xref: /freebsd/sys/arm/allwinner/if_awg.c (revision b0b1dbdd)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 
73 #include "miibus_if.h"
74 #include "gpio_if.h"
75 
76 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
77 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
78 
79 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
80 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
81 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
82 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
83 
84 #define	DESC_ALIGN		4
85 #define	TX_DESC_COUNT		1024
86 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
87 #define	RX_DESC_COUNT		256
88 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
89 
90 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
91 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
92 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
93 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
94 
95 #define	TX_MAX_SEGS		10
96 
97 #define	SOFT_RST_RETRY		1000
98 #define	MII_BUSY_RETRY		1000
99 #define	MDIO_FREQ		2500000
100 
101 #define	BURST_LEN_DEFAULT	8
102 #define	RX_TX_PRI_DEFAULT	0
103 #define	PAUSE_TIME_DEFAULT	0x400
104 #define	TX_INTERVAL_DEFAULT	64
105 #define	RX_BATCH_DEFAULT	64
106 
107 /* syscon EMAC clock register */
108 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
109 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
110 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
111 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
112 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
113 #define	EMAC_CLK_RMII_EN	(1 << 13)
114 #define	EMAC_CLK_ETXDC		(0x7 << 10)
115 #define	EMAC_CLK_ETXDC_SHIFT	10
116 #define	EMAC_CLK_ERXDC		(0x1f << 5)
117 #define	EMAC_CLK_ERXDC_SHIFT	5
118 #define	EMAC_CLK_PIT		(0x1 << 2)
119 #define	 EMAC_CLK_PIT_MII	(0 << 2)
120 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
121 #define	EMAC_CLK_SRC		(0x3 << 0)
122 #define	 EMAC_CLK_SRC_MII	(0 << 0)
123 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
124 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
125 
126 /* Burst length of RX and TX DMA transfers */
127 static int awg_burst_len = BURST_LEN_DEFAULT;
128 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
129 
130 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
131 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
132 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
133 
134 /* Pause time field in the transmitted control frame */
135 static int awg_pause_time = PAUSE_TIME_DEFAULT;
136 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
137 
138 /* Request a TX interrupt every <n> descriptors */
139 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
140 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
141 
142 /* Maximum number of mbufs to send to if_input */
143 static int awg_rx_batch = RX_BATCH_DEFAULT;
144 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
145 
146 enum awg_type {
147 	EMAC_A83T = 1,
148 	EMAC_H3,
149 };
150 
151 static struct ofw_compat_data compat_data[] = {
152 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
153 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
154 	{ NULL,					0 }
155 };
156 
157 struct awg_bufmap {
158 	bus_dmamap_t		map;
159 	struct mbuf		*mbuf;
160 };
161 
162 struct awg_txring {
163 	bus_dma_tag_t		desc_tag;
164 	bus_dmamap_t		desc_map;
165 	struct emac_desc	*desc_ring;
166 	bus_addr_t		desc_ring_paddr;
167 	bus_dma_tag_t		buf_tag;
168 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
169 	u_int			cur, next, queued;
170 };
171 
172 struct awg_rxring {
173 	bus_dma_tag_t		desc_tag;
174 	bus_dmamap_t		desc_map;
175 	struct emac_desc	*desc_ring;
176 	bus_addr_t		desc_ring_paddr;
177 	bus_dma_tag_t		buf_tag;
178 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
179 	u_int			cur;
180 };
181 
182 enum {
183 	_RES_EMAC,
184 	_RES_IRQ,
185 	_RES_SYSCON,
186 	_RES_NITEMS
187 };
188 
189 struct awg_softc {
190 	struct resource		*res[_RES_NITEMS];
191 	struct mtx		mtx;
192 	if_t			ifp;
193 	device_t		miibus;
194 	struct callout		stat_ch;
195 	struct task		link_task;
196 	void			*ih;
197 	u_int			mdc_div_ratio_m;
198 	int			link;
199 	int			if_flags;
200 	enum awg_type		type;
201 
202 	struct awg_txring	tx;
203 	struct awg_rxring	rx;
204 };
205 
206 static struct resource_spec awg_spec[] = {
207 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
208 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
209 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
210 	{ -1, 0 }
211 };
212 
213 static int
214 awg_miibus_readreg(device_t dev, int phy, int reg)
215 {
216 	struct awg_softc *sc;
217 	int retry, val;
218 
219 	sc = device_get_softc(dev);
220 	val = 0;
221 
222 	WR4(sc, EMAC_MII_CMD,
223 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
224 	    (phy << PHY_ADDR_SHIFT) |
225 	    (reg << PHY_REG_ADDR_SHIFT) |
226 	    MII_BUSY);
227 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
228 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
229 			val = RD4(sc, EMAC_MII_DATA);
230 			break;
231 		}
232 		DELAY(10);
233 	}
234 
235 	if (retry == 0)
236 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
237 		    phy, reg);
238 
239 	return (val);
240 }
241 
242 static int
243 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
244 {
245 	struct awg_softc *sc;
246 	int retry;
247 
248 	sc = device_get_softc(dev);
249 
250 	WR4(sc, EMAC_MII_DATA, val);
251 	WR4(sc, EMAC_MII_CMD,
252 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
253 	    (phy << PHY_ADDR_SHIFT) |
254 	    (reg << PHY_REG_ADDR_SHIFT) |
255 	    MII_WR | MII_BUSY);
256 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
257 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
258 			break;
259 		DELAY(10);
260 	}
261 
262 	if (retry == 0)
263 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
264 		    phy, reg);
265 
266 	return (0);
267 }
268 
269 static void
270 awg_update_link_locked(struct awg_softc *sc)
271 {
272 	struct mii_data *mii;
273 	uint32_t val;
274 
275 	AWG_ASSERT_LOCKED(sc);
276 
277 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
278 		return;
279 	mii = device_get_softc(sc->miibus);
280 
281 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
282 	    (IFM_ACTIVE | IFM_AVALID)) {
283 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
284 		case IFM_1000_T:
285 		case IFM_1000_SX:
286 		case IFM_100_TX:
287 		case IFM_10_T:
288 			sc->link = 1;
289 			break;
290 		default:
291 			sc->link = 0;
292 			break;
293 		}
294 	} else
295 		sc->link = 0;
296 
297 	if (sc->link == 0)
298 		return;
299 
300 	val = RD4(sc, EMAC_BASIC_CTL_0);
301 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
302 
303 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
304 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
305 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
306 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
307 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
308 	else
309 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
310 
311 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
312 		val |= BASIC_CTL_DUPLEX;
313 
314 	WR4(sc, EMAC_BASIC_CTL_0, val);
315 
316 	val = RD4(sc, EMAC_RX_CTL_0);
317 	val &= ~RX_FLOW_CTL_EN;
318 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
319 		val |= RX_FLOW_CTL_EN;
320 	WR4(sc, EMAC_RX_CTL_0, val);
321 
322 	val = RD4(sc, EMAC_TX_FLOW_CTL);
323 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
324 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
325 		val |= TX_FLOW_CTL_EN;
326 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
327 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
328 	WR4(sc, EMAC_TX_FLOW_CTL, val);
329 }
330 
331 static void
332 awg_link_task(void *arg, int pending)
333 {
334 	struct awg_softc *sc;
335 
336 	sc = arg;
337 
338 	AWG_LOCK(sc);
339 	awg_update_link_locked(sc);
340 	AWG_UNLOCK(sc);
341 }
342 
343 static void
344 awg_miibus_statchg(device_t dev)
345 {
346 	struct awg_softc *sc;
347 
348 	sc = device_get_softc(dev);
349 
350 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
351 }
352 
353 static void
354 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
355 {
356 	struct awg_softc *sc;
357 	struct mii_data *mii;
358 
359 	sc = if_getsoftc(ifp);
360 	mii = device_get_softc(sc->miibus);
361 
362 	AWG_LOCK(sc);
363 	mii_pollstat(mii);
364 	ifmr->ifm_active = mii->mii_media_active;
365 	ifmr->ifm_status = mii->mii_media_status;
366 	AWG_UNLOCK(sc);
367 }
368 
369 static int
370 awg_media_change(if_t ifp)
371 {
372 	struct awg_softc *sc;
373 	struct mii_data *mii;
374 	int error;
375 
376 	sc = if_getsoftc(ifp);
377 	mii = device_get_softc(sc->miibus);
378 
379 	AWG_LOCK(sc);
380 	error = mii_mediachg(mii);
381 	AWG_UNLOCK(sc);
382 
383 	return (error);
384 }
385 
386 static void
387 awg_setup_txdesc(struct awg_softc *sc, int index, int flags, bus_addr_t paddr,
388     u_int len)
389 {
390 	uint32_t status, size;
391 
392 	if (paddr == 0 || len == 0) {
393 		status = 0;
394 		size = 0;
395 		--sc->tx.queued;
396 	} else {
397 		status = TX_DESC_CTL;
398 		size = flags | len;
399 		if ((index & (awg_tx_interval - 1)) == 0)
400 			size |= TX_INT_CTL;
401 		++sc->tx.queued;
402 	}
403 
404 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
405 	sc->tx.desc_ring[index].size = htole32(size);
406 	sc->tx.desc_ring[index].status = htole32(status);
407 }
408 
409 static int
410 awg_setup_txbuf(struct awg_softc *sc, int index, struct mbuf **mp)
411 {
412 	bus_dma_segment_t segs[TX_MAX_SEGS];
413 	int error, nsegs, cur, i, flags;
414 	u_int csum_flags;
415 	struct mbuf *m;
416 
417 	m = *mp;
418 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
419 	    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
420 	if (error == EFBIG) {
421 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
422 		if (m == NULL)
423 			return (0);
424 		*mp = m;
425 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
426 		    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
427 	}
428 	if (error != 0)
429 		return (0);
430 
431 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
432 	    BUS_DMASYNC_PREWRITE);
433 
434 	flags = TX_FIR_DESC;
435 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
436 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
437 			csum_flags = TX_CHECKSUM_CTL_FULL;
438 		else
439 			csum_flags = TX_CHECKSUM_CTL_IP;
440 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
441 	}
442 
443 	for (cur = index, i = 0; i < nsegs; i++) {
444 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
445 		if (i == nsegs - 1)
446 			flags |= TX_LAST_DESC;
447 		awg_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
448 		    segs[i].ds_len);
449 		flags &= ~TX_FIR_DESC;
450 		cur = TX_NEXT(cur);
451 	}
452 
453 	return (nsegs);
454 }
455 
456 static void
457 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
458 {
459 	uint32_t status, size;
460 
461 	status = RX_DESC_CTL;
462 	size = MCLBYTES - 1;
463 
464 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
465 	sc->rx.desc_ring[index].size = htole32(size);
466 	sc->rx.desc_ring[index].next =
467 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
468 	sc->rx.desc_ring[index].status = htole32(status);
469 }
470 
471 static int
472 awg_setup_rxbuf(struct awg_softc *sc, int index, struct mbuf *m)
473 {
474 	bus_dma_segment_t seg;
475 	int error, nsegs;
476 
477 	m_adj(m, ETHER_ALIGN);
478 
479 	error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag,
480 	    sc->rx.buf_map[index].map, m, &seg, &nsegs, 0);
481 	if (error != 0)
482 		return (error);
483 
484 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
485 	    BUS_DMASYNC_PREREAD);
486 
487 	sc->rx.buf_map[index].mbuf = m;
488 	awg_setup_rxdesc(sc, index, seg.ds_addr);
489 
490 	return (0);
491 }
492 
493 static struct mbuf *
494 awg_alloc_mbufcl(struct awg_softc *sc)
495 {
496 	struct mbuf *m;
497 
498 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
499 	if (m != NULL)
500 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
501 
502 	return (m);
503 }
504 
505 static void
506 awg_start_locked(struct awg_softc *sc)
507 {
508 	struct mbuf *m;
509 	uint32_t val;
510 	if_t ifp;
511 	int cnt, nsegs;
512 
513 	AWG_ASSERT_LOCKED(sc);
514 
515 	if (!sc->link)
516 		return;
517 
518 	ifp = sc->ifp;
519 
520 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
521 	    IFF_DRV_RUNNING)
522 		return;
523 
524 	for (cnt = 0; ; cnt++) {
525 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
526 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
527 			break;
528 		}
529 
530 		m = if_dequeue(ifp);
531 		if (m == NULL)
532 			break;
533 
534 		nsegs = awg_setup_txbuf(sc, sc->tx.cur, &m);
535 		if (nsegs == 0) {
536 			if_sendq_prepend(ifp, m);
537 			break;
538 		}
539 		if_bpfmtap(ifp, m);
540 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
541 	}
542 
543 	if (cnt != 0) {
544 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
545 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 
547 		/* Start and run TX DMA */
548 		val = RD4(sc, EMAC_TX_CTL_1);
549 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
550 	}
551 }
552 
553 static void
554 awg_start(if_t ifp)
555 {
556 	struct awg_softc *sc;
557 
558 	sc = if_getsoftc(ifp);
559 
560 	AWG_LOCK(sc);
561 	awg_start_locked(sc);
562 	AWG_UNLOCK(sc);
563 }
564 
565 static void
566 awg_tick(void *softc)
567 {
568 	struct awg_softc *sc;
569 	struct mii_data *mii;
570 	if_t ifp;
571 	int link;
572 
573 	sc = softc;
574 	ifp = sc->ifp;
575 	mii = device_get_softc(sc->miibus);
576 
577 	AWG_ASSERT_LOCKED(sc);
578 
579 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
580 		return;
581 
582 	link = sc->link;
583 	mii_tick(mii);
584 	if (sc->link && !link)
585 		awg_start_locked(sc);
586 
587 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
588 }
589 
590 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
591 static uint32_t
592 bitrev32(uint32_t x)
593 {
594 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
595 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
596 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
597 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
598 
599 	return (x >> 16) | (x << 16);
600 }
601 
602 static void
603 awg_setup_rxfilter(struct awg_softc *sc)
604 {
605 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
606 	int mc_count, mcnt, i;
607 	uint8_t *eaddr, *mta;
608 	if_t ifp;
609 
610 	AWG_ASSERT_LOCKED(sc);
611 
612 	ifp = sc->ifp;
613 	val = 0;
614 	hash[0] = hash[1] = 0;
615 
616 	mc_count = if_multiaddr_count(ifp, -1);
617 
618 	if (if_getflags(ifp) & IFF_PROMISC)
619 		val |= DIS_ADDR_FILTER;
620 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
621 		val |= RX_ALL_MULTICAST;
622 		hash[0] = hash[1] = ~0;
623 	} else if (mc_count > 0) {
624 		val |= HASH_MULTICAST;
625 
626 		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
627 		    M_DEVBUF, M_NOWAIT);
628 		if (mta == NULL) {
629 			if_printf(ifp,
630 			    "failed to allocate temporary multicast list\n");
631 			return;
632 		}
633 
634 		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
635 		for (i = 0; i < mcnt; i++) {
636 			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
637 			    ETHER_ADDR_LEN) & 0x7f;
638 			crc = bitrev32(~crc) >> 26;
639 			hashreg = (crc >> 5);
640 			hashbit = (crc & 0x1f);
641 			hash[hashreg] |= (1 << hashbit);
642 		}
643 
644 		free(mta, M_DEVBUF);
645 	}
646 
647 	/* Write our unicast address */
648 	eaddr = IF_LLADDR(ifp);
649 	machi = (eaddr[5] << 8) | eaddr[4];
650 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
651 	   (eaddr[0] << 0);
652 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
653 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
654 
655 	/* Multicast hash filters */
656 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
657 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
658 
659 	/* RX frame filter config */
660 	WR4(sc, EMAC_RX_FRM_FLT, val);
661 }
662 
663 static void
664 awg_enable_intr(struct awg_softc *sc)
665 {
666 	/* Enable interrupts */
667 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
668 }
669 
670 static void
671 awg_disable_intr(struct awg_softc *sc)
672 {
673 	/* Disable interrupts */
674 	WR4(sc, EMAC_INT_EN, 0);
675 }
676 
677 static void
678 awg_init_locked(struct awg_softc *sc)
679 {
680 	struct mii_data *mii;
681 	uint32_t val;
682 	if_t ifp;
683 
684 	mii = device_get_softc(sc->miibus);
685 	ifp = sc->ifp;
686 
687 	AWG_ASSERT_LOCKED(sc);
688 
689 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
690 		return;
691 
692 	awg_setup_rxfilter(sc);
693 
694 	/* Configure DMA burst length and priorities */
695 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
696 	if (awg_rx_tx_pri)
697 		val |= BASIC_CTL_RX_TX_PRI;
698 	WR4(sc, EMAC_BASIC_CTL_1, val);
699 
700 	/* Enable interrupts */
701 #ifdef DEVICE_POLLING
702 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
703 		awg_enable_intr(sc);
704 	else
705 		awg_disable_intr(sc);
706 #else
707 	awg_enable_intr(sc);
708 #endif
709 
710 	/* Enable transmit DMA */
711 	val = RD4(sc, EMAC_TX_CTL_1);
712 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
713 
714 	/* Enable receive DMA */
715 	val = RD4(sc, EMAC_RX_CTL_1);
716 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
717 
718 	/* Enable transmitter */
719 	val = RD4(sc, EMAC_TX_CTL_0);
720 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
721 
722 	/* Enable receiver */
723 	val = RD4(sc, EMAC_RX_CTL_0);
724 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
725 
726 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
727 
728 	mii_mediachg(mii);
729 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
730 }
731 
732 static void
733 awg_init(void *softc)
734 {
735 	struct awg_softc *sc;
736 
737 	sc = softc;
738 
739 	AWG_LOCK(sc);
740 	awg_init_locked(sc);
741 	AWG_UNLOCK(sc);
742 }
743 
744 static void
745 awg_stop(struct awg_softc *sc)
746 {
747 	if_t ifp;
748 	uint32_t val;
749 
750 	AWG_ASSERT_LOCKED(sc);
751 
752 	ifp = sc->ifp;
753 
754 	callout_stop(&sc->stat_ch);
755 
756 	/* Stop transmit DMA and flush data in the TX FIFO */
757 	val = RD4(sc, EMAC_TX_CTL_1);
758 	val &= ~TX_DMA_EN;
759 	val |= FLUSH_TX_FIFO;
760 	WR4(sc, EMAC_TX_CTL_1, val);
761 
762 	/* Disable transmitter */
763 	val = RD4(sc, EMAC_TX_CTL_0);
764 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
765 
766 	/* Disable receiver */
767 	val = RD4(sc, EMAC_RX_CTL_0);
768 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
769 
770 	/* Disable interrupts */
771 	awg_disable_intr(sc);
772 
773 	/* Disable transmit DMA */
774 	val = RD4(sc, EMAC_TX_CTL_1);
775 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
776 
777 	/* Disable receive DMA */
778 	val = RD4(sc, EMAC_RX_CTL_1);
779 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
780 
781 	sc->link = 0;
782 
783 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
784 }
785 
786 static int
787 awg_rxintr(struct awg_softc *sc)
788 {
789 	if_t ifp;
790 	struct mbuf *m, *m0, *mh, *mt;
791 	int error, index, len, cnt, npkt;
792 	uint32_t status;
793 
794 	ifp = sc->ifp;
795 	mh = mt = NULL;
796 	cnt = 0;
797 	npkt = 0;
798 
799 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
800 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
801 
802 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
803 		status = le32toh(sc->rx.desc_ring[index].status);
804 		if ((status & RX_DESC_CTL) != 0)
805 			break;
806 
807 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
808 		    BUS_DMASYNC_POSTREAD);
809 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
810 
811 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
812 		if (len != 0) {
813 			m = sc->rx.buf_map[index].mbuf;
814 			m->m_pkthdr.rcvif = ifp;
815 			m->m_pkthdr.len = len;
816 			m->m_len = len;
817 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
818 
819 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
820 			    (status & RX_FRM_TYPE) != 0) {
821 				m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
822 				if ((status & RX_HEADER_ERR) == 0)
823 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
824 				if ((status & RX_PAYLOAD_ERR) == 0) {
825 					m->m_pkthdr.csum_flags |=
826 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
827 					m->m_pkthdr.csum_data = 0xffff;
828 				}
829 			}
830 
831 			m->m_nextpkt = NULL;
832 			if (mh == NULL)
833 				mh = m;
834 			else
835 				mt->m_nextpkt = m;
836 			mt = m;
837 			++cnt;
838 			++npkt;
839 
840 			if (cnt == awg_rx_batch) {
841 				AWG_UNLOCK(sc);
842 				if_input(ifp, mh);
843 				AWG_LOCK(sc);
844 				mh = mt = NULL;
845 				cnt = 0;
846 			}
847 
848 		}
849 
850 		if ((m0 = awg_alloc_mbufcl(sc)) != NULL) {
851 			error = awg_setup_rxbuf(sc, index, m0);
852 			if (error != 0) {
853 				/* XXX hole in RX ring */
854 			}
855 		} else
856 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
857 	}
858 
859 	if (index != sc->rx.cur) {
860 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
861 		    BUS_DMASYNC_PREWRITE);
862 	}
863 
864 	if (mh != NULL) {
865 		AWG_UNLOCK(sc);
866 		if_input(ifp, mh);
867 		AWG_LOCK(sc);
868 	}
869 
870 	sc->rx.cur = index;
871 
872 	return (npkt);
873 }
874 
875 static void
876 awg_txintr(struct awg_softc *sc)
877 {
878 	struct awg_bufmap *bmap;
879 	struct emac_desc *desc;
880 	uint32_t status;
881 	if_t ifp;
882 	int i;
883 
884 	AWG_ASSERT_LOCKED(sc);
885 
886 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
887 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
888 
889 	ifp = sc->ifp;
890 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
891 		desc = &sc->tx.desc_ring[i];
892 		status = le32toh(desc->status);
893 		if ((status & TX_DESC_CTL) != 0)
894 			break;
895 		bmap = &sc->tx.buf_map[i];
896 		if (bmap->mbuf != NULL) {
897 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
898 			    BUS_DMASYNC_POSTWRITE);
899 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
900 			m_freem(bmap->mbuf);
901 			bmap->mbuf = NULL;
902 		}
903 		awg_setup_txdesc(sc, i, 0, 0, 0);
904 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
905 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
906 	}
907 
908 	sc->tx.next = i;
909 
910 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
911 	    BUS_DMASYNC_PREWRITE);
912 }
913 
914 static void
915 awg_intr(void *arg)
916 {
917 	struct awg_softc *sc;
918 	uint32_t val;
919 
920 	sc = arg;
921 
922 	AWG_LOCK(sc);
923 	val = RD4(sc, EMAC_INT_STA);
924 	WR4(sc, EMAC_INT_STA, val);
925 
926 	if (val & RX_INT)
927 		awg_rxintr(sc);
928 
929 	if (val & (TX_INT|TX_BUF_UA_INT)) {
930 		awg_txintr(sc);
931 		if (!if_sendq_empty(sc->ifp))
932 			awg_start_locked(sc);
933 	}
934 
935 	AWG_UNLOCK(sc);
936 }
937 
938 #ifdef DEVICE_POLLING
939 static int
940 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
941 {
942 	struct awg_softc *sc;
943 	uint32_t val;
944 	int rx_npkts;
945 
946 	sc = if_getsoftc(ifp);
947 	rx_npkts = 0;
948 
949 	AWG_LOCK(sc);
950 
951 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
952 		AWG_UNLOCK(sc);
953 		return (0);
954 	}
955 
956 	rx_npkts = awg_rxintr(sc);
957 	awg_txintr(sc);
958 	if (!if_sendq_empty(ifp))
959 		awg_start_locked(sc);
960 
961 	if (cmd == POLL_AND_CHECK_STATUS) {
962 		val = RD4(sc, EMAC_INT_STA);
963 		if (val != 0)
964 			WR4(sc, EMAC_INT_STA, val);
965 	}
966 
967 	AWG_UNLOCK(sc);
968 
969 	return (rx_npkts);
970 }
971 #endif
972 
973 static int
974 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
975 {
976 	struct awg_softc *sc;
977 	struct mii_data *mii;
978 	struct ifreq *ifr;
979 	int flags, mask, error;
980 
981 	sc = if_getsoftc(ifp);
982 	mii = device_get_softc(sc->miibus);
983 	ifr = (struct ifreq *)data;
984 	error = 0;
985 
986 	switch (cmd) {
987 	case SIOCSIFFLAGS:
988 		AWG_LOCK(sc);
989 		if (if_getflags(ifp) & IFF_UP) {
990 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
991 				flags = if_getflags(ifp) ^ sc->if_flags;
992 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
993 					awg_setup_rxfilter(sc);
994 			} else
995 				awg_init_locked(sc);
996 		} else {
997 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
998 				awg_stop(sc);
999 		}
1000 		sc->if_flags = if_getflags(ifp);
1001 		AWG_UNLOCK(sc);
1002 		break;
1003 	case SIOCADDMULTI:
1004 	case SIOCDELMULTI:
1005 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1006 			AWG_LOCK(sc);
1007 			awg_setup_rxfilter(sc);
1008 			AWG_UNLOCK(sc);
1009 		}
1010 		break;
1011 	case SIOCSIFMEDIA:
1012 	case SIOCGIFMEDIA:
1013 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1014 		break;
1015 	case SIOCSIFCAP:
1016 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1017 #ifdef DEVICE_POLLING
1018 		if (mask & IFCAP_POLLING) {
1019 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1020 				error = ether_poll_register(awg_poll, ifp);
1021 				if (error != 0)
1022 					break;
1023 				AWG_LOCK(sc);
1024 				awg_disable_intr(sc);
1025 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1026 				AWG_UNLOCK(sc);
1027 			} else {
1028 				error = ether_poll_deregister(ifp);
1029 				AWG_LOCK(sc);
1030 				awg_enable_intr(sc);
1031 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1032 				AWG_UNLOCK(sc);
1033 			}
1034 		}
1035 #endif
1036 		if (mask & IFCAP_VLAN_MTU)
1037 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1038 		if (mask & IFCAP_RXCSUM)
1039 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1040 		if (mask & IFCAP_TXCSUM)
1041 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1042 		if ((if_getcapenable(ifp) & (IFCAP_RXCSUM|IFCAP_TXCSUM)) != 0)
1043 			if_sethwassistbits(ifp, CSUM_IP, 0);
1044 		else
1045 			if_sethwassistbits(ifp, 0, CSUM_IP);
1046 		break;
1047 	default:
1048 		error = ether_ioctl(ifp, cmd, data);
1049 		break;
1050 	}
1051 
1052 	return (error);
1053 }
1054 
1055 static int
1056 awg_setup_phy(device_t dev)
1057 {
1058 	struct awg_softc *sc;
1059 	clk_t clk_tx, clk_tx_parent;
1060 	const char *tx_parent_name;
1061 	char *phy_type;
1062 	phandle_t node;
1063 	uint32_t reg, tx_delay, rx_delay;
1064 	int error;
1065 
1066 	sc = device_get_softc(dev);
1067 	node = ofw_bus_get_node(dev);
1068 
1069 	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) == 0)
1070 		return (0);
1071 
1072 	if (bootverbose)
1073 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1074 		    sc->res[_RES_SYSCON] != NULL ? "reg" : "clk");
1075 
1076 	if (sc->res[_RES_SYSCON] != NULL) {
1077 		reg = bus_read_4(sc->res[_RES_SYSCON], 0);
1078 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1079 		if (strcmp(phy_type, "rgmii") == 0)
1080 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1081 		else if (strcmp(phy_type, "rmii") == 0)
1082 			reg |= EMAC_CLK_RMII_EN;
1083 		else
1084 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1085 
1086 		if (OF_getencprop(node, "tx-delay", &tx_delay,
1087 		    sizeof(tx_delay)) > 0) {
1088 			reg &= ~EMAC_CLK_ETXDC;
1089 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1090 		}
1091 		if (OF_getencprop(node, "rx-delay", &rx_delay,
1092 		    sizeof(rx_delay)) > 0) {
1093 			reg &= ~EMAC_CLK_ERXDC;
1094 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1095 		}
1096 
1097 		if (sc->type == EMAC_H3) {
1098 			if (OF_hasprop(node, "allwinner,use-internal-phy")) {
1099 				reg |= EMAC_CLK_EPHY_SELECT;
1100 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1101 				if (OF_hasprop(node,
1102 				    "allwinner,leds-active-low"))
1103 					reg |= EMAC_CLK_EPHY_LED_POL;
1104 				else
1105 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1106 
1107 				/* Set internal PHY addr to 1 */
1108 				reg &= ~EMAC_CLK_EPHY_ADDR;
1109 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1110 			} else {
1111 				reg &= ~EMAC_CLK_EPHY_SELECT;
1112 			}
1113 		}
1114 
1115 		if (bootverbose)
1116 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1117 		bus_write_4(sc->res[_RES_SYSCON], 0, reg);
1118 	} else {
1119 		if (strcmp(phy_type, "rgmii") == 0)
1120 			tx_parent_name = "emac_int_tx";
1121 		else
1122 			tx_parent_name = "mii_phy_tx";
1123 
1124 		/* Get the TX clock */
1125 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1126 		if (error != 0) {
1127 			device_printf(dev, "cannot get tx clock\n");
1128 			goto fail;
1129 		}
1130 
1131 		/* Find the desired parent clock based on phy-mode property */
1132 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1133 		if (error != 0) {
1134 			device_printf(dev, "cannot get clock '%s'\n",
1135 			    tx_parent_name);
1136 			goto fail;
1137 		}
1138 
1139 		/* Set TX clock parent */
1140 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1141 		if (error != 0) {
1142 			device_printf(dev, "cannot set tx clock parent\n");
1143 			goto fail;
1144 		}
1145 
1146 		/* Enable TX clock */
1147 		error = clk_enable(clk_tx);
1148 		if (error != 0) {
1149 			device_printf(dev, "cannot enable tx clock\n");
1150 			goto fail;
1151 		}
1152 	}
1153 
1154 	error = 0;
1155 
1156 fail:
1157 	OF_prop_free(phy_type);
1158 	return (error);
1159 }
1160 
1161 static int
1162 awg_setup_extres(device_t dev)
1163 {
1164 	struct awg_softc *sc;
1165 	hwreset_t rst_ahb, rst_ephy;
1166 	clk_t clk_ahb, clk_ephy;
1167 	regulator_t reg;
1168 	phandle_t node;
1169 	uint64_t freq;
1170 	int error, div;
1171 
1172 	sc = device_get_softc(dev);
1173 	node = ofw_bus_get_node(dev);
1174 	rst_ahb = rst_ephy = NULL;
1175 	clk_ahb = clk_ephy = NULL;
1176 	reg = NULL;
1177 
1178 	/* Get AHB clock and reset resources */
1179 	error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1180 	if (error != 0) {
1181 		device_printf(dev, "cannot get ahb reset\n");
1182 		goto fail;
1183 	}
1184 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1185 		rst_ephy = NULL;
1186 	error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1187 	if (error != 0) {
1188 		device_printf(dev, "cannot get ahb clock\n");
1189 		goto fail;
1190 	}
1191 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1192 		clk_ephy = NULL;
1193 
1194 	/* Configure PHY for MII or RGMII mode */
1195 	if (awg_setup_phy(dev) != 0)
1196 		goto fail;
1197 
1198 	/* Enable clocks */
1199 	error = clk_enable(clk_ahb);
1200 	if (error != 0) {
1201 		device_printf(dev, "cannot enable ahb clock\n");
1202 		goto fail;
1203 	}
1204 	if (clk_ephy != NULL) {
1205 		error = clk_enable(clk_ephy);
1206 		if (error != 0) {
1207 			device_printf(dev, "cannot enable ephy clock\n");
1208 			goto fail;
1209 		}
1210 	}
1211 
1212 	/* De-assert reset */
1213 	error = hwreset_deassert(rst_ahb);
1214 	if (error != 0) {
1215 		device_printf(dev, "cannot de-assert ahb reset\n");
1216 		goto fail;
1217 	}
1218 	if (rst_ephy != NULL) {
1219 		error = hwreset_deassert(rst_ephy);
1220 		if (error != 0) {
1221 			device_printf(dev, "cannot de-assert ephy reset\n");
1222 			goto fail;
1223 		}
1224 	}
1225 
1226 	/* Enable PHY regulator if applicable */
1227 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1228 		error = regulator_enable(reg);
1229 		if (error != 0) {
1230 			device_printf(dev, "cannot enable PHY regulator\n");
1231 			goto fail;
1232 		}
1233 	}
1234 
1235 	/* Determine MDC clock divide ratio based on AHB clock */
1236 	error = clk_get_freq(clk_ahb, &freq);
1237 	if (error != 0) {
1238 		device_printf(dev, "cannot get AHB clock frequency\n");
1239 		goto fail;
1240 	}
1241 	div = freq / MDIO_FREQ;
1242 	if (div <= 16)
1243 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1244 	else if (div <= 32)
1245 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1246 	else if (div <= 64)
1247 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1248 	else if (div <= 128)
1249 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1250 	else {
1251 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1252 		error = ENXIO;
1253 		goto fail;
1254 	}
1255 
1256 	if (bootverbose)
1257 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1258 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1259 
1260 	return (0);
1261 
1262 fail:
1263 	if (reg != NULL)
1264 		regulator_release(reg);
1265 	if (clk_ephy != NULL)
1266 		clk_release(clk_ephy);
1267 	if (clk_ahb != NULL)
1268 		clk_release(clk_ahb);
1269 	if (rst_ephy != NULL)
1270 		hwreset_release(rst_ephy);
1271 	if (rst_ahb != NULL)
1272 		hwreset_release(rst_ahb);
1273 	return (error);
1274 }
1275 
1276 static void
1277 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1278 {
1279 	struct awg_softc *sc;
1280 	uint32_t maclo, machi, rnd;
1281 	u_char rootkey[16];
1282 
1283 	sc = device_get_softc(dev);
1284 
1285 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1286 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1287 
1288 	if (maclo == 0xffffffff && machi == 0xffff) {
1289 		/* MAC address in hardware is invalid, create one */
1290 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1291 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1292 		     rootkey[15]) != 0) {
1293 			/* MAC address is derived from the root key in SID */
1294 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1295 				(rootkey[3] << 8) | 0x02;
1296 			machi = (rootkey[15] << 8) | rootkey[14];
1297 		} else {
1298 			/* Create one */
1299 			rnd = arc4random();
1300 			maclo = 0x00f2 | (rnd & 0xffff0000);
1301 			machi = rnd & 0xffff;
1302 		}
1303 	}
1304 
1305 	eaddr[0] = maclo & 0xff;
1306 	eaddr[1] = (maclo >> 8) & 0xff;
1307 	eaddr[2] = (maclo >> 16) & 0xff;
1308 	eaddr[3] = (maclo >> 24) & 0xff;
1309 	eaddr[4] = machi & 0xff;
1310 	eaddr[5] = (machi >> 8) & 0xff;
1311 }
1312 
1313 #ifdef AWG_DEBUG
1314 static void
1315 awg_dump_regs(device_t dev)
1316 {
1317 	static const struct {
1318 		const char *name;
1319 		u_int reg;
1320 	} regs[] = {
1321 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1322 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1323 		{ "INT_STA", EMAC_INT_STA },
1324 		{ "INT_EN", EMAC_INT_EN },
1325 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1326 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1327 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1328 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1329 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1330 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1331 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1332 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1333 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1334 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1335 		{ "MII_CMD", EMAC_MII_CMD },
1336 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1337 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1338 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1339 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1340 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1341 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1342 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1343 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1344 		{ "RGMII_STA", EMAC_RGMII_STA },
1345 	};
1346 	struct awg_softc *sc;
1347 	unsigned int n;
1348 
1349 	sc = device_get_softc(dev);
1350 
1351 	for (n = 0; n < nitems(regs); n++)
1352 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1353 		    RD4(sc, regs[n].reg));
1354 }
1355 #endif
1356 
1357 #define	GPIO_ACTIVE_LOW		1
1358 
1359 static int
1360 awg_phy_reset(device_t dev)
1361 {
1362 	pcell_t gpio_prop[4], delay_prop[3];
1363 	phandle_t node, gpio_node;
1364 	device_t gpio;
1365 	uint32_t pin, flags;
1366 	uint32_t pin_value;
1367 
1368 	node = ofw_bus_get_node(dev);
1369 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1370 	    sizeof(gpio_prop)) <= 0)
1371 		return (0);
1372 
1373 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1374 	    sizeof(delay_prop)) <= 0)
1375 		return (ENXIO);
1376 
1377 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1378 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1379 		return (ENXIO);
1380 
1381 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1382 	    gpio_prop + 1, &pin, &flags) != 0)
1383 		return (ENXIO);
1384 
1385 	pin_value = GPIO_PIN_LOW;
1386 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1387 		pin_value = GPIO_PIN_HIGH;
1388 
1389 	if (flags & GPIO_ACTIVE_LOW)
1390 		pin_value = !pin_value;
1391 
1392 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1393 	GPIO_PIN_SET(gpio, pin, pin_value);
1394 	DELAY(delay_prop[0]);
1395 	GPIO_PIN_SET(gpio, pin, !pin_value);
1396 	DELAY(delay_prop[1]);
1397 	GPIO_PIN_SET(gpio, pin, pin_value);
1398 	DELAY(delay_prop[2]);
1399 
1400 	return (0);
1401 }
1402 
1403 static int
1404 awg_reset(device_t dev)
1405 {
1406 	struct awg_softc *sc;
1407 	int retry;
1408 
1409 	sc = device_get_softc(dev);
1410 
1411 	/* Reset PHY if necessary */
1412 	if (awg_phy_reset(dev) != 0) {
1413 		device_printf(dev, "failed to reset PHY\n");
1414 		return (ENXIO);
1415 	}
1416 
1417 	/* Soft reset all registers and logic */
1418 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1419 
1420 	/* Wait for soft reset bit to self-clear */
1421 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1422 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1423 			break;
1424 		DELAY(10);
1425 	}
1426 	if (retry == 0) {
1427 		device_printf(dev, "soft reset timed out\n");
1428 #ifdef AWG_DEBUG
1429 		awg_dump_regs(dev);
1430 #endif
1431 		return (ETIMEDOUT);
1432 	}
1433 
1434 	return (0);
1435 }
1436 
1437 static void
1438 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1439 {
1440 	if (error != 0)
1441 		return;
1442 	*(bus_addr_t *)arg = segs[0].ds_addr;
1443 }
1444 
1445 static int
1446 awg_setup_dma(device_t dev)
1447 {
1448 	struct awg_softc *sc;
1449 	struct mbuf *m;
1450 	int error, i;
1451 
1452 	sc = device_get_softc(dev);
1453 
1454 	/* Setup TX ring */
1455 	error = bus_dma_tag_create(
1456 	    bus_get_dma_tag(dev),	/* Parent tag */
1457 	    DESC_ALIGN, 0,		/* alignment, boundary */
1458 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1459 	    BUS_SPACE_MAXADDR,		/* highaddr */
1460 	    NULL, NULL,			/* filter, filterarg */
1461 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1462 	    TX_DESC_SIZE,		/* maxsegsize */
1463 	    0,				/* flags */
1464 	    NULL, NULL,			/* lockfunc, lockarg */
1465 	    &sc->tx.desc_tag);
1466 	if (error != 0) {
1467 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1468 		return (error);
1469 	}
1470 
1471 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1472 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1473 	if (error != 0) {
1474 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1475 		return (error);
1476 	}
1477 
1478 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1479 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1480 	    &sc->tx.desc_ring_paddr, 0);
1481 	if (error != 0) {
1482 		device_printf(dev, "cannot load TX descriptor ring\n");
1483 		return (error);
1484 	}
1485 
1486 	for (i = 0; i < TX_DESC_COUNT; i++)
1487 		sc->tx.desc_ring[i].next =
1488 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1489 
1490 	error = bus_dma_tag_create(
1491 	    bus_get_dma_tag(dev),	/* Parent tag */
1492 	    1, 0,			/* alignment, boundary */
1493 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1494 	    BUS_SPACE_MAXADDR,		/* highaddr */
1495 	    NULL, NULL,			/* filter, filterarg */
1496 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1497 	    MCLBYTES,			/* maxsegsize */
1498 	    0,				/* flags */
1499 	    NULL, NULL,			/* lockfunc, lockarg */
1500 	    &sc->tx.buf_tag);
1501 	if (error != 0) {
1502 		device_printf(dev, "cannot create TX buffer tag\n");
1503 		return (error);
1504 	}
1505 
1506 	sc->tx.queued = TX_DESC_COUNT;
1507 	for (i = 0; i < TX_DESC_COUNT; i++) {
1508 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1509 		    &sc->tx.buf_map[i].map);
1510 		if (error != 0) {
1511 			device_printf(dev, "cannot create TX buffer map\n");
1512 			return (error);
1513 		}
1514 		awg_setup_txdesc(sc, i, 0, 0, 0);
1515 	}
1516 
1517 	/* Setup RX ring */
1518 	error = bus_dma_tag_create(
1519 	    bus_get_dma_tag(dev),	/* Parent tag */
1520 	    DESC_ALIGN, 0,		/* alignment, boundary */
1521 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1522 	    BUS_SPACE_MAXADDR,		/* highaddr */
1523 	    NULL, NULL,			/* filter, filterarg */
1524 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1525 	    RX_DESC_SIZE,		/* maxsegsize */
1526 	    0,				/* flags */
1527 	    NULL, NULL,			/* lockfunc, lockarg */
1528 	    &sc->rx.desc_tag);
1529 	if (error != 0) {
1530 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1531 		return (error);
1532 	}
1533 
1534 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1535 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1536 	if (error != 0) {
1537 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1538 		return (error);
1539 	}
1540 
1541 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1542 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1543 	    &sc->rx.desc_ring_paddr, 0);
1544 	if (error != 0) {
1545 		device_printf(dev, "cannot load RX descriptor ring\n");
1546 		return (error);
1547 	}
1548 
1549 	error = bus_dma_tag_create(
1550 	    bus_get_dma_tag(dev),	/* Parent tag */
1551 	    1, 0,			/* alignment, boundary */
1552 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1553 	    BUS_SPACE_MAXADDR,		/* highaddr */
1554 	    NULL, NULL,			/* filter, filterarg */
1555 	    MCLBYTES, 1,		/* maxsize, nsegs */
1556 	    MCLBYTES,			/* maxsegsize */
1557 	    0,				/* flags */
1558 	    NULL, NULL,			/* lockfunc, lockarg */
1559 	    &sc->rx.buf_tag);
1560 	if (error != 0) {
1561 		device_printf(dev, "cannot create RX buffer tag\n");
1562 		return (error);
1563 	}
1564 
1565 	for (i = 0; i < RX_DESC_COUNT; i++) {
1566 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1567 		    &sc->rx.buf_map[i].map);
1568 		if (error != 0) {
1569 			device_printf(dev, "cannot create RX buffer map\n");
1570 			return (error);
1571 		}
1572 		if ((m = awg_alloc_mbufcl(sc)) == NULL) {
1573 			device_printf(dev, "cannot allocate RX mbuf\n");
1574 			return (ENOMEM);
1575 		}
1576 		error = awg_setup_rxbuf(sc, i, m);
1577 		if (error != 0) {
1578 			device_printf(dev, "cannot create RX buffer\n");
1579 			return (error);
1580 		}
1581 	}
1582 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1583 	    BUS_DMASYNC_PREWRITE);
1584 
1585 	/* Write transmit and receive descriptor base address registers */
1586 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1587 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 awg_probe(device_t dev)
1594 {
1595 	if (!ofw_bus_status_okay(dev))
1596 		return (ENXIO);
1597 
1598 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1599 		return (ENXIO);
1600 
1601 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1602 	return (BUS_PROBE_DEFAULT);
1603 }
1604 
1605 static int
1606 awg_attach(device_t dev)
1607 {
1608 	uint8_t eaddr[ETHER_ADDR_LEN];
1609 	struct awg_softc *sc;
1610 	phandle_t node;
1611 	int error;
1612 
1613 	sc = device_get_softc(dev);
1614 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1615 	node = ofw_bus_get_node(dev);
1616 
1617 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1618 		device_printf(dev, "cannot allocate resources for device\n");
1619 		return (ENXIO);
1620 	}
1621 
1622 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1623 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1624 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1625 
1626 	/* Setup clocks and regulators */
1627 	error = awg_setup_extres(dev);
1628 	if (error != 0)
1629 		return (error);
1630 
1631 	/* Read MAC address before resetting the chip */
1632 	awg_get_eaddr(dev, eaddr);
1633 
1634 	/* Soft reset EMAC core */
1635 	error = awg_reset(dev);
1636 	if (error != 0)
1637 		return (error);
1638 
1639 	/* Setup DMA descriptors */
1640 	error = awg_setup_dma(dev);
1641 	if (error != 0)
1642 		return (error);
1643 
1644 	/* Install interrupt handler */
1645 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1646 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1647 	if (error != 0) {
1648 		device_printf(dev, "cannot setup interrupt handler\n");
1649 		return (error);
1650 	}
1651 
1652 	/* Setup ethernet interface */
1653 	sc->ifp = if_alloc(IFT_ETHER);
1654 	if_setsoftc(sc->ifp, sc);
1655 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1656 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1657 	if_setstartfn(sc->ifp, awg_start);
1658 	if_setioctlfn(sc->ifp, awg_ioctl);
1659 	if_setinitfn(sc->ifp, awg_init);
1660 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1661 	if_setsendqready(sc->ifp);
1662 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1663 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1664 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1665 #ifdef DEVICE_POLLING
1666 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1667 #endif
1668 
1669 	/* Attach MII driver */
1670 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1671 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1672 	    MIIF_DOPAUSE);
1673 	if (error != 0) {
1674 		device_printf(dev, "cannot attach PHY\n");
1675 		return (error);
1676 	}
1677 
1678 	/* Attach ethernet interface */
1679 	ether_ifattach(sc->ifp, eaddr);
1680 
1681 	return (0);
1682 }
1683 
1684 static device_method_t awg_methods[] = {
1685 	/* Device interface */
1686 	DEVMETHOD(device_probe,		awg_probe),
1687 	DEVMETHOD(device_attach,	awg_attach),
1688 
1689 	/* MII interface */
1690 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1691 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1692 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1693 
1694 	DEVMETHOD_END
1695 };
1696 
1697 static driver_t awg_driver = {
1698 	"awg",
1699 	awg_methods,
1700 	sizeof(struct awg_softc),
1701 };
1702 
1703 static devclass_t awg_devclass;
1704 
1705 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1706 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1707 
1708 MODULE_DEPEND(awg, ether, 1, 1, 1);
1709 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1710