xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision 4b9d6057)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2011 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Developed by Ben Gray <ben.r.gray@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the company nor the name of the author may be used to
18  *    endorse or promote products derived from this software without specific
19  *    prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /**
35  * The ARM Cortex-A9 core can support a global timer plus a private and
36  * watchdog timer per core.  This driver reserves memory and interrupt
37  * resources for accessing both timer register sets, these resources are
38  * stored globally and used to setup the timecount and eventtimer.
39  *
40  * The timecount timer uses the global 64-bit counter, whereas the
41  * per-CPU eventtimer uses the private 32-bit counters.
42  *
43  *
44  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bus.h>
50 #include <sys/kernel.h>
51 #include <sys/module.h>
52 #include <sys/malloc.h>
53 #include <sys/rman.h>
54 #include <sys/timeet.h>
55 #include <sys/timetc.h>
56 #include <sys/watchdog.h>
57 #include <machine/bus.h>
58 #include <machine/cpu.h>
59 #include <machine/intr.h>
60 
61 #include <machine/machdep.h> /* For arm_set_delay */
62 
63 #include <dev/ofw/openfirm.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <machine/bus.h>
68 
69 #include <arm/arm/mpcore_timervar.h>
70 
71 /* Private (per-CPU) timer register map */
72 #define PRV_TIMER_LOAD                 0x0000
73 #define PRV_TIMER_COUNT                0x0004
74 #define PRV_TIMER_CTRL                 0x0008
75 #define PRV_TIMER_INTR                 0x000C
76 
77 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
78 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
79 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
80 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
81 
82 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
83 
84 /* Global timer register map */
85 #define GBL_TIMER_COUNT_LOW            0x0000
86 #define GBL_TIMER_COUNT_HIGH           0x0004
87 #define GBL_TIMER_CTRL                 0x0008
88 #define GBL_TIMER_INTR                 0x000C
89 
90 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
91 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
92 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
93 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
94 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
95 
96 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
97 
98 struct arm_tmr_softc {
99 	device_t		dev;
100 	int			irqrid;
101 	int			memrid;
102 	struct resource *	gbl_mem;
103 	struct resource *	prv_mem;
104 	struct resource *	prv_irq;
105 	uint64_t		clkfreq;
106 	struct eventtimer	et;
107 };
108 
109 static struct eventtimer *arm_tmr_et;
110 static struct timecounter *arm_tmr_tc;
111 static uint64_t arm_tmr_freq;
112 static boolean_t arm_tmr_freq_varies;
113 
114 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
115 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
116 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
117 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
118 
119 static void arm_tmr_delay(int, void *);
120 
121 static timecounter_get_t arm_tmr_get_timecount;
122 
123 static struct timecounter arm_tmr_timecount = {
124 	.tc_name           = "MPCore",
125 	.tc_get_timecount  = arm_tmr_get_timecount,
126 	.tc_poll_pps       = NULL,
127 	.tc_counter_mask   = ~0u,
128 	.tc_frequency      = 0,
129 	.tc_quality        = 800,
130 };
131 
132 #define	TMR_GBL		0x01
133 #define	TMR_PRV		0x02
134 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
135 #define	TMR_NONE	0
136 
137 static struct ofw_compat_data compat_data[] = {
138 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
139 	{"arm,cortex-a9-global-timer",	TMR_GBL},
140 	{"arm,cortex-a5-global-timer",	TMR_GBL},
141 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
142 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
143 	{"arm,arm11mp-twd-timer",	TMR_PRV},
144 	{NULL,				TMR_NONE}
145 };
146 
147 /**
148  *	arm_tmr_get_timecount - reads the timecount (global) timer
149  *	@tc: pointer to arm_tmr_timecount struct
150  *
151  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
152  *	so (for now?) ignore the upper 32-bits.
153  *
154  *	RETURNS
155  *	The lower 32-bits of the counter.
156  */
157 static unsigned
158 arm_tmr_get_timecount(struct timecounter *tc)
159 {
160 	struct arm_tmr_softc *sc;
161 
162 	sc = tc->tc_priv;
163 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
164 }
165 
166 /**
167  *	arm_tmr_start - starts the eventtimer (private) timer
168  *	@et: pointer to eventtimer struct
169  *	@first: the number of seconds and fractional sections to trigger in
170  *	@period: the period (in seconds and fractional sections) to set
171  *
172  *	If the eventtimer is required to be in oneshot mode, period will be
173  *	NULL and first will point to the time to trigger.  If in periodic mode
174  *	period will contain the time period and first may optionally contain
175  *	the time for the first period.
176  *
177  *	RETURNS
178  *	Always returns 0
179  */
180 static int
181 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
182 {
183 	struct arm_tmr_softc *sc;
184 	uint32_t load, count;
185 	uint32_t ctrl;
186 
187 	sc = et->et_priv;
188 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
189 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
190 
191 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
192 
193 	if (period != 0) {
194 		load = ((uint32_t)et->et_frequency * period) >> 32;
195 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
196 	} else
197 		load = 0;
198 
199 	if (first != 0)
200 		count = (uint32_t)((et->et_frequency * first) >> 32);
201 	else
202 		count = load;
203 
204 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
205 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
206 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
207 
208 	return (0);
209 }
210 
211 /**
212  *	arm_tmr_stop - stops the eventtimer (private) timer
213  *	@et: pointer to eventtimer struct
214  *
215  *	Simply stops the private timer by clearing all bits in the ctrl register.
216  *
217  *	RETURNS
218  *	Always returns 0
219  */
220 static int
221 arm_tmr_stop(struct eventtimer *et)
222 {
223 	struct arm_tmr_softc *sc;
224 
225 	sc = et->et_priv;
226 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
227 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
228 	return (0);
229 }
230 
231 /**
232  *	arm_tmr_intr - ISR for the eventtimer (private) timer
233  *	@arg: pointer to arm_tmr_softc struct
234  *
235  *	Clears the event register and then calls the eventtimer callback.
236  *
237  *	RETURNS
238  *	Always returns FILTER_HANDLED
239  */
240 static int
241 arm_tmr_intr(void *arg)
242 {
243 	struct arm_tmr_softc *sc;
244 
245 	sc = arg;
246 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
247 	if (sc->et.et_active)
248 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
249 	return (FILTER_HANDLED);
250 }
251 
252 /**
253  *	arm_tmr_probe - timer probe routine
254  *	@dev: new device
255  *
256  *	The probe function returns success when probed with the fdt compatible
257  *	string set to "arm,mpcore-timers".
258  *
259  *	RETURNS
260  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
261  */
262 static int
263 arm_tmr_probe(device_t dev)
264 {
265 
266 	if (!ofw_bus_status_okay(dev))
267 		return (ENXIO);
268 
269 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
270 		return (ENXIO);
271 
272 	device_set_desc(dev, "ARM MPCore Timers");
273 	return (BUS_PROBE_DEFAULT);
274 }
275 
276 static int
277 attach_tc(struct arm_tmr_softc *sc)
278 {
279 	int rid;
280 
281 	if (arm_tmr_tc != NULL)
282 		return (EBUSY);
283 
284 	rid = sc->memrid;
285 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
286 	    RF_ACTIVE);
287 	if (sc->gbl_mem == NULL) {
288 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
289 		return (ENXIO);
290 	}
291 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
292 
293 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
294 	arm_tmr_timecount.tc_priv = sc;
295 	tc_init(&arm_tmr_timecount);
296 	arm_tmr_tc = &arm_tmr_timecount;
297 
298 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
299 
300 	return (0);
301 }
302 
303 static int
304 attach_et(struct arm_tmr_softc *sc)
305 {
306 	void *ihl;
307 	int irid, mrid;
308 
309 	if (arm_tmr_et != NULL)
310 		return (EBUSY);
311 
312 	mrid = sc->memrid;
313 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
314 	    RF_ACTIVE);
315 	if (sc->prv_mem == NULL) {
316 		device_printf(sc->dev, "could not allocate prv mem resources\n");
317 		return (ENXIO);
318 	}
319 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
320 
321 	irid = sc->irqrid;
322 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
323 	if (sc->prv_irq == NULL) {
324 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
325 		device_printf(sc->dev, "could not allocate prv irq resources\n");
326 		return (ENXIO);
327 	}
328 
329 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
330 			NULL, sc, &ihl) != 0) {
331 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
332 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
333 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
334 		return (ENXIO);
335 	}
336 
337 	/*
338 	 * Setup and register the eventtimer.  Most event timers set their min
339 	 * and max period values to some value calculated from the clock
340 	 * frequency.  We might not know yet what our runtime clock frequency
341 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
342 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
343 	 * we won't overflow our 32-bit timer count register.  A min of 20
344 	 * nanoseconds is pretty much completely arbitrary.
345 	 */
346 	sc->et.et_name = "MPCore";
347 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
348 	sc->et.et_quality = 1000;
349 	sc->et.et_frequency = sc->clkfreq;
350 	sc->et.et_min_period = nstosbt(20);
351 	sc->et.et_max_period =  2 * SBT_1S;
352 	sc->et.et_start = arm_tmr_start;
353 	sc->et.et_stop = arm_tmr_stop;
354 	sc->et.et_priv = sc;
355 	et_register(&sc->et);
356 	arm_tmr_et = &sc->et;
357 
358 	return (0);
359 }
360 
361 /**
362  *	arm_tmr_attach - attaches the timer to the simplebus
363  *	@dev: new device
364  *
365  *	Reserves memory and interrupt resources, stores the softc structure
366  *	globally and registers both the timecount and eventtimer objects.
367  *
368  *	RETURNS
369  *	Zero on success or ENXIO if an error occuried.
370  */
371 static int
372 arm_tmr_attach(device_t dev)
373 {
374 	struct arm_tmr_softc *sc;
375 	phandle_t node;
376 	pcell_t clock;
377 	int et_err, tc_err, tmrtype;
378 
379 	sc = device_get_softc(dev);
380 	sc->dev = dev;
381 
382 	if (arm_tmr_freq_varies) {
383 		sc->clkfreq = arm_tmr_freq;
384 	} else {
385 		if (arm_tmr_freq != 0) {
386 			sc->clkfreq = arm_tmr_freq;
387 		} else {
388 			/* Get the base clock frequency */
389 			node = ofw_bus_get_node(dev);
390 			if ((OF_getencprop(node, "clock-frequency", &clock,
391 			    sizeof(clock))) <= 0) {
392 				device_printf(dev, "missing clock-frequency "
393 				    "attribute in FDT\n");
394 				return (ENXIO);
395 			}
396 			sc->clkfreq = clock;
397 		}
398 	}
399 
400 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
401 	tc_err = ENXIO;
402 	et_err = ENXIO;
403 
404 	/*
405 	 * If we're handling the global timer and it is fixed-frequency, set it
406 	 * up to use as a timecounter.  If it's variable frequency it won't work
407 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
408 	 * platform provides its own implementation. If it doesn't, ours will
409 	 * get used, but since the frequency isn't set, it will only use the
410 	 * bogus loop counter.
411 	 */
412 	if (tmrtype & TMR_GBL) {
413 		if (!arm_tmr_freq_varies)
414 			tc_err = attach_tc(sc);
415 		else if (bootverbose)
416 			device_printf(sc->dev,
417 			    "not using variable-frequency device as timecounter\n");
418 		sc->memrid++;
419 		sc->irqrid++;
420 	}
421 
422 	/* If we are handling the private timer, set it up as an eventtimer. */
423 	if (tmrtype & TMR_PRV) {
424 		et_err = attach_et(sc);
425 	}
426 
427 	/*
428 	 * If we didn't successfully set up a timecounter or eventtimer then we
429 	 * didn't actually attach at all, return error.
430 	 */
431 	if (tc_err != 0 && et_err != 0) {
432 		return (ENXIO);
433 	}
434 
435 #ifdef PLATFORM
436 	/*
437 	 * We can register as the DELAY() implementation only if we successfully
438 	 * set up the global timer.
439 	 */
440 	if (tc_err == 0)
441 		arm_set_delay(arm_tmr_delay, sc);
442 #endif
443 
444 	return (0);
445 }
446 
447 static device_method_t arm_tmr_methods[] = {
448 	DEVMETHOD(device_probe,		arm_tmr_probe),
449 	DEVMETHOD(device_attach,	arm_tmr_attach),
450 	{ 0, 0 }
451 };
452 
453 static driver_t arm_tmr_driver = {
454 	"mp_tmr",
455 	arm_tmr_methods,
456 	sizeof(struct arm_tmr_softc),
457 };
458 
459 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, 0, 0,
460     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
461 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, 0, 0,
462     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
463 
464 /*
465  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
466  * frequency.  When the CPU frequency changes due to power-saving or thermal
467  * management, the platform-specific code that causes the frequency change calls
468  * this routine to inform the clock driver, and we in turn inform the event
469  * timer system, which actually updates the value in et->frequency for us and
470  * reschedules the current event(s) in a way that's atomic with respect to
471  * start/stop/intr code that may be running on various CPUs at the time of the
472  * call.
473  *
474  * This routine can also be called by a platform's early init code.  If the
475  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
476  * to register as an eventtimer, but not a timecounter.  If the value passed in
477  * is any other non-zero value it is used as the fixed frequency for the timer.
478  */
479 void
480 arm_tmr_change_frequency(uint64_t newfreq)
481 {
482 
483 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
484 		arm_tmr_freq_varies = true;
485 		return;
486 	}
487 
488 	arm_tmr_freq = newfreq;
489 	if (arm_tmr_et != NULL)
490 		et_change_frequency(arm_tmr_et, newfreq);
491 }
492 
493 static void
494 arm_tmr_delay(int usec, void *arg)
495 {
496 	struct arm_tmr_softc *sc = arg;
497 	int32_t counts_per_usec;
498 	int32_t counts;
499 	uint32_t first, last;
500 
501 	/* Get the number of times to count */
502 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
503 
504 	/*
505 	 * Clamp the timeout at a maximum value (about 32 seconds with
506 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
507 	 * near that length of time and if they are, they should be hung
508 	 * out to dry.
509 	 */
510 	if (usec >= (0x80000000U / counts_per_usec))
511 		counts = (0x80000000U / counts_per_usec) - 1;
512 	else
513 		counts = usec * counts_per_usec;
514 
515 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
516 
517 	while (counts > 0) {
518 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
519 		counts -= (int32_t)(last - first);
520 		first = last;
521 	}
522 }
523 
524 #ifndef PLATFORM
525 /**
526  *	DELAY - Delay for at least usec microseconds.
527  *	@usec: number of microseconds to delay by
528  *
529  *	This function is called all over the kernel and is suppose to provide a
530  *	consistent delay.  This function may also be called before the console
531  *	is setup so no printf's can be called here.
532  *
533  *	RETURNS:
534  *	nothing
535  */
536 void
537 DELAY(int usec)
538 {
539 	struct arm_tmr_softc *sc;
540 	int32_t counts;
541 
542 	TSENTER();
543 	/* Check the timers are setup, if not just use a for loop for the meantime */
544 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
545 		for (; usec > 0; usec--)
546 			for (counts = 200; counts > 0; counts--)
547 				cpufunc_nullop();	/* Prevent gcc from optimizing
548 							 * out the loop
549 							 */
550 	} else {
551 		sc = arm_tmr_tc->tc_priv;
552 		arm_tmr_delay(usec, sc);
553 	}
554 	TSEXIT();
555 }
556 #endif
557