
199 		return "nmiwindow";
200 	case EXIT_REASON_TASK_SWITCH:
201 		return "taskswitch";
202 	case EXIT_REASON_CPUID:
203 		return "cpuid";
204 	case EXIT_REASON_GETSEC:
205 		return "getsec";
206 	case EXIT_REASON_HLT:
207 		return "hlt";
208 	case EXIT_REASON_INVD:
209 		return "invd";
210 	case EXIT_REASON_INVLPG:
211 		return "invlpg";
212 	case EXIT_REASON_RDPMC:
213 		return "rdpmc";
214 	case EXIT_REASON_RDTSC:
215 		return "rdtsc";
216 	case EXIT_REASON_RSM:
217 		return "rsm";
218 	case EXIT_REASON_VMCALL:
219 		return "vmcall";
220 	case EXIT_REASON_VMCLEAR:
221 		return "vmclear";
222 	case EXIT_REASON_VMLAUNCH:
223 		return "vmlaunch";
224 	case EXIT_REASON_VMPTRLD:
225 		return "vmptrld";
226 	case EXIT_REASON_VMPTRST:
227 		return "vmptrst";
228 	case EXIT_REASON_VMREAD:
229 		return "vmread";
230 	case EXIT_REASON_VMRESUME:
231 		return "vmresume";
232 	case EXIT_REASON_VMWRITE:
233 		return "vmwrite";
234 	case EXIT_REASON_VMXOFF:
235 		return "vmxoff";
236 	case EXIT_REASON_VMXON:
237 		return "vmxon";
238 	case EXIT_REASON_CR_ACCESS:
239 		return "craccess";
240 	case EXIT_REASON_DR_ACCESS:
241 		return "draccess";
242 	case EXIT_REASON_INOUT:
243 		return "inout";
244 	case EXIT_REASON_RDMSR:
245 		return "rdmsr";
246 	case EXIT_REASON_WRMSR:
247 		return "wrmsr";
248 	case EXIT_REASON_INVAL_VMCS:
249 		return "invalvmcs";
250 	case EXIT_REASON_INVAL_MSR:
251 		return "invalmsr";
252 	case EXIT_REASON_MWAIT:
253 		return "mwait";
254 	case EXIT_REASON_MTF:
255 		return "mtf";
256 	case EXIT_REASON_MONITOR:
257 		return "monitor";
258 	case EXIT_REASON_PAUSE:
259 		return "pause";
260 	case EXIT_REASON_MCE:
261 		return "mce";
262 	case EXIT_REASON_TPR:
263 		return "tpr";
264 	case EXIT_REASON_APIC:
265 		return "apic";
266 	case EXIT_REASON_GDTR_IDTR:
267 		return "gdtridtr";
268 	case EXIT_REASON_LDTR_TR:
269 		return "ldtrtr";
270 	case EXIT_REASON_EPT_FAULT:
271 		return "eptfault";
272 	case EXIT_REASON_EPT_MISCONFIG:
273 		return "eptmisconfig";
274 	case EXIT_REASON_INVEPT:
275 		return "invept";
276 	case EXIT_REASON_RDTSCP:
277 		return "rdtscp";
278 	case EXIT_REASON_VMX_PREEMPT:
279 		return "vmxpreempt";
280 	case EXIT_REASON_INVVPID:
281 		return "invvpid";
282 	case EXIT_REASON_WBINVD:
283 		return "wbinvd";
284 	case EXIT_REASON_XSETBV:
285 		return "xsetbv";
286 	default:
287 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
288 		return (reasonbuf);
289 	}
290 }
291 
292 #ifdef SETJMP_TRACE
293 static const char *
294 vmx_setjmp_rc2str(int rc)
295 {
296 	switch (rc) {
297 	case VMX_RETURN_DIRECT:
298 		return "direct";
299 	case VMX_RETURN_LONGJMP:
300 		return "longjmp";
301 	case VMX_RETURN_VMRESUME:
302 		return "vmresume";
303 	case VMX_RETURN_VMLAUNCH:
304 		return "vmlaunch";
305 	case VMX_RETURN_AST:
306 		return "ast";
307 	default:
308 		return "unknown";
309 	}
310 }
311 
312 #define	SETJMP_TRACE(vmx, vcpu, vmxctx, regname)			  \
313 	VMM_CTR1((vmx)->vm, (vcpu), "setjmp trace " #regname " 0x%016lx", \
314 		 (vmxctx)->regname)
315 
316 static void
317 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
318 {
319 	uint64_t host_rip, host_rsp;
320 
321 	if (vmxctx != &vmx->ctx[vcpu])
322 		panic("vmx_setjmp_trace: invalid vmxctx %p; should be %p",
323 			vmxctx, &vmx->ctx[vcpu]);
324 
325 	VMM_CTR1((vmx)->vm, (vcpu), "vmxctx = %p", vmxctx);
326 	VMM_CTR2((vmx)->vm, (vcpu), "setjmp return code %s(%d)",
327 		 vmx_setjmp_rc2str(rc), rc);
328 
329 	host_rsp = host_rip = ~0;
330 	vmread(VMCS_HOST_RIP, &host_rip);
331 	vmread(VMCS_HOST_RSP, &host_rsp);
332 	VMM_CTR2((vmx)->vm, (vcpu), "vmcs host_rip 0x%016lx, host_rsp 0x%016lx",
333 		 host_rip, host_rsp);
334 
335 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r15);
336 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r14);
337 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r13);
338 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r12);
339 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbp);
340 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rsp);
341 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbx);
342 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rip);
343 
344 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdi);
345 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rsi);
346 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdx);
347 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rcx);
348 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r8);
349 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r9);
350 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rax);
351 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbx);
352 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbp);
353 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r10);
354 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r11);
355 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r12);
356 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r13);
357 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r14);
358 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r15);
359 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_cr2);
360 }
361 #endif
362 #else
363 static void __inline
364 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
365 {
366 	return;
367 }
368 #endif	/* KTR */
369 
370 u_long
371 vmx_fix_cr0(u_long cr0)
372 {
373 
374 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
375 }
376 
377 u_long
378 vmx_fix_cr4(u_long cr4)
379 {
380 
381 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
382 }
383 
384 static void
385 msr_save_area_init(struct msr_entry *g_area, int *g_count)
386 {
387 	int cnt;
388 
389 	static struct msr_entry guest_msrs[] = {
390 		{ MSR_KGSBASE, 0, 0 },
391 	};
392 
393 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
394 	if (cnt > GUEST_MSR_MAX_ENTRIES)
395 		panic("guest msr save area overrun");
396 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
397 	*g_count = cnt;
398 }
399 
400 static void
401 vmx_disable(void *arg __unused)
402 {
403 	struct invvpid_desc invvpid_desc = { 0 };
404 	struct invept_desc invept_desc = { 0 };
405 
406 	if (vmxon_enabled[curcpu]) {
407 		/*
408 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
409 		 *
410 		 * VMXON or VMXOFF are not required to invalidate any TLB
411 		 * caching structures. This prevents potential retention of
412 		 * cached information in the TLB between distinct VMX episodes.
413 		 */
414 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
415 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
416 		vmxoff();
417 	}
418 	load_cr4(rcr4() & ~CR4_VMXE);
419 }
420 
421 static int
422 vmx_cleanup(void)
423 {
424 
425 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
426 
427 	return (0);
428 }
429 
430 static void
431 vmx_enable(void *arg __unused)
432 {
433 	int error;
434 
435 	load_cr4(rcr4() | CR4_VMXE);
436 
437 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
438 	error = vmxon(vmxon_region[curcpu]);
439 	if (error == 0)
440 		vmxon_enabled[curcpu] = 1;
441 }
442 
443 static int
444 vmx_init(void)
445 {
446 	int error;
447 	uint64_t fixed0, fixed1, feature_control;
448 	uint32_t tmp;
449 
450 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
451 	if (!(cpu_feature2 & CPUID2_VMX)) {
452 		printf("vmx_init: processor does not support VMX operation\n");
453 		return (ENXIO);
454 	}
455 
456 	/*
457 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
458 	 * are set (bits 0 and 2 respectively).
459 	 */
460 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
461 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
462 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
463 		printf("vmx_init: VMX operation disabled by BIOS\n");
464 		return (ENXIO);
465 	}
466 
467 	/* Check support for primary processor-based VM-execution controls */
468 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
469 			       MSR_VMX_TRUE_PROCBASED_CTLS,
470 			       PROCBASED_CTLS_ONE_SETTING,
471 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
472 	if (error) {
473 		printf("vmx_init: processor does not support desired primary "
474 		       "processor-based controls\n");
475 		return (error);
476 	}
477 
478 	/* Clear the processor-based ctl bits that are set on demand */
479 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
480 
481 	/* Check support for secondary processor-based VM-execution controls */
482 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
483 			       MSR_VMX_PROCBASED_CTLS2,
484 			       PROCBASED_CTLS2_ONE_SETTING,
485 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
486 	if (error) {
487 		printf("vmx_init: processor does not support desired secondary "
488 		       "processor-based controls\n");
489 		return (error);
490 	}
491 
492 	/* Check support for VPID */
493 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
494 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
495 	if (error == 0)
496 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
497 
498 	/* Check support for pin-based VM-execution controls */
499 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
500 			       MSR_VMX_TRUE_PINBASED_CTLS,
501 			       PINBASED_CTLS_ONE_SETTING,
502 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
503 	if (error) {
504 		printf("vmx_init: processor does not support desired "
505 		       "pin-based controls\n");
506 		return (error);
507 	}
508 
509 	/* Check support for VM-exit controls */
510 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
511 			       VM_EXIT_CTLS_ONE_SETTING,
512 			       VM_EXIT_CTLS_ZERO_SETTING,
513 			       &exit_ctls);
514 	if (error) {
515 		/* Try again without the PAT MSR bits */
516 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
517 				       MSR_VMX_TRUE_EXIT_CTLS,
518 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
519 				       VM_EXIT_CTLS_ZERO_SETTING,
520 				       &exit_ctls);
521 		if (error) {
522 			printf("vmx_init: processor does not support desired "
523 			       "exit controls\n");
524 			return (error);
525 		} else {
526 			if (bootverbose)
527 				printf("vmm: PAT MSR access not supported\n");
528 			guest_msr_valid(MSR_PAT);
529 			vmx_no_patmsr = 1;
530 		}
531 	}
532 
533 	/* Check support for VM-entry controls */
534 	if (!vmx_no_patmsr) {
535 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
536 				       MSR_VMX_TRUE_ENTRY_CTLS,
537 				       VM_ENTRY_CTLS_ONE_SETTING,
538 				       VM_ENTRY_CTLS_ZERO_SETTING,
539 				       &entry_ctls);
540 	} else {
541 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
542 				       MSR_VMX_TRUE_ENTRY_CTLS,
543 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
544 				       VM_ENTRY_CTLS_ZERO_SETTING,
545 				       &entry_ctls);
546 	}
547 
548 	if (error) {
549 		printf("vmx_init: processor does not support desired "
550 		       "entry controls\n");
551 		       return (error);
552 	}
553 
554 	/*
555 	 * Check support for optional features by testing them
556 	 * as individual bits
557 	 */
558 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
559 					MSR_VMX_TRUE_PROCBASED_CTLS,
560 					PROCBASED_HLT_EXITING, 0,
561 					&tmp) == 0);
562 
563 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
564 					MSR_VMX_PROCBASED_CTLS,
565 					PROCBASED_MTF, 0,
566 					&tmp) == 0);
567 
568 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
569 					 MSR_VMX_TRUE_PROCBASED_CTLS,
570 					 PROCBASED_PAUSE_EXITING, 0,
571 					 &tmp) == 0);
572 
573 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
574 					MSR_VMX_PROCBASED_CTLS2,
575 					PROCBASED2_UNRESTRICTED_GUEST, 0,
576 				        &tmp) == 0);
577 
578 	/* Initialize EPT */
579 	error = ept_init();
580 	if (error) {
581 		printf("vmx_init: ept initialization failed (%d)\n", error);
582 		return (error);
583 	}
584 
585 	/*
586 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
587 	 */
588 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
589 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
590 	cr0_ones_mask = fixed0 & fixed1;
591 	cr0_zeros_mask = ~fixed0 & ~fixed1;
592 
593 	/*
594 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
595 	 * if unrestricted guest execution is allowed.
596 	 */
597 	if (cap_unrestricted_guest)
598 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
599 
600 	/*
601 	 * Do not allow the guest to set CR0_NW or CR0_CD.
602 	 */
603 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
604 
605 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
606 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
607 	cr4_ones_mask = fixed0 & fixed1;
608 	cr4_zeros_mask = ~fixed0 & ~fixed1;
609 
610 	/* enable VMX operation */
611 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
612 
613 	vmx_initialized = 1;
614 
615 	return (0);
616 }
617 
618 /*
619  * If this processor does not support VPIDs then simply return 0.
620  *
621  * Otherwise generate the next value of VPID to use. Any value is alright
622  * as long as it is non-zero.
623  *
624  * We always execute in VMX non-root context with EPT enabled. Thus all
625  * combined mappings are tagged with the (EP4TA, VPID, PCID) tuple. This
626  * in turn means that multiple VMs can share the same VPID as long as
627  * they have distinct EPT page tables.
628  *
629  * XXX
630  * We should optimize this so that it returns VPIDs that are not in
631  * use. Then we will not unnecessarily invalidate mappings in
632  * vmx_set_pcpu_defaults() just because two or more vcpus happen to
633  * use the same 'vpid'.
634  */
635 static uint16_t
636 vmx_vpid(void)
637 {
638 	uint16_t vpid = 0;
639 
640 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) != 0) {
641 		do {
642 			vpid = atomic_fetchadd_int(&nextvpid, 1);
643 		} while (vpid == 0);
644 	}
645 
646 	return (vpid);
647 }
648 
649 static int
650 vmx_setup_cr_shadow(int which, struct vmcs *vmcs)
651 {
652 	int error, mask_ident, shadow_ident;
653 	uint64_t mask_value, shadow_value;
654 
655 	if (which != 0 && which != 4)
656 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
657 
658 	if (which == 0) {
659 		mask_ident = VMCS_CR0_MASK;
660 		mask_value = cr0_ones_mask | cr0_zeros_mask;
661 		shadow_ident = VMCS_CR0_SHADOW;
662 		shadow_value = cr0_ones_mask;
663 	} else {
664 		mask_ident = VMCS_CR4_MASK;
665 		mask_value = cr4_ones_mask | cr4_zeros_mask;
666 		shadow_ident = VMCS_CR4_SHADOW;
667 		shadow_value = cr4_ones_mask;
668 	}
669 
670 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
671 	if (error)
672 		return (error);
673 
674 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), shadow_value);
675 	if (error)
676 		return (error);
677 
678 	return (0);
679 }
680 #define	vmx_setup_cr0_shadow(vmcs)	vmx_setup_cr_shadow(0, (vmcs))
681 #define	vmx_setup_cr4_shadow(vmcs)	vmx_setup_cr_shadow(4, (vmcs))
682 
683 static void *
684 vmx_vminit(struct vm *vm)
685 {
686 	uint16_t vpid;
687 	int i, error, guest_msr_count;
688 	struct vmx *vmx;
689 
690 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
691 	if ((uintptr_t)vmx & PAGE_MASK) {
692 		panic("malloc of struct vmx not aligned on %d byte boundary",
693 		      PAGE_SIZE);
694 	}
695 	vmx->vm = vm;
696 
697 	/*
698 	 * Clean up EPTP-tagged guest physical and combined mappings
699 	 *
700 	 * VMX transitions are not required to invalidate any guest physical
701 	 * mappings. So, it may be possible for stale guest physical mappings
702 	 * to be present in the processor TLBs.
703 	 *
704 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
705 	 */
706 	ept_invalidate_mappings(vtophys(vmx->pml4ept));
707 
708 	msr_bitmap_initialize(vmx->msr_bitmap);
709 
710 	/*
711 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
712 	 * The guest FSBASE and GSBASE are saved and restored during
713 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
714 	 * always restored from the vmcs host state area on vm-exit.
715 	 *
716 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
717 	 * how they are saved/restored so can be directly accessed by the
718 	 * guest.
719 	 *
720 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
721 	 * Host KGSBASE is restored before returning to userland from the pcb.
722 	 * There will be a window of time when we are executing in the host
723 	 * kernel context with a value of KGSBASE from the guest. This is ok
724 	 * because the value of KGSBASE is inconsequential in kernel context.
725 	 *
726 	 * MSR_EFER is saved and restored in the guest VMCS area on a
727 	 * VM exit and entry respectively. It is also restored from the
728 	 * host VMCS area on a VM exit.
729 	 */
730 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
731 	    guest_msr_rw(vmx, MSR_FSBASE) ||
732 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
733 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
734 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
735 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
736 	    guest_msr_rw(vmx, MSR_EFER))
737 		panic("vmx_vminit: error setting guest msr access");
738 
739 	/*
740 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
741 	 * and entry respectively. It is also restored from the host VMCS
742 	 * area on a VM exit. However, if running on a system with no
743 	 * MSR_PAT save/restore support, leave access disabled so accesses
744 	 * will be trapped.
745 	 */
746 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
747 		panic("vmx_vminit: error setting guest pat msr access");
748 
749 	for (i = 0; i < VM_MAXCPU; i++) {
750 		vmx->vmcs[i].identifier = vmx_revision();
751 		error = vmclear(&vmx->vmcs[i]);
752 		if (error != 0) {
753 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
754 			      error, i);
755 		}
756 
757 		vpid = vmx_vpid();
758 
759 		error = vmcs_set_defaults(&vmx->vmcs[i],
760 					  (u_long)vmx_longjmp,
761 					  (u_long)&vmx->ctx[i],
762 					  vtophys(vmx->pml4ept),
763 					  pinbased_ctls,
764 					  procbased_ctls,
765 					  procbased_ctls2,
766 					  exit_ctls, entry_ctls,
767 					  vtophys(vmx->msr_bitmap),
768 					  vpid);
769 
770 		if (error != 0)
771 			panic("vmx_vminit: vmcs_set_defaults error %d", error);
772 
773 		vmx->cap[i].set = 0;
774 		vmx->cap[i].proc_ctls = procbased_ctls;
775 
776 		vmx->state[i].lastcpu = -1;
777 		vmx->state[i].vpid = vpid;
778 
779 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
780 
781 		error = vmcs_set_msr_save(&vmx->vmcs[i],
782 					  vtophys(vmx->guest_msrs[i]),
783 					  guest_msr_count);
784 		if (error != 0)
785 			panic("vmcs_set_msr_save error %d", error);
786 
787 		error = vmx_setup_cr0_shadow(&vmx->vmcs[i]);
788 		if (error != 0)
789 			panic("vmx_setup_cr0_shadow %d", error);
790 
791 		error = vmx_setup_cr4_shadow(&vmx->vmcs[i]);
792 		if (error != 0)
793 			panic("vmx_setup_cr4_shadow %d", error);
794 	}
795 
796 	return (vmx);
797 }
798 
799 static int
800 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
801 {
802 	int handled, func;
803 
804 	func = vmxctx->guest_rax;
805 
806 	handled = x86_emulate_cpuid(vm, vcpu,
807 				    (uint32_t*)(&vmxctx->guest_rax),
808 				    (uint32_t*)(&vmxctx->guest_rbx),
809 				    (uint32_t*)(&vmxctx->guest_rcx),
810 				    (uint32_t*)(&vmxctx->guest_rdx));
811 	return (handled);
812 }
813 
814 static __inline void
815 vmx_run_trace(struct vmx *vmx, int vcpu)
816 {
817 #ifdef KTR
818 	VMM_CTR1(vmx->vm, vcpu, "Resume execution at 0x%0lx", vmcs_guest_rip());
819 #endif
820 }
821 
822 static __inline void
823 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
824 	       int handled)
825 {
826 #ifdef KTR
827 	VMM_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
828 		 handled ? "handled" : "unhandled",
829 		 exit_reason_to_str(exit_reason), rip);
830 #endif
831 }
832 
833 static __inline void
834 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
835 {
836 #ifdef KTR
837 	VMM_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
838 #endif
839 }
840 
841 static int
842 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
843 {
844 	int error, lastcpu;
845 	struct vmxstate *vmxstate;
846 	struct invvpid_desc invvpid_desc = { 0 };
847 
848 	vmxstate = &vmx->state[vcpu];
849 	lastcpu = vmxstate->lastcpu;
850 	vmxstate->lastcpu = curcpu;
851 
852 	if (lastcpu == curcpu) {
853 		error = 0;
854 		goto done;
855 	}
856 
857 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
858 
859 	error = vmwrite(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
860 	if (error != 0)
861 		goto done;
862 
863 	error = vmwrite(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
864 	if (error != 0)
865 		goto done;
866 
867 	error = vmwrite(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
868 	if (error != 0)
869 		goto done;
870 
871 	/*
872 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
873 	 *
874 	 * We do this because this vcpu was executing on a different host
875 	 * cpu when it last ran. We do not track whether it invalidated
876 	 * mappings associated with its 'vpid' during that run. So we must
877 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
878 	 * stale and invalidate them.
879 	 *
880 	 * Note that we incur this penalty only when the scheduler chooses to
881 	 * move the thread associated with this vcpu between host cpus.
882 	 *
883 	 * Note also that this will invalidate mappings tagged with 'vpid'
884 	 * for "all" EP4TAs.
885 	 */
886 	if (vmxstate->vpid != 0) {
887 		invvpid_desc.vpid = vmxstate->vpid;
888 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
889 	}
890 done:
891 	return (error);
892 }
893 
894 static void
895 vm_exit_update_rip(struct vm_exit *vmexit)
896 {
897 	int error;
898 
899 	error = vmwrite(VMCS_GUEST_RIP, vmexit->rip + vmexit->inst_length);
900 	if (error)
901 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
902 }
903 
904 /*
905  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
906  */
907 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
908 
909 static void __inline
910 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
911 {
912 	int error;
913 
914 	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
915 
916 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
917 	if (error)
918 		panic("vmx_set_int_window_exiting: vmwrite error %d", error);
919 }
920 
921 static void __inline
922 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
923 {
924 	int error;
925 
926 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
927 
928 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
929 	if (error)
930 		panic("vmx_clear_int_window_exiting: vmwrite error %d", error);
931 }
932 
933 static void __inline
934 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
935 {
936 	int error;
937 
938 	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
939 
940 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
941 	if (error)
942 		panic("vmx_set_nmi_window_exiting: vmwrite error %d", error);
943 }
944 
945 static void __inline
946 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
947 {
948 	int error;
949 
950 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
951 
952 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
953 	if (error)
954 		panic("vmx_clear_nmi_window_exiting: vmwrite error %d", error);
955 }
956 
957 static int
958 vmx_inject_nmi(struct vmx *vmx, int vcpu)
959 {
960 	int error;
961 	uint64_t info, interruptibility;
962 
963 	/* Bail out if no NMI requested */
964 	if (!vm_nmi_pending(vmx->vm, vcpu))
965 		return (0);
966 
967 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
968 	if (error) {
969 		panic("vmx_inject_nmi: vmread(interruptibility) %d",
970 			error);
971 	}
972 	if (interruptibility & nmi_blocking_bits)
973 		goto nmiblocked;
974 
975 	/*
976 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
977 	 * or the VMCS entry check will fail.
978 	 */
979 	info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID;
980 	info |= IDT_NMI;
981 
982 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
983 	if (error)
984 		panic("vmx_inject_nmi: vmwrite(intrinfo) %d", error);
985 
986 	VMM_CTR0(vmx->vm, vcpu, "Injecting vNMI");
987 
988 	/* Clear the request */
989 	vm_nmi_clear(vmx->vm, vcpu);
990 	return (1);
991 
992 nmiblocked:
993 	/*
994 	 * Set the NMI Window Exiting execution control so we can inject
995 	 * the virtual NMI as soon as blocking condition goes away.
996 	 */
997 	vmx_set_nmi_window_exiting(vmx, vcpu);
998 
999 	VMM_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1000 	return (1);
1001 }
1002 
1003 static void
1004 vmx_inject_interrupts(struct vmx *vmx, int vcpu)
1005 {
1006 	int error, vector;
1007 	uint64_t info, rflags, interruptibility;
1008 
1009 	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
1010 				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
1011 
1012 	/*
1013 	 * If there is already an interrupt pending then just return.
1014 	 *
1015 	 * This could happen if an interrupt was injected on a prior
1016 	 * VM entry but the actual entry into guest mode was aborted
1017 	 * because of a pending AST.
1018 	 */
1019 	error = vmread(VMCS_ENTRY_INTR_INFO, &info);
1020 	if (error)
1021 		panic("vmx_inject_interrupts: vmread(intrinfo) %d", error);
1022 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1023 		return;
1024 
1025 	/*
1026 	 * NMI injection has priority so deal with those first
1027 	 */
1028 	if (vmx_inject_nmi(vmx, vcpu))
1029 		return;
1030 
1031 	/* Ask the local apic for a vector to inject */
1032 	vector = lapic_pending_intr(vmx->vm, vcpu);
1033 	if (vector < 0)
1034 		return;
1035 
1036 	if (vector < 32 || vector > 255)
1037 		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1038 
1039 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1040 	error = vmread(VMCS_GUEST_RFLAGS, &rflags);
1041 	if (error)
1042 		panic("vmx_inject_interrupts: vmread(rflags) %d", error);
1043 
1044 	if ((rflags & PSL_I) == 0)
1045 		goto cantinject;
1046 
1047 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
1048 	if (error) {
1049 		panic("vmx_inject_interrupts: vmread(interruptibility) %d",
1050 			error);
1051 	}
1052 	if (interruptibility & HWINTR_BLOCKED)
1053 		goto cantinject;
1054 
1055 	/* Inject the interrupt */
1056 	info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID;
1057 	info |= vector;
1058 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
1059 	if (error)
1060 		panic("vmx_inject_interrupts: vmwrite(intrinfo) %d", error);
1061 
1062 	/* Update the Local APIC ISR */
1063 	lapic_intr_accepted(vmx->vm, vcpu, vector);
1064 
1065 	VMM_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1066 
1067 	return;
1068 
1069 cantinject:
1070 	/*
1071 	 * Set the Interrupt Window Exiting execution control so we can inject
1072 	 * the interrupt as soon as blocking condition goes away.
1073 	 */
1074 	vmx_set_int_window_exiting(vmx, vcpu);
1075 
1076 	VMM_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1077 }
1078 
1079 static int
1080 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1081 {
1082 	int error, cr, vmcs_guest_cr;
1083 	uint64_t regval, ones_mask, zeros_mask;
1084 	const struct vmxctx *vmxctx;
1085 
1086 	/* We only handle mov to %cr0 or %cr4 at this time */
1087 	if ((exitqual & 0xf0) != 0x00)
1088 		return (UNHANDLED);
1089 
1090 	cr = exitqual & 0xf;
1091 	if (cr != 0 && cr != 4)
1092 		return (UNHANDLED);
1093 
1094 	vmxctx = &vmx->ctx[vcpu];
1095 
1096 	/*
1097 	 * We must use vmwrite() directly here because vmcs_setreg() will
1098 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1099 	 */
1100 	switch ((exitqual >> 8) & 0xf) {
1101 	case 0:
1102 		regval = vmxctx->guest_rax;
1103 		break;
1104 	case 1:
1105 		regval = vmxctx->guest_rcx;
1106 		break;
1107 	case 2:
1108 		regval = vmxctx->guest_rdx;
1109 		break;
1110 	case 3:
1111 		regval = vmxctx->guest_rbx;
1112 		break;
1113 	case 4:
1114 		error = vmread(VMCS_GUEST_RSP, &regval);
1115 		if (error) {
1116 			panic("vmx_emulate_cr_access: "
1117 			      "error %d reading guest rsp", error);
1118 		}
1119 		break;
1120 	case 5:
1121 		regval = vmxctx->guest_rbp;
1122 		break;
1123 	case 6:
1124 		regval = vmxctx->guest_rsi;
1125 		break;
1126 	case 7:
1127 		regval = vmxctx->guest_rdi;
1128 		break;
1129 	case 8:
1130 		regval = vmxctx->guest_r8;
1131 		break;
1132 	case 9:
1133 		regval = vmxctx->guest_r9;
1134 		break;
1135 	case 10:
1136 		regval = vmxctx->guest_r10;
1137 		break;
1138 	case 11:
1139 		regval = vmxctx->guest_r11;
1140 		break;
1141 	case 12:
1142 		regval = vmxctx->guest_r12;
1143 		break;
1144 	case 13:
1145 		regval = vmxctx->guest_r13;
1146 		break;
1147 	case 14:
1148 		regval = vmxctx->guest_r14;
1149 		break;
1150 	case 15:
1151 		regval = vmxctx->guest_r15;
1152 		break;
1153 	}
1154 
1155 	if (cr == 0) {
1156 		ones_mask = cr0_ones_mask;
1157 		zeros_mask = cr0_zeros_mask;
1158 		vmcs_guest_cr = VMCS_GUEST_CR0;
1159 	} else {
1160 		ones_mask = cr4_ones_mask;
1161 		zeros_mask = cr4_zeros_mask;
1162 		vmcs_guest_cr = VMCS_GUEST_CR4;
1163 	}
1164 	regval |= ones_mask;
1165 	regval &= ~zeros_mask;
1166 	error = vmwrite(vmcs_guest_cr, regval);
1167 	if (error) {
1168 		panic("vmx_emulate_cr_access: error %d writing cr%d",
1169 		      error, cr);
1170 	}
1171 
1172 	return (HANDLED);
1173 }
1174 
1175 static int
1176 vmx_ept_fault(struct vm *vm, int cpu,
1177 	      uint64_t gla, uint64_t gpa, uint64_t rip, int inst_length,
1178 	      uint64_t cr3, uint64_t ept_qual, struct vie *vie)
1179 {
1180 	int read, write, error;
1181 
1182 	/* EPT violation on an instruction fetch doesn't make sense here */
1183 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1184 		return (UNHANDLED);
1185 
1186 	/* EPT violation must be a read fault or a write fault */
1187 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1188 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1189 	if ((read | write) == 0)
1190 		return (UNHANDLED);
1191 
1192 	/*
1193 	 * The EPT violation must have been caused by accessing a
1194 	 * guest-physical address that is a translation of a guest-linear
1195 	 * address.
1196 	 */
1197 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1198 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1199 		return (UNHANDLED);
1200 	}
1201 
1202 	/* Fetch, decode and emulate the faulting instruction */
1203 	if (vmm_fetch_instruction(vm, cpu, rip, inst_length, cr3, vie) != 0)
1204 		return (UNHANDLED);
1205 
1206 	if (vmm_decode_instruction(vm, cpu, gla, vie) != 0)
1207 		return (UNHANDLED);
1208 
1209 	/*
1210 	 * Check if this is a local apic access
1211 	 */
1212 	if (gpa < DEFAULT_APIC_BASE || gpa >= DEFAULT_APIC_BASE + PAGE_SIZE)
1213 		return (UNHANDLED);
1214 
1215 	error = vmm_emulate_instruction(vm, cpu, gpa, vie,
1216 					lapic_mmio_read, lapic_mmio_write, 0);
1217 
1218 	return (error ? UNHANDLED : HANDLED);
1219 }
1220 
1221 static int
1222 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1223 {
1224 	int error, handled;
1225 	struct vmcs *vmcs;
1226 	struct vmxctx *vmxctx;
1227 	uint32_t eax, ecx, edx;
1228 	uint64_t qual, gla, gpa, cr3, intr_info;
1229 
1230 	handled = 0;
1231 	vmcs = &vmx->vmcs[vcpu];
1232 	vmxctx = &vmx->ctx[vcpu];
1233 	qual = vmexit->u.vmx.exit_qualification;
1234 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1235 
1236 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1237 
1238 	switch (vmexit->u.vmx.exit_reason) {
1239 	case EXIT_REASON_CR_ACCESS:
1240 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1241 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1242 		break;
1243 	case EXIT_REASON_RDMSR:
1244 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1245 		ecx = vmxctx->guest_rcx;
1246 		error = emulate_rdmsr(vmx->vm, vcpu, ecx);
1247 		if (error) {
1248 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1249 			vmexit->u.msr.code = ecx;
1250 		} else
1251 			handled = 1;
1252 		break;
1253 	case EXIT_REASON_WRMSR:
1254 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1255 		eax = vmxctx->guest_rax;
1256 		ecx = vmxctx->guest_rcx;
1257 		edx = vmxctx->guest_rdx;
1258 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1259 					(uint64_t)edx << 32 | eax);
1260 		if (error) {
1261 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1262 			vmexit->u.msr.code = ecx;
1263 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1264 		} else
1265 			handled = 1;
1266 		break;
1267 	case EXIT_REASON_HLT:
1268 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1269 		/*
1270 		 * If there is an event waiting to be injected then there is
1271 		 * no need to 'hlt'.
1272 		 */
1273 		error = vmread(VMCS_ENTRY_INTR_INFO, &intr_info);
1274 		if (error)
1275 			panic("vmx_exit_process: vmread(intrinfo) %d", error);
1276 
1277 		if (intr_info & VMCS_INTERRUPTION_INFO_VALID) {
1278 			handled = 1;
1279 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT_IGNORED, 1);
1280 		} else
1281 			vmexit->exitcode = VM_EXITCODE_HLT;
1282 		break;
1283 	case EXIT_REASON_MTF:
1284 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1285 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1286 		break;
1287 	case EXIT_REASON_PAUSE:
1288 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1289 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1290 		break;
1291 	case EXIT_REASON_INTR_WINDOW:
1292 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1293 		vmx_clear_int_window_exiting(vmx, vcpu);
1294 		VMM_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1295 		return (1);
1296 	case EXIT_REASON_EXT_INTR:
1297 		/*
1298 		 * External interrupts serve only to cause VM exits and allow
1299 		 * the host interrupt handler to run.
1300 		 *
1301 		 * If this external interrupt triggers a virtual interrupt
1302 		 * to a VM, then that state will be recorded by the
1303 		 * host interrupt handler in the VM's softc. We will inject
1304 		 * this virtual interrupt during the subsequent VM enter.
1305 		 */
1306 
1307 		/*
1308 		 * This is special. We want to treat this as an 'handled'
1309 		 * VM-exit but not increment the instruction pointer.
1310 		 */
1311 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1312 		return (1);
1313 	case EXIT_REASON_NMI_WINDOW:
1314 		/* Exit to allow the pending virtual NMI to be injected */
1315 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1316 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1317 		VMM_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1318 		return (1);
1319 	case EXIT_REASON_INOUT:
1320 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1321 		vmexit->exitcode = VM_EXITCODE_INOUT;
1322 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1323 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1324 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1325 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1326 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1327 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1328 		break;
1329 	case EXIT_REASON_CPUID:
1330 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1331 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1332 		break;
1333 	case EXIT_REASON_EPT_FAULT:
1334 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1335 		gla = vmcs_gla();
1336 		gpa = vmcs_gpa();
1337 		cr3 = vmcs_guest_cr3();
1338 		handled = vmx_ept_fault(vmx->vm, vcpu, gla, gpa,
1339 					vmexit->rip, vmexit->inst_length,
1340 					cr3, qual, &vmexit->u.paging.vie);
1341 		if (!handled) {
1342 			vmexit->exitcode = VM_EXITCODE_PAGING;
1343 			vmexit->u.paging.gpa = gpa;
1344 		}
1345 		break;
1346 	default:
1347 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1348 		break;
1349 	}
1350 
1351 	if (handled) {
1352 		/*
1353 		 * It is possible that control is returned to userland
1354 		 * even though we were able to handle the VM exit in the
1355 		 * kernel.
1356 		 *
1357 		 * In such a case we want to make sure that the userland
1358 		 * restarts guest execution at the instruction *after*
1359 		 * the one we just processed. Therefore we update the
1360 		 * guest rip in the VMCS and in 'vmexit'.
1361 		 */
1362 		vm_exit_update_rip(vmexit);
1363 		vmexit->rip += vmexit->inst_length;
1364 		vmexit->inst_length = 0;
1365 
1366 		/*
1367 		 * Special case for spinning up an AP - exit to userspace to
1368 		 * give the controlling process a chance to intercept and
1369 		 * spin up a thread for the AP.
1370 		 */
1371 		if (vmexit->exitcode == VM_EXITCODE_SPINUP_AP)
1372 			handled = 0;
1373 	} else {
1374 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1375 			/*
1376 			 * If this VM exit was not claimed by anybody then
1377 			 * treat it as a generic VMX exit.
1378 			 */
1379 			vmexit->exitcode = VM_EXITCODE_VMX;
1380 			vmexit->u.vmx.error = 0;
1381 		} else {
1382 			/*
1383 			 * The exitcode and collateral have been populated.
1384 			 * The VM exit will be processed further in userland.
1385 			 */
1386 		}
1387 	}
1388 	return (handled);
1389 }
1390 
1391 static int
1392 vmx_run(void *arg, int vcpu, register_t rip)
1393 {
1394 	int error, vie, rc, handled, astpending;
1395 	uint32_t exit_reason;
1396 	struct vmx *vmx;
1397 	struct vmxctx *vmxctx;
1398 	struct vmcs *vmcs;
1399 	struct vm_exit *vmexit;
1400 
1401 	vmx = arg;
1402 	vmcs = &vmx->vmcs[vcpu];
1403 	vmxctx = &vmx->ctx[vcpu];
1404 	vmxctx->launched = 0;
1405 
1406 	astpending = 0;
1407 	vmexit = vm_exitinfo(vmx->vm, vcpu);
1408 
1409 	/*
1410 	 * XXX Can we avoid doing this every time we do a vm run?
1411 	 */
1412 	VMPTRLD(vmcs);
1413 
1414 	/*
1415 	 * XXX
1416 	 * We do this every time because we may setup the virtual machine
1417 	 * from a different process than the one that actually runs it.
1418 	 *
1419 	 * If the life of a virtual machine was spent entirely in the context
1420 	 * of a single process we could do this once in vmcs_set_defaults().
1421 	 */
1422 	if ((error = vmwrite(VMCS_HOST_CR3, rcr3())) != 0)
1423 		panic("vmx_run: error %d writing to VMCS_HOST_CR3", error);
1424 
1425 	if ((error = vmwrite(VMCS_GUEST_RIP, rip)) != 0)
1426 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
1427 
1428 	if ((error = vmx_set_pcpu_defaults(vmx, vcpu)) != 0)
1429 		panic("vmx_run: error %d setting up pcpu defaults", error);
1430 
1431 	do {
1432 		lapic_timer_tick(vmx->vm, vcpu);
1433 		vmx_inject_interrupts(vmx, vcpu);
1434 		vmx_run_trace(vmx, vcpu);
1435 		rc = vmx_setjmp(vmxctx);
1436 #ifdef SETJMP_TRACE
1437 		vmx_setjmp_trace(vmx, vcpu, vmxctx, rc);
1438 #endif
1439 		switch (rc) {
1440 		case VMX_RETURN_DIRECT:
1441 			if (vmxctx->launched == 0) {
1442 				vmxctx->launched = 1;
1443 				vmx_launch(vmxctx);
1444 			} else
1445 				vmx_resume(vmxctx);
1446 			panic("vmx_launch/resume should not return");
1447 			break;
1448 		case VMX_RETURN_LONGJMP:
1449 			break;			/* vm exit */
1450 		case VMX_RETURN_AST:
1451 			astpending = 1;
1452 			break;
1453 		case VMX_RETURN_VMRESUME:
1454 			vie = vmcs_instruction_error();
1455 			if (vmxctx->launch_error == VM_FAIL_INVALID ||
1456 			    vie != VMRESUME_WITH_NON_LAUNCHED_VMCS) {
1457 				printf("vmresume error %d vmcs inst error %d\n",
1458 					vmxctx->launch_error, vie);
1459 				goto err_exit;
1460 			}
1461 			vmx_launch(vmxctx);	/* try to launch the guest */
1462 			panic("vmx_launch should not return");
1463 			break;
1464 		case VMX_RETURN_VMLAUNCH:
1465 			vie = vmcs_instruction_error();
1466 #if 1
1467 			printf("vmlaunch error %d vmcs inst error %d\n",
1468 				vmxctx->launch_error, vie);
1469 #endif
1470 			goto err_exit;
1471 		default:
1472 			panic("vmx_setjmp returned %d", rc);
1473 		}
1474 
1475 		/* enable interrupts */
1476 		enable_intr();
1477 
1478 		/* collect some basic information for VM exit processing */
1479 		vmexit->rip = rip = vmcs_guest_rip();
1480 		vmexit->inst_length = vmexit_instruction_length();
1481 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1482 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1483 
1484 		if (astpending) {
1485 			handled = 1;
1486 			vmexit->inst_length = 0;
1487 			vmexit->exitcode = VM_EXITCODE_BOGUS;
1488 			vmx_astpending_trace(vmx, vcpu, rip);
1489 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1490 			break;
1491 		}
1492 
1493 		handled = vmx_exit_process(vmx, vcpu, vmexit);
1494 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1495 
1496 	} while (handled);
1497 
1498 	/*
1499 	 * If a VM exit has been handled then the exitcode must be BOGUS
1500 	 * If a VM exit is not handled then the exitcode must not be BOGUS
1501 	 */
1502 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1503 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1504 		panic("Mismatch between handled (%d) and exitcode (%d)",
1505 		      handled, vmexit->exitcode);
1506 	}
1507 
1508 	if (!handled)
1509 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1);
1510 
1511 	VMM_CTR1(vmx->vm, vcpu, "goto userland: exitcode %d",vmexit->exitcode);
1512 
1513 	/*
1514 	 * XXX
1515 	 * We need to do this to ensure that any VMCS state cached by the
1516 	 * processor is flushed to memory. We need to do this in case the
1517 	 * VM moves to a different cpu the next time it runs.
1518 	 *
1519 	 * Can we avoid doing this?
1520 	 */
1521 	VMCLEAR(vmcs);
1522 	return (0);
1523 
1524 err_exit:
1525 	vmexit->exitcode = VM_EXITCODE_VMX;
1526 	vmexit->u.vmx.exit_reason = (uint32_t)-1;
1527 	vmexit->u.vmx.exit_qualification = (uint32_t)-1;
1528 	vmexit->u.vmx.error = vie;
1529 	VMCLEAR(vmcs);
1530 	return (ENOEXEC);
1531 }
1532 
1533 static void
1534 vmx_vmcleanup(void *arg)
1535 {
1536 	int error;
1537 	struct vmx *vmx = arg;
1538 
1539 	/*
1540 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1541 	 */
1542 	error = vmclear(&vmx->vmcs[0]);
1543 	if (error != 0)
1544 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1545 
1546 	ept_vmcleanup(vmx);
1547 	free(vmx, M_VMX);
1548 
1549 	return;
1550 }
1551 
1552 static register_t *
1553 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1554 {
1555 
1556 	switch (reg) {
1557 	case VM_REG_GUEST_RAX:
1558 		return (&vmxctx->guest_rax);
1559 	case VM_REG_GUEST_RBX:
1560 		return (&vmxctx->guest_rbx);
1561 	case VM_REG_GUEST_RCX:
1562 		return (&vmxctx->guest_rcx);
1563 	case VM_REG_GUEST_RDX:
1564 		return (&vmxctx->guest_rdx);
1565 	case VM_REG_GUEST_RSI:
1566 		return (&vmxctx->guest_rsi);
1567 	case VM_REG_GUEST_RDI:
1568 		return (&vmxctx->guest_rdi);
1569 	case VM_REG_GUEST_RBP:
1570 		return (&vmxctx->guest_rbp);
1571 	case VM_REG_GUEST_R8:
1572 		return (&vmxctx->guest_r8);
1573 	case VM_REG_GUEST_R9:
1574 		return (&vmxctx->guest_r9);
1575 	case VM_REG_GUEST_R10:
1576 		return (&vmxctx->guest_r10);
1577 	case VM_REG_GUEST_R11:
1578 		return (&vmxctx->guest_r11);
1579 	case VM_REG_GUEST_R12:
1580 		return (&vmxctx->guest_r12);
1581 	case VM_REG_GUEST_R13:
1582 		return (&vmxctx->guest_r13);
1583 	case VM_REG_GUEST_R14:
1584 		return (&vmxctx->guest_r14);
1585 	case VM_REG_GUEST_R15:
1586 		return (&vmxctx->guest_r15);
1587 	default:
1588 		break;
1589 	}
1590 	return (NULL);
1591 }
1592 
1593 static int
1594 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1595 {
1596 	register_t *regp;
1597 
1598 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1599 		*retval = *regp;
1600 		return (0);
1601 	} else
1602 		return (EINVAL);
1603 }
1604 
1605 static int
1606 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1607 {
1608 	register_t *regp;
1609 
1610 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1611 		*regp = val;
1612 		return (0);
1613 	} else
1614 		return (EINVAL);
1615 }
1616 
1617 static int
1618 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
1619 {
1620 	int running, hostcpu;
1621 	struct vmx *vmx = arg;
1622 
1623 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1624 	if (running && hostcpu != curcpu)
1625 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
1626 
1627 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
1628 		return (0);
1629 
1630 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
1631 }
1632 
1633 static int
1634 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
1635 {
1636 	int error, hostcpu, running;
1637 	uint64_t ctls;
1638 	struct vmx *vmx = arg;
1639 
1640 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1641 	if (running && hostcpu != curcpu)
1642 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
1643 
1644 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
1645 		return (0);
1646 
1647 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
1648 
1649 	if (error == 0) {
1650 		/*
1651 		 * If the "load EFER" VM-entry control is 1 then the
1652 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
1653 		 * bit in the VM-entry control.
1654 		 */
1655 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
1656 		    (reg == VM_REG_GUEST_EFER)) {
1657 			vmcs_getreg(&vmx->vmcs[vcpu], running,
1658 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
1659 			if (val & EFER_LMA)
1660 				ctls |= VM_ENTRY_GUEST_LMA;
1661 			else
1662 				ctls &= ~VM_ENTRY_GUEST_LMA;
1663 			vmcs_setreg(&vmx->vmcs[vcpu], running,
1664 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
1665 		}
1666 	}
1667 
1668 	return (error);
1669 }
1670 
1671 static int
1672 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1673 {
1674 	struct vmx *vmx = arg;
1675 
1676 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
1677 }
1678 
1679 static int
1680 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1681 {
1682 	struct vmx *vmx = arg;
1683 
1684 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
1685 }
1686 
1687 static int
1688 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
1689 	   int code_valid)
1690 {
1691 	int error;
1692 	uint64_t info;
1693 	struct vmx *vmx = arg;
1694 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1695 
1696 	static uint32_t type_map[VM_EVENT_MAX] = {
1697 		0x1,		/* VM_EVENT_NONE */
1698 		0x0,		/* VM_HW_INTR */
1699 		0x2,		/* VM_NMI */
1700 		0x3,		/* VM_HW_EXCEPTION */
1701 		0x4,		/* VM_SW_INTR */
1702 		0x5,		/* VM_PRIV_SW_EXCEPTION */
1703 		0x6,		/* VM_SW_EXCEPTION */
1704 	};
1705 
1706 	/*
1707 	 * If there is already an exception pending to be delivered to the
1708 	 * vcpu then just return.
1709 	 */
1710 	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
1711 	if (error)
1712 		return (error);
1713 
1714 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1715 		return (EAGAIN);
1716 
1717 	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
1718 	info |= VMCS_INTERRUPTION_INFO_VALID;
1719 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
1720 	if (error != 0)
1721 		return (error);
1722 
1723 	if (code_valid) {
1724 		error = vmcs_setreg(vmcs, 0,
1725 				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
1726 				    code);
1727 	}
1728 	return (error);
1729 }
1730 
1731 static int
1732 vmx_getcap(void *arg, int vcpu, int type, int *retval)
1733 {
1734 	struct vmx *vmx = arg;
1735 	int vcap;
1736 	int ret;
1737 
1738 	ret = ENOENT;
1739 
1740 	vcap = vmx->cap[vcpu].set;
1741 
1742 	switch (type) {
1743 	case VM_CAP_HALT_EXIT:
1744 		if (cap_halt_exit)
1745 			ret = 0;
1746 		break;
1747 	case VM_CAP_PAUSE_EXIT:
1748 		if (cap_pause_exit)
1749 			ret = 0;
1750 		break;
1751 	case VM_CAP_MTRAP_EXIT:
1752 		if (cap_monitor_trap)
1753 			ret = 0;
1754 		break;
1755 	case VM_CAP_UNRESTRICTED_GUEST:
1756 		if (cap_unrestricted_guest)
1757 			ret = 0;
1758 		break;
1759 	default:
1760 		break;
1761 	}
1762 
1763 	if (ret == 0)
1764 		*retval = (vcap & (1 << type)) ? 1 : 0;
1765 
1766 	return (ret);
1767 }
1768 
1769 static int
1770 vmx_setcap(void *arg, int vcpu, int type, int val)
1771 {
1772 	struct vmx *vmx = arg;
1773 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1774 	uint32_t baseval;
1775 	uint32_t *pptr;
1776 	int error;
1777 	int flag;
1778 	int reg;
1779 	int retval;
1780 
1781 	retval = ENOENT;
1782 	pptr = NULL;
1783 
1784 	switch (type) {
1785 	case VM_CAP_HALT_EXIT:
1786 		if (cap_halt_exit) {
1787 			retval = 0;
1788 			pptr = &vmx->cap[vcpu].proc_ctls;
1789 			baseval = *pptr;
1790 			flag = PROCBASED_HLT_EXITING;
1791 			reg = VMCS_PRI_PROC_BASED_CTLS;
1792 		}
1793 		break;
1794 	case VM_CAP_MTRAP_EXIT:
1795 		if (cap_monitor_trap) {
1796 			retval = 0;
1797 			pptr = &vmx->cap[vcpu].proc_ctls;
1798 			baseval = *pptr;
1799 			flag = PROCBASED_MTF;
1800 			reg = VMCS_PRI_PROC_BASED_CTLS;
1801 		}
1802 		break;
1803 	case VM_CAP_PAUSE_EXIT:
1804 		if (cap_pause_exit) {
1805 			retval = 0;
1806 			pptr = &vmx->cap[vcpu].proc_ctls;
1807 			baseval = *pptr;
1808 			flag = PROCBASED_PAUSE_EXITING;
1809 			reg = VMCS_PRI_PROC_BASED_CTLS;
1810 		}
1811 		break;
1812 	case VM_CAP_UNRESTRICTED_GUEST:
1813 		if (cap_unrestricted_guest) {
1814 			retval = 0;
1815 			baseval = procbased_ctls2;
1816 			flag = PROCBASED2_UNRESTRICTED_GUEST;
1817 			reg = VMCS_SEC_PROC_BASED_CTLS;
1818 		}
1819 		break;
1820 	default:
1821 		break;
1822 	}
1823 
1824 	if (retval == 0) {
1825 		if (val) {
1826 			baseval |= flag;
1827 		} else {
1828 			baseval &= ~flag;
1829 		}
1830 		VMPTRLD(vmcs);
1831 		error = vmwrite(reg, baseval);
1832 		VMCLEAR(vmcs);
1833 
1834 		if (error) {
1835 			retval = error;
1836 		} else {
1837 			/*
1838 			 * Update optional stored flags, and record
1839 			 * setting
1840 			 */
1841 			if (pptr != NULL) {
1842 				*pptr = baseval;
1843 			}
1844 
1845 			if (val) {
1846 				vmx->cap[vcpu].set |= (1 << type);
1847 			} else {
1848 				vmx->cap[vcpu].set &= ~(1 << type);
1849 			}
1850 		}
1851 	}
1852 
1853         return (retval);
1854 }
1855 
1856 struct vmm_ops vmm_ops_intel = {
1857 	vmx_init,
1858 	vmx_cleanup,
1859 	vmx_vminit,
1860 	vmx_run,
1861 	vmx_vmcleanup,
1862 	ept_vmmmap_set,
1863 	ept_vmmmap_get,
1864 	vmx_getreg,
1865 	vmx_setreg,
1866 	vmx_getdesc,
1867 	vmx_setdesc,
1868 	vmx_inject,
1869 	vmx_getcap,
1870 	vmx_setcap
1871 };
1872