xref: /freebsd/sys/amd64/vmm/intel/vmx_msr.c (revision 1d386b48)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/proc.h>
33 
34 #include <machine/clock.h>
35 #include <machine/cpufunc.h>
36 #include <machine/md_var.h>
37 #include <machine/pcb.h>
38 #include <machine/specialreg.h>
39 #include <machine/vmm.h>
40 
41 #include "vmx.h"
42 #include "vmx_msr.h"
43 #include "x86.h"
44 
45 static bool
46 vmx_ctl_allows_one_setting(uint64_t msr_val, int bitpos)
47 {
48 
49 	return ((msr_val & (1UL << (bitpos + 32))) != 0);
50 }
51 
52 static bool
53 vmx_ctl_allows_zero_setting(uint64_t msr_val, int bitpos)
54 {
55 
56 	return ((msr_val & (1UL << bitpos)) == 0);
57 }
58 
59 uint32_t
60 vmx_revision(void)
61 {
62 
63 	return (rdmsr(MSR_VMX_BASIC) & 0xffffffff);
64 }
65 
66 /*
67  * Generate a bitmask to be used for the VMCS execution control fields.
68  *
69  * The caller specifies what bits should be set to one in 'ones_mask'
70  * and what bits should be set to zero in 'zeros_mask'. The don't-care
71  * bits are set to the default value. The default values are obtained
72  * based on "Algorithm 3" in Section 27.5.1 "Algorithms for Determining
73  * VMX Capabilities".
74  *
75  * Returns zero on success and non-zero on error.
76  */
77 int
78 vmx_set_ctlreg(int ctl_reg, int true_ctl_reg, uint32_t ones_mask,
79 	       uint32_t zeros_mask, uint32_t *retval)
80 {
81 	int i;
82 	uint64_t val, trueval;
83 	bool true_ctls_avail, one_allowed, zero_allowed;
84 
85 	/* We cannot ask the same bit to be set to both '1' and '0' */
86 	if ((ones_mask ^ zeros_mask) != (ones_mask | zeros_mask))
87 		return (EINVAL);
88 
89 	true_ctls_avail = (rdmsr(MSR_VMX_BASIC) & (1UL << 55)) != 0;
90 
91 	val = rdmsr(ctl_reg);
92 	if (true_ctls_avail)
93 		trueval = rdmsr(true_ctl_reg);		/* step c */
94 	else
95 		trueval = val;				/* step a */
96 
97 	for (i = 0; i < 32; i++) {
98 		one_allowed = vmx_ctl_allows_one_setting(trueval, i);
99 		zero_allowed = vmx_ctl_allows_zero_setting(trueval, i);
100 
101 		KASSERT(one_allowed || zero_allowed,
102 			("invalid zero/one setting for bit %d of ctl 0x%0x, "
103 			 "truectl 0x%0x\n", i, ctl_reg, true_ctl_reg));
104 
105 		if (zero_allowed && !one_allowed) {		/* b(i),c(i) */
106 			if (ones_mask & (1 << i))
107 				return (EINVAL);
108 			*retval &= ~(1 << i);
109 		} else if (one_allowed && !zero_allowed) {	/* b(i),c(i) */
110 			if (zeros_mask & (1 << i))
111 				return (EINVAL);
112 			*retval |= 1 << i;
113 		} else {
114 			if (zeros_mask & (1 << i))	/* b(ii),c(ii) */
115 				*retval &= ~(1 << i);
116 			else if (ones_mask & (1 << i)) /* b(ii), c(ii) */
117 				*retval |= 1 << i;
118 			else if (!true_ctls_avail)
119 				*retval &= ~(1 << i);	/* b(iii) */
120 			else if (vmx_ctl_allows_zero_setting(val, i))/* c(iii)*/
121 				*retval &= ~(1 << i);
122 			else if (vmx_ctl_allows_one_setting(val, i)) /* c(iv) */
123 				*retval |= 1 << i;
124 			else {
125 				panic("vmx_set_ctlreg: unable to determine "
126 				      "correct value of ctl bit %d for msr "
127 				      "0x%0x and true msr 0x%0x", i, ctl_reg,
128 				      true_ctl_reg);
129 			}
130 		}
131 	}
132 
133 	return (0);
134 }
135 
136 void
137 msr_bitmap_initialize(char *bitmap)
138 {
139 
140 	memset(bitmap, 0xff, PAGE_SIZE);
141 }
142 
143 int
144 msr_bitmap_change_access(char *bitmap, u_int msr, int access)
145 {
146 	int byte, bit;
147 
148 	if (msr <= 0x00001FFF)
149 		byte = msr / 8;
150 	else if (msr >= 0xC0000000 && msr <= 0xC0001FFF)
151 		byte = 1024 + (msr - 0xC0000000) / 8;
152 	else
153 		return (EINVAL);
154 
155 	bit = msr & 0x7;
156 
157 	if (access & MSR_BITMAP_ACCESS_READ)
158 		bitmap[byte] &= ~(1 << bit);
159 	else
160 		bitmap[byte] |= 1 << bit;
161 
162 	byte += 2048;
163 	if (access & MSR_BITMAP_ACCESS_WRITE)
164 		bitmap[byte] &= ~(1 << bit);
165 	else
166 		bitmap[byte] |= 1 << bit;
167 
168 	return (0);
169 }
170 
171 static uint64_t misc_enable;
172 static uint64_t platform_info;
173 static uint64_t turbo_ratio_limit;
174 static uint64_t host_msrs[GUEST_MSR_NUM];
175 
176 static bool
177 nehalem_cpu(void)
178 {
179 	u_int family, model;
180 
181 	/*
182 	 * The family:model numbers belonging to the Nehalem microarchitecture
183 	 * are documented in Section 35.5, Intel SDM dated Feb 2014.
184 	 */
185 	family = CPUID_TO_FAMILY(cpu_id);
186 	model = CPUID_TO_MODEL(cpu_id);
187 	if (family == 0x6) {
188 		switch (model) {
189 		case 0x1A:
190 		case 0x1E:
191 		case 0x1F:
192 		case 0x2E:
193 			return (true);
194 		default:
195 			break;
196 		}
197 	}
198 	return (false);
199 }
200 
201 static bool
202 westmere_cpu(void)
203 {
204 	u_int family, model;
205 
206 	/*
207 	 * The family:model numbers belonging to the Westmere microarchitecture
208 	 * are documented in Section 35.6, Intel SDM dated Feb 2014.
209 	 */
210 	family = CPUID_TO_FAMILY(cpu_id);
211 	model = CPUID_TO_MODEL(cpu_id);
212 	if (family == 0x6) {
213 		switch (model) {
214 		case 0x25:
215 		case 0x2C:
216 			return (true);
217 		default:
218 			break;
219 		}
220 	}
221 	return (false);
222 }
223 
224 static bool
225 pat_valid(uint64_t val)
226 {
227 	int i, pa;
228 
229 	/*
230 	 * From Intel SDM: Table "Memory Types That Can Be Encoded With PAT"
231 	 *
232 	 * Extract PA0 through PA7 and validate that each one encodes a
233 	 * valid memory type.
234 	 */
235 	for (i = 0; i < 8; i++) {
236 		pa = (val >> (i * 8)) & 0xff;
237 		if (pa == 2 || pa == 3 || pa >= 8)
238 			return (false);
239 	}
240 	return (true);
241 }
242 
243 void
244 vmx_msr_init(void)
245 {
246 	uint64_t bus_freq, ratio;
247 	int i;
248 
249 	/*
250 	 * It is safe to cache the values of the following MSRs because
251 	 * they don't change based on curcpu, curproc or curthread.
252 	 */
253 	host_msrs[IDX_MSR_LSTAR] = rdmsr(MSR_LSTAR);
254 	host_msrs[IDX_MSR_CSTAR] = rdmsr(MSR_CSTAR);
255 	host_msrs[IDX_MSR_STAR] = rdmsr(MSR_STAR);
256 	host_msrs[IDX_MSR_SF_MASK] = rdmsr(MSR_SF_MASK);
257 
258 	/*
259 	 * Initialize emulated MSRs
260 	 */
261 	misc_enable = rdmsr(MSR_IA32_MISC_ENABLE);
262 	/*
263 	 * Set mandatory bits
264 	 *  11:   branch trace disabled
265 	 *  12:   PEBS unavailable
266 	 * Clear unsupported features
267 	 *  16:   SpeedStep enable
268 	 *  18:   enable MONITOR FSM
269 	 */
270 	misc_enable |= (1 << 12) | (1 << 11);
271 	misc_enable &= ~((1 << 18) | (1 << 16));
272 
273 	if (nehalem_cpu() || westmere_cpu())
274 		bus_freq = 133330000;		/* 133Mhz */
275 	else
276 		bus_freq = 100000000;		/* 100Mhz */
277 
278 	/*
279 	 * XXXtime
280 	 * The ratio should really be based on the virtual TSC frequency as
281 	 * opposed to the host TSC.
282 	 */
283 	ratio = (tsc_freq / bus_freq) & 0xff;
284 
285 	/*
286 	 * The register definition is based on the micro-architecture
287 	 * but the following bits are always the same:
288 	 * [15:8]  Maximum Non-Turbo Ratio
289 	 * [28]    Programmable Ratio Limit for Turbo Mode
290 	 * [29]    Programmable TDC-TDP Limit for Turbo Mode
291 	 * [47:40] Maximum Efficiency Ratio
292 	 *
293 	 * The other bits can be safely set to 0 on all
294 	 * micro-architectures up to Haswell.
295 	 */
296 	platform_info = (ratio << 8) | (ratio << 40);
297 
298 	/*
299 	 * The number of valid bits in the MSR_TURBO_RATIO_LIMITx register is
300 	 * dependent on the maximum cores per package supported by the micro-
301 	 * architecture. For e.g., Westmere supports 6 cores per package and
302 	 * uses the low 48 bits. Sandybridge support 8 cores per package and
303 	 * uses up all 64 bits.
304 	 *
305 	 * However, the unused bits are reserved so we pretend that all bits
306 	 * in this MSR are valid.
307 	 */
308 	for (i = 0; i < 8; i++)
309 		turbo_ratio_limit = (turbo_ratio_limit << 8) | ratio;
310 }
311 
312 void
313 vmx_msr_guest_init(struct vmx *vmx, struct vmx_vcpu *vcpu)
314 {
315 	/*
316 	 * The permissions bitmap is shared between all vcpus so initialize it
317 	 * once when initializing the vBSP.
318 	 */
319 	if (vcpu->vcpuid == 0) {
320 		guest_msr_rw(vmx, MSR_LSTAR);
321 		guest_msr_rw(vmx, MSR_CSTAR);
322 		guest_msr_rw(vmx, MSR_STAR);
323 		guest_msr_rw(vmx, MSR_SF_MASK);
324 		guest_msr_rw(vmx, MSR_KGSBASE);
325 	}
326 
327 	/*
328 	 * Initialize guest IA32_PAT MSR with default value after reset.
329 	 */
330 	vcpu->guest_msrs[IDX_MSR_PAT] = PAT_VALUE(0, PAT_WRITE_BACK) |
331 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
332 	    PAT_VALUE(2, PAT_UNCACHED)		|
333 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
334 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
335 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
336 	    PAT_VALUE(6, PAT_UNCACHED)		|
337 	    PAT_VALUE(7, PAT_UNCACHEABLE);
338 
339 	return;
340 }
341 
342 void
343 vmx_msr_guest_enter(struct vmx_vcpu *vcpu)
344 {
345 
346 	/* Save host MSRs (in particular, KGSBASE) and restore guest MSRs */
347 	update_pcb_bases(curpcb);
348 	wrmsr(MSR_LSTAR, vcpu->guest_msrs[IDX_MSR_LSTAR]);
349 	wrmsr(MSR_CSTAR, vcpu->guest_msrs[IDX_MSR_CSTAR]);
350 	wrmsr(MSR_STAR, vcpu->guest_msrs[IDX_MSR_STAR]);
351 	wrmsr(MSR_SF_MASK, vcpu->guest_msrs[IDX_MSR_SF_MASK]);
352 	wrmsr(MSR_KGSBASE, vcpu->guest_msrs[IDX_MSR_KGSBASE]);
353 }
354 
355 void
356 vmx_msr_guest_enter_tsc_aux(struct vmx *vmx, struct vmx_vcpu *vcpu)
357 {
358 	uint64_t guest_tsc_aux = vcpu->guest_msrs[IDX_MSR_TSC_AUX];
359 	uint32_t host_aux = cpu_auxmsr();
360 
361 	if (vmx_have_msr_tsc_aux && guest_tsc_aux != host_aux)
362 		wrmsr(MSR_TSC_AUX, guest_tsc_aux);
363 }
364 
365 void
366 vmx_msr_guest_exit(struct vmx_vcpu *vcpu)
367 {
368 
369 	/* Save guest MSRs */
370 	vcpu->guest_msrs[IDX_MSR_LSTAR] = rdmsr(MSR_LSTAR);
371 	vcpu->guest_msrs[IDX_MSR_CSTAR] = rdmsr(MSR_CSTAR);
372 	vcpu->guest_msrs[IDX_MSR_STAR] = rdmsr(MSR_STAR);
373 	vcpu->guest_msrs[IDX_MSR_SF_MASK] = rdmsr(MSR_SF_MASK);
374 	vcpu->guest_msrs[IDX_MSR_KGSBASE] = rdmsr(MSR_KGSBASE);
375 
376 	/* Restore host MSRs */
377 	wrmsr(MSR_LSTAR, host_msrs[IDX_MSR_LSTAR]);
378 	wrmsr(MSR_CSTAR, host_msrs[IDX_MSR_CSTAR]);
379 	wrmsr(MSR_STAR, host_msrs[IDX_MSR_STAR]);
380 	wrmsr(MSR_SF_MASK, host_msrs[IDX_MSR_SF_MASK]);
381 
382 	/* MSR_KGSBASE will be restored on the way back to userspace */
383 }
384 
385 void
386 vmx_msr_guest_exit_tsc_aux(struct vmx *vmx, struct vmx_vcpu *vcpu)
387 {
388 	uint64_t guest_tsc_aux = vcpu->guest_msrs[IDX_MSR_TSC_AUX];
389 	uint32_t host_aux = cpu_auxmsr();
390 
391 	if (vmx_have_msr_tsc_aux && guest_tsc_aux != host_aux)
392 		/*
393 		 * Note that it is not necessary to save the guest value
394 		 * here; vcpu->guest_msrs[IDX_MSR_TSC_AUX] always
395 		 * contains the current value since it is updated whenever
396 		 * the guest writes to it (which is expected to be very
397 		 * rare).
398 		 */
399 		wrmsr(MSR_TSC_AUX, host_aux);
400 }
401 
402 int
403 vmx_rdmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t *val, bool *retu)
404 {
405 	int error;
406 
407 	error = 0;
408 
409 	switch (num) {
410 	case MSR_MCG_CAP:
411 	case MSR_MCG_STATUS:
412 		*val = 0;
413 		break;
414 	case MSR_MTRRcap:
415 	case MSR_MTRRdefType:
416 	case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
417 	case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
418 	case MSR_MTRR64kBase:
419 	case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
420 		if (vm_rdmtrr(&vcpu->mtrr, num, val) != 0) {
421 			vm_inject_gp(vcpu->vcpu);
422 		}
423 		break;
424 	case MSR_IA32_MISC_ENABLE:
425 		*val = misc_enable;
426 		break;
427 	case MSR_PLATFORM_INFO:
428 		*val = platform_info;
429 		break;
430 	case MSR_TURBO_RATIO_LIMIT:
431 	case MSR_TURBO_RATIO_LIMIT1:
432 		*val = turbo_ratio_limit;
433 		break;
434 	case MSR_PAT:
435 		*val = vcpu->guest_msrs[IDX_MSR_PAT];
436 		break;
437 	default:
438 		error = EINVAL;
439 		break;
440 	}
441 	return (error);
442 }
443 
444 int
445 vmx_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
446 {
447 	uint64_t changed;
448 	int error;
449 
450 	error = 0;
451 
452 	switch (num) {
453 	case MSR_MCG_CAP:
454 	case MSR_MCG_STATUS:
455 		break;		/* ignore writes */
456 	case MSR_MTRRcap:
457 	case MSR_MTRRdefType:
458 	case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
459 	case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
460 	case MSR_MTRR64kBase:
461 	case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
462 		if (vm_wrmtrr(&vcpu->mtrr, num, val) != 0) {
463 			vm_inject_gp(vcpu->vcpu);
464 		}
465 		break;
466 	case MSR_IA32_MISC_ENABLE:
467 		changed = val ^ misc_enable;
468 		/*
469 		 * If the host has disabled the NX feature then the guest
470 		 * also cannot use it. However, a Linux guest will try to
471 		 * enable the NX feature by writing to the MISC_ENABLE MSR.
472 		 *
473 		 * This can be safely ignored because the memory management
474 		 * code looks at CPUID.80000001H:EDX.NX to check if the
475 		 * functionality is actually enabled.
476 		 */
477 		changed &= ~(1UL << 34);
478 
479 		/*
480 		 * Punt to userspace if any other bits are being modified.
481 		 */
482 		if (changed)
483 			error = EINVAL;
484 
485 		break;
486 	case MSR_PAT:
487 		if (pat_valid(val))
488 			vcpu->guest_msrs[IDX_MSR_PAT] = val;
489 		else
490 			vm_inject_gp(vcpu->vcpu);
491 		break;
492 	case MSR_TSC:
493 		error = vmx_set_tsc_offset(vcpu, val - rdtsc());
494 		break;
495 	case MSR_TSC_AUX:
496 		if (vmx_have_msr_tsc_aux)
497 			/*
498 			 * vmx_msr_guest_enter_tsc_aux() will apply this
499 			 * value when it is called immediately before guest
500 			 * entry.
501 			 */
502 			vcpu->guest_msrs[IDX_MSR_TSC_AUX] = val;
503 		else
504 			vm_inject_gp(vcpu->vcpu);
505 		break;
506 	default:
507 		error = EINVAL;
508 		break;
509 	}
510 
511 	return (error);
512 }
513