xref: /freebsd/sys/arm/arm/machdep.c (revision f56f82e0)
1 /*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004 Olivier Houchard
5  * Copyright (c) 1994-1998 Mark Brinicombe.
6  * Copyright (c) 1994 Brini.
7  * All rights reserved.
8  *
9  * This code is derived from software written for Brini by Mark Brinicombe
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by Mark Brinicombe
22  *	for the NetBSD Project.
23  * 4. The name of the company nor the name of the author may be used to
24  *    endorse or promote products derived from this software without specific
25  *    prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * Machine dependent functions for kernel setup
40  *
41  * Created      : 17/09/94
42  * Updated	: 18/04/01 updated for new wscons
43  */
44 
45 #include "opt_compat.h"
46 #include "opt_ddb.h"
47 #include "opt_kstack_pages.h"
48 #include "opt_platform.h"
49 #include "opt_sched.h"
50 #include "opt_timer.h"
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include <sys/param.h>
56 #include <sys/buf.h>
57 #include <sys/bus.h>
58 #include <sys/cons.h>
59 #include <sys/cpu.h>
60 #include <sys/devmap.h>
61 #include <sys/efi.h>
62 #include <sys/imgact.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/linker.h>
66 #include <sys/msgbuf.h>
67 #include <sys/rwlock.h>
68 #include <sys/sched.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysent.h>
71 #include <sys/sysproto.h>
72 #include <sys/vmmeter.h>
73 
74 #include <vm/vm_object.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_pager.h>
77 
78 #include <machine/debug_monitor.h>
79 #include <machine/machdep.h>
80 #include <machine/metadata.h>
81 #include <machine/pcb.h>
82 #include <machine/physmem.h>
83 #include <machine/platform.h>
84 #include <machine/sysarch.h>
85 #include <machine/undefined.h>
86 #include <machine/vfp.h>
87 #include <machine/vmparam.h>
88 
89 #ifdef FDT
90 #include <dev/fdt/fdt_common.h>
91 #include <machine/ofw_machdep.h>
92 #endif
93 
94 #ifdef DEBUG
95 #define	debugf(fmt, args...) printf(fmt, ##args)
96 #else
97 #define	debugf(fmt, args...)
98 #endif
99 
100 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
101     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
102     defined(COMPAT_FREEBSD9)
103 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
104 #endif
105 
106 #if __ARM_ARCH >= 6 && !defined(INTRNG)
107 #error armv6 requires INTRNG
108 #endif
109 
110 struct pcpu __pcpu[MAXCPU];
111 struct pcpu *pcpup = &__pcpu[0];
112 
113 static struct trapframe proc0_tf;
114 uint32_t cpu_reset_address = 0;
115 int cold = 1;
116 vm_offset_t vector_page;
117 
118 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
119 int (*_arm_bzero)(void *, int, int) = NULL;
120 int _min_memcpy_size = 0;
121 int _min_bzero_size = 0;
122 
123 extern int *end;
124 
125 #ifdef FDT
126 vm_paddr_t pmap_pa;
127 #if __ARM_ARCH >= 6
128 vm_offset_t systempage;
129 vm_offset_t irqstack;
130 vm_offset_t undstack;
131 vm_offset_t abtstack;
132 #else
133 /*
134  * This is the number of L2 page tables required for covering max
135  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
136  * stacks etc.), uprounded to be divisible by 4.
137  */
138 #define KERNEL_PT_MAX	78
139 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
140 struct pv_addr systempage;
141 static struct pv_addr msgbufpv;
142 struct pv_addr irqstack;
143 struct pv_addr undstack;
144 struct pv_addr abtstack;
145 static struct pv_addr kernelstack;
146 #endif /* __ARM_ARCH >= 6 */
147 #endif /* FDT */
148 
149 #ifdef MULTIDELAY
150 static delay_func *delay_impl;
151 static void *delay_arg;
152 #endif
153 
154 struct kva_md_info kmi;
155 
156 /*
157  * arm32_vector_init:
158  *
159  *	Initialize the vector page, and select whether or not to
160  *	relocate the vectors.
161  *
162  *	NOTE: We expect the vector page to be mapped at its expected
163  *	destination.
164  */
165 
166 extern unsigned int page0[], page0_data[];
167 void
168 arm_vector_init(vm_offset_t va, int which)
169 {
170 	unsigned int *vectors = (int *) va;
171 	unsigned int *vectors_data = vectors + (page0_data - page0);
172 	int vec;
173 
174 	/*
175 	 * Loop through the vectors we're taking over, and copy the
176 	 * vector's insn and data word.
177 	 */
178 	for (vec = 0; vec < ARM_NVEC; vec++) {
179 		if ((which & (1 << vec)) == 0) {
180 			/* Don't want to take over this vector. */
181 			continue;
182 		}
183 		vectors[vec] = page0[vec];
184 		vectors_data[vec] = page0_data[vec];
185 	}
186 
187 	/* Now sync the vectors. */
188 	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
189 
190 	vector_page = va;
191 #if __ARM_ARCH < 6
192 	if (va == ARM_VECTORS_HIGH) {
193 		/*
194 		 * Enable high vectors in the system control reg (SCTLR).
195 		 *
196 		 * Assume the MD caller knows what it's doing here, and really
197 		 * does want the vector page relocated.
198 		 *
199 		 * Note: This has to be done here (and not just in
200 		 * cpu_setup()) because the vector page needs to be
201 		 * accessible *before* cpu_startup() is called.
202 		 * Think ddb(9) ...
203 		 */
204 		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
205 	}
206 #endif
207 }
208 
209 static void
210 cpu_startup(void *dummy)
211 {
212 	struct pcb *pcb = thread0.td_pcb;
213 	const unsigned int mbyte = 1024 * 1024;
214 #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
215 	vm_page_t m;
216 #endif
217 
218 	identify_arm_cpu();
219 
220 	vm_ksubmap_init(&kmi);
221 
222 	/*
223 	 * Display the RAM layout.
224 	 */
225 	printf("real memory  = %ju (%ju MB)\n",
226 	    (uintmax_t)arm32_ptob(realmem),
227 	    (uintmax_t)arm32_ptob(realmem) / mbyte);
228 	printf("avail memory = %ju (%ju MB)\n",
229 	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
230 	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
231 	if (bootverbose) {
232 		arm_physmem_print_tables();
233 		devmap_print_table();
234 	}
235 
236 	bufinit();
237 	vm_pager_bufferinit();
238 	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
239 	    USPACE_SVC_STACK_TOP;
240 	pmap_set_pcb_pagedir(kernel_pmap, pcb);
241 #if __ARM_ARCH < 6
242 	vector_page_setprot(VM_PROT_READ);
243 	pmap_postinit();
244 #ifdef ARM_CACHE_LOCK_ENABLE
245 	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
246 	arm_lock_cache_line(ARM_TP_ADDRESS);
247 #else
248 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
249 	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
250 #endif
251 	*(uint32_t *)ARM_RAS_START = 0;
252 	*(uint32_t *)ARM_RAS_END = 0xffffffff;
253 #endif
254 }
255 
256 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
257 
258 /*
259  * Flush the D-cache for non-DMA I/O so that the I-cache can
260  * be made coherent later.
261  */
262 void
263 cpu_flush_dcache(void *ptr, size_t len)
264 {
265 
266 	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
267 }
268 
269 /* Get current clock frequency for the given cpu id. */
270 int
271 cpu_est_clockrate(int cpu_id, uint64_t *rate)
272 {
273 
274 	return (ENXIO);
275 }
276 
277 void
278 cpu_idle(int busy)
279 {
280 
281 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
282 	spinlock_enter();
283 #ifndef NO_EVENTTIMERS
284 	if (!busy)
285 		cpu_idleclock();
286 #endif
287 	if (!sched_runnable())
288 		cpu_sleep(0);
289 #ifndef NO_EVENTTIMERS
290 	if (!busy)
291 		cpu_activeclock();
292 #endif
293 	spinlock_exit();
294 	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
295 }
296 
297 int
298 cpu_idle_wakeup(int cpu)
299 {
300 
301 	return (0);
302 }
303 
304 #ifdef NO_EVENTTIMERS
305 /*
306  * Most ARM platforms don't need to do anything special to init their clocks
307  * (they get intialized during normal device attachment), and by not defining a
308  * cpu_initclocks() function they get this generic one.  Any platform that needs
309  * to do something special can just provide their own implementation, which will
310  * override this one due to the weak linkage.
311  */
312 void
313 arm_generic_initclocks(void)
314 {
315 }
316 __weak_reference(arm_generic_initclocks, cpu_initclocks);
317 
318 #else
319 void
320 cpu_initclocks(void)
321 {
322 
323 #ifdef SMP
324 	if (PCPU_GET(cpuid) == 0)
325 		cpu_initclocks_bsp();
326 	else
327 		cpu_initclocks_ap();
328 #else
329 	cpu_initclocks_bsp();
330 #endif
331 }
332 #endif
333 
334 #ifdef MULTIDELAY
335 void
336 arm_set_delay(delay_func *impl, void *arg)
337 {
338 
339 	KASSERT(impl != NULL, ("No DELAY implementation"));
340 	delay_impl = impl;
341 	delay_arg = arg;
342 }
343 
344 void
345 DELAY(int usec)
346 {
347 
348 	delay_impl(usec, delay_arg);
349 }
350 #endif
351 
352 void
353 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
354 {
355 }
356 
357 void
358 spinlock_enter(void)
359 {
360 	struct thread *td;
361 	register_t cspr;
362 
363 	td = curthread;
364 	if (td->td_md.md_spinlock_count == 0) {
365 		cspr = disable_interrupts(PSR_I | PSR_F);
366 		td->td_md.md_spinlock_count = 1;
367 		td->td_md.md_saved_cspr = cspr;
368 	} else
369 		td->td_md.md_spinlock_count++;
370 	critical_enter();
371 }
372 
373 void
374 spinlock_exit(void)
375 {
376 	struct thread *td;
377 	register_t cspr;
378 
379 	td = curthread;
380 	critical_exit();
381 	cspr = td->td_md.md_saved_cspr;
382 	td->td_md.md_spinlock_count--;
383 	if (td->td_md.md_spinlock_count == 0)
384 		restore_interrupts(cspr);
385 }
386 
387 /*
388  * Clear registers on exec
389  */
390 void
391 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
392 {
393 	struct trapframe *tf = td->td_frame;
394 
395 	memset(tf, 0, sizeof(*tf));
396 	tf->tf_usr_sp = stack;
397 	tf->tf_usr_lr = imgp->entry_addr;
398 	tf->tf_svc_lr = 0x77777777;
399 	tf->tf_pc = imgp->entry_addr;
400 	tf->tf_spsr = PSR_USR32_MODE;
401 }
402 
403 
404 #ifdef VFP
405 /*
406  * Get machine VFP context.
407  */
408 static void
409 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
410 {
411 	struct pcb *curpcb;
412 
413 	curpcb = curthread->td_pcb;
414 	critical_enter();
415 
416 	vfp_store(&curpcb->pcb_vfpstate, false);
417 	memcpy(vfp->mcv_reg, curpcb->pcb_vfpstate.reg,
418 	    sizeof(vfp->mcv_reg));
419 	vfp->mcv_fpscr = curpcb->pcb_vfpstate.fpscr;
420 
421 	critical_exit();
422 }
423 
424 /*
425  * Set machine VFP context.
426  */
427 static void
428 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
429 {
430 	struct pcb *curpcb;
431 
432 	curpcb = curthread->td_pcb;
433 	critical_enter();
434 
435 	vfp_discard(td);
436 	memcpy(curpcb->pcb_vfpstate.reg, vfp->mcv_reg,
437 	    sizeof(curpcb->pcb_vfpstate.reg));
438 	curpcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
439 
440 	critical_exit();
441 }
442 #endif
443 
444 /*
445  * Get machine context.
446  */
447 int
448 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
449 {
450 	struct trapframe *tf = td->td_frame;
451 	__greg_t *gr = mcp->__gregs;
452 
453 	if (clear_ret & GET_MC_CLEAR_RET) {
454 		gr[_REG_R0] = 0;
455 		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
456 	} else {
457 		gr[_REG_R0]   = tf->tf_r0;
458 		gr[_REG_CPSR] = tf->tf_spsr;
459 	}
460 	gr[_REG_R1]   = tf->tf_r1;
461 	gr[_REG_R2]   = tf->tf_r2;
462 	gr[_REG_R3]   = tf->tf_r3;
463 	gr[_REG_R4]   = tf->tf_r4;
464 	gr[_REG_R5]   = tf->tf_r5;
465 	gr[_REG_R6]   = tf->tf_r6;
466 	gr[_REG_R7]   = tf->tf_r7;
467 	gr[_REG_R8]   = tf->tf_r8;
468 	gr[_REG_R9]   = tf->tf_r9;
469 	gr[_REG_R10]  = tf->tf_r10;
470 	gr[_REG_R11]  = tf->tf_r11;
471 	gr[_REG_R12]  = tf->tf_r12;
472 	gr[_REG_SP]   = tf->tf_usr_sp;
473 	gr[_REG_LR]   = tf->tf_usr_lr;
474 	gr[_REG_PC]   = tf->tf_pc;
475 
476 	mcp->mc_vfp_size = 0;
477 	mcp->mc_vfp_ptr = NULL;
478 	memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
479 
480 	return (0);
481 }
482 
483 /*
484  * Set machine context.
485  *
486  * However, we don't set any but the user modifiable flags, and we won't
487  * touch the cs selector.
488  */
489 int
490 set_mcontext(struct thread *td, mcontext_t *mcp)
491 {
492 	mcontext_vfp_t mc_vfp, *vfp;
493 	struct trapframe *tf = td->td_frame;
494 	const __greg_t *gr = mcp->__gregs;
495 
496 #ifdef WITNESS
497 	if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
498 		printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
499 		    td->td_proc->p_comm, __func__,
500 		    mcp->mc_vfp_size, mcp->mc_vfp_size);
501 	} else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
502 		printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
503 		    td->td_proc->p_comm, __func__);
504 	}
505 #endif
506 
507 	if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
508 		if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
509 			return (EFAULT);
510 		vfp = &mc_vfp;
511 	} else {
512 		vfp = NULL;
513 	}
514 
515 	tf->tf_r0 = gr[_REG_R0];
516 	tf->tf_r1 = gr[_REG_R1];
517 	tf->tf_r2 = gr[_REG_R2];
518 	tf->tf_r3 = gr[_REG_R3];
519 	tf->tf_r4 = gr[_REG_R4];
520 	tf->tf_r5 = gr[_REG_R5];
521 	tf->tf_r6 = gr[_REG_R6];
522 	tf->tf_r7 = gr[_REG_R7];
523 	tf->tf_r8 = gr[_REG_R8];
524 	tf->tf_r9 = gr[_REG_R9];
525 	tf->tf_r10 = gr[_REG_R10];
526 	tf->tf_r11 = gr[_REG_R11];
527 	tf->tf_r12 = gr[_REG_R12];
528 	tf->tf_usr_sp = gr[_REG_SP];
529 	tf->tf_usr_lr = gr[_REG_LR];
530 	tf->tf_pc = gr[_REG_PC];
531 	tf->tf_spsr = gr[_REG_CPSR];
532 #ifdef VFP
533 	if (vfp != NULL)
534 		set_vfpcontext(td, vfp);
535 #endif
536 	return (0);
537 }
538 
539 void
540 sendsig(catcher, ksi, mask)
541 	sig_t catcher;
542 	ksiginfo_t *ksi;
543 	sigset_t *mask;
544 {
545 	struct thread *td;
546 	struct proc *p;
547 	struct trapframe *tf;
548 	struct sigframe *fp, frame;
549 	struct sigacts *psp;
550 	struct sysentvec *sysent;
551 	int onstack;
552 	int sig;
553 	int code;
554 
555 	td = curthread;
556 	p = td->td_proc;
557 	PROC_LOCK_ASSERT(p, MA_OWNED);
558 	sig = ksi->ksi_signo;
559 	code = ksi->ksi_code;
560 	psp = p->p_sigacts;
561 	mtx_assert(&psp->ps_mtx, MA_OWNED);
562 	tf = td->td_frame;
563 	onstack = sigonstack(tf->tf_usr_sp);
564 
565 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
566 	    catcher, sig);
567 
568 	/* Allocate and validate space for the signal handler context. */
569 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
570 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
571 		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
572 		    td->td_sigstk.ss_size);
573 #if defined(COMPAT_43)
574 		td->td_sigstk.ss_flags |= SS_ONSTACK;
575 #endif
576 	} else
577 		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
578 
579 	/* make room on the stack */
580 	fp--;
581 
582 	/* make the stack aligned */
583 	fp = (struct sigframe *)STACKALIGN(fp);
584 	/* Populate the siginfo frame. */
585 	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
586 #ifdef VFP
587 	get_vfpcontext(td, &frame.sf_vfp);
588 	frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
589 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
590 #else
591 	frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
592 	frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
593 #endif
594 	frame.sf_si = ksi->ksi_info;
595 	frame.sf_uc.uc_sigmask = *mask;
596 	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
597 	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
598 	frame.sf_uc.uc_stack = td->td_sigstk;
599 	mtx_unlock(&psp->ps_mtx);
600 	PROC_UNLOCK(td->td_proc);
601 
602 	/* Copy the sigframe out to the user's stack. */
603 	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
604 		/* Process has trashed its stack. Kill it. */
605 		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
606 		PROC_LOCK(p);
607 		sigexit(td, SIGILL);
608 	}
609 
610 	/*
611 	 * Build context to run handler in.  We invoke the handler
612 	 * directly, only returning via the trampoline.  Note the
613 	 * trampoline version numbers are coordinated with machine-
614 	 * dependent code in libc.
615 	 */
616 
617 	tf->tf_r0 = sig;
618 	tf->tf_r1 = (register_t)&fp->sf_si;
619 	tf->tf_r2 = (register_t)&fp->sf_uc;
620 
621 	/* the trampoline uses r5 as the uc address */
622 	tf->tf_r5 = (register_t)&fp->sf_uc;
623 	tf->tf_pc = (register_t)catcher;
624 	tf->tf_usr_sp = (register_t)fp;
625 	sysent = p->p_sysent;
626 	if (sysent->sv_sigcode_base != 0)
627 		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
628 	else
629 		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
630 		    *(sysent->sv_szsigcode));
631 	/* Set the mode to enter in the signal handler */
632 #if __ARM_ARCH >= 7
633 	if ((register_t)catcher & 1)
634 		tf->tf_spsr |= PSR_T;
635 	else
636 		tf->tf_spsr &= ~PSR_T;
637 #endif
638 
639 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
640 	    tf->tf_usr_sp);
641 
642 	PROC_LOCK(p);
643 	mtx_lock(&psp->ps_mtx);
644 }
645 
646 int
647 sys_sigreturn(td, uap)
648 	struct thread *td;
649 	struct sigreturn_args /* {
650 		const struct __ucontext *sigcntxp;
651 	} */ *uap;
652 {
653 	ucontext_t uc;
654 	int spsr;
655 
656 	if (uap == NULL)
657 		return (EFAULT);
658 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
659 		return (EFAULT);
660 	/*
661 	 * Make sure the processor mode has not been tampered with and
662 	 * interrupts have not been disabled.
663 	 */
664 	spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
665 	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
666 	    (spsr & (PSR_I | PSR_F)) != 0)
667 		return (EINVAL);
668 	/* Restore register context. */
669 	set_mcontext(td, &uc.uc_mcontext);
670 
671 	/* Restore signal mask. */
672 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
673 
674 	return (EJUSTRETURN);
675 }
676 
677 /*
678  * Construct a PCB from a trapframe. This is called from kdb_trap() where
679  * we want to start a backtrace from the function that caused us to enter
680  * the debugger. We have the context in the trapframe, but base the trace
681  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
682  * enough for a backtrace.
683  */
684 void
685 makectx(struct trapframe *tf, struct pcb *pcb)
686 {
687 	pcb->pcb_regs.sf_r4 = tf->tf_r4;
688 	pcb->pcb_regs.sf_r5 = tf->tf_r5;
689 	pcb->pcb_regs.sf_r6 = tf->tf_r6;
690 	pcb->pcb_regs.sf_r7 = tf->tf_r7;
691 	pcb->pcb_regs.sf_r8 = tf->tf_r8;
692 	pcb->pcb_regs.sf_r9 = tf->tf_r9;
693 	pcb->pcb_regs.sf_r10 = tf->tf_r10;
694 	pcb->pcb_regs.sf_r11 = tf->tf_r11;
695 	pcb->pcb_regs.sf_r12 = tf->tf_r12;
696 	pcb->pcb_regs.sf_pc = tf->tf_pc;
697 	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
698 	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
699 }
700 
701 void
702 pcpu0_init(void)
703 {
704 #if __ARM_ARCH >= 6
705 	set_curthread(&thread0);
706 #endif
707 	pcpu_init(pcpup, 0, sizeof(struct pcpu));
708 	PCPU_SET(curthread, &thread0);
709 }
710 
711 /*
712  * Initialize proc0
713  */
714 void
715 init_proc0(vm_offset_t kstack)
716 {
717 	proc_linkup0(&proc0, &thread0);
718 	thread0.td_kstack = kstack;
719 	thread0.td_pcb = (struct pcb *)
720 		(thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
721 	thread0.td_pcb->pcb_flags = 0;
722 	thread0.td_pcb->pcb_vfpcpu = -1;
723 	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
724 	thread0.td_frame = &proc0_tf;
725 	pcpup->pc_curpcb = thread0.td_pcb;
726 }
727 
728 #if __ARM_ARCH >= 6
729 void
730 set_stackptrs(int cpu)
731 {
732 
733 	set_stackptr(PSR_IRQ32_MODE,
734 	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
735 	set_stackptr(PSR_ABT32_MODE,
736 	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
737 	set_stackptr(PSR_UND32_MODE,
738 	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
739 }
740 #else
741 void
742 set_stackptrs(int cpu)
743 {
744 
745 	set_stackptr(PSR_IRQ32_MODE,
746 	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
747 	set_stackptr(PSR_ABT32_MODE,
748 	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
749 	set_stackptr(PSR_UND32_MODE,
750 	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
751 }
752 #endif
753 
754 
755 #ifdef FDT
756 #if __ARM_ARCH < 6
757 void *
758 initarm(struct arm_boot_params *abp)
759 {
760 	struct mem_region mem_regions[FDT_MEM_REGIONS];
761 	struct pv_addr kernel_l1pt;
762 	struct pv_addr dpcpu;
763 	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
764 	uint64_t memsize;
765 	uint32_t l2size;
766 	char *env;
767 	void *kmdp;
768 	u_int l1pagetable;
769 	int i, j, err_devmap, mem_regions_sz;
770 
771 	lastaddr = parse_boot_param(abp);
772 	arm_physmem_kernaddr = abp->abp_physaddr;
773 
774 	memsize = 0;
775 
776 	cpuinfo_init();
777 	set_cpufuncs();
778 
779 	/*
780 	 * Find the dtb passed in by the boot loader.
781 	 */
782 	kmdp = preload_search_by_type("elf kernel");
783 	if (kmdp != NULL)
784 		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
785 	else
786 		dtbp = (vm_offset_t)NULL;
787 
788 #if defined(FDT_DTB_STATIC)
789 	/*
790 	 * In case the device tree blob was not retrieved (from metadata) try
791 	 * to use the statically embedded one.
792 	 */
793 	if (dtbp == (vm_offset_t)NULL)
794 		dtbp = (vm_offset_t)&fdt_static_dtb;
795 #endif
796 
797 	if (OF_install(OFW_FDT, 0) == FALSE)
798 		panic("Cannot install FDT");
799 
800 	if (OF_init((void *)dtbp) != 0)
801 		panic("OF_init failed with the found device tree");
802 
803 	/* Grab physical memory regions information from device tree. */
804 	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
805 		panic("Cannot get physical memory regions");
806 	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
807 
808 	/* Grab reserved memory regions information from device tree. */
809 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
810 		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
811 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
812 
813 	/* Platform-specific initialisation */
814 	platform_probe_and_attach();
815 
816 	pcpu0_init();
817 
818 	/* Do basic tuning, hz etc */
819 	init_param1();
820 
821 	/* Calculate number of L2 tables needed for mapping vm_page_array */
822 	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
823 	l2size = (l2size >> L1_S_SHIFT) + 1;
824 
825 	/*
826 	 * Add one table for end of kernel map, one for stacks, msgbuf and
827 	 * L1 and L2 tables map,  one for vectors map and two for
828 	 * l2 structures from pmap_bootstrap.
829 	 */
830 	l2size += 5;
831 
832 	/* Make it divisible by 4 */
833 	l2size = (l2size + 3) & ~3;
834 
835 	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
836 
837 	/* Define a macro to simplify memory allocation */
838 #define valloc_pages(var, np)						\
839 	alloc_pages((var).pv_va, (np));					\
840 	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
841 
842 #define alloc_pages(var, np)						\
843 	(var) = freemempos;						\
844 	freemempos += (np * PAGE_SIZE);					\
845 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
846 
847 	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
848 		freemempos += PAGE_SIZE;
849 	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
850 
851 	for (i = 0, j = 0; i < l2size; ++i) {
852 		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
853 			valloc_pages(kernel_pt_table[i],
854 			    L2_TABLE_SIZE / PAGE_SIZE);
855 			j = i;
856 		} else {
857 			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
858 			    L2_TABLE_SIZE_REAL * (i - j);
859 			kernel_pt_table[i].pv_pa =
860 			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
861 			    abp->abp_physaddr;
862 
863 		}
864 	}
865 	/*
866 	 * Allocate a page for the system page mapped to 0x00000000
867 	 * or 0xffff0000. This page will just contain the system vectors
868 	 * and can be shared by all processes.
869 	 */
870 	valloc_pages(systempage, 1);
871 
872 	/* Allocate dynamic per-cpu area. */
873 	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
874 	dpcpu_init((void *)dpcpu.pv_va, 0);
875 
876 	/* Allocate stacks for all modes */
877 	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
878 	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
879 	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
880 	valloc_pages(kernelstack, kstack_pages * MAXCPU);
881 	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
882 
883 	/*
884 	 * Now we start construction of the L1 page table
885 	 * We start by mapping the L2 page tables into the L1.
886 	 * This means that we can replace L1 mappings later on if necessary
887 	 */
888 	l1pagetable = kernel_l1pt.pv_va;
889 
890 	/*
891 	 * Try to map as much as possible of kernel text and data using
892 	 * 1MB section mapping and for the rest of initial kernel address
893 	 * space use L2 coarse tables.
894 	 *
895 	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
896 	 * and kernel structures
897 	 */
898 	l2_start = lastaddr & ~(L1_S_OFFSET);
899 	for (i = 0 ; i < l2size - 1; i++)
900 		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
901 		    &kernel_pt_table[i]);
902 
903 	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
904 
905 	/* Map kernel code and data */
906 	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
907 	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
908 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
909 
910 	/* Map L1 directory and allocated L2 page tables */
911 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
912 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
913 
914 	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
915 	    kernel_pt_table[0].pv_pa,
916 	    L2_TABLE_SIZE_REAL * l2size,
917 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
918 
919 	/* Map allocated DPCPU, stacks and msgbuf */
920 	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
921 	    freemempos - dpcpu.pv_va,
922 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
923 
924 	/* Link and map the vector page */
925 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
926 	    &kernel_pt_table[l2size - 1]);
927 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
928 	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
929 
930 	/* Establish static device mappings. */
931 	err_devmap = platform_devmap_init();
932 	devmap_bootstrap(l1pagetable, NULL);
933 	vm_max_kernel_address = platform_lastaddr();
934 
935 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
936 	pmap_pa = kernel_l1pt.pv_pa;
937 	cpu_setttb(kernel_l1pt.pv_pa);
938 	cpu_tlb_flushID();
939 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
940 
941 	/*
942 	 * Now that proper page tables are installed, call cpu_setup() to enable
943 	 * instruction and data caches and other chip-specific features.
944 	 */
945 	cpu_setup();
946 
947 	/*
948 	 * Only after the SOC registers block is mapped we can perform device
949 	 * tree fixups, as they may attempt to read parameters from hardware.
950 	 */
951 	OF_interpret("perform-fixup", 0);
952 
953 	platform_gpio_init();
954 
955 	cninit();
956 
957 	debugf("initarm: console initialized\n");
958 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
959 	debugf(" boothowto = 0x%08x\n", boothowto);
960 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
961 	arm_print_kenv();
962 
963 	env = kern_getenv("kernelname");
964 	if (env != NULL) {
965 		strlcpy(kernelname, env, sizeof(kernelname));
966 		freeenv(env);
967 	}
968 
969 	if (err_devmap != 0)
970 		printf("WARNING: could not fully configure devmap, error=%d\n",
971 		    err_devmap);
972 
973 	platform_late_init();
974 
975 	/*
976 	 * Pages were allocated during the secondary bootstrap for the
977 	 * stacks for different CPU modes.
978 	 * We must now set the r13 registers in the different CPU modes to
979 	 * point to these stacks.
980 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
981 	 * of the stack memory.
982 	 */
983 	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
984 
985 	set_stackptrs(0);
986 
987 	/*
988 	 * We must now clean the cache again....
989 	 * Cleaning may be done by reading new data to displace any
990 	 * dirty data in the cache. This will have happened in cpu_setttb()
991 	 * but since we are boot strapping the addresses used for the read
992 	 * may have just been remapped and thus the cache could be out
993 	 * of sync. A re-clean after the switch will cure this.
994 	 * After booting there are no gross relocations of the kernel thus
995 	 * this problem will not occur after initarm().
996 	 */
997 	cpu_idcache_wbinv_all();
998 
999 	undefined_init();
1000 
1001 	init_proc0(kernelstack.pv_va);
1002 
1003 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1004 	pmap_bootstrap(freemempos, &kernel_l1pt);
1005 	msgbufp = (void *)msgbufpv.pv_va;
1006 	msgbufinit(msgbufp, msgbufsize);
1007 	mutex_init();
1008 
1009 	/*
1010 	 * Exclude the kernel (and all the things we allocated which immediately
1011 	 * follow the kernel) from the VM allocation pool but not from crash
1012 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1013 	 * "allocated" while setting up pmaps.
1014 	 *
1015 	 * Prepare the list of physical memory available to the vm subsystem.
1016 	 */
1017 	arm_physmem_exclude_region(abp->abp_physaddr,
1018 	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1019 	arm_physmem_init_kernel_globals();
1020 
1021 	init_param2(physmem);
1022 	dbg_monitor_init();
1023 	kdb_init();
1024 
1025 	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1026 	    sizeof(struct pcb)));
1027 }
1028 #else /* __ARM_ARCH < 6 */
1029 void *
1030 initarm(struct arm_boot_params *abp)
1031 {
1032 	struct mem_region mem_regions[FDT_MEM_REGIONS];
1033 	vm_paddr_t lastaddr;
1034 	vm_offset_t dtbp, kernelstack, dpcpu;
1035 	char *env;
1036 	void *kmdp;
1037 	int err_devmap, mem_regions_sz;
1038 #ifdef EFI
1039 	struct efi_map_header *efihdr;
1040 #endif
1041 
1042 	/* get last allocated physical address */
1043 	arm_physmem_kernaddr = abp->abp_physaddr;
1044 	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
1045 
1046 	set_cpufuncs();
1047 	cpuinfo_init();
1048 
1049 	/*
1050 	 * Find the dtb passed in by the boot loader.
1051 	 */
1052 	kmdp = preload_search_by_type("elf kernel");
1053 	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1054 #if defined(FDT_DTB_STATIC)
1055 	/*
1056 	 * In case the device tree blob was not retrieved (from metadata) try
1057 	 * to use the statically embedded one.
1058 	 */
1059 	if (dtbp == (vm_offset_t)NULL)
1060 		dtbp = (vm_offset_t)&fdt_static_dtb;
1061 #endif
1062 
1063 	if (OF_install(OFW_FDT, 0) == FALSE)
1064 		panic("Cannot install FDT");
1065 
1066 	if (OF_init((void *)dtbp) != 0)
1067 		panic("OF_init failed with the found device tree");
1068 
1069 #if defined(LINUX_BOOT_ABI)
1070 	arm_parse_fdt_bootargs();
1071 #endif
1072 
1073 #ifdef EFI
1074 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1075 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1076 	if (efihdr != NULL) {
1077 		arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
1078 	} else
1079 #endif
1080 	{
1081 		/* Grab physical memory regions information from device tree. */
1082 		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
1083 			panic("Cannot get physical memory regions");
1084 	}
1085 	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1086 
1087 	/* Grab reserved memory regions information from device tree. */
1088 	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1089 		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1090 		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1091 
1092 	/*
1093 	 * Set TEX remapping registers.
1094 	 * Setup kernel page tables and switch to kernel L1 page table.
1095 	 */
1096 	pmap_set_tex();
1097 	pmap_bootstrap_prepare(lastaddr);
1098 
1099 	/*
1100 	 * Now that proper page tables are installed, call cpu_setup() to enable
1101 	 * instruction and data caches and other chip-specific features.
1102 	 */
1103 	cpu_setup();
1104 
1105 	/* Platform-specific initialisation */
1106 	platform_probe_and_attach();
1107 	pcpu0_init();
1108 
1109 	/* Do basic tuning, hz etc */
1110 	init_param1();
1111 
1112 	/*
1113 	 * Allocate a page for the system page mapped to 0xffff0000
1114 	 * This page will just contain the system vectors and can be
1115 	 * shared by all processes.
1116 	 */
1117 	systempage = pmap_preboot_get_pages(1);
1118 
1119 	/* Map the vector page. */
1120 	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
1121 	if (virtual_end >= ARM_VECTORS_HIGH)
1122 		virtual_end = ARM_VECTORS_HIGH - 1;
1123 
1124 	/* Allocate dynamic per-cpu area. */
1125 	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
1126 	dpcpu_init((void *)dpcpu, 0);
1127 
1128 	/* Allocate stacks for all modes */
1129 	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
1130 	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
1131 	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
1132 	kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
1133 
1134 	/* Allocate message buffer. */
1135 	msgbufp = (void *)pmap_preboot_get_vpages(
1136 	    round_page(msgbufsize) / PAGE_SIZE);
1137 
1138 	/*
1139 	 * Pages were allocated during the secondary bootstrap for the
1140 	 * stacks for different CPU modes.
1141 	 * We must now set the r13 registers in the different CPU modes to
1142 	 * point to these stacks.
1143 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1144 	 * of the stack memory.
1145 	 */
1146 	set_stackptrs(0);
1147 	mutex_init();
1148 
1149 	/* Establish static device mappings. */
1150 	err_devmap = platform_devmap_init();
1151 	devmap_bootstrap(0, NULL);
1152 	vm_max_kernel_address = platform_lastaddr();
1153 
1154 	/*
1155 	 * Only after the SOC registers block is mapped we can perform device
1156 	 * tree fixups, as they may attempt to read parameters from hardware.
1157 	 */
1158 	OF_interpret("perform-fixup", 0);
1159 	platform_gpio_init();
1160 	cninit();
1161 
1162 	debugf("initarm: console initialized\n");
1163 	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1164 	debugf(" boothowto = 0x%08x\n", boothowto);
1165 	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1166 	debugf(" lastaddr1: 0x%08x\n", lastaddr);
1167 	arm_print_kenv();
1168 
1169 	env = kern_getenv("kernelname");
1170 	if (env != NULL)
1171 		strlcpy(kernelname, env, sizeof(kernelname));
1172 
1173 	if (err_devmap != 0)
1174 		printf("WARNING: could not fully configure devmap, error=%d\n",
1175 		    err_devmap);
1176 
1177 	platform_late_init();
1178 
1179 	/*
1180 	 * We must now clean the cache again....
1181 	 * Cleaning may be done by reading new data to displace any
1182 	 * dirty data in the cache. This will have happened in cpu_setttb()
1183 	 * but since we are boot strapping the addresses used for the read
1184 	 * may have just been remapped and thus the cache could be out
1185 	 * of sync. A re-clean after the switch will cure this.
1186 	 * After booting there are no gross relocations of the kernel thus
1187 	 * this problem will not occur after initarm().
1188 	 */
1189 	/* Set stack for exception handlers */
1190 	undefined_init();
1191 	init_proc0(kernelstack);
1192 	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1193 	enable_interrupts(PSR_A);
1194 	pmap_bootstrap(0);
1195 
1196 	/* Exclude the kernel (and all the things we allocated which immediately
1197 	 * follow the kernel) from the VM allocation pool but not from crash
1198 	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1199 	 * "allocated" while setting up pmaps.
1200 	 *
1201 	 * Prepare the list of physical memory available to the vm subsystem.
1202 	 */
1203 	arm_physmem_exclude_region(abp->abp_physaddr,
1204 		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
1205 	arm_physmem_init_kernel_globals();
1206 
1207 	init_param2(physmem);
1208 	/* Init message buffer. */
1209 	msgbufinit(msgbufp, msgbufsize);
1210 	dbg_monitor_init();
1211 	kdb_init();
1212 	return ((void *)STACKALIGN(thread0.td_pcb));
1213 
1214 }
1215 
1216 #endif /* __ARM_ARCH < 6 */
1217 #endif /* FDT */
1218