xref: /freebsd/sys/arm/arm/machdep.c (revision a3557ef0)
1 /*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 2004 Olivier Houchard
7  * Copyright (c) 1994-1998 Mark Brinicombe.
8  * Copyright (c) 1994 Brini.
9  * All rights reserved.
10  *
11  * This code is derived from software written for Brini by Mark Brinicombe
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Mark Brinicombe
24  *	for the NetBSD Project.
25  * 4. The name of the company nor the name of the author may be used to
26  *    endorse or promote products derived from this software without specific
27  *    prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
30  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
31  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
32  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
33  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
34  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
35  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  * Machine dependent functions for kernel setup
42  *
43  * Created      : 17/09/94
44  * Updated	: 18/04/01 updated for new wscons
45  */
46 
47 #include "opt_ddb.h"
48 #include "opt_kstack_pages.h"
49 #include "opt_platform.h"
50 #include "opt_sched.h"
51 #include "opt_timer.h"
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/buf.h>
58 #include <sys/bus.h>
59 #include <sys/cons.h>
60 #include <sys/cpu.h>
61 #include <sys/devmap.h>
62 #include <sys/efi.h>
63 #include <sys/imgact.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/ktr.h>
67 #include <sys/linker.h>
68 #include <sys/msgbuf.h>
69 #include <sys/physmem.h>
70 #include <sys/reboot.h>
71 #include <sys/rwlock.h>
72 #include <sys/sched.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysent.h>
75 #include <sys/sysproto.h>
76 #include <sys/vmmeter.h>
77 
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 
82 #include <machine/asm.h>
83 #include <machine/debug_monitor.h>
84 #include <machine/machdep.h>
85 #include <machine/metadata.h>
86 #include <machine/pcb.h>
87 #include <machine/platform.h>
88 #include <machine/sysarch.h>
89 #include <machine/undefined.h>
90 #include <machine/vfp.h>
91 #include <machine/vmparam.h>
92 
93 #ifdef FDT
94 #include <dev/fdt/fdt_common.h>
95 #include <machine/ofw_machdep.h>
96 #endif
97 
98 #ifdef DEBUG
99 #define	debugf(fmt, args...) printf(fmt, ##args)
100 #else
101 #define	debugf(fmt, args...)
102 #endif
103 
104 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
105     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
106     defined(COMPAT_FREEBSD9)
107 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
108 #endif
109 
110 #if __ARM_ARCH >= 6 && !defined(INTRNG)
111 #error armv6 requires INTRNG
112 #endif
113 
114 #ifndef _ARM_ARCH_5E
115 #error FreeBSD requires ARMv5 or later
116 #endif
117 
118 struct pcpu __pcpu[MAXCPU];
119 struct pcpu *pcpup = &__pcpu[0];
120 
121 static struct trapframe proc0_tf;
122 uint32_t cpu_reset_address = 0;
123 int cold = 1;
124 vm_offset_t vector_page;
125 
126 /* The address at which the kernel was loaded.  Set early in initarm(). */
127 vm_paddr_t arm_physmem_kernaddr;
128 
129 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
130 int (*_arm_bzero)(void *, int, int) = NULL;
131 int _min_memcpy_size = 0;
132 int _min_bzero_size = 0;
133 
134 extern int *end;
135 
136 #ifdef FDT
137 vm_paddr_t pmap_pa;
138 #if __ARM_ARCH >= 6
139 vm_offset_t systempage;
140 vm_offset_t irqstack;
141 vm_offset_t undstack;
142 vm_offset_t abtstack;
143 #else
144 /*
145  * This is the number of L2 page tables required for covering max
146  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
147  * stacks etc.), uprounded to be divisible by 4.
148  */
149 #define KERNEL_PT_MAX	78
150 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
151 struct pv_addr systempage;
152 static struct pv_addr msgbufpv;
153 struct pv_addr irqstack;
154 struct pv_addr undstack;
155 struct pv_addr abtstack;
156 static struct pv_addr kernelstack;
157 #endif /* __ARM_ARCH >= 6 */
158 #endif /* FDT */
159 
160 #ifdef PLATFORM
161 static delay_func *delay_impl;
162 static void *delay_arg;
163 #endif
164 
165 struct kva_md_info kmi;
166 /*
167  * arm32_vector_init:
168  *
169  *	Initialize the vector page, and select whether or not to
170  *	relocate the vectors.
171  *
172  *	NOTE: We expect the vector page to be mapped at its expected
173  *	destination.
174  */
175 
176 extern unsigned int page0[], page0_data[];
177 void
178 arm_vector_init(vm_offset_t va, int which)
179 {
180 	unsigned int *vectors = (int *) va;
181 	unsigned int *vectors_data = vectors + (page0_data - page0);
182 	int vec;
183 
184 	/*
185 	 * Loop through the vectors we're taking over, and copy the
186 	 * vector's insn and data word.
187 	 */
188 	for (vec = 0; vec < ARM_NVEC; vec++) {
189 		if ((which & (1 << vec)) == 0) {
190 			/* Don't want to take over this vector. */
191 			continue;
192 		}
193 		vectors[vec] = page0[vec];
194 		vectors_data[vec] = page0_data[vec];
195 	}
196 
197 	/* Now sync the vectors. */
198 	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
199 
200 	vector_page = va;
201 #if __ARM_ARCH < 6
202 	if (va == ARM_VECTORS_HIGH) {
203 		/*
204 		 * Enable high vectors in the system control reg (SCTLR).
205 		 *
206 		 * Assume the MD caller knows what it's doing here, and really
207 		 * does want the vector page relocated.
208 		 *
209 		 * Note: This has to be done here (and not just in
210 		 * cpu_setup()) because the vector page needs to be
211 		 * accessible *before* cpu_startup() is called.
212 		 * Think ddb(9) ...
213 		 */
214 		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
215 	}
216 #endif
217 }
218 
219 static void
220 cpu_startup(void *dummy)
221 {
222 	struct pcb *pcb = thread0.td_pcb;
223 	const unsigned int mbyte = 1024 * 1024;
224 #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
225 	vm_page_t m;
226 #endif
227 
228 	identify_arm_cpu();
229 
230 	vm_ksubmap_init(&kmi);
231 
232 	/*
233 	 * Display the RAM layout.
234 	 */
235 	printf("real memory  = %ju (%ju MB)\n",
236 	    (uintmax_t)arm32_ptob(realmem),
237 	    (uintmax_t)arm32_ptob(realmem) / mbyte);
238 	printf("avail memory = %ju (%ju MB)\n",
239 	    (uintmax_t)arm32_ptob(vm_free_count()),
240 	    (uintmax_t)arm32_ptob(vm_free_count()) / mbyte);
241 	if (bootverbose) {
242 		physmem_print_tables();
243 		devmap_print_table();
244 	}
245 
246 	bufinit();
247 	vm_pager_bufferinit();
248 	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
249 	    USPACE_SVC_STACK_TOP;
250 	pmap_set_pcb_pagedir(kernel_pmap, pcb);
251 #if __ARM_ARCH < 6
252 	vector_page_setprot(VM_PROT_READ);
253 	pmap_postinit();
254 #ifdef ARM_CACHE_LOCK_ENABLE
255 	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
256 	arm_lock_cache_line(ARM_TP_ADDRESS);
257 #else
258 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
259 	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
260 #endif
261 	*(uint32_t *)ARM_RAS_START = 0;
262 	*(uint32_t *)ARM_RAS_END = 0xffffffff;
263 #endif
264 }
265 
266 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
267 
268 /*
269  * Flush the D-cache for non-DMA I/O so that the I-cache can
270  * be made coherent later.
271  */
272 void
273 cpu_flush_dcache(void *ptr, size_t len)
274 {
275 
276 	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
277 }
278 
279 /* Get current clock frequency for the given cpu id. */
280 int
281 cpu_est_clockrate(int cpu_id, uint64_t *rate)
282 {
283 #if __ARM_ARCH >= 6
284 	struct pcpu *pc;
285 
286 	pc = pcpu_find(cpu_id);
287 	if (pc == NULL || rate == NULL)
288 		return (EINVAL);
289 
290 	if (pc->pc_clock == 0)
291 		return (EOPNOTSUPP);
292 
293 	*rate = pc->pc_clock;
294 
295 	return (0);
296 #else
297 	return (ENXIO);
298 #endif
299 }
300 
301 void
302 cpu_idle(int busy)
303 {
304 
305 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
306 	spinlock_enter();
307 #ifndef NO_EVENTTIMERS
308 	if (!busy)
309 		cpu_idleclock();
310 #endif
311 	if (!sched_runnable())
312 		cpu_sleep(0);
313 #ifndef NO_EVENTTIMERS
314 	if (!busy)
315 		cpu_activeclock();
316 #endif
317 	spinlock_exit();
318 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
319 }
320 
321 int
322 cpu_idle_wakeup(int cpu)
323 {
324 
325 	return (0);
326 }
327 
328 #ifdef NO_EVENTTIMERS
329 /*
330  * Most ARM platforms don't need to do anything special to init their clocks
331  * (they get intialized during normal device attachment), and by not defining a
332  * cpu_initclocks() function they get this generic one.  Any platform that needs
333  * to do something special can just provide their own implementation, which will
334  * override this one due to the weak linkage.
335  */
336 void
337 arm_generic_initclocks(void)
338 {
339 }
340 __weak_reference(arm_generic_initclocks, cpu_initclocks);
341 
342 #else
343 void
344 cpu_initclocks(void)
345 {
346 
347 #ifdef SMP
348 	if (PCPU_GET(cpuid) == 0)
349 		cpu_initclocks_bsp();
350 	else
351 		cpu_initclocks_ap();
352 #else
353 	cpu_initclocks_bsp();
354 #endif
355 }
356 #endif
357 
358 #ifdef PLATFORM
359 void
360 arm_set_delay(delay_func *impl, void *arg)
361 {
362 
363 	KASSERT(impl != NULL, ("No DELAY implementation"));
364 	delay_impl = impl;
365 	delay_arg = arg;
366 }
367 
368 void
369 DELAY(int usec)
370 {
371 
372 	TSENTER();
373 	delay_impl(usec, delay_arg);
374 	TSEXIT();
375 }
376 #endif
377 
378 void
379 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
380 {
381 }
382 
383 void
384 spinlock_enter(void)
385 {
386 	struct thread *td;
387 	register_t cspr;
388 
389 	td = curthread;
390 	if (td->td_md.md_spinlock_count == 0) {
391 		cspr = disable_interrupts(PSR_I | PSR_F);
392 		td->td_md.md_spinlock_count = 1;
393 		td->td_md.md_saved_cspr = cspr;
394 		critical_enter();
395 	} else
396 		td->td_md.md_spinlock_count++;
397 }
398 
399 void
400 spinlock_exit(void)
401 {
402 	struct thread *td;
403 	register_t cspr;
404 
405 	td = curthread;
406 	cspr = td->td_md.md_saved_cspr;
407 	td->td_md.md_spinlock_count--;
408 	if (td->td_md.md_spinlock_count == 0) {
409 		critical_exit();
410 		restore_interrupts(cspr);
411 	}
412 }
413 
414 /*
415  * Clear registers on exec
416  */
417 void
418 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
419 {
420 	struct trapframe *tf = td->td_frame;
421 
422 	memset(tf, 0, sizeof(*tf));
423 	tf->tf_usr_sp = stack;
424 	tf->tf_usr_lr = imgp->entry_addr;
425 	tf->tf_svc_lr = 0x77777777;
426 	tf->tf_pc = imgp->entry_addr;
427 	tf->tf_spsr = PSR_USR32_MODE;
428 }
429 
430 
431 #ifdef VFP
432 /*
433  * Get machine VFP context.
434  */
435 void
436 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
437 {
438 	struct pcb *pcb;
439 
440 	pcb = td->td_pcb;
441 	if (td == curthread) {
442 		critical_enter();
443 		vfp_store(&pcb->pcb_vfpstate, false);
444 		critical_exit();
445 	} else
446 		MPASS(TD_IS_SUSPENDED(td));
447 	memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg,
448 	    sizeof(vfp->mcv_reg));
449 	vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr;
450 }
451 
452 /*
453  * Set machine VFP context.
454  */
455 void
456 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
457 {
458 	struct pcb *pcb;
459 
460 	pcb = td->td_pcb;
461 	if (td == curthread) {
462 		critical_enter();
463 		vfp_discard(td);
464 		critical_exit();
465 	} else
466 		MPASS(TD_IS_SUSPENDED(td));
467 	memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg,
468 	    sizeof(pcb->pcb_vfpstate.reg));
469 	pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
470 }
471 #endif
472 
473 int
474 arm_get_vfpstate(struct thread *td, void *args)
475 {
476 	int rv;
477 	struct arm_get_vfpstate_args ua;
478 	mcontext_vfp_t	mcontext_vfp;
479 
480 	rv = copyin(args, &ua, sizeof(ua));
481 	if (rv != 0)
482 		return (rv);
483 	if (ua.mc_vfp_size != sizeof(mcontext_vfp_t))
484 		return (EINVAL);
485 #ifdef VFP
486 	get_vfpcontext(td, &mcontext_vfp);
487 #else
488 	bzero(&mcontext_vfp, sizeof(mcontext_vfp));
489 #endif
490 
491 	rv = copyout(&mcontext_vfp, ua.mc_vfp,  sizeof(mcontext_vfp));
492 	if (rv != 0)
493 		return (rv);
494 	return (0);
495 }
496 
497 /*
498  * Get machine context.
499  */
500 int
501 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
502 {
503 	struct trapframe *tf = td->td_frame;
504 	__greg_t *gr = mcp->__gregs;
505 
506 	if (clear_ret & GET_MC_CLEAR_RET) {
507 		gr[_REG_R0] = 0;
508 		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
509 	} else {
510 		gr[_REG_R0]   = tf->tf_r0;
511 		gr[_REG_CPSR] = tf->tf_spsr;
512 	}
513 	gr[_REG_R1]   = tf->tf_r1;
514 	gr[_REG_R2]   = tf->tf_r2;
515 	gr[_REG_R3]   = tf->tf_r3;
516 	gr[_REG_R4]   = tf->tf_r4;
517 	gr[_REG_R5]   = tf->tf_r5;
518 	gr[_REG_R6]   = tf->tf_r6;
519 	gr[_REG_R7]   = tf->tf_r7;
520 	gr[_REG_R8]   = tf->tf_r8;
521 	gr[_REG_R9]   = tf->tf_r9;
522 	gr[_REG_R10]  = tf->tf_r10;
523 	gr[_REG_R11]  = tf->tf_r11;
524 	gr[_REG_R12]  = tf->tf_r12;
525 	gr[_REG_SP]   = tf->tf_usr_sp;
526 	gr[_REG_LR]   = tf->tf_usr_lr;
527 	gr[_REG_PC]   = tf->tf_pc;
528 
529 	mcp->mc_vfp_size = 0;
530 	mcp->mc_vfp_ptr = NULL;
531 	memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
532 
533 	return (0);
534 }
535 
536 /*
537  * Set machine context.
538  *
539  * However, we don't set any but the user modifiable flags, and we won't
540  * touch the cs selector.
541  */
542 int
543 set_mcontext(struct thread *td, mcontext_t *mcp)
544 {
545 	mcontext_vfp_t mc_vfp, *vfp;
546 	struct trapframe *tf = td->td_frame;
547 	const __greg_t *gr = mcp->__gregs;
548 	int spsr;
549 
550 	/*
551 	 * Make sure the processor mode has not been tampered with and
552 	 * interrupts have not been disabled.
553 	 */
554 	spsr = gr[_REG_CPSR];
555 	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
556 	    (spsr & (PSR_I | PSR_F)) != 0)
557 		return (EINVAL);
558 
559 #ifdef WITNESS
560 	if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
561 		printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
562 		    td->td_proc->p_comm, __func__,
563 		    mcp->mc_vfp_size, mcp->mc_vfp_size);
564 	} else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
565 		printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
566 		    td->td_proc->p_comm, __func__);
567 	}
568 #endif
569 
570 	if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
571 		if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
572 			return (EFAULT);
573 		vfp = &mc_vfp;
574 	} else {
575 		vfp = NULL;
576 	}
577 
578 	tf->tf_r0 = gr[_REG_R0];
579 	tf->tf_r1 = gr[_REG_R1];
580 	tf->tf_r2 = gr[_REG_R2];
581 	tf->tf_r3 = gr[_REG_R3];
582 	tf->tf_r4 = gr[_REG_R4];
583 	tf->tf_r5 = gr[_REG_R5];
584 	tf->tf_r6 = gr[_REG_R6];
585 	tf->tf_r7 = gr[_REG_R7];
586 	tf->tf_r8 = gr[_REG_R8];
587 	tf->tf_r9 = gr[_REG_R9];
588 	tf->tf_r10 = gr[_REG_R10];
589 	tf->tf_r11 = gr[_REG_R11];
590 	tf->tf_r12 = gr[_REG_R12];
591 	tf->tf_usr_sp = gr[_REG_SP];
592 	tf->tf_usr_lr = gr[_REG_LR];
593 	tf->tf_pc = gr[_REG_PC];
594 	tf->tf_spsr = gr[_REG_CPSR];
595 #ifdef VFP
596 	if (vfp != NULL)
597 		set_vfpcontext(td, vfp);
598 #endif
599 	return (0);
600 }
601 
602 void
603 sendsig(catcher, ksi, mask)
604 	sig_t catcher;
605 	ksiginfo_t *ksi;
606 	sigset_t *mask;
607 {
608 	struct thread *td;
609 	struct proc *p;
610 	struct trapframe *tf;
611 	struct sigframe *fp, frame;
612 	struct sigacts *psp;
613 	struct sysentvec *sysent;
614 	int onstack;
615 	int sig;
616 	int code;
617 
618 	td = curthread;
619 	p = td->td_proc;
620 	PROC_LOCK_ASSERT(p, MA_OWNED);
621 	sig = ksi->ksi_signo;
622 	code = ksi->ksi_code;
623 	psp = p->p_sigacts;
624 	mtx_assert(&psp->ps_mtx, MA_OWNED);
625 	tf = td->td_frame;
626 	onstack = sigonstack(tf->tf_usr_sp);
627 
628 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
629 	    catcher, sig);
630 
631 	/* Allocate and validate space for the signal handler context. */
632 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
633 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
634 		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
635 		    td->td_sigstk.ss_size);
636 #if defined(COMPAT_43)
637 		td->td_sigstk.ss_flags |= SS_ONSTACK;
638 #endif
639 	} else
640 		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
641 
642 	/* make room on the stack */
643 	fp--;
644 
645 	/* make the stack aligned */
646 	fp = (struct sigframe *)STACKALIGN(fp);
647 	/* Populate the siginfo frame. */
648 	bzero(&frame, sizeof(frame));
649 	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
650 #ifdef VFP
651 	get_vfpcontext(td, &frame.sf_vfp);
652 	frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
653 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
654 #else
655 	frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
656 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
657 #endif
658 	frame.sf_si = ksi->ksi_info;
659 	frame.sf_uc.uc_sigmask = *mask;
660 	frame.sf_uc.uc_stack = td->td_sigstk;
661 	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ?
662 	    (onstack ? SS_ONSTACK : 0) : SS_DISABLE;
663 	mtx_unlock(&psp->ps_mtx);
664 	PROC_UNLOCK(td->td_proc);
665 
666 	/* Copy the sigframe out to the user's stack. */
667 	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
668 		/* Process has trashed its stack. Kill it. */
669 		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
670 		PROC_LOCK(p);
671 		sigexit(td, SIGILL);
672 	}
673 
674 	/*
675 	 * Build context to run handler in.  We invoke the handler
676 	 * directly, only returning via the trampoline.  Note the
677 	 * trampoline version numbers are coordinated with machine-
678 	 * dependent code in libc.
679 	 */
680 
681 	tf->tf_r0 = sig;
682 	tf->tf_r1 = (register_t)&fp->sf_si;
683 	tf->tf_r2 = (register_t)&fp->sf_uc;
684 
685 	/* the trampoline uses r5 as the uc address */
686 	tf->tf_r5 = (register_t)&fp->sf_uc;
687 	tf->tf_pc = (register_t)catcher;
688 	tf->tf_usr_sp = (register_t)fp;
689 	sysent = p->p_sysent;
690 	if (sysent->sv_sigcode_base != 0)
691 		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
692 	else
693 		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
694 		    *(sysent->sv_szsigcode));
695 	/* Set the mode to enter in the signal handler */
696 #if __ARM_ARCH >= 7
697 	if ((register_t)catcher & 1)
698 		tf->tf_spsr |= PSR_T;
699 	else
700 		tf->tf_spsr &= ~PSR_T;
701 #endif
702 
703 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
704 	    tf->tf_usr_sp);
705 
706 	PROC_LOCK(p);
707 	mtx_lock(&psp->ps_mtx);
708 }
709 
710 int
711 sys_sigreturn(td, uap)
712 	struct thread *td;
713 	struct sigreturn_args /* {
714 		const struct __ucontext *sigcntxp;
715 	} */ *uap;
716 {
717 	ucontext_t uc;
718 	int error;
719 
720 	if (uap == NULL)
721 		return (EFAULT);
722 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
723 		return (EFAULT);
724 	/* Restore register context. */
725 	error = set_mcontext(td, &uc.uc_mcontext);
726 	if (error != 0)
727 		return (error);
728 
729 	/* Restore signal mask. */
730 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
731 
732 	return (EJUSTRETURN);
733 }
734 
735 /*
736  * Construct a PCB from a trapframe. This is called from kdb_trap() where
737  * we want to start a backtrace from the function that caused us to enter
738  * the debugger. We have the context in the trapframe, but base the trace
739  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
740  * enough for a backtrace.
741  */
742 void
743 makectx(struct trapframe *tf, struct pcb *pcb)
744 {
745 	pcb->pcb_regs.sf_r4 = tf->tf_r4;
746 	pcb->pcb_regs.sf_r5 = tf->tf_r5;
747 	pcb->pcb_regs.sf_r6 = tf->tf_r6;
748 	pcb->pcb_regs.sf_r7 = tf->tf_r7;
749 	pcb->pcb_regs.sf_r8 = tf->tf_r8;
750 	pcb->pcb_regs.sf_r9 = tf->tf_r9;
751 	pcb->pcb_regs.sf_r10 = tf->tf_r10;
752 	pcb->pcb_regs.sf_r11 = tf->tf_r11;
753 	pcb->pcb_regs.sf_r12 = tf->tf_r12;
754 	pcb->pcb_regs.sf_pc = tf->tf_pc;
755 	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
756 	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
757 }
758 
759 void
760 pcpu0_init(void)
761 {
762 #if __ARM_ARCH >= 6
763 	set_curthread(&thread0);
764 #endif
765 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
766 	PCPU_SET(curthread, &thread0);
767 }
768 
769 /*
770  * Initialize proc0
771  */
772 void
773 init_proc0(vm_offset_t kstack)
774 {
775 	proc_linkup0(&proc0, &thread0);
776 	thread0.td_kstack = kstack;
777 	thread0.td_kstack_pages = kstack_pages;
778 	thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
779 	    thread0.td_kstack_pages * PAGE_SIZE) - 1;
780 	thread0.td_pcb->pcb_flags = 0;
781 	thread0.td_pcb->pcb_vfpcpu = -1;
782 	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
783 	thread0.td_frame = &proc0_tf;
784 	pcpup->pc_curpcb = thread0.td_pcb;
785 }
786 
787 #if __ARM_ARCH >= 6
788 void
789 set_stackptrs(int cpu)
790 {
791 
792 	set_stackptr(PSR_IRQ32_MODE,
793 	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
794 	set_stackptr(PSR_ABT32_MODE,
795 	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
796 	set_stackptr(PSR_UND32_MODE,
797 	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
798 }
799 #else
800 void
801 set_stackptrs(int cpu)
802 {
803 
804 	set_stackptr(PSR_IRQ32_MODE,
805 	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
806 	set_stackptr(PSR_ABT32_MODE,
807 	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
808 	set_stackptr(PSR_UND32_MODE,
809 	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
810 }
811 #endif
812 
813 static void
814 arm_kdb_init(void)
815 {
816 
817 	kdb_init();
818 #ifdef KDB
819 	if (boothowto & RB_KDB)
820 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
821 #endif
822 }
823 
824 #ifdef FDT
825 #if __ARM_ARCH < 6
826 void *
827 initarm(struct arm_boot_params *abp)
828 {
829 	struct mem_region mem_regions[FDT_MEM_REGIONS];
830 	struct pv_addr kernel_l1pt;
831 	struct pv_addr dpcpu;
832 	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
833 	uint64_t memsize;
834 	uint32_t l2size;
835 	char *env;
836 	void *kmdp;
837 	u_int l1pagetable;
838 	int i, j, err_devmap, mem_regions_sz;
839 
840 	lastaddr = parse_boot_param(abp);
841 	arm_physmem_kernaddr = abp->abp_physaddr;
842 
843 	memsize = 0;
844 
845 	cpuinfo_init();
846 	set_cpufuncs();
847 
848 	/*
849 	 * Find the dtb passed in by the boot loader.
850 	 */
851 	kmdp = preload_search_by_type("elf kernel");
852 	if (kmdp != NULL)
853 		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
854 	else
855 		dtbp = (vm_offset_t)NULL;
856 
857 #if defined(FDT_DTB_STATIC)
858 	/*
859 	 * In case the device tree blob was not retrieved (from metadata) try
860 	 * to use the statically embedded one.
861 	 */
862 	if (dtbp == (vm_offset_t)NULL)
863 		dtbp = (vm_offset_t)&fdt_static_dtb;
864 #endif
865 
866 	if (OF_install(OFW_FDT, 0) == FALSE)
867 		panic("Cannot install FDT");
868 
869 	if (OF_init((void *)dtbp) != 0)
870 		panic("OF_init failed with the found device tree");
871 
872 	/* Grab physical memory regions information from device tree. */
873 	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
874 		panic("Cannot get physical memory regions");
875 	physmem_hardware_regions(mem_regions, mem_regions_sz);
876 
877 	/* Grab reserved memory regions information from device tree. */
878 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
879 		physmem_exclude_regions(mem_regions, mem_regions_sz,
880 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
881 
882 	/* Platform-specific initialisation */
883 	platform_probe_and_attach();
884 
885 	pcpu0_init();
886 
887 	/* Do basic tuning, hz etc */
888 	init_param1();
889 
890 	/* Calculate number of L2 tables needed for mapping vm_page_array */
891 	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
892 	l2size = (l2size >> L1_S_SHIFT) + 1;
893 
894 	/*
895 	 * Add one table for end of kernel map, one for stacks, msgbuf and
896 	 * L1 and L2 tables map,  one for vectors map and two for
897 	 * l2 structures from pmap_bootstrap.
898 	 */
899 	l2size += 5;
900 
901 	/* Make it divisible by 4 */
902 	l2size = (l2size + 3) & ~3;
903 
904 	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
905 
906 	/* Define a macro to simplify memory allocation */
907 #define valloc_pages(var, np)						\
908 	alloc_pages((var).pv_va, (np));					\
909 	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
910 
911 #define alloc_pages(var, np)						\
912 	(var) = freemempos;						\
913 	freemempos += (np * PAGE_SIZE);					\
914 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
915 
916 	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
917 		freemempos += PAGE_SIZE;
918 	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
919 
920 	for (i = 0, j = 0; i < l2size; ++i) {
921 		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
922 			valloc_pages(kernel_pt_table[i],
923 			    L2_TABLE_SIZE / PAGE_SIZE);
924 			j = i;
925 		} else {
926 			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
927 			    L2_TABLE_SIZE_REAL * (i - j);
928 			kernel_pt_table[i].pv_pa =
929 			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
930 			    abp->abp_physaddr;
931 
932 		}
933 	}
934 	/*
935 	 * Allocate a page for the system page mapped to 0x00000000
936 	 * or 0xffff0000. This page will just contain the system vectors
937 	 * and can be shared by all processes.
938 	 */
939 	valloc_pages(systempage, 1);
940 
941 	/* Allocate dynamic per-cpu area. */
942 	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
943 	dpcpu_init((void *)dpcpu.pv_va, 0);
944 
945 	/* Allocate stacks for all modes */
946 	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
947 	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
948 	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
949 	valloc_pages(kernelstack, kstack_pages);
950 	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
951 
952 	/*
953 	 * Now we start construction of the L1 page table
954 	 * We start by mapping the L2 page tables into the L1.
955 	 * This means that we can replace L1 mappings later on if necessary
956 	 */
957 	l1pagetable = kernel_l1pt.pv_va;
958 
959 	/*
960 	 * Try to map as much as possible of kernel text and data using
961 	 * 1MB section mapping and for the rest of initial kernel address
962 	 * space use L2 coarse tables.
963 	 *
964 	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
965 	 * and kernel structures
966 	 */
967 	l2_start = lastaddr & ~(L1_S_OFFSET);
968 	for (i = 0 ; i < l2size - 1; i++)
969 		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
970 		    &kernel_pt_table[i]);
971 
972 	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
973 
974 	/* Map kernel code and data */
975 	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
976 	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
977 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
978 
979 	/* Map L1 directory and allocated L2 page tables */
980 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
981 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
982 
983 	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
984 	    kernel_pt_table[0].pv_pa,
985 	    L2_TABLE_SIZE_REAL * l2size,
986 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
987 
988 	/* Map allocated DPCPU, stacks and msgbuf */
989 	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
990 	    freemempos - dpcpu.pv_va,
991 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
992 
993 	/* Link and map the vector page */
994 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
995 	    &kernel_pt_table[l2size - 1]);
996 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
997 	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
998 
999 	/* Establish static device mappings. */
1000 	err_devmap = platform_devmap_init();
1001 	devmap_bootstrap(l1pagetable, NULL);
1002 	vm_max_kernel_address = platform_lastaddr();
1003 
1004 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
1005 	pmap_pa = kernel_l1pt.pv_pa;
1006 	cpu_setttb(kernel_l1pt.pv_pa);
1007 	cpu_tlb_flushID();
1008 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
1009 
1010 	/*
1011 	 * Now that proper page tables are installed, call cpu_setup() to enable
1012 	 * instruction and data caches and other chip-specific features.
1013 	 */
1014 	cpu_setup();
1015 
1016 	/*
1017 	 * Only after the SOC registers block is mapped we can perform device
1018 	 * tree fixups, as they may attempt to read parameters from hardware.
1019 	 */
1020 	OF_interpret("perform-fixup", 0);
1021 
1022 	platform_gpio_init();
1023 
1024 	cninit();
1025 
1026 	debugf("initarm: console initialized\n");
1027 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1028 	debugf(" boothowto = 0x%08x\n", boothowto);
1029 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1030 	arm_print_kenv();
1031 
1032 	env = kern_getenv("kernelname");
1033 	if (env != NULL) {
1034 		strlcpy(kernelname, env, sizeof(kernelname));
1035 		freeenv(env);
1036 	}
1037 
1038 	if (err_devmap != 0)
1039 		printf("WARNING: could not fully configure devmap, error=%d\n",
1040 		    err_devmap);
1041 
1042 	platform_late_init();
1043 
1044 	/*
1045 	 * Pages were allocated during the secondary bootstrap for the
1046 	 * stacks for different CPU modes.
1047 	 * We must now set the r13 registers in the different CPU modes to
1048 	 * point to these stacks.
1049 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1050 	 * of the stack memory.
1051 	 */
1052 	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
1053 
1054 	set_stackptrs(0);
1055 
1056 	/*
1057 	 * We must now clean the cache again....
1058 	 * Cleaning may be done by reading new data to displace any
1059 	 * dirty data in the cache. This will have happened in cpu_setttb()
1060 	 * but since we are boot strapping the addresses used for the read
1061 	 * may have just been remapped and thus the cache could be out
1062 	 * of sync. A re-clean after the switch will cure this.
1063 	 * After booting there are no gross relocations of the kernel thus
1064 	 * this problem will not occur after initarm().
1065 	 */
1066 	cpu_idcache_wbinv_all();
1067 
1068 	undefined_init();
1069 
1070 	init_proc0(kernelstack.pv_va);
1071 
1072 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1073 	pmap_bootstrap(freemempos, &kernel_l1pt);
1074 	msgbufp = (void *)msgbufpv.pv_va;
1075 	msgbufinit(msgbufp, msgbufsize);
1076 	mutex_init();
1077 
1078 	/*
1079 	 * Exclude the kernel (and all the things we allocated which immediately
1080 	 * follow the kernel) from the VM allocation pool but not from crash
1081 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1082 	 * "allocated" while setting up pmaps.
1083 	 *
1084 	 * Prepare the list of physical memory available to the vm subsystem.
1085 	 */
1086 	physmem_exclude_region(abp->abp_physaddr,
1087 	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1088 	physmem_init_kernel_globals();
1089 
1090 	init_param2(physmem);
1091 	dbg_monitor_init();
1092 	arm_kdb_init();
1093 
1094 	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1095 	    sizeof(struct pcb)));
1096 }
1097 #else /* __ARM_ARCH < 6 */
1098 void *
1099 initarm(struct arm_boot_params *abp)
1100 {
1101 	struct mem_region mem_regions[FDT_MEM_REGIONS];
1102 	vm_paddr_t lastaddr;
1103 	vm_offset_t dtbp, kernelstack, dpcpu;
1104 	char *env;
1105 	void *kmdp;
1106 	int err_devmap, mem_regions_sz;
1107 #ifdef EFI
1108 	struct efi_map_header *efihdr;
1109 #endif
1110 
1111 	/* get last allocated physical address */
1112 	arm_physmem_kernaddr = abp->abp_physaddr;
1113 	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
1114 
1115 	set_cpufuncs();
1116 	cpuinfo_init();
1117 
1118 	/*
1119 	 * Find the dtb passed in by the boot loader.
1120 	 */
1121 	kmdp = preload_search_by_type("elf kernel");
1122 	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1123 #if defined(FDT_DTB_STATIC)
1124 	/*
1125 	 * In case the device tree blob was not retrieved (from metadata) try
1126 	 * to use the statically embedded one.
1127 	 */
1128 	if (dtbp == (vm_offset_t)NULL)
1129 		dtbp = (vm_offset_t)&fdt_static_dtb;
1130 #endif
1131 
1132 	if (OF_install(OFW_FDT, 0) == FALSE)
1133 		panic("Cannot install FDT");
1134 
1135 	if (OF_init((void *)dtbp) != 0)
1136 		panic("OF_init failed with the found device tree");
1137 
1138 #if defined(LINUX_BOOT_ABI)
1139 	arm_parse_fdt_bootargs();
1140 #endif
1141 
1142 #ifdef EFI
1143 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1144 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1145 	if (efihdr != NULL) {
1146 		arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
1147 	} else
1148 #endif
1149 	{
1150 		/* Grab physical memory regions information from device tree. */
1151 		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
1152 			panic("Cannot get physical memory regions");
1153 	}
1154 	physmem_hardware_regions(mem_regions, mem_regions_sz);
1155 
1156 	/* Grab reserved memory regions information from device tree. */
1157 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1158 		physmem_exclude_regions(mem_regions, mem_regions_sz,
1159 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1160 
1161 	/*
1162 	 * Set TEX remapping registers.
1163 	 * Setup kernel page tables and switch to kernel L1 page table.
1164 	 */
1165 	pmap_set_tex();
1166 	pmap_bootstrap_prepare(lastaddr);
1167 
1168 	/*
1169 	 * If EARLY_PRINTF support is enabled, we need to re-establish the
1170 	 * mapping after pmap_bootstrap_prepare() switches to new page tables.
1171 	 * Note that we can only do the remapping if the VA is outside the
1172 	 * kernel, now that we have real virtual (not VA=PA) mappings in effect.
1173 	 * Early printf does not work between the time pmap_set_tex() does
1174 	 * cp15_prrr_set() and this code remaps the VA.
1175 	 */
1176 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
1177 	pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024,
1178 	    VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE);
1179 #endif
1180 
1181 	/*
1182 	 * Now that proper page tables are installed, call cpu_setup() to enable
1183 	 * instruction and data caches and other chip-specific features.
1184 	 */
1185 	cpu_setup();
1186 
1187 	/* Platform-specific initialisation */
1188 	platform_probe_and_attach();
1189 	pcpu0_init();
1190 
1191 	/* Do basic tuning, hz etc */
1192 	init_param1();
1193 
1194 	/*
1195 	 * Allocate a page for the system page mapped to 0xffff0000
1196 	 * This page will just contain the system vectors and can be
1197 	 * shared by all processes.
1198 	 */
1199 	systempage = pmap_preboot_get_pages(1);
1200 
1201 	/* Map the vector page. */
1202 	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
1203 	if (virtual_end >= ARM_VECTORS_HIGH)
1204 		virtual_end = ARM_VECTORS_HIGH - 1;
1205 
1206 	/* Allocate dynamic per-cpu area. */
1207 	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
1208 	dpcpu_init((void *)dpcpu, 0);
1209 
1210 	/* Allocate stacks for all modes */
1211 	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
1212 	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
1213 	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
1214 	kernelstack = pmap_preboot_get_vpages(kstack_pages);
1215 
1216 	/* Allocate message buffer. */
1217 	msgbufp = (void *)pmap_preboot_get_vpages(
1218 	    round_page(msgbufsize) / PAGE_SIZE);
1219 
1220 	/*
1221 	 * Pages were allocated during the secondary bootstrap for the
1222 	 * stacks for different CPU modes.
1223 	 * We must now set the r13 registers in the different CPU modes to
1224 	 * point to these stacks.
1225 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1226 	 * of the stack memory.
1227 	 */
1228 	set_stackptrs(0);
1229 	mutex_init();
1230 
1231 	/* Establish static device mappings. */
1232 	err_devmap = platform_devmap_init();
1233 	devmap_bootstrap(0, NULL);
1234 	vm_max_kernel_address = platform_lastaddr();
1235 
1236 	/*
1237 	 * Only after the SOC registers block is mapped we can perform device
1238 	 * tree fixups, as they may attempt to read parameters from hardware.
1239 	 */
1240 	OF_interpret("perform-fixup", 0);
1241 	platform_gpio_init();
1242 	cninit();
1243 
1244 	/*
1245 	 * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(),
1246 	 * undo it now that the normal console printf works.
1247 	 */
1248 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
1249 	pmap_kremove(SOCDEV_VA);
1250 #endif
1251 
1252 	debugf("initarm: console initialized\n");
1253 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1254 	debugf(" boothowto = 0x%08x\n", boothowto);
1255 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1256 	debugf(" lastaddr1: 0x%08x\n", lastaddr);
1257 	arm_print_kenv();
1258 
1259 	env = kern_getenv("kernelname");
1260 	if (env != NULL)
1261 		strlcpy(kernelname, env, sizeof(kernelname));
1262 
1263 	if (err_devmap != 0)
1264 		printf("WARNING: could not fully configure devmap, error=%d\n",
1265 		    err_devmap);
1266 
1267 	platform_late_init();
1268 
1269 	/*
1270 	 * We must now clean the cache again....
1271 	 * Cleaning may be done by reading new data to displace any
1272 	 * dirty data in the cache. This will have happened in cpu_setttb()
1273 	 * but since we are boot strapping the addresses used for the read
1274 	 * may have just been remapped and thus the cache could be out
1275 	 * of sync. A re-clean after the switch will cure this.
1276 	 * After booting there are no gross relocations of the kernel thus
1277 	 * this problem will not occur after initarm().
1278 	 */
1279 	/* Set stack for exception handlers */
1280 	undefined_init();
1281 	init_proc0(kernelstack);
1282 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1283 	enable_interrupts(PSR_A);
1284 	pmap_bootstrap(0);
1285 
1286 	/* Exclude the kernel (and all the things we allocated which immediately
1287 	 * follow the kernel) from the VM allocation pool but not from crash
1288 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1289 	 * "allocated" while setting up pmaps.
1290 	 *
1291 	 * Prepare the list of physical memory available to the vm subsystem.
1292 	 */
1293 	physmem_exclude_region(abp->abp_physaddr,
1294 		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
1295 	physmem_init_kernel_globals();
1296 
1297 	init_param2(physmem);
1298 	/* Init message buffer. */
1299 	msgbufinit(msgbufp, msgbufsize);
1300 	dbg_monitor_init();
1301 	arm_kdb_init();
1302 	/* Apply possible BP hardening. */
1303 	cpuinfo_init_bp_hardening();
1304 	return ((void *)STACKALIGN(thread0.td_pcb));
1305 
1306 }
1307 
1308 #endif /* __ARM_ARCH < 6 */
1309 #endif /* FDT */
1310