xref: /freebsd/sys/arm/arm/machdep.c (revision 780fb4a2)
1 /*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 2004 Olivier Houchard
7  * Copyright (c) 1994-1998 Mark Brinicombe.
8  * Copyright (c) 1994 Brini.
9  * All rights reserved.
10  *
11  * This code is derived from software written for Brini by Mark Brinicombe
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Mark Brinicombe
24  *	for the NetBSD Project.
25  * 4. The name of the company nor the name of the author may be used to
26  *    endorse or promote products derived from this software without specific
27  *    prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
30  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
31  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
32  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
33  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
34  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
35  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  * Machine dependent functions for kernel setup
42  *
43  * Created      : 17/09/94
44  * Updated	: 18/04/01 updated for new wscons
45  */
46 
47 #include "opt_ddb.h"
48 #include "opt_kstack_pages.h"
49 #include "opt_platform.h"
50 #include "opt_sched.h"
51 #include "opt_timer.h"
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/buf.h>
58 #include <sys/bus.h>
59 #include <sys/cons.h>
60 #include <sys/cpu.h>
61 #include <sys/devmap.h>
62 #include <sys/efi.h>
63 #include <sys/imgact.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/reboot.h>
69 #include <sys/rwlock.h>
70 #include <sys/sched.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysent.h>
73 #include <sys/sysproto.h>
74 #include <sys/vmmeter.h>
75 
76 #include <vm/vm_object.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 
80 #include <machine/debug_monitor.h>
81 #include <machine/machdep.h>
82 #include <machine/metadata.h>
83 #include <machine/pcb.h>
84 #include <machine/physmem.h>
85 #include <machine/platform.h>
86 #include <machine/sysarch.h>
87 #include <machine/undefined.h>
88 #include <machine/vfp.h>
89 #include <machine/vmparam.h>
90 
91 #ifdef FDT
92 #include <dev/fdt/fdt_common.h>
93 #include <machine/ofw_machdep.h>
94 #endif
95 
96 #ifdef DEBUG
97 #define	debugf(fmt, args...) printf(fmt, ##args)
98 #else
99 #define	debugf(fmt, args...)
100 #endif
101 
102 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
103     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
104     defined(COMPAT_FREEBSD9)
105 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
106 #endif
107 
108 #if __ARM_ARCH >= 6 && !defined(INTRNG)
109 #error armv6 requires INTRNG
110 #endif
111 
112 struct pcpu __pcpu[MAXCPU];
113 struct pcpu *pcpup = &__pcpu[0];
114 
115 static struct trapframe proc0_tf;
116 uint32_t cpu_reset_address = 0;
117 int cold = 1;
118 vm_offset_t vector_page;
119 
120 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
121 int (*_arm_bzero)(void *, int, int) = NULL;
122 int _min_memcpy_size = 0;
123 int _min_bzero_size = 0;
124 
125 extern int *end;
126 
127 #ifdef FDT
128 vm_paddr_t pmap_pa;
129 #if __ARM_ARCH >= 6
130 vm_offset_t systempage;
131 vm_offset_t irqstack;
132 vm_offset_t undstack;
133 vm_offset_t abtstack;
134 #else
135 /*
136  * This is the number of L2 page tables required for covering max
137  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
138  * stacks etc.), uprounded to be divisible by 4.
139  */
140 #define KERNEL_PT_MAX	78
141 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
142 struct pv_addr systempage;
143 static struct pv_addr msgbufpv;
144 struct pv_addr irqstack;
145 struct pv_addr undstack;
146 struct pv_addr abtstack;
147 static struct pv_addr kernelstack;
148 #endif /* __ARM_ARCH >= 6 */
149 #endif /* FDT */
150 
151 #ifdef PLATFORM
152 static delay_func *delay_impl;
153 static void *delay_arg;
154 #endif
155 
156 struct kva_md_info kmi;
157 
158 /*
159  * arm32_vector_init:
160  *
161  *	Initialize the vector page, and select whether or not to
162  *	relocate the vectors.
163  *
164  *	NOTE: We expect the vector page to be mapped at its expected
165  *	destination.
166  */
167 
168 extern unsigned int page0[], page0_data[];
169 void
170 arm_vector_init(vm_offset_t va, int which)
171 {
172 	unsigned int *vectors = (int *) va;
173 	unsigned int *vectors_data = vectors + (page0_data - page0);
174 	int vec;
175 
176 	/*
177 	 * Loop through the vectors we're taking over, and copy the
178 	 * vector's insn and data word.
179 	 */
180 	for (vec = 0; vec < ARM_NVEC; vec++) {
181 		if ((which & (1 << vec)) == 0) {
182 			/* Don't want to take over this vector. */
183 			continue;
184 		}
185 		vectors[vec] = page0[vec];
186 		vectors_data[vec] = page0_data[vec];
187 	}
188 
189 	/* Now sync the vectors. */
190 	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
191 
192 	vector_page = va;
193 #if __ARM_ARCH < 6
194 	if (va == ARM_VECTORS_HIGH) {
195 		/*
196 		 * Enable high vectors in the system control reg (SCTLR).
197 		 *
198 		 * Assume the MD caller knows what it's doing here, and really
199 		 * does want the vector page relocated.
200 		 *
201 		 * Note: This has to be done here (and not just in
202 		 * cpu_setup()) because the vector page needs to be
203 		 * accessible *before* cpu_startup() is called.
204 		 * Think ddb(9) ...
205 		 */
206 		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
207 	}
208 #endif
209 }
210 
211 static void
212 cpu_startup(void *dummy)
213 {
214 	struct pcb *pcb = thread0.td_pcb;
215 	const unsigned int mbyte = 1024 * 1024;
216 #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
217 	vm_page_t m;
218 #endif
219 
220 	identify_arm_cpu();
221 
222 	vm_ksubmap_init(&kmi);
223 
224 	/*
225 	 * Display the RAM layout.
226 	 */
227 	printf("real memory  = %ju (%ju MB)\n",
228 	    (uintmax_t)arm32_ptob(realmem),
229 	    (uintmax_t)arm32_ptob(realmem) / mbyte);
230 	printf("avail memory = %ju (%ju MB)\n",
231 	    (uintmax_t)arm32_ptob(vm_free_count()),
232 	    (uintmax_t)arm32_ptob(vm_free_count()) / mbyte);
233 	if (bootverbose) {
234 		arm_physmem_print_tables();
235 		devmap_print_table();
236 	}
237 
238 	bufinit();
239 	vm_pager_bufferinit();
240 	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
241 	    USPACE_SVC_STACK_TOP;
242 	pmap_set_pcb_pagedir(kernel_pmap, pcb);
243 #if __ARM_ARCH < 6
244 	vector_page_setprot(VM_PROT_READ);
245 	pmap_postinit();
246 #ifdef ARM_CACHE_LOCK_ENABLE
247 	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
248 	arm_lock_cache_line(ARM_TP_ADDRESS);
249 #else
250 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
251 	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
252 #endif
253 	*(uint32_t *)ARM_RAS_START = 0;
254 	*(uint32_t *)ARM_RAS_END = 0xffffffff;
255 #endif
256 }
257 
258 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
259 
260 /*
261  * Flush the D-cache for non-DMA I/O so that the I-cache can
262  * be made coherent later.
263  */
264 void
265 cpu_flush_dcache(void *ptr, size_t len)
266 {
267 
268 	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
269 }
270 
271 /* Get current clock frequency for the given cpu id. */
272 int
273 cpu_est_clockrate(int cpu_id, uint64_t *rate)
274 {
275 
276 	return (ENXIO);
277 }
278 
279 void
280 cpu_idle(int busy)
281 {
282 
283 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
284 	spinlock_enter();
285 #ifndef NO_EVENTTIMERS
286 	if (!busy)
287 		cpu_idleclock();
288 #endif
289 	if (!sched_runnable())
290 		cpu_sleep(0);
291 #ifndef NO_EVENTTIMERS
292 	if (!busy)
293 		cpu_activeclock();
294 #endif
295 	spinlock_exit();
296 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
297 }
298 
299 int
300 cpu_idle_wakeup(int cpu)
301 {
302 
303 	return (0);
304 }
305 
306 #ifdef NO_EVENTTIMERS
307 /*
308  * Most ARM platforms don't need to do anything special to init their clocks
309  * (they get intialized during normal device attachment), and by not defining a
310  * cpu_initclocks() function they get this generic one.  Any platform that needs
311  * to do something special can just provide their own implementation, which will
312  * override this one due to the weak linkage.
313  */
314 void
315 arm_generic_initclocks(void)
316 {
317 }
318 __weak_reference(arm_generic_initclocks, cpu_initclocks);
319 
320 #else
321 void
322 cpu_initclocks(void)
323 {
324 
325 #ifdef SMP
326 	if (PCPU_GET(cpuid) == 0)
327 		cpu_initclocks_bsp();
328 	else
329 		cpu_initclocks_ap();
330 #else
331 	cpu_initclocks_bsp();
332 #endif
333 }
334 #endif
335 
336 #ifdef PLATFORM
337 void
338 arm_set_delay(delay_func *impl, void *arg)
339 {
340 
341 	KASSERT(impl != NULL, ("No DELAY implementation"));
342 	delay_impl = impl;
343 	delay_arg = arg;
344 }
345 
346 void
347 DELAY(int usec)
348 {
349 
350 	TSENTER();
351 	delay_impl(usec, delay_arg);
352 	TSEXIT();
353 }
354 #endif
355 
356 void
357 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
358 {
359 }
360 
361 void
362 spinlock_enter(void)
363 {
364 	struct thread *td;
365 	register_t cspr;
366 
367 	td = curthread;
368 	if (td->td_md.md_spinlock_count == 0) {
369 		cspr = disable_interrupts(PSR_I | PSR_F);
370 		td->td_md.md_spinlock_count = 1;
371 		td->td_md.md_saved_cspr = cspr;
372 	} else
373 		td->td_md.md_spinlock_count++;
374 	critical_enter();
375 }
376 
377 void
378 spinlock_exit(void)
379 {
380 	struct thread *td;
381 	register_t cspr;
382 
383 	td = curthread;
384 	critical_exit();
385 	cspr = td->td_md.md_saved_cspr;
386 	td->td_md.md_spinlock_count--;
387 	if (td->td_md.md_spinlock_count == 0)
388 		restore_interrupts(cspr);
389 }
390 
391 /*
392  * Clear registers on exec
393  */
394 void
395 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
396 {
397 	struct trapframe *tf = td->td_frame;
398 
399 	memset(tf, 0, sizeof(*tf));
400 	tf->tf_usr_sp = stack;
401 	tf->tf_usr_lr = imgp->entry_addr;
402 	tf->tf_svc_lr = 0x77777777;
403 	tf->tf_pc = imgp->entry_addr;
404 	tf->tf_spsr = PSR_USR32_MODE;
405 }
406 
407 
408 #ifdef VFP
409 /*
410  * Get machine VFP context.
411  */
412 void
413 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
414 {
415 	struct pcb *pcb;
416 
417 	pcb = td->td_pcb;
418 	if (td == curthread) {
419 		critical_enter();
420 		vfp_store(&pcb->pcb_vfpstate, false);
421 		critical_exit();
422 	} else
423 		MPASS(TD_IS_SUSPENDED(td));
424 	memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg,
425 	    sizeof(vfp->mcv_reg));
426 	vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr;
427 }
428 
429 /*
430  * Set machine VFP context.
431  */
432 void
433 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
434 {
435 	struct pcb *pcb;
436 
437 	pcb = td->td_pcb;
438 	if (td == curthread) {
439 		critical_enter();
440 		vfp_discard(td);
441 		critical_exit();
442 	} else
443 		MPASS(TD_IS_SUSPENDED(td));
444 	memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg,
445 	    sizeof(pcb->pcb_vfpstate.reg));
446 	pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
447 }
448 #endif
449 
450 int
451 arm_get_vfpstate(struct thread *td, void *args)
452 {
453 	int rv;
454 	struct arm_get_vfpstate_args ua;
455 	mcontext_vfp_t	mcontext_vfp;
456 
457 	rv = copyin(args, &ua, sizeof(ua));
458 	if (rv != 0)
459 		return (rv);
460 	if (ua.mc_vfp_size != sizeof(mcontext_vfp_t))
461 		return (EINVAL);
462 #ifdef VFP
463 	get_vfpcontext(td, &mcontext_vfp);
464 #else
465 	bzero(&mcontext_vfp, sizeof(mcontext_vfp));
466 #endif
467 
468 	rv = copyout(&mcontext_vfp, ua.mc_vfp,  sizeof(mcontext_vfp));
469 	if (rv != 0)
470 		return (rv);
471 	return (0);
472 }
473 
474 /*
475  * Get machine context.
476  */
477 int
478 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
479 {
480 	struct trapframe *tf = td->td_frame;
481 	__greg_t *gr = mcp->__gregs;
482 
483 	if (clear_ret & GET_MC_CLEAR_RET) {
484 		gr[_REG_R0] = 0;
485 		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
486 	} else {
487 		gr[_REG_R0]   = tf->tf_r0;
488 		gr[_REG_CPSR] = tf->tf_spsr;
489 	}
490 	gr[_REG_R1]   = tf->tf_r1;
491 	gr[_REG_R2]   = tf->tf_r2;
492 	gr[_REG_R3]   = tf->tf_r3;
493 	gr[_REG_R4]   = tf->tf_r4;
494 	gr[_REG_R5]   = tf->tf_r5;
495 	gr[_REG_R6]   = tf->tf_r6;
496 	gr[_REG_R7]   = tf->tf_r7;
497 	gr[_REG_R8]   = tf->tf_r8;
498 	gr[_REG_R9]   = tf->tf_r9;
499 	gr[_REG_R10]  = tf->tf_r10;
500 	gr[_REG_R11]  = tf->tf_r11;
501 	gr[_REG_R12]  = tf->tf_r12;
502 	gr[_REG_SP]   = tf->tf_usr_sp;
503 	gr[_REG_LR]   = tf->tf_usr_lr;
504 	gr[_REG_PC]   = tf->tf_pc;
505 
506 	mcp->mc_vfp_size = 0;
507 	mcp->mc_vfp_ptr = NULL;
508 	memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
509 
510 	return (0);
511 }
512 
513 /*
514  * Set machine context.
515  *
516  * However, we don't set any but the user modifiable flags, and we won't
517  * touch the cs selector.
518  */
519 int
520 set_mcontext(struct thread *td, mcontext_t *mcp)
521 {
522 	mcontext_vfp_t mc_vfp, *vfp;
523 	struct trapframe *tf = td->td_frame;
524 	const __greg_t *gr = mcp->__gregs;
525 	int spsr;
526 
527 	/*
528 	 * Make sure the processor mode has not been tampered with and
529 	 * interrupts have not been disabled.
530 	 */
531 	spsr = gr[_REG_CPSR];
532 	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
533 	    (spsr & (PSR_I | PSR_F)) != 0)
534 		return (EINVAL);
535 
536 #ifdef WITNESS
537 	if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
538 		printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
539 		    td->td_proc->p_comm, __func__,
540 		    mcp->mc_vfp_size, mcp->mc_vfp_size);
541 	} else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
542 		printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
543 		    td->td_proc->p_comm, __func__);
544 	}
545 #endif
546 
547 	if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
548 		if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
549 			return (EFAULT);
550 		vfp = &mc_vfp;
551 	} else {
552 		vfp = NULL;
553 	}
554 
555 	tf->tf_r0 = gr[_REG_R0];
556 	tf->tf_r1 = gr[_REG_R1];
557 	tf->tf_r2 = gr[_REG_R2];
558 	tf->tf_r3 = gr[_REG_R3];
559 	tf->tf_r4 = gr[_REG_R4];
560 	tf->tf_r5 = gr[_REG_R5];
561 	tf->tf_r6 = gr[_REG_R6];
562 	tf->tf_r7 = gr[_REG_R7];
563 	tf->tf_r8 = gr[_REG_R8];
564 	tf->tf_r9 = gr[_REG_R9];
565 	tf->tf_r10 = gr[_REG_R10];
566 	tf->tf_r11 = gr[_REG_R11];
567 	tf->tf_r12 = gr[_REG_R12];
568 	tf->tf_usr_sp = gr[_REG_SP];
569 	tf->tf_usr_lr = gr[_REG_LR];
570 	tf->tf_pc = gr[_REG_PC];
571 	tf->tf_spsr = gr[_REG_CPSR];
572 #ifdef VFP
573 	if (vfp != NULL)
574 		set_vfpcontext(td, vfp);
575 #endif
576 	return (0);
577 }
578 
579 void
580 sendsig(catcher, ksi, mask)
581 	sig_t catcher;
582 	ksiginfo_t *ksi;
583 	sigset_t *mask;
584 {
585 	struct thread *td;
586 	struct proc *p;
587 	struct trapframe *tf;
588 	struct sigframe *fp, frame;
589 	struct sigacts *psp;
590 	struct sysentvec *sysent;
591 	int onstack;
592 	int sig;
593 	int code;
594 
595 	td = curthread;
596 	p = td->td_proc;
597 	PROC_LOCK_ASSERT(p, MA_OWNED);
598 	sig = ksi->ksi_signo;
599 	code = ksi->ksi_code;
600 	psp = p->p_sigacts;
601 	mtx_assert(&psp->ps_mtx, MA_OWNED);
602 	tf = td->td_frame;
603 	onstack = sigonstack(tf->tf_usr_sp);
604 
605 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
606 	    catcher, sig);
607 
608 	/* Allocate and validate space for the signal handler context. */
609 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
610 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
611 		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
612 		    td->td_sigstk.ss_size);
613 #if defined(COMPAT_43)
614 		td->td_sigstk.ss_flags |= SS_ONSTACK;
615 #endif
616 	} else
617 		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
618 
619 	/* make room on the stack */
620 	fp--;
621 
622 	/* make the stack aligned */
623 	fp = (struct sigframe *)STACKALIGN(fp);
624 	/* Populate the siginfo frame. */
625 	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
626 #ifdef VFP
627 	get_vfpcontext(td, &frame.sf_vfp);
628 	frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
629 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
630 #else
631 	frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
632 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
633 #endif
634 	frame.sf_si = ksi->ksi_info;
635 	frame.sf_uc.uc_sigmask = *mask;
636 	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
637 	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
638 	frame.sf_uc.uc_stack = td->td_sigstk;
639 	mtx_unlock(&psp->ps_mtx);
640 	PROC_UNLOCK(td->td_proc);
641 
642 	/* Copy the sigframe out to the user's stack. */
643 	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
644 		/* Process has trashed its stack. Kill it. */
645 		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
646 		PROC_LOCK(p);
647 		sigexit(td, SIGILL);
648 	}
649 
650 	/*
651 	 * Build context to run handler in.  We invoke the handler
652 	 * directly, only returning via the trampoline.  Note the
653 	 * trampoline version numbers are coordinated with machine-
654 	 * dependent code in libc.
655 	 */
656 
657 	tf->tf_r0 = sig;
658 	tf->tf_r1 = (register_t)&fp->sf_si;
659 	tf->tf_r2 = (register_t)&fp->sf_uc;
660 
661 	/* the trampoline uses r5 as the uc address */
662 	tf->tf_r5 = (register_t)&fp->sf_uc;
663 	tf->tf_pc = (register_t)catcher;
664 	tf->tf_usr_sp = (register_t)fp;
665 	sysent = p->p_sysent;
666 	if (sysent->sv_sigcode_base != 0)
667 		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
668 	else
669 		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
670 		    *(sysent->sv_szsigcode));
671 	/* Set the mode to enter in the signal handler */
672 #if __ARM_ARCH >= 7
673 	if ((register_t)catcher & 1)
674 		tf->tf_spsr |= PSR_T;
675 	else
676 		tf->tf_spsr &= ~PSR_T;
677 #endif
678 
679 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
680 	    tf->tf_usr_sp);
681 
682 	PROC_LOCK(p);
683 	mtx_lock(&psp->ps_mtx);
684 }
685 
686 int
687 sys_sigreturn(td, uap)
688 	struct thread *td;
689 	struct sigreturn_args /* {
690 		const struct __ucontext *sigcntxp;
691 	} */ *uap;
692 {
693 	ucontext_t uc;
694 	int error;
695 
696 	if (uap == NULL)
697 		return (EFAULT);
698 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
699 		return (EFAULT);
700 	/* Restore register context. */
701 	error = set_mcontext(td, &uc.uc_mcontext);
702 	if (error != 0)
703 		return (error);
704 
705 	/* Restore signal mask. */
706 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
707 
708 	return (EJUSTRETURN);
709 }
710 
711 /*
712  * Construct a PCB from a trapframe. This is called from kdb_trap() where
713  * we want to start a backtrace from the function that caused us to enter
714  * the debugger. We have the context in the trapframe, but base the trace
715  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
716  * enough for a backtrace.
717  */
718 void
719 makectx(struct trapframe *tf, struct pcb *pcb)
720 {
721 	pcb->pcb_regs.sf_r4 = tf->tf_r4;
722 	pcb->pcb_regs.sf_r5 = tf->tf_r5;
723 	pcb->pcb_regs.sf_r6 = tf->tf_r6;
724 	pcb->pcb_regs.sf_r7 = tf->tf_r7;
725 	pcb->pcb_regs.sf_r8 = tf->tf_r8;
726 	pcb->pcb_regs.sf_r9 = tf->tf_r9;
727 	pcb->pcb_regs.sf_r10 = tf->tf_r10;
728 	pcb->pcb_regs.sf_r11 = tf->tf_r11;
729 	pcb->pcb_regs.sf_r12 = tf->tf_r12;
730 	pcb->pcb_regs.sf_pc = tf->tf_pc;
731 	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
732 	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
733 }
734 
735 void
736 pcpu0_init(void)
737 {
738 #if __ARM_ARCH >= 6
739 	set_curthread(&thread0);
740 #endif
741 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
742 	PCPU_SET(curthread, &thread0);
743 }
744 
745 /*
746  * Initialize proc0
747  */
748 void
749 init_proc0(vm_offset_t kstack)
750 {
751 	proc_linkup0(&proc0, &thread0);
752 	thread0.td_kstack = kstack;
753 	thread0.td_pcb = (struct pcb *)
754 		(thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
755 	thread0.td_pcb->pcb_flags = 0;
756 	thread0.td_pcb->pcb_vfpcpu = -1;
757 	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
758 	thread0.td_frame = &proc0_tf;
759 	pcpup->pc_curpcb = thread0.td_pcb;
760 }
761 
762 #if __ARM_ARCH >= 6
763 void
764 set_stackptrs(int cpu)
765 {
766 
767 	set_stackptr(PSR_IRQ32_MODE,
768 	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
769 	set_stackptr(PSR_ABT32_MODE,
770 	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
771 	set_stackptr(PSR_UND32_MODE,
772 	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
773 }
774 #else
775 void
776 set_stackptrs(int cpu)
777 {
778 
779 	set_stackptr(PSR_IRQ32_MODE,
780 	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
781 	set_stackptr(PSR_ABT32_MODE,
782 	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
783 	set_stackptr(PSR_UND32_MODE,
784 	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
785 }
786 #endif
787 
788 static void
789 arm_kdb_init(void)
790 {
791 
792 	kdb_init();
793 #ifdef KDB
794 	if (boothowto & RB_KDB)
795 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
796 #endif
797 }
798 
799 #ifdef FDT
800 #if __ARM_ARCH < 6
801 void *
802 initarm(struct arm_boot_params *abp)
803 {
804 	struct mem_region mem_regions[FDT_MEM_REGIONS];
805 	struct pv_addr kernel_l1pt;
806 	struct pv_addr dpcpu;
807 	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
808 	uint64_t memsize;
809 	uint32_t l2size;
810 	char *env;
811 	void *kmdp;
812 	u_int l1pagetable;
813 	int i, j, err_devmap, mem_regions_sz;
814 
815 	lastaddr = parse_boot_param(abp);
816 	arm_physmem_kernaddr = abp->abp_physaddr;
817 
818 	memsize = 0;
819 
820 	cpuinfo_init();
821 	set_cpufuncs();
822 
823 	/*
824 	 * Find the dtb passed in by the boot loader.
825 	 */
826 	kmdp = preload_search_by_type("elf kernel");
827 	if (kmdp != NULL)
828 		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
829 	else
830 		dtbp = (vm_offset_t)NULL;
831 
832 #if defined(FDT_DTB_STATIC)
833 	/*
834 	 * In case the device tree blob was not retrieved (from metadata) try
835 	 * to use the statically embedded one.
836 	 */
837 	if (dtbp == (vm_offset_t)NULL)
838 		dtbp = (vm_offset_t)&fdt_static_dtb;
839 #endif
840 
841 	if (OF_install(OFW_FDT, 0) == FALSE)
842 		panic("Cannot install FDT");
843 
844 	if (OF_init((void *)dtbp) != 0)
845 		panic("OF_init failed with the found device tree");
846 
847 	/* Grab physical memory regions information from device tree. */
848 	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
849 		panic("Cannot get physical memory regions");
850 	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
851 
852 	/* Grab reserved memory regions information from device tree. */
853 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
854 		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
855 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
856 
857 	/* Platform-specific initialisation */
858 	platform_probe_and_attach();
859 
860 	pcpu0_init();
861 
862 	/* Do basic tuning, hz etc */
863 	init_param1();
864 
865 	/* Calculate number of L2 tables needed for mapping vm_page_array */
866 	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
867 	l2size = (l2size >> L1_S_SHIFT) + 1;
868 
869 	/*
870 	 * Add one table for end of kernel map, one for stacks, msgbuf and
871 	 * L1 and L2 tables map,  one for vectors map and two for
872 	 * l2 structures from pmap_bootstrap.
873 	 */
874 	l2size += 5;
875 
876 	/* Make it divisible by 4 */
877 	l2size = (l2size + 3) & ~3;
878 
879 	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
880 
881 	/* Define a macro to simplify memory allocation */
882 #define valloc_pages(var, np)						\
883 	alloc_pages((var).pv_va, (np));					\
884 	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
885 
886 #define alloc_pages(var, np)						\
887 	(var) = freemempos;						\
888 	freemempos += (np * PAGE_SIZE);					\
889 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
890 
891 	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
892 		freemempos += PAGE_SIZE;
893 	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
894 
895 	for (i = 0, j = 0; i < l2size; ++i) {
896 		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
897 			valloc_pages(kernel_pt_table[i],
898 			    L2_TABLE_SIZE / PAGE_SIZE);
899 			j = i;
900 		} else {
901 			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
902 			    L2_TABLE_SIZE_REAL * (i - j);
903 			kernel_pt_table[i].pv_pa =
904 			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
905 			    abp->abp_physaddr;
906 
907 		}
908 	}
909 	/*
910 	 * Allocate a page for the system page mapped to 0x00000000
911 	 * or 0xffff0000. This page will just contain the system vectors
912 	 * and can be shared by all processes.
913 	 */
914 	valloc_pages(systempage, 1);
915 
916 	/* Allocate dynamic per-cpu area. */
917 	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
918 	dpcpu_init((void *)dpcpu.pv_va, 0);
919 
920 	/* Allocate stacks for all modes */
921 	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
922 	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
923 	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
924 	valloc_pages(kernelstack, kstack_pages * MAXCPU);
925 	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
926 
927 	/*
928 	 * Now we start construction of the L1 page table
929 	 * We start by mapping the L2 page tables into the L1.
930 	 * This means that we can replace L1 mappings later on if necessary
931 	 */
932 	l1pagetable = kernel_l1pt.pv_va;
933 
934 	/*
935 	 * Try to map as much as possible of kernel text and data using
936 	 * 1MB section mapping and for the rest of initial kernel address
937 	 * space use L2 coarse tables.
938 	 *
939 	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
940 	 * and kernel structures
941 	 */
942 	l2_start = lastaddr & ~(L1_S_OFFSET);
943 	for (i = 0 ; i < l2size - 1; i++)
944 		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
945 		    &kernel_pt_table[i]);
946 
947 	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
948 
949 	/* Map kernel code and data */
950 	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
951 	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
952 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
953 
954 	/* Map L1 directory and allocated L2 page tables */
955 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
956 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
957 
958 	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
959 	    kernel_pt_table[0].pv_pa,
960 	    L2_TABLE_SIZE_REAL * l2size,
961 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
962 
963 	/* Map allocated DPCPU, stacks and msgbuf */
964 	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
965 	    freemempos - dpcpu.pv_va,
966 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
967 
968 	/* Link and map the vector page */
969 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
970 	    &kernel_pt_table[l2size - 1]);
971 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
972 	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
973 
974 	/* Establish static device mappings. */
975 	err_devmap = platform_devmap_init();
976 	devmap_bootstrap(l1pagetable, NULL);
977 	vm_max_kernel_address = platform_lastaddr();
978 
979 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
980 	pmap_pa = kernel_l1pt.pv_pa;
981 	cpu_setttb(kernel_l1pt.pv_pa);
982 	cpu_tlb_flushID();
983 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
984 
985 	/*
986 	 * Now that proper page tables are installed, call cpu_setup() to enable
987 	 * instruction and data caches and other chip-specific features.
988 	 */
989 	cpu_setup();
990 
991 	/*
992 	 * Only after the SOC registers block is mapped we can perform device
993 	 * tree fixups, as they may attempt to read parameters from hardware.
994 	 */
995 	OF_interpret("perform-fixup", 0);
996 
997 	platform_gpio_init();
998 
999 	cninit();
1000 
1001 	debugf("initarm: console initialized\n");
1002 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1003 	debugf(" boothowto = 0x%08x\n", boothowto);
1004 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1005 	arm_print_kenv();
1006 
1007 	env = kern_getenv("kernelname");
1008 	if (env != NULL) {
1009 		strlcpy(kernelname, env, sizeof(kernelname));
1010 		freeenv(env);
1011 	}
1012 
1013 	if (err_devmap != 0)
1014 		printf("WARNING: could not fully configure devmap, error=%d\n",
1015 		    err_devmap);
1016 
1017 	platform_late_init();
1018 
1019 	/*
1020 	 * Pages were allocated during the secondary bootstrap for the
1021 	 * stacks for different CPU modes.
1022 	 * We must now set the r13 registers in the different CPU modes to
1023 	 * point to these stacks.
1024 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1025 	 * of the stack memory.
1026 	 */
1027 	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1028 
1029 	set_stackptrs(0);
1030 
1031 	/*
1032 	 * We must now clean the cache again....
1033 	 * Cleaning may be done by reading new data to displace any
1034 	 * dirty data in the cache. This will have happened in cpu_setttb()
1035 	 * but since we are boot strapping the addresses used for the read
1036 	 * may have just been remapped and thus the cache could be out
1037 	 * of sync. A re-clean after the switch will cure this.
1038 	 * After booting there are no gross relocations of the kernel thus
1039 	 * this problem will not occur after initarm().
1040 	 */
1041 	cpu_idcache_wbinv_all();
1042 
1043 	undefined_init();
1044 
1045 	init_proc0(kernelstack.pv_va);
1046 
1047 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1048 	pmap_bootstrap(freemempos, &kernel_l1pt);
1049 	msgbufp = (void *)msgbufpv.pv_va;
1050 	msgbufinit(msgbufp, msgbufsize);
1051 	mutex_init();
1052 
1053 	/*
1054 	 * Exclude the kernel (and all the things we allocated which immediately
1055 	 * follow the kernel) from the VM allocation pool but not from crash
1056 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1057 	 * "allocated" while setting up pmaps.
1058 	 *
1059 	 * Prepare the list of physical memory available to the vm subsystem.
1060 	 */
1061 	arm_physmem_exclude_region(abp->abp_physaddr,
1062 	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1063 	arm_physmem_init_kernel_globals();
1064 
1065 	init_param2(physmem);
1066 	dbg_monitor_init();
1067 	arm_kdb_init();
1068 
1069 	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1070 	    sizeof(struct pcb)));
1071 }
1072 #else /* __ARM_ARCH < 6 */
1073 void *
1074 initarm(struct arm_boot_params *abp)
1075 {
1076 	struct mem_region mem_regions[FDT_MEM_REGIONS];
1077 	vm_paddr_t lastaddr;
1078 	vm_offset_t dtbp, kernelstack, dpcpu;
1079 	char *env;
1080 	void *kmdp;
1081 	int err_devmap, mem_regions_sz;
1082 #ifdef EFI
1083 	struct efi_map_header *efihdr;
1084 #endif
1085 
1086 	/* get last allocated physical address */
1087 	arm_physmem_kernaddr = abp->abp_physaddr;
1088 	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
1089 
1090 	set_cpufuncs();
1091 	cpuinfo_init();
1092 
1093 	/*
1094 	 * Find the dtb passed in by the boot loader.
1095 	 */
1096 	kmdp = preload_search_by_type("elf kernel");
1097 	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1098 #if defined(FDT_DTB_STATIC)
1099 	/*
1100 	 * In case the device tree blob was not retrieved (from metadata) try
1101 	 * to use the statically embedded one.
1102 	 */
1103 	if (dtbp == (vm_offset_t)NULL)
1104 		dtbp = (vm_offset_t)&fdt_static_dtb;
1105 #endif
1106 
1107 	if (OF_install(OFW_FDT, 0) == FALSE)
1108 		panic("Cannot install FDT");
1109 
1110 	if (OF_init((void *)dtbp) != 0)
1111 		panic("OF_init failed with the found device tree");
1112 
1113 #if defined(LINUX_BOOT_ABI)
1114 	arm_parse_fdt_bootargs();
1115 #endif
1116 
1117 #ifdef EFI
1118 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1119 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1120 	if (efihdr != NULL) {
1121 		arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
1122 	} else
1123 #endif
1124 	{
1125 		/* Grab physical memory regions information from device tree. */
1126 		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
1127 			panic("Cannot get physical memory regions");
1128 	}
1129 	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1130 
1131 	/* Grab reserved memory regions information from device tree. */
1132 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1133 		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1134 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1135 
1136 	/*
1137 	 * Set TEX remapping registers.
1138 	 * Setup kernel page tables and switch to kernel L1 page table.
1139 	 */
1140 	pmap_set_tex();
1141 	pmap_bootstrap_prepare(lastaddr);
1142 
1143 	/*
1144 	 * If EARLY_PRINTF support is enabled, we need to re-establish the
1145 	 * mapping after pmap_bootstrap_prepare() switches to new page tables.
1146 	 * Note that we can only do the remapping if the VA is outside the
1147 	 * kernel, now that we have real virtual (not VA=PA) mappings in effect.
1148 	 * Early printf does not work between the time pmap_set_tex() does
1149 	 * cp15_prrr_set() and this code remaps the VA.
1150 	 */
1151 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
1152 	pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024,
1153 	    VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE);
1154 #endif
1155 
1156 	/*
1157 	 * Now that proper page tables are installed, call cpu_setup() to enable
1158 	 * instruction and data caches and other chip-specific features.
1159 	 */
1160 	cpu_setup();
1161 
1162 	/* Platform-specific initialisation */
1163 	platform_probe_and_attach();
1164 	pcpu0_init();
1165 
1166 	/* Do basic tuning, hz etc */
1167 	init_param1();
1168 
1169 	/*
1170 	 * Allocate a page for the system page mapped to 0xffff0000
1171 	 * This page will just contain the system vectors and can be
1172 	 * shared by all processes.
1173 	 */
1174 	systempage = pmap_preboot_get_pages(1);
1175 
1176 	/* Map the vector page. */
1177 	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
1178 	if (virtual_end >= ARM_VECTORS_HIGH)
1179 		virtual_end = ARM_VECTORS_HIGH - 1;
1180 
1181 	/* Allocate dynamic per-cpu area. */
1182 	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
1183 	dpcpu_init((void *)dpcpu, 0);
1184 
1185 	/* Allocate stacks for all modes */
1186 	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
1187 	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
1188 	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
1189 	kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
1190 
1191 	/* Allocate message buffer. */
1192 	msgbufp = (void *)pmap_preboot_get_vpages(
1193 	    round_page(msgbufsize) / PAGE_SIZE);
1194 
1195 	/*
1196 	 * Pages were allocated during the secondary bootstrap for the
1197 	 * stacks for different CPU modes.
1198 	 * We must now set the r13 registers in the different CPU modes to
1199 	 * point to these stacks.
1200 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1201 	 * of the stack memory.
1202 	 */
1203 	set_stackptrs(0);
1204 	mutex_init();
1205 
1206 	/* Establish static device mappings. */
1207 	err_devmap = platform_devmap_init();
1208 	devmap_bootstrap(0, NULL);
1209 	vm_max_kernel_address = platform_lastaddr();
1210 
1211 	/*
1212 	 * Only after the SOC registers block is mapped we can perform device
1213 	 * tree fixups, as they may attempt to read parameters from hardware.
1214 	 */
1215 	OF_interpret("perform-fixup", 0);
1216 	platform_gpio_init();
1217 	cninit();
1218 
1219 	/*
1220 	 * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(),
1221 	 * undo it now that the normal console printf works.
1222 	 */
1223 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
1224 	pmap_kremove(SOCDEV_VA);
1225 #endif
1226 
1227 	debugf("initarm: console initialized\n");
1228 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1229 	debugf(" boothowto = 0x%08x\n", boothowto);
1230 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1231 	debugf(" lastaddr1: 0x%08x\n", lastaddr);
1232 	arm_print_kenv();
1233 
1234 	env = kern_getenv("kernelname");
1235 	if (env != NULL)
1236 		strlcpy(kernelname, env, sizeof(kernelname));
1237 
1238 	if (err_devmap != 0)
1239 		printf("WARNING: could not fully configure devmap, error=%d\n",
1240 		    err_devmap);
1241 
1242 	platform_late_init();
1243 
1244 	/*
1245 	 * We must now clean the cache again....
1246 	 * Cleaning may be done by reading new data to displace any
1247 	 * dirty data in the cache. This will have happened in cpu_setttb()
1248 	 * but since we are boot strapping the addresses used for the read
1249 	 * may have just been remapped and thus the cache could be out
1250 	 * of sync. A re-clean after the switch will cure this.
1251 	 * After booting there are no gross relocations of the kernel thus
1252 	 * this problem will not occur after initarm().
1253 	 */
1254 	/* Set stack for exception handlers */
1255 	undefined_init();
1256 	init_proc0(kernelstack);
1257 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1258 	enable_interrupts(PSR_A);
1259 	pmap_bootstrap(0);
1260 
1261 	/* Exclude the kernel (and all the things we allocated which immediately
1262 	 * follow the kernel) from the VM allocation pool but not from crash
1263 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1264 	 * "allocated" while setting up pmaps.
1265 	 *
1266 	 * Prepare the list of physical memory available to the vm subsystem.
1267 	 */
1268 	arm_physmem_exclude_region(abp->abp_physaddr,
1269 		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
1270 	arm_physmem_init_kernel_globals();
1271 
1272 	init_param2(physmem);
1273 	/* Init message buffer. */
1274 	msgbufinit(msgbufp, msgbufsize);
1275 	dbg_monitor_init();
1276 	arm_kdb_init();
1277 	/* Apply possible BP hardening. */
1278 	cpuinfo_init_bp_hardening();
1279 	return ((void *)STACKALIGN(thread0.td_pcb));
1280 
1281 }
1282 
1283 #endif /* __ARM_ARCH < 6 */
1284 #endif /* FDT */
1285